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Abstract Measures of interestingness play a crucial role in association rule mining.
An important methodological problem, on which several papers appeared in the lit-
erature, is to provide a reasonable classification of the measures. In this paper, we
explore Boolean factor analysis, which uses formal concepts corresponding to classes of
measures as factors, for the purpose of clustering of the measures. Unlike the existing
studies, our method reveals overlapping clusters of interestingness measures. We argue
that the overlap between clusters is a desired feature of natural groupings of measures
and that because formal concepts are used as factors in Boolean factor analysis, the
resulting clusters have a clear meaning and are easy to interpret. We conduct three
case studies on clustering of measures, provide interpretations of the resulting clusters
and compare the results to those of the previous approaches reported in the literature.

1 Introduction

An important problem in extracting association rules, well known since the early stage
of association rule mining [35], is the possibly huge number of rules extracted from
data. A general way of dealing with this problem is to define the concept of rule
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interestingness: only association rules that are considered interesting according to some
measure are presented to the user. The most widely used measures of interestingness are
based on the well-known concept of support and confidence. However, the suitability
of these measures to extract interesting rules was challenged by several studies, see [14]
for an overview. Consequently, several other interestingness measures of association
rules were proposed, see e.g. [13], [23], [40], [43].

To understand better the behavior of various measures, several studies of the prop-
erties of interestingness measures appeared, see e.g. [13], [15], [24], [30]. Those studies
explore various properties of the measures that are considered important and attempt
to provide reasonable classifications of the measures. For example, Vaillant et al. [42], as
a part of their work on facilitating the choice of user-adapted interestingness measures
[25–27], evaluated 20 interestingness measures according to 8 properties. The authors
applied hierarchical clustering on the 20 × 8 measure–property matrix and obtained
four clusters of measures. Tan et al. [40] studied 21 interestingness measures using
8 properties. They argued that each measure is useful for some applications but not
for others and study when two measures are consistent with each other. By applying a
new clustering approach, Huynh et al. [21] classified 34 interestingness measures with a
correlation analysis. Geng and Hamilton [13] made a survey of 38 interestingness mea-
sures for rules and summaries with 11 properties. They also gave strategies to select the
appropriate measures. Feno [11] evaluated 15 interestingness measures with 13 proper-
ties to describe their behaviour. Delgado et al. [10] provided a study of interestingness
measures by means of so-called logical model. Furthermore, the authors proposed and
justified the addition of two new principles for interestingness measures to the three
proposed by Piatetsky-Shapiro [35]. Heravi and Zaiane [22] studied 53 objective mea-
sures for associative classification rules according to 16 properties and concluded that
no single measure can be introduced as an obvious winner for associative classification.
Surana et al. [38] addressed the problem of selecting an interestingness measure for
mining rare association rules. For this purpose, they analyzed various properties of
measures and suggested a set of properties to be considered for selecting a measure.
Through experimental results, they showed that the measures satisfying the suggested
properties can efficiently discover rare association rules. Guillaume et al. [15] attempted
to significantly extend the number of measures and properties under scrutiny. The re-
sulting measure-property matrix was subject to two studies. Namely, [16] describes
how formal concept analysis may help highlighting interestingness measures with sim-
ilar behavior to help a user during his choice. More importantly, Guillaume et al. [15]
attempted to find natural clusters of measures by widely used clustering methods, the
agglomerative hierarchical method and the K-means method. The proposed approach
in [15] avoids the four pitfalls mentioned by Suzuki [39] concerning categorization of
interestingness measures. For example, the fourth one (search bias) was avoided by test-
ing various values of parameters, and aggregating the results of two different clustering
algorithms.

The numerous previous works indicate the importance of categorization of inter-
estingness measures into clusters. For one, the clusters provide us with a structured
view on the many existing interestingness measures. Such a view helps to highlight
the similarity and possibly other relationships between the measures. For second, the
revealed clusters or groups of measures may be useful to help the user select interest-
ingness measures. In particular, a group of measures may be thought of a representing
a particular kind of interesting measures. In this view, a collection of clusters represents
a collection of particular kinds of measures, i.e. particular points of view regarding the
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importance of association rules. If a user intends to take into account several such views
represented by the clusters, he may opt to select one measure per cluster. This is the
case in a recent paper by Bouker et al. [6] who propose to generate association rules
using several different interestingness measures by means of aggregating the measure
values.

A common feature of the above mentioned approaches to cluster interestingness
measures is that the methods used only produce disjoint clusters of measures. However,
since the clusters are supposed to correspond to significant classes of measures, one
would naturally expect overlapping clusters rather than disjoint ones. Namely, a single
measure may belong to a particular cluster because it shares some properties with
other measures in that cluster (those characteristic for the cluster) and, at the same
time, may belong to a different cluster because it shares some other properties with
the measures in this different cluster. The aim of this paper is to explore the possibility
of obtaining reasonable overlapping clusters of measures using Boolean factor analysis
(BFA) and to compare the results with those of the other studies. In particular, we use
the method recently developed in [3], apply it to the various measure-property Boolean
matrices describing the measures reported in the literature, and take the discovered
factors for (overlapping) clusters. We argue that the clusters obtained this way provide
a reasonable classification of measures and that since the method uses formal concepts
as factors, the clusters are easy to interpret.

The paper is organized as follows. Section 2 provides preliminaries on Boolean
(binary) data, association rules, and Boolean factor analysis. Section 3 provides three
case studies on clustering using by means of Boolean factors and a discussion regarding
the interpretation of the clusters obtained and a comparison of the results to those
reported in the literature. Section 4 concludes the paper and outlines some directions
for future research.

2 Preliminaries

2.1 Boolean (binary) data

Let X be a set of objects (such as a set of customers, a set of functions or the like)
and Y be a set of attributes (such as a set of products that customers may buy, a set
of properties of functions). The information about which objects have which attributes
may formally be represented by a binary relation I between X and Y , i.e. I ⊆ X × Y ,
and may be visualized by a table (matrix) that contains 1s and 0s, according to whether
the object corresponding to a row has the attribute corresponding to a column. We
denote the entries of such matrix by Ixy. A data of this type is called Boolean data (or
binary data). The triplet 〈X,Y, I〉 is called a formal context in formal concept analysis
(FCA) but other terms are used in other areas.

