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An arithmetic equivalence of the Riemann Hypothesis

*

Marc Deléglise, Jean-Louis Nicolas

February 18, 2018

Abstract

Let h(n) denote the largest product of distinct primes whose sum is < n. The main result
of this article is that the property “ for all n > 1, we have logh(n) < /li''(n) ” (where
it denotes the inverse function of the logarithmic integral) is equivalent to the Riemann
Hypothesis.
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1 Introduction

If n > 1 is an integer, let us define h(n) as the greatest product of a family of primes ¢; <
g2 < --- < g; the sum of which does not exceed n. Let £ be the additive function such that
L(p®) = p* for p prime and « > 1. In other words, if the standard factorization of M into primes
is M = q"q5? - ~q;” we have (M) = ¢ +¢5> +- - Jrq;-” and £(1) = 0. If u denotes the Mobius
function, h(n) can also be defined by

h(n) = max M. (1.1)
()70

The above equality implies h(1) = 1. Note that

(h(n)) < n. (1.2)

Landau [16, p. 222-229] introduced the function g(n) as the maximal order of an element in

the symmetric group G,,; he proved that

g(n) = e(rz\%lgn M. (1.3)
From (1.1) and (1.3), it follows that
R(n) < g(n), (n3>1). (1.4)

*Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.



Sequences (h(n)),>1 and (g(n)),>1 are sequences A159685 and A000793 in the OEIS (On-line
Encyclopedia of Integer Sequences). One can find results about h(n) in [7, 8] and about g(n) in
[17, 18, 6, 9]. In the introductions of [6, 9], other references are given. A fast algorithm to compute

h(n) and g(n) is described in [7, §8] and [9] while in [8, (4.13)] it is proved that
log h(n) < logg(n) < logh(n) + 5.68 (nlogn)/*, n>1. (1.5)

Let li denote the logarithmic integral and li"! its inverse function (cf. below §2.2). In [17,

Theorem 1 (iv)], it is stated that, under the Riemann Hypothesis, the inequality
log g(n) < \/li't(n) (1.6)

holds for n large enough. It is also proved (cf. [17, Theorem 1(i) and (ii)]) that under the Riemann
Hypothesis,

log g(n) = y/1i'*(n) + O((nlogn)'/*) (1.7)

while, if the Riemann hypothesis is not true, there exists & > 0 such that
log g(n) = y/1i't(n) 4+ (nlogn)** Qi ((nlogn)?). (1.8)

With (1.5), (1.7) implies
log h(n) = /1i't (n) + O((nlogn)/*), (1.9)

while (1.8) yields

log h(n) = \/lit(n) + (nlogn)/* QL ((nlogn)®). (1.10)
From the expansion of li(z) given below in (2.7), the asymptotic expansion of /li!(n) can be
obtained by classical methods in asymptotic theory. A nicer method is given in [23]. From (1.7)

and (1.9), it turns out that the asymptotic expansions of log g(n) and log h(n) do coincide with
the one of \/1it(n) (cf. [17, Corollaire, p. 225]):

log h(n)

logg(n) (=
lit(n)

logl -1 log1 2 —6logl 1
m(1+ oglogn _ (loglogn)® — 6 0g20gn+9+0( )> (111)
2logn 8log”n

Let us introduce the sequence (b,) defined, for n > 2, by

. . li't(n) — log h(n
log h(n) = \/li ' (n) — by(nlogn)*/* ie. b, = (75 l())gn)i‘l ( ), (1.12)
and the constant
1
c= —— =0.046117644 421 509. .. 1.13
2 o+ (119



where p runs over the non trivial roots of the Riemann ¢ function. The computation of the above

numerical value is explained below in §2.4.2.

The aim of this article is to make more precise the estimate (1.9) and to prove the following

result.

Theorem 1.1. Under the Riemann Hypothesis, we have

(i) logh(n) < \/lit(n) forn > 1.

(i) biy = 0.49795 ... < b, < biygr = 1.04414 ... for n > 2.