Such type of data appears in two roles in our paper. First, association rules, whose
interestingness measures we analyze, are certain dependencies over Boolean data. Sec-
ond, the information we have about the interestingness measures of association rules is
in the form of Boolean data: the objects are interestingness measures and the attributes
are their properties. An example is given by Table 2.
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2.2 Association rules

An association rule [41] over a set Y of attributes is a formula

A⇒ B (1)

where A and B are sets of attributes from Y , i.e. A,B ⊆ Y . Let 〈X,Y, I〉 be a formal
context. A natural measure of interestingness of association rules is based on the notions
of confidence and support. The confidence and support of an association rule A ⇒ B

in 〈X,Y, I〉 are defined by

conf(A⇒ B) =
|A↓ ∩B↓|
|A↓|

and supp(A⇒ B) =
|A↓ ∩B↓|
|X| ,

where C↓ for C ⊆ Y is defined by C↓ = {x ∈ X | for each y ∈ C : 〈x, y〉 ∈ I}, i.e. C↓
is the set of all objects sharing all attributes from C, and |D| denotes the size of a set
D. Hence, the confidence of an association rule A ⇒ B is the ratio of the number of
objects sharing all attributes from both A and B to the number of objects sharing all
attributes from A, while the support of the association rule is the ratio of the number of
objects sharing all attributes from both A and B to the number of all objects from X.

An association rule is considered interesting if its confidence and support exceed
some user-specified thresholds. However, the support-confidence approach suffers from
certain weaknesses. Often, this approach as well as algorithms based on it leads to
the extraction of an exponential number of rules. In addition, the limitation of the
support measure is that sometimes many rules that are potentially interesting have a
support lower than the specified threshold and get therefore lost. To address this prob-
lem, many other measures of interestingness have been proposed in the literature [14],
mainly because they are effective for mining potentially interesting rules and capture
various aspects of user interest. Because of lack of space, we do not describe all the
measures to which we refer in this paper. Rather, we provide the reader with references
(mainly in Table 1) where the definitions may be found. Note that association rules
are attributed to [1]. However, the concept of association rule itself as well as various
measures of interestingness are particular cases of what is investigated in depth in [18],
a book that develops logico-statistical foundations of the GUHA method [19].

2.3 Boolean factor analysis (BFA)

Let I be an n×m Boolean (binary) matrix. The aim in Boolean factor analysis (BFA),
also refered to as factor analysis of (Boolean) binary data, is to find a decomposition

I = A ◦B (2)

of I into an n × k Boolean matrix A and a k ×m Boolean matrix B with ◦ denoting
the Boolean product of matrices, i.e.

(A ◦B)ij =
k

max
l=1

min(Ail, Blj).

The inner dimension, k, in the decomposition may be interpreted as the number of
factors that may be used to describe the original data. Namely, Ail = 1 if and only if
the lth factor applies to the ith object and Blj = 1 if and only if the jth attribute is one
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of the manifestations of the lth factor. The factor model behind (2) has therefore the
following meaning: the object i has the attribute j if and only if there exists a factor
l that applies to i and for which j is one of the particular manifestations of factor l.
Note that while the general aim is the same as in classical factor analysis, the nature
of data and the algebra behind make BFA substantially different from classical factor
analysis. We refer to [3] for further information and references to papers that deal with
the problem of factor analysis and decompositions of Boolean matrices.

In [3], the following method for finding decompositions (2) with the number k of
factors as small as possible has been presented. The method utilizes formal concepts of
the formal context 〈X,Y, I〉 as factors, where X = {1, . . . , n}, Y = {1, . . . ,m} (objects
and attributes correspond to the rows and columns of I). Recall that a formal concept
of 〈X,Y, I〉 is any pair 〈C,D〉 of sets C ⊆ X and D ⊆ Y such that D is just the set
of all attributes shared by all objects in C and, conversely, C is just the set of all
objects that have all the attributes in D. Note also that the set of all formal concepts
of 〈X,Y, I〉 equipped with a natural subconcept-superconcept hierarchy is called the
concept lattice of 〈X,Y, I〉 and is denoted by B(X,Y, I) [12]. Let

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} (3)

be a set of formal concepts of 〈X,Y, I〉, i.e. 〈Cl, Dl〉 are elements of the concept lattice
B(X,Y, I). Consider the n × k Boolean matrix AF and a k ×m Boolean matrix BF
defined by

(AF )il = 1 iff i ∈ Cl and (BF )lj = 1 iff j ∈ Dl. (4)

Denote by ρ(I) the smallest number k, so-called Schein rank of I, such that a decom-
position of I exists with k factors. The following theorem [3] shows that using formal
concepts as factors as in (4) is optimal in that it enables us to reach the Schein rank.

Theorem 1 For every Boolean matrix I, there exists F ⊆ B(X,Y, I) such that I =

AF ◦BF and |F| = ρ(I).

Example 1 As an illustration, consider the 4 × 5 Boolean matrix I depicted bellow.
Using the described method one can find a decomposition of the matrix into 4× 3 and
3× 5 Boolean matrices AF and BF with the number of factors k (and also the Schein
rank ρ(I)) equal to 3:

I = AF ◦ BF
1 1 0 0 0

1 1 0 0 1

1 1 1 1 0

1 0 0 0 1

 =


1 0 0

1 1 0

1 0 1

0 1 0

 ◦

 1 1 0 0 0

1 0 0 0 1

1 1 1 1 0


Considering the input Boolean matrix as a formal context 〈X,Y, I〉, where X =

{1, . . . , 4} and Y = {1, . . . , 5}, the following three formal concepts of 〈X,Y, I〉 are
utilized as factors:

F = {〈{1, 2, 3}, {1, 2}〉, 〈{2, 4}, {1, 5}〉, 〈{3}, {1, 2, 3, 4}〉}.

As has been demonstrated in [3], a useful feature of using formal concepts as factors
is the fact that formal concepts may easily be interpreted. Namely, every factor, i.e.
a formal concept 〈Cl, Dl〉, consists of a set Cl of objects (objects are measures of
interestingness in our case) and a set Dl of attributes (properties of measures in our
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case). Cl contains just the objects to which all the attributes from Dl apply and
Dl contains all attributes shared by all objects from Cl. From a clustering point of
view, the factors 〈Cl, Dl〉 may thus be seen as clusters Cl with their descriptions by
attributes from Dl. The factors thus have a natural, easy to understand meaning. Since
the problem of computing the smallest set of factors is NP-hard, an approximation
algorithm was proposed in [3, Algorithm 2]. This algorithm is utilized below in our
paper (and also in the above example). The algorithm is based on a greedy strategy
to select in every step a large formal concept that covers most of the yet uncovered
data. The algorithm uses a heuristic way of selecting formal concepts that makes it
possible to avoid the computation of the whole concept lattice, making it much faster
yet with comparable quality when compared to a direct greedy strategy performing an
exhaustive search, which is represented by [3, Algorithm 1].

3 Results of clustering of interestingness measures by means of BFA

In this section, we present three case studies of clustering interestingness measures using
BFA. The input in each case study is a Boolean matrix I in which the rows correspond
to interestingness measures and the columns to their properties. Using Algorithm 2
from [3] we compute a set F of factors, i.e. formal concepts, which decompose I, i.e.
for which I = AF ◦ BF . The formal concepts 〈Ci, Di〉 ∈ F , cf. (3), provide us with
clusters the following way. Each formal concept 〈Ci, Di〉 consists of a set Ci of measures
and a set Di of their properties. Ci may be thought of as a cluster of measures and
Di as its description. In the next section, we denote the factors 〈Ci, Di〉 by Fi. For
convenience, we sometimes identify the set Ci, i.e. the measures covered by Fi, with
Fi. That is, we say e.g. Fi ⊆ C instead of the proper Ci ⊆ C, to indicate that the
measures covered by factor Fi are included in some set C. Note also that according
to the nature of BFA, the first factors account for most data and are thus the most
important, while the last ones may usually be disregarded. Therefore, we considered
the first factors as candidates for important clusters of measures.

3.1 Case Study 1

3.1.1 Input: Measures and their properties

In case study 1, we analyzed the interestingness measures and their properties basi-
cally as described in [15]. Table 1 lists the properties with references to the literature
where one can find details about these properties. The properties are also described
in detail in [15]. We adopt the terminology regarding association rules (even though
the usage is somewhat inconsistent and the terminology objectionable from a math-
ematical viewpoint). In particular, when speaking of a rule A ⇒ B, an example of
A ⇒ B is an object (row) in which both A and B are valid (i.e. the object has all
attributes from A ∪B); one speaks of independence when the probability of having B
is independent of the fact that A is true or not, i.e. P (B|A) = P (B); logical implica-
tion when the confidence of A ⇒ B is 1; equilibrium or indetermination when having
maximum uncertainty of B given that A is true, i.e. P (B|A) = 0.5 (or, equivalently,
P (A ∩ B) = P (A)/2); attraction when having A increases the chances of having B,
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No. Property (basic description) Ref.
P1 Intelligibility of measure. [27]
P2 Easiness to fix a threshold to the rule. [24]
P3 Asymmetric role of A and B. [40], [24]
P4 Asymmetric measure in the sense of the negation of the consequent. [24], [40]
P5 Evaluates A⇒ B and B̄ ⇒ Ā similarly in the logical implication case. [24]
P6 Increasing in the number of examples or decreasing in the number of

counter-examples.
[35], [24]

P7 Increasing in data size. [13], [40]
P8 Decreasing in the size of antecedent and consequent. [24], [35]
P9 Fixed value in the independence case. [24], [35]
P10 Fixed value in the logical implication case. [24]
P11 Fixed value in the equilibrium case. [5]
P12 Particular values in the attraction case between A and B. [35]
P13 Particular values in the repulsion case between A and B. [35]
P14 Tolerance to a few counter-examples. [17], [28]
P15 Invariance in case of expansion of certain quantities. [40]
P16 Desired relationship between A ⇒ B and Ā ⇒ B rules, namely

m(A ⇒ B) = −m(Ā ⇒ B) for measure m.
[40]

P17 Desired relationship between A ⇒ B and A ⇒ B̄ rules, namely
m(A ⇒ B) = −m(A ⇒ B̄) for measure m.

[40]

P18 Desired relationship between A ⇒ B and Ā ⇒ B̄ rules, namely
m(A ⇒ B) = m(Ā ⇒ B̄) for measure m.

[40]

P19 Antecedent size is fixed (if measure m is not based on a certain proba-
bilistic model) or random (if m is based on a certain probabilistic model).

[24]

P20 Descriptive (invariant with n) or statistical (increases with n) measure. [24]
P21 Discriminant measure (as n grows, measure is less able to distinguish the

interesting rules).
[24]

Table 1 Interestingness measures properties.

i.e., when P (B|A) > P (B); repulsion when having A decreases the chances of having
B i.e., when P (B|A) < P (B).

The authors in [15] proposed an evaluation of 61 interestingness measures according
to 19 properties, namely P3 to P21. Properties P1 and P2 were not taken into account
in this study because of their subjective character and for this reason we disregard
them as well. The measures and their properties result in a Boolean 61× 19 measure-
property matrix that is used for clustering the measures according to their properties.
The clustering performed in [15] using the agglomerative hierarchical method and the
K-means method revealed 7 clusters of measures which are used in the next section for
comparison with the results obtained by BFA from the same measure-property matrix.

The measure-property matrix that we used for clustering by BFA is depicted in
Table 2. It consists of 61 measures (taken from [15]) described by 21 properties (18
binary properties and one three-valued property, namely P14, which is represented by
three yes-no properties P14.1, P14.2, and P14.3).

3.1.2 Output: Clustering using Boolean factors

We computed the decomposition of the matrix using Algorithm 2 from [3] and obtained
28 factors. Several of them may be disregarded as not very important, cf. Section 2.3.
In addition, we extended the original 61 × 21 Boolean matrix by adding for every
property its negation, and obtained a 61 × 42 Boolean matrix. The reason for adding
negated properties is due to our goal to compare the results with the two clustering
methods mentioned above and the particular role of the properties and their negations
in these clustering methods. From the 61× 42 matrix, we obtained 38 factors, denoted
F1, . . . , F38. The factors are presented in Tables 3 and 4. Table 3 depicts the object-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

.1
P
15

P
16

P
17

P
18

P
19

P
20

P
21

P
14

.2
P
14

.3

Correlation 1 1 1 1 1 1 1 1 1 1 1 1 1
Cohen 1 1 1 1 1 1 1 1 1 1 1

Confidence 1 1 1 1 1 1 1 1
Causal confidence 1 1 1 1 1 1 1 1 1

Pavillon 1 1 1 1 1 1 1 1 1 1 1
Ganascia 1 1 1 1 1 1 1 1 1

Causal confirmation 1 1 1 1 1 1 1 1
Descriptive confirmation 1 1 1 1 1 1 1

Conviction 1 1 1 1 1 1 1 1 1 1 1
Cosine 1 1 1 1 1

Coverage 1 1
Dependency 1 1 1 1

Causal dependency 1 1 1 1 1 1 1
Gray Orlowska 1 1 1 1

Bayes factor 1 1 1 1 1 1 1 1 1 1 1
Loevinger 1 1 1 1 1 1 1 1 1 1 1 1

Collective strength 1 1 1 1 1 1 1 1 1 1 1
Fukuda 1 1 1 1 1 1

Information gain 1 1 1 1 1 1 1 1 1
Goodman 1 1 1 1 1 1 1 1 1 1 1 1 1

Implication index 1 1 1 1 1 1 1
IPEE 1 1 1 1 1 1 1 1
IP3E 1 1 1 1 1 1 1 1 1
PDI 1 1 1 1 1 1 1 1 1

II 1 1 1 1 1 1 1 1 1 1 1 1 1
EII 1 1 1 1 1 1 1 1 1

REII 1 1 1 1 1 1 1 1 1 1 1 1
Likelihood index 1 1 1 1 1 1 1 1 1 1 1

Interest 1 1 1 1 1 1 1 1 1
Jaccard 1 1 1 1 1

Jmeasure 1 1 1 1 1
Klosgen 1 1 1 1 1 1 1 1
Laplace 1 1 1 1 1 1 1

Mgk 1 1 1 1 1 1 1 1 1 1 1 1
Least contradiction 1 1 1 1 1 1

Pearl 1 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Precision 1 1 1 1 1 1 1 1
Prevalence 1 1 1