2 .22 logl
(i) by > 2 — o — 222 loslogn o g
3 logn
2 .77 logl
(iv) by < 24 o g DT loslogm o 157033910,
3 logn
2 . . 2
(v) 3 ¢=0.620... < liminf b, < limsupb,, < 3 +c=0.712....
(vi) For n tending to infinity,
2 loglogn+ O (1)
- — 1+ —=—F——7) <b
(3 C)( + 4logn "
(2.
T3

AV loglogn + O (1) .
4logn

Under the Riemann Hypothesis, the point (vi) of Theorem 1.1 shows that, for n large enough,
by, > 2/3 —c. We prove (cf. (5.46) below) that b, > 2/3 — ¢ holds for 78 < n < 7;(10%) =
Zpgmw p, and it is reasonable to think that it holds for all n > 78. In the point (iii), we have

tried to replace the constant —0.22 by a positive one, but without success.

Corollary 1.2. FEach of the six points of Theorem 1.1 is equivalent to the Riemann Hypothesis.

Proof. If the Riemann Hypothesis fails, (1.10) and (1.12) contradict (i), (ii), ..., (vi) of Theorem

1.1.

Corollary 1.3. The inequalities

O

V1t (n) — 1.045(nlogn)Y/* <logg(n) < \/1lit(n) + 5.19 (nlogn)t/* (1.14)

are true for each n > 2, if and only if the Riemann Hypothesis is true.

Proof. From (1.12) and from the point (ii) of Theorem 1.1, for n > 2,

m_ 1'045(n10gn)1/4 < 1ogh(n) < m_ 0.49 (nlogn)1/4

which, with (1.5), proves (1.14). If the Riemann Hypothesis is false, (1.8) contradicts (1.14). O



1.1 Notation

— m(z) = Zp For r =0, mo(x) =n(z) = Z 1 is the prime counting function.

p<z PZT
rk ol 1/k
B Pt e (2t/F) . _ |logx
pF<x k=1
- Z logp and ¥(x Z logp = Z 0(x Y k are the Chebyshev functions.
p<zT pk<e k=1
logp if x=p"
— Ax) = is the von Mangoldt function.
0 if not

— (Pn)n>1 is the sequence of prime numbers, where p; = 2.

— li(z) denotes the logarithmic integral of 2 (cf. below §2.2), and li! the inverse function.

— 9 = 0.57721566. .. is the Euler constant. The coefficients v, and §,, are defined in §2.4.

sl
non-trivial roots of the Riemann ( function.

— If limy,—y 00 Uy, = 400, v, = Qi (uy) is equivalent to

lim sup O > 0 and lim inf n < 0.

n—oo Un n—00 Up
— We use the following constants:
xo = 10'° 4 19 is the smallest prime exceeding 10*°

ng = m(wg) = 2220822442581 729257 = 2.22...10"®

Lo = log ng = 42.244 409 270801 490 . . .

Ao =log Lo = 3.743472020096020.... 9= Ag/Lo = 0.088614...

— Let us write 09 =0, Ny =1, and, for j > 1,
Nj=ppz---pj and 05 =pi+ps+--+p;=UN;).

— For n > 0, let k = k(n) denote the integer k& > 0 such that

o =p1+p2t+--+pr<n<pr+p2+-+Prr1 = Okt

In [7, Proposition 3.1], for j > 1, it is proved that

]’L(O’j) = Nj.

>

Z flp) = hm Z f(p) where f : C — C is a complex function and p runs over the

(1.15)

(1.16)

(1.17)



We often implicitly use the following result: For v and v positive and w real, the function

(logt — w)“
t’U

t— is decreasing for ¢ > exp (w + E) . (1.18)
v

1.2 Plan of the article.

In §2, we recall several results and state some lemmas that are used in the proof of Theorem
1.1. §2.1 is devoted to effective estimates in prime number theory, §2.2 deals with the logarithmic

integral while §2.3 give effective estimates for m.(z) = > __p" and more specially for 71 (z). In

pP<ZT
§2.4 are recalled two explicit formulas (cf. (2.41) and (2.42)) of the Prime Number Theorem, some
results about the roots of the Riemann ¢ function, and the computation of the constant ¢ (cf.
(1.13)) is explained.