YuleQ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Recall 1 1 1 1 1 1
Gini 1 1 1 1

Relative risk 1 1 1 1 1 1 1 1 1 1
Sebag 1 1 1 1 1 1

Support 1 1 1 1
One way support 1 1 1 1 1 1 1 1 1
Two way support 1 1 1 1 1 1 1 1

Examples rate 1 1 1 1 1 1 1
VT100 1 1 1 1 1 1 1 1 1 1 1

Variation support 1 1 1 1 1 1
YuleY 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Zhang 1 1 1 1 1 1 1 1 1 1 1 1 1

Causal confirm-confidence 1 1 1 1 1 1 1 1 1
Czekanowski-dice 1 1 1 1 1

Negative reliability 1 1 1 1 1 1 1 1 1
Mutual information 1 1 1 1

Kulczynski 1 1 1 1 1
Leverage 1 1 1 1 1 1 1
Novelty 1 1 1 1 1 1 1 1 1 1 1 1 1

Odds ratio 1 1 1 1 1 1 1 1 1 1 1
Specificity 1 1 1 1 1 1 1

Table 2 Input Boolean matrix describing interestingness measures by their properties.
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Fig. 1 Cumulative cover of input matrix from Table 2 extended by negated properties by
factors obtained by decomposition of the matrix.

factor matrix describing the interestingness measures by factors, i.e. the matrix AF , see
Section 2.3. Table 4 depicts the factor-property matrix explaining factors by properties
of measures, i.e. the matrix BF , see Section 2.3. The factors are sorted from the most
important to the least important, where the importance is determined by the number
of 1s in the input measure-property matrix covered by the factor [3]. The first factors
cover a large part of the matrix, while the last ones cover only a small part and may
thus be omitted [3], see also the graph of cumulative cover of the matrix by the factors
in Figure 1.

3.1.3 Interpretation and comparison

The aim of this section is to provide an interpretation of the results described in the
previous section and compare them to the results already reported in the literature,
focusing mainly on [15]. As was described in the previous section, 38 factors were
obtained. The first 21 of them cover 94% of the input measure-property matrix (1s in
the matrix), the first nine cover 72%, and the first five cover 52%. Another remark is
that the first ten factors cover the whole set of measures.

Note first that the Boolean factors represent overlapping clusters, contrary to the
clustering using the agglomerative hierarchical method and the K-means method per-
formed in [15]. Namely, the clusters are depicted in Figure 2 describing the Venn dia-
gram of the first five Boolean factors (plus the eighth and part of the sixth and tenth to
cover the whole set of measures). Figure 3, which is borrowed from [15], demonstrates
the consensus of the clusterings obtained by both hierarchical and K-means clustering
methods. Classes C1 to C7 are collections of measures that were identified to belong
to the same cluster by both methods. Some other measures were also found to belong
to one of these classes by each method, i.e. by one but not the other. This is indicated
by the arrows labeled c (hierarchical clustering) and p (K-means clustering). For ex-
ample, Fukuda was found to be in C3 by the hierarchical clustering and in C4 by the
K-means clustering. Given these 7 classes, we can then make a comparison with the
factors revealed by the BFA method. A comparison with the classes revealed by the
hierarchical and K-means methods follows.
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Correlation 1 1 1 1 1 1 1
Cohen 1 1 1 1 1 1 1

Confidence 1 1 1 1 1
Causal confidence 1 1 1 1 1 1

Pavillon 1 1 1 1 1 1 1 1
Ganascia 1 1 1 1 1

Causal confirmation 1 1 1 1 1 1
Descriptive confirmation 1 1 1 1 1 1

Conviction 1 1 1 1 1 1
Cosine 1 1 1 1 1 1 1

Coverage 1 1 1 1 1 1
Dependency 1 1 1 1 1 1

Causal dependency 1 1 1 1 1 1 1
Gray Orlowska 1 1 1 1 1 1

Bayes factor 1 1 1 1 1 1 1
Loevinger 1 1 1 1 1 1 1

Collective strength 1 1 1 1 1 1 1 1
Fukuda 1 1 1 1 1 1 1

Information gain 1 1 1 1 1 1 1
Goodman 1 1 1 1 1 1

Implication index 1 1 1 1 1 1
IPEE 1 1 1 1 1 1 1 1
IP3E 1 1 1 1 1 1 1 1
PDI 1 1 1 1 1 1 1

II 1 1 1 1 1 1 1 1
EII 1 1 1 1 1 1 1 1

REII 1 1 1 1 1 1 1
Likelihood index 1 1 1 1 1 1 1 1

Interest 1 1 1 1 1 1 1 1 1
Jaccard 1 1 1 1 1 1 1

Jmeasure 1 1 1 1 1
Klosgen 1 1 1 1 1 1 1 1
Laplace 1 1 1 1 1

Mgk 1 1 1 1 1 1
Least contradiction 1 1 1 1 1 1

Pearl 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1 1 1 1

Precision 1 1 1 1 1 1
Prevalence 1 1 1 1 1 1

YuleQ 1 1 1 1 1 1 1
Recall 1 1 1 1 1 1 1
Gini 1 1 1 1 1 1 1 1

Relative risk 1 1 1 1 1 1 1 1
Sebag 1 1 1 1 1

Support 1 1 1 1 1 1
One way support 1 1 1 1 1 1 1 1
Two way support 1 1 1 1 1 1 1 1

Examples rate 1 1 1 1 1 1
VT100 1 1 1 1 1

Variation support 1 1 1 1 1 1 1
YuleY 1 1 1 1 1 1 1
Zhang 1 1 1 1 1 1 1

Causal confirm-confidence 1 1 1 1 1 1
Czekanowski-dice 1 1 1 1 1 1 1

Negative reliability 1 1 1 1 1 1
Mutual information 1 1 1 1 1 1 1 1

Kulczynski 1 1 1 1 1 1 1
Leverage 1 1 1 1 1 1 1
Novelty 1 1 1 1 1 1 1

Odds ratio 1 1 1 1 1 1 1 1
Specificity 1 1 1 1 1 1 1

Table 3 Interestingness measures described by factors obtained by decomposition of the input
matrix from Table 2 extended by negated properties.
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F1 1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1 1 1

F10 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1
F13 1 1 1 1 1 1
F14 1 1 1 1 1 1 1 1 1 1
F15 1 1 1 1 1 1 1 1 1 1
F16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F17 1 1 1 1
F18 1 1 1 1
F19 1 1 1 1 1
F20 1 1 1 1 1 1 1 1 1 1
F21 1 1 1 1 1 1 1 1
F22 1 1 1 1 1
F23 1 1 1 1 1 1 1 1 1 1
F24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F25 1 1 1 1 1
F26 1 1 1 1 1 1 1 1 1
F27 1 1 1 1 1 1 1 1
F28 1 1 1 1 1 1 1 1 1 1
F29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F30 1 1 1 1 1 1 1 1
F31 1 1 1 1 1 1 1 1
F32 1 1 1 1 1 1 1 1 1 1 1 1
F33 1 1 1 1 1 1
F34 1 1 1 1 1
F35 1 1 1 1 1 1 1 1
F36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F37 1 1 1 1 1 1 1 1 1
F38 1 1 1 1 1 1 1 1 1 1

Table 4 Factors obtained by decomposition of the input matrix from Table 2 extended by
negated properties. The factors are described in terms of the original and negated properties.