The computation of h(n) plays an important role in the proof of our results. The algorithm
described in [7] is shortly recorded in §3.

In §4, in preparation to the proof of Theorem 1.1, four lemmas about b,, (defined in (1.12))
will be given.

The proof of Theorem 1.1 is given in §5. It follows the lines of the proof of Theorem 1 of
[17] about the asymptotic estimate, under the Riemann Hypothesis, of log g(n), starting from
the explicit formula of IT; (z). But, here, we deal with effective estimates. The positive integers
are split in three classes: the small ones (< ng = m1(10'Y + 19)) that are mainly treated by
computation, the large ones > ng and, to prove the point (vi), those tending to infinity. In each
class, the n’s belonging to the interval [0k, ox4+1] (where oy is defined by (1.16)) are considered
globally because, from (1.17), h(oy) is easy to evaluate, and, for n € [0, ok+1], h(n) remains close
to h(ok).

Effective estimates are more technical to get than the asymptotic ones. It was why Landau in-
troduced his famous notation ” ©” and ” 0”. But fortunately nowadays computer algebra systems
help us.

On the web site [27], a Maple sheet is given, explaining the algebraic and numerical computa-

tions. The extensive computations described in §3.2 have been made in C* 7.

2 Useful results

2.1 Effective estimates.

Platt and Trudgian [21] have shown by computation that
O(z) < (1+e)aforx>2 with e=75x10"", (2.1)

so improving on results of Schoenfeld [24].



Without any hypothesis, one knows that

|0(z) — z] < ozgx for x > 21 = z1(a) (2.2)
log” x
with
1 and ;= 89967803 (cf. [12, Theorem 4.2])

a=4¢ 05 and 3 =767135587 (cf. [12, Theorem 4.2])
0.15 and 2y =19035709163 (cf. [3, Theorem 1.1]) .

Under the Riemann Hypothesis, for z > 599, we shall use the upper bounds (cf. [24, (6.3)])
1 2 1 2
[Y(x) — x| < S—ﬁlog x and |0(z) —z| < S—ﬁlog x. (2.3)
0 T
Lemma 2.1. Under the Riemann Hypothesis, for x > 1,

() — r — %xl/?’ < O(x) < Y(z) — Vo +2.14. (2.4)

Proof. In [20, Lemma 2.4] or in [22, Lemma 3], the above lower bound is given and 0(x) <
P(x) — v/x is proved for z > 121. It remains to check that, for 1 <z < 121, 8(z) — ¢ (z) + vz <
V8 —log2 =2.1352. .. holds. O

2.2 The logarithmic integral.

For x real > 1, we define li(z) as (cf. [1, p. 228])

1—¢
li(z) = — +1i(
i) logt e—>0+ (/ /+6 10gt> / logt + 1

We have the following values:

z 1 1.45136... | 1.96904 ... 2 e?
li(z) || —o0 0 1 1.04516... | 4.95423...

From the definition of li(z), it follows that

d 1 d? 1
i(x) = and —li(z) =— -
log x dz? zlog® x

(2.5)
The function ¢ ~ li(¢) is an increasing bijection from (1,400) onto (—o00,+00). We denote by il (y)
its inverse function that is defined and increasing for all y € R. Note that 1i!(y) > 1 holds for all
y € R.

To compute numerical values of li(z), we used the following formula, due to Ramanujan (cf.

[4, p. 126-131]),

(_1)"_1 Lngl X
nl2n—1 — 2m+1°

li(z) = o + loglogx + \/52 an(logz)™ with a,, =

n=1



Let N be a positive integer and s > 1 a real number. We have

N-1

o1 1 14 — (k— 1)l sNV1k s
dt = sNTH(E) —
/logNt (N —1)! ( *) z:: log" t

k=1

and, for z — oo,

N
) (k—Dlx x
1 = o .
i@ =2 Tiogap O\ ogap s
We shall need the following lemmas that gives bounds for the logarithmic integral.

Lemma 2.2. Fort >4,

t
li(t) > —.
i > logt

Fort>1,

li(t) <t—082<t
t

li(t) < 1.49—.

i) < logt

Fort > 1010,
t t
li(t) < — + 1.101——.

log t log” t

Proof.

The function ¢t — ¢t — li(¢) is minimal for ¢t = e and e — li(e) = 0.823...

for t = 10 is —5015.15... < 0.

Lemma 2.3. Fort > 77,

S t + t " 2t " 6t
logt = log*t log®t log*t’

fort > 4.96 x 10'2
t t 2t Tt

< + + +
logt  log”t log®t logt

and fort > 1
t t 2t 40 t

< + + + > —
logt = log*t log®t 3 log*t

For ¢t > 1, the function ¢ — li(¢) — t/logt is increasing and vanishes for ¢t = 3.846. ..

The maximum of ¢ — li(¢t) — 1.49 t/logt is —0.04 ..., obtained for t = exp(1.49/0.49).

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

The function ¢ — li(t) — t/logt — 1.101t/log?t is decreasing for t > 2.95 x 10° and its value

(2.12)

(2.13)

(2.14)



Proof. For u € {6,7,40/3}, we set

t t 2t t
- - - —u .
logt  log?t logt log* ¢

f =)

From (2.5), one gets
df (6 —wu)logt+4u
dt log® t .

— For u =6, f is increasing and vanishes for ¢t = 76.54 ... which proves (2.12).

— For u = 7, f is increasing for t < ¢ty = exp(28) = 1.446... x 10'? and decreasing for t > t,.
One computes f(4.96 x 1012) = —259.07... < 0 and (2.13) follows.

— For u=40/3, f is increasing for t < ¢t; = exp(80/11) = 1440.47 ... and decreasing for ¢ > ;.
Therefore, (2.14) results from the negativity of f(¢;) = —0.0033...

O
Lemma 2.4. Ift > 3.28,
lit(t) < t(logt + loglogt), (2.15)
fort > 41,
lit(t) > tlogt (2.16)
and, fort > 12218,
lit(t) > t(logt + loglogt — 1). (2.17)

Proof.

— For t > e, let us consider the function f(t) = li(t(log(¢) + loglogt)) —t. By noting logt by L,
we have

df _logt+1+loglogt+1/logt = L+1-—Llog(l+logL/L)

dt — log(t(logt + loglogt)) L2+ Llog(L +1logL)
The denominator is > 1 and the numerator is > L+1—logL > L+1—-(L—-1)=2>0. So f

is increasing and its value for ¢t = 3.28 is 0.0073... > 0, which completes the proof of (2.15).

— Now, let us consider f(¢) = li(tlogt) —t. One has

F() = logt+1 1= 1 —loglogt
~ log(tlogt) ~ logt+loglogt

fort > e® = 15.15. .., which shows that f is decreasing for ¢t > e® and, from f(41) = —0.048... <
0, we get (2.16).

— Finally, for t > 1, we set f(t) = t(logt+loglogt—1). One has f'(t) = logt+loglogt+1/logt
which is positive for ¢ > e so that f is increasing for ¢t > e. As f(tg) =1 for tg = 3.1973..., we
assume ¢ > to so that f(t) > 1, L =logt > 1 and log L > 0 hold. We set



y=t—1i(f(t)) =t —li(¢t(logt + loglogt — 1))

and, by using the inequality log(1 + u) > u/(1 + u) (for u > —1), one gets

y'log f(t) = log (1—|— logLL—1> —%
logL —1 1 (L-1)(ogL—-2)—1
“ L(1+(ogL—-1)/L) L  L(L+logL—1)

Fort > ¢¢” = 1618.17.. ., the denominator is positive. The numerator is increasing, and positive
for t = 4678. Therefore, y is increasing for ¢ > 4678. It remains to calculate y(12218) =
0.00106... > 0 to prove (2.17).