Factor 1. The first factor F1 applies to (i.e. its extent covers) 20 measures, see
Table 3: Correlation, Cohen, Pavillon, Conviction, Bayes factor, Loevinger, Collective
strength, Information gain, Goodman, Interest, Klosgen, Mgk, YuleQ, Relative risk,
One way support, Two way support, YuleY, Zhang, Novelty, and Odds ratio. These
measures share the following 9 properties: P4, P7, P9, not P11, P12, P13, not P19, not
P20, P21, see Table 4.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and have a fixed point in the case of independence (this allows one
to identify the attractive and repulsive area of a rule). The factor also applies only
to descriptive and discriminant measures that are not based on a certain probabilistic
model.

Comparison. When looking at the classification results reported in [15], F1 covers
two classes from [15] : C6 and C7, which together contain 15 measures. Those classes
are closely related according to the dendrogram obtained with the agglomerative hier-
archical clustering, which is shown in Figure 4 taken from [15]. The 5 missing measures
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Fig. 2 Venn diagram of selected factors of the input matrix from Table 2 extended by negated
properties.

form a class obtained with K-means method in [15] with Euclidian distance.

Factor 2. F2 applies to 16 measures, namely: Confidence, Causal confidence,
Ganascia, Causal confirmation, Descriptive confirmation, Cosine, Causal dependency,
Laplace, Least contradiction, Recall, Support, Causal confirmed confidence, Czeka-
nowski, Negative reliability, Leverage and Specificity. These measures share the follow-
ing 12 properties: P4, P6, not P9, not P12, not P13, P14.2, not P15, not P16, not P18,
not P19, not P20, P21.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and has a variable point in the case of independence, which implies
that the attractive and repulsive areas of a rule are not identifiable. The factor also ap-
plies only to measures that are discriminant, are indifferent to a few counter-examples,
and are not based on a certain probabilistic model.

Comparison. F2 corresponds to two classes, C4 and C5 reported in [15]. The den-
drogram exposed in Figure 4 confirm their closeness. C4 ∪ C5 contains 21 measures.
The measures present in C4∪C5 and missing in F2 are: Jaccard, Kulczynski, Accuracy,
Examples and counter-examples rate, and Sebag. Those measures are not covered by
F2 since they are not indifferent to a few counter-examples.

Factor 3. F3 applies to 10 measures, namely: Coverage, Dependency, Weighted
dependency, Implication index, Jmeasure, Pearl, Prevalence, Gini, Variation support,
and Mutual information. These measures share the following 10 properties: not P6, not
P8, not P10, not P11, not P13, not P14.1, not P15, not P16, not P17, not P19.
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Fig. 3 Classes of measures obtained by the hierarchical and K-means clusterings.

Interpretation. The factor applies to measures that share only negated properties
and whose value does not increase w.r.t. the number of examples. Their common be-
havior makes them unique compared to the other studied measures and explains the
absence of factor that overlaps with F3. Factor F3 represents the only factor among
those presented in the Venn diagram which only gather measures that do not share
any original (non-negated) property.

Comparison. F3 corresponds to class C3 reported in [15], which contains 8 measures.
The two missing measures, Variation support and Pearl, belong to C3 within K-means
method and are closely related to it according to the dendogram (Figure 4). We see a
strong correspondence between the results obtained by using Boolean factors and the
ones reported in [15].

Factor 4. F4 applies to 9 measures, namely: Confidence, Ganascia, Descriptive
confirmation, IPEE, IP3E, Laplace, Least contradiction, Sebag, and Examples and
counter-examples rate. These measures share the following 12 properties: P3, P4, P6,
P11, not P7, not P8, not P9, not P12, not P13, not P15, not P16, not P18.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and has a fixed value in the equilibrium case.

Comparison. F4 mainly applies to measures of class C5 obtained in [15]. In fact,
7 measures from C5 are in F4. The only two missing measures, IPEE and IP3E, which
belong to a different class C2, are represented in F8 which overlaps with C5. This can
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Fig. 4 Dendrogram of the agglomerative hierarchical clustering using Ward criterion.

be explained by the fact that IPEE and IP3E share property P11 with other measures
of the same factor F4.

Factor 5. F5 applies to 13 measures, namely: Interest, Relative risk, One way sup-
port, Two way support, Bayes factor, Czekanowski-dice, Recall, Causal dependency,
Cosine, Leverage, Specificity, Jaccard and Kulczynski. These measures share the fol-
lowing 13 properties: P4, not P5, P8, not P10, not P11, not P14.1, not P15, not P16,
not P17, not P18, not P19, not P20, P21.

Interpretation. The factor applies to descriptive and discriminant measures whose
value decreases w.r.t. the increasing number of items satisfying the consequent. It
applies also to measures having a variable point in the equilibrium case and logical
implication case and which are not based on a certain probabilistic model.

Comparison. Factor F5 covers principally two classes C4 and C7 from the classifica-
tion results reported in [15]. C4∪C7 contain 24 measures. We then have the following 11
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measures missing from F5: Precision, Support, Causal confirmation, Causal confidence,
Causal confirmed confidence, negative reliability which belong to C4, and Information
gain, Conviction, Loevinger, Pavillon, Klosgen which represent C7 missing measures.

Factor 6. F6 applies to VT100, Piatetsky-Shapiro, Accuracy or Precision, and,
moreover, to Correlation, Cohen, Pavillon, Loevinger, Novelty, Interest, Causal depen-
dency, Leverage, Specificity, Causal confirmation, Causal confidence, Causal confirmed
confidence, and Negative reliability, which belong to classes C4, C7 and Gp8 revealed
by [15]. These measures share the following 8 properties: P4, P6, P7, P8, not P11,
P14.2, not P15, P21.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and the data size but decreases with increasing number of items sat-
isfying the consequent. The factor also applies only to discriminant measures that are
indifferent to a few counter-examples and have a variable point in the equilibrium case.

Comparison. The clustering resulted from K-means method in [15] revealed the
presence of the class Gp8 which gather Piatetsky-Shapiro and VT100 measures from
F6. On the other hand, according to the agglomerative hierarchical clustering method,
we find that VT100 is also close to Precision and to other additional measures from
both C4 and F6, e.g., Negative reliability, Cosine, or Recall. Furthermore, we mention
that Gp8 measures are divided between F1 (Correlation, Cohen, Collective strength,
Odds ratio and Novelty) and F6 (Piatetsky-Shapiro and VT100).