Lemma 2.5. The function t — \/m is defined and increasing for t € R.

— It is concave for t > li(e?) = 4.954.. ..

— Let a <1 be a real number. Fort > 31, the function t — \/m — a(t(logt))'/* is concave.
Proof.

— Let us set f; = \/li'(t), fo = (t(logt))'/*, F = fi — afs and u = li''(t) ie. t = li(u). We

have
dfi _logu d*fi  logu(logu—2) d?f; _ 3log’t +2logt+3

dt 2y’ A2 4oi3/2 oAz 16(tlogt)7/4

2
Let us assume ¢ > li(ez). We have u > €2, logu > 2 and ddtél < 0 so that f; is concave.

d2
— Further, ?];2 < 0 so that, if a < 0 then F' = f; — af, is concave. Moreover, from (2.9) and

(2.8), we have u/logu < t=1liu < u and

7d2f2 _ 310g2u+210gu+3
d2 ~ 16(u(1 — (loglogu)/log u))7/*"

d?f, /d*f
a2 / de
oL, _losL T 312 4oL 43
S 4ql/d L L(L —2)
1 log L\ /4 8 19
_ 1— Sy ). (21
() (i) e

The three factors of the right handside of (2.18) are positive and decreasing on u so that their

0<

If 0 < a < 1 holds, it suffices to show that

d*fy /d®fi
dt? dt?

< 1. By writing L for log u, one gets

product is decreasing, and for v = 103, t = 30.77.. ., it is < 1. O

Remark. By using more accurate inequalities, it would be possible to replace the bound ¢ > 31

by t >8.42....



2.3 Study of m.(z)=>_ . 0"

Without any hypothesis, improving on results of Massias and Robin about the bounds of 7, () =
> p<a P (cf. [19, Théoreme DJ), by using recent improvements on effective estimates of 6(z), we

prove

Proposition 2.6. Let a, 1 = z1(a) be two real numbers such that 0 < a < 1, z1 > 89967803
and |0(z) — z| < ax/log® x for x > x1. Then, for r > 0.6 and x > x,

:Z:’r’Jrl :Cr+ 1 2xr+1

+ +
(r+1)logz  (r+1)2log’z  (r+1)3log’z
n (5lart + 176ar® + 222a7? + 120ar + 23 + 168)x™ 1

777"(1') <Co+

2.19
24(r 4 1)*log* z (2:19)
with
270(z1)  3ar* +8ard +6ar?+24—a
C =7, o _ 1 r+1
0 Uy (‘rl) 1ng171 24 l(xl )
n (Bar® +5ar?+ar+24—a)zi™  a(3r? 4 2r — 1)t
241og xy 241og? 4

a(3r —1)zf azit (2.20)

121og® 1 B 4log* 1
Let ro(a) be the unique positive root of the equation 3r* + 8r3 4+ 612 — 24a — 1 = 0. One has
ro(a) = ro(l) = 1.1445. .. and,

for 0.06 < r < ro(a) and z > z1(a), we have

l.r-i—l (L‘T+1 2{ET+1

m(x) > Co + + +
(@) 0 (r+1)logz  (r+1)2log’z  (r+1)3log*z

(2art + Tar® + 9ar? + bar + a — 6)z"+!

- 2.21
(r 4 1)4log* x (221)
while, if 1 > ro(a) and = > 1 (),
_ zr+1 :CTJrl 2xr+1
m(z) 2 Co + + + -
(@) T (r+1)logx (r+1)2log’z  (r+1)3logx
(5lart + 17613 + 222a7? + 120ar + 23 — 168) 2" 1 (2.22)
24(r 4+ 1)*log* z o
with
—~ 270(x1)  3art +8ard +6ar? —a—24 1
Co = mr(z1) — = li(2} ™
0 e ('rl) 10g T 24 1(1'1 )
(Bard +5ar’ +ar —a— 24)3:7{+1 a(3r? 4+ 2r — 1)1‘{“
24log 24 24log? x,
a@r— 1ttt azit (2.23)

121og® 1 4log* 1
Proof. Tt is convenient to set

s=r+1.