Factor 8. F8 applies to 10 measures, namely: IPEE, IP3E, II, PDI, EII, Likelihood
index, REII. These measures share the following 10 properties: P4, P5, P6, not P10,
P14.1, not P16, not P17, not P18, P19, P20.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and does not assign a fixed value to a rule with confidence equal to 1.
It also applies to statistical measures which are based on a certain probabilistic model.

Comparison. F8 corresponds to two classes, C1 and C2 reported in [15], which
contain 6 measures and represent the statistical measures. Only one measure is missing,
REII, which according to the partitioning method belongs to C1, and to C2 with the
agglomerative hierarchical method.

Factor 10. The only remaining measure not covered by previous factors is Fukuda.
F10 revealed its presence in addition to the following 15 measures: Causal confidence,
Causal confirmed confidence, Pavillon, Causal confirmation, Coverage, Dependency,
Causal dependency, Loevinger, Implication index, Mgk, Prevalence, Recall, Negative
reliability, Leverage and Specificity. These measures share the following 7 properties:
P3, not P11, P14.2, not P15, not P16, not P18, not P19.

Interpretation. The factor applies to asymmetric measures having a variable point
in the equilibrium case. It also applies to measures which are not based on a certain
probabilistic model and are indiferent to a few counter-examples.

Comparison. F10 covers classes C3, C4, C6 and C7 described in Figure 3 in addition
to Fukuda measure for which no consensus was found. It belongs to C3 according to
the agglomerative hierarchical method and to C4 according to K-means. The union of
C3, C4, C6 and C7 unveils 36 measures among which about twenty are missing from
F10.
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Support 1 1 1 1 1 1 1
Confidence 1 1 1 1 1 1 1
Correlation 1 1 1 1 1 1 1

Pavillon 1 1 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1 1 1 1

Loevinger 1 1 1 1 1 1 1
Zhang 1 1 1 1 1 1 1

Implication index 1 1 1 1 1 1 1
Interest 1 1 1 1 1 1 1

Least contradiction 1 1 1 1 1 1 1
Sebag 1 1 1 1 1 1 1

Bayes factor 1 1 1 1 1 1 1
Conviction 1 1 1 1 1 1 1

Examples rate 1 1 1 1 1 1 1
Cohen 1 1 1 1 1 1 1

Information gain 1 1 1 1 1 1 1
II 1 1 1 1 1 1 1

REII 1 1 1 1 1 1 1
PDI 1 1 1 1 1 1 1

Laplace 1 1 1 1 1 1 1

Table 5 Input Boolean measure-property matrix from [43].

With seven shared properties, F10 represents the factor having the minimal number
of properties common to all its measures. This explains the mutual dissimilarity of the
measures belonging to this factor.

3.2 Case Study 2

3.2.1 Input: Measures and their properties

In this study we analyzed the measures studied in [43] which provides a study of 20
measures described by 9 properties. From these 9 properties, we considered 7 in case
study 1, namely, P3, P7, P8, P9, P10, P11, P14. The two other properties, namely,
“comprehensibility of the measure” and “easiness to set a threshold of acceptance”
were considered too subjective and thus not taken into account in the analysis. The
authors in [43] then obtained the 20 × 15 measure-property matrix shown in Table 5
to cluster the measures by the agglomerative hierarchical method using Ward criterion
and Manhattan distance. The authors point out that when using other criteria, they
obtained similar results. They identified the five following classes:

ClBV1 = {Support, Least contradiction, Laplace},
ClBV2 = {Confidence, Sebag, Examples rate},
ClBV3 = {Correlation, Piatetsky-Shapiro, Pavillon, Interest, Implication index,

Cohen, Information gain},
ClBV4 = {Loevinger, Bayes factor, Conviction},
ClBV5 = {Zhang, REII, II, PDI}.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17

F
v
1

F
v
2

F
v
3

F
v
4

F
v
5

F
v
6

F
v
7

F
v
8

F
v
9

F
v
1
0

F
v
1
1

F
v
1
2

F
v
1
3

F
v
1
4

F
v
1
5

Support 1 1 1 1 1 1
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Correlation 1 1 1 1 1 1

Pavillon 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1 1 1

Loevinger 1 1 1 1
Zhang 1 1 1 1

Implication index 1 1 1 1 1
Interest 1 1 1 1 1 1

Least contradiction 1 1 1 1 1
Sebag 1 1 1 1

Bayes factor 1 1 1 1
Conviction 1 1 1 1

Examples rate 1 1 1 1
Cohen 1 1 1 1 1 1

Information gain 1 1 1 1 1
II 1 1 1 1

REII 1 1 1 1 1
PDI 1 1 1 1

Laplace 1 1 1 1 1 1

Table 6 Object-factor matrix AF of the matrix in Table 5.
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Table 7 Factor-attribute matrix BF of the matrix in Table 5.

3.2.2 Output: Clustering using Boolean factors

We applied BFA to the matrix I from Table 5 and obtained a set F of 15 factors which
decompose I, i.e. I = AF ◦ BF . The factors are denoted Fv1,. . . ,Fv15 and are shown
in Table 6 (object-factor matrix AF ) and Table 7 (factor-attribute matrix BF ). The
graph of the cumulative cover of the matrix by the factors depicted in Figure 5. The
first eight factors cover 91% of the input-measure property matrix, the first four cover
69% and the first three cover 57%, more than a half of the matrix. However, the first
five cover the whole set of measures, in that every measure is covered by (the extent
of) some of the first five factors. Figure 6 provides the Venn diagram of the first five
factors.
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Fig. 5 Cumulative cover by factors of the input matrix from Table 5.

Fig. 6 Venn diagram of the first five factors of the matrix from Table 5.

3.2.3 Interpretation and comparison

In this section, we interpret and describe the characteristics of the five obtained factors
Fv1,. . . ,Fv5. Then we compare each factor firstly with the factors depicted in Figure 2
and secondly with the clusters obtained in [43].

Factor 1. The first factor Fv1 applies to 11 measures, namely: Correlation, Piatetsky-
Shapiro, Interest, Cohen, Pavillon, Implication index, Information gain, Loevinger,
Zhang, Bayes factor and Conviction. These measures share the following 4 properties:
P8, P9, not P7 and not P11.

Interpretation. The factor applies to measures whose value decreases w.r.t. the data
and with the number of items matching the consequent and has a fixed point in the
case of independence and a variable point in the case of equilibrium.
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Factor 2. Fv2 applies to 5 measures, namely: Confidence, Least contradiction,
Sebag, Examples rate and Laplace. These measures share the following 3 properties:
not P3, not P7 and not P8.

Interpretation. The factor applies to symmetric measures whose evolutionary curve
decreases w.r.t. the data size and increases w.r.t. the consequent size.

Factor 3. Fv3 applies to 6 measures, namely: Loevinger, Zhang, Bayes factor,
Conviction, II and REII. These measures share the following 4 properties: not P3, P8,
P9 and P10.