10



By Stieltjes integral, we have

m(x) = Zpr =Te_1(x) = me_1(x1) +/

o logt

x tsfl

d[o@®)]

PZT
and, by partial integration,

r570(x) a3 0(x)
log x log x1

To—1(x) = me—1(z1) +

_/:<(51)t52 t52>9(t)dt. (2.24)

) logt  log2t
Since # > z;(a) holds, in (2.24), from our assumption, we have 6(z) < = + az/log® z. Under
the integral sign, as s > 1+ 1/logz1(a) > 1+ 1/10g(89967803) = 1.054 ..., the parenthesis is
positive and 6(t) >t — at/log® t, which implies

570 () ax®

xS
T R Y “Dal,—al 9.25
log 21 LT T Dhtht(s-lali—al,  (225)

Ts—1(x) < ms—1(x1) —

x tsfl tsfl
with L =logz and, for i > 1, I; = / 7 dt = fi(z) — fi(z1) with f;(¢) = / By (2.6),
1 1log

" logit.
one gets
s 2 s s
fI=E), = s o = ) g
CSi(e) s st° ts
L 6logt  6Glog>t 3logt’
_sti(E) s3ts s2ts st ts
fs = 24 24logt  24log’t 12log®t 4dlog't’
Let us set

4 3
F) = (5= Vi + fot (5— Do fa—a fy = 222 ;*Z‘S LA

(Bas® —das? +24)t°  as(3s—4)t°  a(3s—4)t° at®

- — — . .26
24logt 241og? t 121og® ¢ 4log* t (2.26)
From (2.25), one has
s s 8_1(9
To—1(x) <Co+%+ aLZ + f(x) with Cp Zﬂsl(xl)—w — f(z1).

Now, s =r+1 > 1.6, 2° > x1(a)'® > 899678036 > 4.96 - 10'2 and one may use the upper
bound (2.13) of li(z®) in (2.26) to get

x® x® 22 (5las* —28as® +168)z°
s— < — 2.2
m1(@) SCot+ T amEtam T 24514 (2.27)

which, by substituting r + 1 to s, proves (2.19) and (2.20).

To get a lower bound for m,_1(x), in (2.24), we use inequalities 0(z) > x — az/L3, and
0(t) <t+at/log®t. One gets

~ _ 4 3
Fit) = ~(s = Vit fo— (s = D fa o fy = 0T 20T H By

(Bas® —das? —24)t°  as(3s—4)t°  «a(3s —4)t° at®
24logt 24log* t 121og® ¢ 4log*t

(2.28)

11



o~

(note that f(t) is obtained by substituting —« to « in (2.26)) and

s =R . 5719 -
+ f(z) with Cp = ms_1(w1) — f”lloggl) — flay). (2.29)

moa() > Got & - 28
Let us set o(r) = 3r* + 8r% + 612 — 24/a — 1, we have ¢/(r) = 12r(r + 1)?, ¢ is minimal and
negative for » = 0 and has one negative and one positive root, ro(a). Note that ro(«) is decreasing
on a. One computes ro(1) = 1.1445.. ., r9(0.5) = 1.4377... and r((0.15) = 2.1086.. ..

~

The coefficient of li(z*) in f(x) is

—3as’ +4as®+24  —3art —8ar® —6ar’+a +24 _ap(r)
24 B 24 Y

and changes of sign for r = 7g(a). For 0.06 < r < ro(a) we have 2° > x5 > 21:96 > 77 and we
use the lower bound (2.12) of li(z*) in f(z) to get (2.21), while, for r > ro(a), z° > 21()>™ >
89967803214 > 4.96 - 1012 and we use (2.13) to get (2.22). O
Corollary 2.7. For xz > 110117910,

z? z? x? 107 22

m(xr) < + + 2.30
1(@) 2logx 4log29: 410g3x 16010g493 ( )
and, for x > 905238547,
2 2 2 3 22
m(z) > — z z ’ (2.31)

=z + - .

2logz  4log’z  4log’z  20logz
Proof. We choose r = 1, a = 0.15, 1 = 19035709163 and, from (2.2), we apply (2.19). By
computation we get m(z1) = 7823414443 039 054 263,

0(x1) = 19035493 858.482419137..., f(x;) = —7.485421258... x 10'®

and Cj, defined by (2.20) with r = 1 is equal to —1.586 ... x 10'® < 0 so that (2.30) follows from
(2.19) for > x1 and, by computation, for 110117909 < z < z;.

Similarly, Cy defined by (2.23) is equal to 1.655. .. x 10** > 0 which implies (2.31) from (2.21)
for x > z; and by computation for 905238546 < = < z7. O

Remark. In [2, Theorem 6.7 and Proposition 6.9], C. Axler gives similar estimates for 7 (x).

Lemma 2.8. Let us assume that > o = 101+ 19 and n = m (z) hold. Then x satisfies

log 1 log1
\/nlogn<1—|—0.365 Oigoin> <z < \/nlogn(l—i—w). (2.32)

2logn

Proof. When 2 — oo, from n = m(z) = li(z?) + O (2% exp(—alog z)) with a > 0 (cf. [17, Lemme

BJ), one can see that the asymptotic expansion of z is given by (1.11). In particular,

log1 -1 1
T = \/nlogn<1+ o8 Og2nlogn+0( )), n — 00. (2.33)

12



Now, we have to prove the effective bounds (2.32) of x. For convenience, we write L for logn
and \ for loglogn. We suppose © > x¢ = 1019 4+ 19. We have n > ng = m1(1) = 2.22...10'8,
L =logn > 42.24 and A = loglogn > 3.74.

A
The upper bound. Let us note f(n) = vVnL (1 + 2L)

t2 1
Since 14+ is increasing as a function of ¢ for ¢ > e, the inequality x < f(n) is
2logt 2logt

equivalent to

x? 1 f(n)? 1
— (1 < 14+ ——71—~. 2.34
2log x ( +210gx) 2log f(n) ( +210gf(n)) ( )
2 1
From (2.31), for « > xo, * 1+ < 71 (x) = n. Note that this result has been proved
2logx 2logx
in [3, Corollary 6.10] for = > 302971. Thus to ensure (2.34) it suffices to prove

IPACO R RN S
n< 2log f(n) <1+ 21ogf(n)) '

As we have 2log f(n) = L+ A+ 2log(1 + A/(2L)) < L+ A+ A\/L, it suffices to show that

(14 A/(2L))?

L
" L+/\+/\/L< L+/\+/\/L>>n

or, equivalently that
L1+ M 2L)*(L+X+XL+1)—(L+X+)/L)?>0.

But the above left hand side is equal to

A2 3 4 A3 1
L+ (1-2 - )+ (14>
) ()

which is positive for L > 4, i.e. for n > et.

The lower bound. First, from (2.30), for x > z,

2 2 1 1
n=m(x) < = = <1+ N 07 >

S 2logz  4log’z logzo  40log® z

< P (1L
= 2logx 2logx

with @ = 1.049. This time, we set f(n) = vnL(1 4+ bA/L), with b = 0.365. One has 2log f(n) =
L+ A+ 2log(1+4bA/L). By using the inequality log(1 4 ) > u/(1 + up) valid for 0 < u < ug, one

(2.35)

has

2log f(n) > L+ X+ coA/L with ¢o=0.7 < 2b/(1+ bXo/Lo) = 0.707 ... (2.36)

We have to prove that © > f(n) holds for n > ng. From the increasingness of the mapping
2

t— Slogi (1 + QIth)’ it suffices to show that

x? a f(n)? a
2logx (1 * 210gas) Z 21log f(n) (1 + 2logf(n)) ' (2.37)