Interpretation. The factor applies to symmetric measures whose evolutionary curve
decreases w.r.t. the consequent size and has a fixed point in the independence and
logical implication case.

Factor 4. Fv4 applies to 5 measures, namely: Support, Correlation, Piatetsky-
Shapiro, Interest and Cohen. These measures share the following 5 properties: P3, not
P7, not P10, not P11 and P14.2.

Interpretation. The factor applies to asymmetric measures whose value decreases
w.r.t. the data size and does not assign a fixed value to a rule with confidence equal
to 1 and in the equilibrium case. The factor also applies only to measures that are
indifferent to a few counter-examples.

Factor 5. Fv5 applies to 3 measures, namely: II, REII and PDI. These measures
share the following 5 properties: not P3, P7, P8, P9 and P14.1.

Interpretation. The factor applies to symmetric measures whose value increases
w.r.t. the data size and decreases w.r.t. the number of examples matching the conse-
quent. The factor also applies only to measures that have a fixed value in the indepen-
dence case and tolerate a few counter-examples.

Comparison: Comparing the Venn diagram from Figure 2 with the one presented in
Figure 6 we see that (cf. the remark at the beginning of Section 3: we identify factors
with the sets of measures covered by the factors)

Fv2 ⊂ F4 and Fv5 ⊂ F8,

and, moreover, one may observe the following interesting relationship revealing simi-
larity of the factors:

Fv1− {Piatetsky-Shapiro, Implication index} ⊂ F1,

Fv4− {Piatetsky-Shapiro} ⊂ F1,

Fv3− {II, REII} ⊂ F1.

Note also that F1 contains half of the measures studied in [43], cf. Figure 2. Further
similarities between the factors may be seen from the Venn diagrams in Figures 2 and 6.

Regarding a comparison of factors Fv1,. . . ,Fv5 with clusters ClBV1, . . . , ClBV5

obtained in [43], we get the following relationships:
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Fv1 = ClBV3 ∪ ClBV4 ∪ ClBV5 − {PDI},
Fv2 = ClBV1 − {Support} ∪ ClBV2,

Fv3 = ClBV4 − {Zhang, II, REII},
Fv4− {Support} = ClBV3 − {Pavillon, Implication index, Information gain},
Fv5 = ClBV5 − {Zhang}.

We also observed that BFA was able to reveal similarities among measures found
in [43]. In addition the first five factors allow to cover the whole 20 measures, and show
some relationships among clusters found in [43].

3.3 Case Study 3

3.3.1 Input: Measures and their properties

In this study, we analyzed the measures and their properties studied in [13]. As in the
previous case studies, we apply BFA to obtain factors and then interpret and compare
these factors with clusters obtained in the two previous case studies, as the authors
of [13] did not provide any clustering. [13] analyzed 38 interestingness measures using
11 properties. From these, we only retain the measures and properties that also appear
in our two previous studies, which means that we retain 37 measures and 7 properties.
The 7 properties retained are P3, P6, P7, P8, P9, P10, and P14. Nevertheless, the
authors of [13] considered slight variations of P8 and P9 that we denote P8.1 and
P9.1, respectively. For the case of P8.1, they consider that an interestingness measure
must decrease with increasing numbers of items matching the antecedent as well as
the consequent, but in our study (P8) we only consider the consequent as in [15].
Concerning P9.1, Geng and Hamilton focus on the value of an interestingness measure in
the independence case considering that the value must be 0, while we (P9) only ask that
the measure has a fixed value as in [15]. According to these definitions, P8.1 is stronger
than P8; however, P9.1 is a generalization of P9. The strong relationships existing
between these properties encourage us to apply them in order to obtain the clusters of
measures. From these measures and properties, we obtained a Boolean matrix I shown
in Table 8.

3.3.2 Output: Clustering using Boolean factors

We applied BFA to the matrix I from Table 8 and obtained a set F of 13 factors which
decompose I, i.e. I = AF ◦ BF . The factors are denoted Fh1,. . . ,Fh11 and are shown
in Table 9 (object-factor matrix AF ) and Table 10 (factor-attribute matrix BF ). The
graph of the cumulative cover of the matrix by the factors is depicted in Figure 7.
The graph reveals that the first nine factors cover 91% of the input-measure property
matrix, the first five cover 70% and the first four cover 61%. However, the first four
cover the whole set of measures. The first four factors are visualized using their Venn
diagram in Figure 8, which reveals the overlap between the factors.

Note that the authors in [13] focus only on the assessment of interestingness mea-
sures according to their properties and their purpose is in no case the clustering of
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Support 1 1 1 1 1 1 1
Confidence 1 1 1 1 1 1 1
Prevalence 1 1 1 1 1 1 1

Recall 1 1 1 1 1 1 1
Accuracy 1 1 1 1 1 1 1

Lift 1 1 1 1 1 1 1
Leverage 1 1 1 1 1 1 1
Pavillon 1 1 1 1 1 1 1

Relative Risk 1 1 1 1 1 1 1
Loevinger 1 1 1 1 1 1 1
Odds ratio 1 1 1 1 1 1 1
Yule’s Q 1 1 1 1 1 1 1
Yule’s Y 1 1 1 1 1 1 1
Klosgen 1 1 1 1 1 1 1

Conviction 1 1 1 1 1 1 1
Weighted dependency 1 1 1 1 1 1

Collective strength 1 1 1 1 1 1 1
Laplace 1 1 1 1 1 1 1

Gini 1 1 1 1 1 1 1
Goodman 1 1 1 1 1 1

Mutual information 1 1 1 1 1 1
J-measure 1 1 1 1 1 1 1

One way support 1 1 1 1 1 1 1
Two way support 1 1 1 1 1 1 1

Correlation 1 1 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1 1 1 1

Cosine 1 1 1 1 1 1 1
Information gain 1 1 1 1 1 1 1

Sebag 1 1 1 1 1 1 1
Least contradiction 1 1 1 1 1 1 1

Bayes factor 1 1 1 1 1 1 1
Examples rate 1 1 1 1 1 1 1

Zhang 1 1 1 1 1 1 1
Jaccard 1 1 1 1 1 1 1

Variation support 1 1 1 1 1 1 1
Coverage 1 1 1 1 1 1

Specificity 1 1 1 1 1 1

Table 8 Input Boolean measure-property matrix obtained from [13].

these measures. However, even if no classification of measures is performed, we think
that it is quite important to apply BFA on the measure-property matrix obtained by
[13] to see the factors resulting from it and to compare them with previous works.

3.3.3 Interpretation and comparison

An interpretation of the four obtained factors Fh1,. . . ,Fv4 and their comparison with
the factors depicted in Figure 2 follow.

Factor 1. The first factor Fh1 applies to 23 measures, namely: Pavillon, Loevinger,
Klosgen, Mutual information, One way support, Leverage, Relative risk, Least contra-
diction, Precision, Interest, Odds ratio, Collective strength, Cosine, Sebag, Bayes factor,
Examples rate, Jaccard, Yule’s Q, Yule’s Y, Two way support, Correlation, Piatetsky-
Shapiro and Information gain. These measures share the following 3 properties: P6,
not P7 and P8.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and decreases w.r.t. the data and the consequent size.
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J-measure 1 1 1 1 1

One way support 1 1 1 1
Two way support 1 1 1 1 1

Correlation 1 1 1 1 1
Piatetsky-Shapiro 1 1 1 1

Cosine 1 1 1 1
Information gain 1 1 1 1

Sebag 1 1 1 1
Least contradiction 1 1 1 1

Bayes factor 1 1 1 1
Examples rate 1 1 1 1

Zhang 1 1 1 1
Jaccard 1 1 1 1

Variation support 1 1 1 1 1
Coverage 1 1 1

Specificity 1 1 1

Table 9 Object-factor matrix AF of the matrix in Table 8.
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Table 10 Factor-attribute matrix BF of the matrix in Table 8.
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Factor 2. Fh2 applies to 16 measures, namely: Pavillon, Loevinger, Klosgen, Mu-
tual information, One way support, Leverage, Relative risk, Least contradiction, Preva-
lence, Gini, Zhang, Coverage, Specificity, Recall, Gray Orlowska and Laplace. These
measures share the following 3 properties: not P3, not P7 and not P10.

Interpretation. The factor applies to symmetric measures whose value decreases
w.r.t. the data size and does not assign a fixed value to a rule with confidence equal
to 1.

Factor 3. Fh3 applies to 18 measures, namely: Leverage, Relative risk, Least con-
tradiction, Precision, Interest, Odds ratio, Collective strength, Cosine, Sebag, Bayes
factor, Examples rate, Jaccard, Recall, Gray Orlowska, Laplace, Support, Confidence
and Conviction. These measures share the following 3 properties: P6, not P7 and not
P9.

Interpretation. The factor applies to measures whose value increases w.r.t. the num-
ber of examples and decreases w.r.t. the data size and has a variable point in the
independence case.

Factor 4. Fh4 applies to 13 measures, namely: Pavillon, Loevinger, Klosgen, Mu-
tual information, One way support, Prevalence, Gini, Zhang, Coverage, Specificity,
Goodman, Jmeasure and Variation support. These measures share the following 3 prop-
erties: not P6, not P7 and not P8.

Interpretation. The factor applies to measures whose value decreases w.r.t. the
number of examples and the data size and increases w.r.t. the number of examples
matching the consequent.

Comparison: The comparison of these clusters with those from Figure 2 reveals the
following similarities between the factors from case study 1 and the factors of the
present case study:

F1− {Conviction, Goodman, Zhang} ⊂ Fh1,

Fh2 ⊂ F1 ∪ F2 ∪ F3,

Fh3 ⊂ F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6,

Fh4− {Zhang, Specificity, Goodman} ⊂ F3.

We can see that in fact, Fh4 is very similar to F3, the F1 measures are included
in Fh1 and that the Fh2 and Fh3 measures are scattered among F1, F2, F3 and F1,
F2, F3, F4, F5, F6, respectively. We can also see that Fh4 is very similar to F3. Note
also that looking at Table 8 and Table 2 tells us that we disagree with the authors of
[13] on the properties of some measures, namely of P8 and P9, because the authors in
[13] use slightly modified version of these properties compared to us. Some differences
between the clusterings obtained therefore result from this fact.

3.4 Discussion

In this section we discuss the outcome of our experiments mainly by comparing the
results of the three cases with the measures and their properties taken from [43], [13],
and [15]. We applied BFA on the corresponding Boolean measure-property matrices and
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Fig. 7 Cumulative cover by factors of the input matrix from Table 8.

Fig. 8 Venn diagram of the first five factors of the matrix from Table 8.
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visualized the most important clusters thus obtained by means of Venn diagrams. Such
clusters overlap and correspond to subgroups of measures with a common behavior.

An examination of the Venn diagrams depicted in Figures 2, 6, and 8 reveals three
stable groups of interestingness measures:

{Sebag, Examples rate, Laplace, Confidence, Least contradiction},
{Interest, Information gain, Relative risk},
{Factor of bayes, Conviction, Loevinger, Pavillon}.

These new groups of measures were not found in the previous studies. These groups
represent particular kinds of measures with similar behavior and may be added to those
mentioned in [15]. From this viewpoint, BFA as a clustering method is complementary
to other clustering techniques.

A work of Suzuki [39] mentions four pitfalls to avoid when studying categorization
of interestingness measures: rule bias, data bias, expert bias, and search bias. In our
work none of this bias is present, as we focus on formal characteristics of measures
and the Boolean factors are generated using formal concept analysis. No additional
parameters are used to compute Boolean factors. From this viewpoint, we provide a
study that fits most of the requirements of categorization described in [39].

Recall from Section 1 that the clusters of measures obtained may be seen as rep-
resenting certain kinds of measures and may be used by a user to select measures,
in particular when the user intends to select various measures of different kinds as in
Bouker et al. [6]. For the particular form of clusters used in the present study, such
scenario is particularly suitable because the clusters are represented by formal concepts
and have thus a natural meaning. Namely, the meaning of each cluster derives from
the intent of the corresponding formal concept, i.e. from the collection of attributes
which uniquely determines the cluster.

4 Conclusions and further issues

We analyzed by means of clustering three datasets of interestingness measures for as-
sociation rules that were described in the literature in terms of their binary properties.
For this purpose, we used a recently developed method of Boolean factor analysis.
We interpreted the Boolean factors obtained by this method as clusters, i.e. classes
of measures described by their properties. We demonstrated that Boolean factors pro-
vide us with clearly interpretable, meaningful clusters of measures. Contrary to other
clustering methods, Boolean factors represent overlapping clusters. We argued that
this an advantage because overlapping clusters are a natural phenomenon in human
classification in general and in the case when objects are represented by overlapping
attributes in particular. We performed a detailed comparison of the clusterings ob-
tained by Boolean factor analysis and the ones reported in the literature. It turns out
that among the clusters obtained from Boolean factors, the ones corresponding to the
first couple of factors seem natural and are highly similar to other clusters of measures
reported in the literature. The clustering results obtained in this paper may therefore
be regarded as cluster validation results as well and may be taken as reference points
for future studies on classification of interestingness measures.

An interesting topic for future research is a further exploration of Boolean factor
analysis as a clustering technique and the empirical and theoretical study of such
method including its relationships to other methods of clustering. Another topic of
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future research is to exploit the possibility to utilize the clusters in helping a user select
measures with desired properties. As mentioned in Sections 1 and 3.4, an approach
based on selecting and aggregating the scores of several measures was suggested in [6].
A suitable clustering of measures, with clusters representing various kinds of measures,
may help the user select measures representative of the intended kinds.
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