13



From (2.35) and (2.36), to prove (2.37), it suffices to prove

S nL(1+bX\/L)? 14 a
T L+ A+co)\/L L+ X+ co)\/L
i.e. ) 5
b CQ)\ Co)\
- Al _ Al < .
L(1+L> <L+)\+ i +a> <L+)\+ L) <0 (2.38)

and equivalently, by expanding (2.38) and dividing by AL, that

2 2% —1 2 2\2 2
2b—1+9—|—(b+b YA+ 2ab  b2A* + ab* A

A L L2
1 2x(b—1) 222\ 2\
+ Co (_L + L2 + L3 — ﬁ < O (239)

The coefficient of ¢y in (2.39) satisfies

1 2/\(b— 1) b2)\2 Co Co)\ bz/\o Co d\
_ <0 O (g TR0 _9) ¢ 001
CO( LTz s L T2 (Pt L 12

with d = 0.88 < ¢(2 — 2b — b*\g/Lo) = 0.8807 ... so that it suffices to show that

B a  (B>+2b—1DA+2ab  VENZ+ (ab? —d)N ¢
B—Zb—l-l-x-i- 7 + 12 -7

<0,

for L = exp(A) and A > Ag. For that, one writes ¢o = ¢1 + ¢ + ¢3 with ¢; = 0.44 and ¢ + ¢3 = 0.26.
Then,

(b2 +2b — 1)\ + 2ab — ¢y
L

a C1
B=|2b-1+~—%
b1+ L]+

b2A% + (ab? — d)X\ — c3L
+ 72 .

(2.40)

It is easy to see that a/\ —c1/L = 1.049/\ — 0.44e is decreasing for A > 0 and its value for
A=) is equal to 0.2698.. ., so that the square bracket in (2.40) is negative.

For Ag < A < 4.3 one chooses ¢, = 0.26, c3 = 0 and one has
(b +2b — D)A 4 2ab — co < (b* +2b— 1)\g + 2ab — c3 = —0.0062... < 0

and b?\ + (ab® — d) < 4.3b% + (ab® — d) = —0.167..., so that B is negative.

For A > 4.3, one chooses ¢y = 0.18, ¢z = 0.08 and one has
(b 4+ 2b — 1)A + 2ab — co < 4.3(b* +2b — 1) + 2ab — c; = —0.0023... < 0.
The inequality A\? < 4e*~2 = 4L/e? implies
VA% — 3L < (4b%e% — ¢3)L = —0.0078... L < 0

and, as we also have ab® —d = —0.74... < 0, we conclude that B is still negative, which completes

the proof of Lemma 2.8. O

14



2.4 The Riemann ( function and explicit formulas for ¢ and II;.
2.4.1 Explicit formulas.

We shall use the two explicit formulas
p 1
z/J(x):x+2—Zp—log(Zw)—log(l—xQ>, z>1 (2.41)

(cf. [16, p. 334 and p. 353] with » = 0 and ¢’(0)/¢(0) = log(27)) and

° dt

x

(cf. [16, p. 360 and 361], with R =1 and ¢(—1) = —1/12).

In connection with (2.41) we shall use the following lemma (cf. [15, p. 169 Théoréme 5.8.(b)]
or [14, p. 162 Theorem 5.8.(b)]):

Lemma 2.9. If a, b are fized real numbers satisfying 1 < a < b < oo, and g any function with a

continuous derivative on the interval [a,b], then
b
[ atutera =

/abg(t) {t —log(27m) — %log (1 — ;)] dt — zp: /abg(t)t: dt. (2.43)

We also have (cf. [13, p. 67] or [5, p. 272 ])

1 1
S - :1+@—ilogw—logz:0.023095708966121033...

, P 2
and
> ! =Z(1+1):221:0.0461914179322420... (2.44)
—~ (1 - ~\p 1-p P

The coefficients 7, are defined by the Laurent expansion of {(s) around 1 (cf. [5, §10.3.5]) :

1 o Ym m
) =57+ X -
The first values of ~,, are
m = 0 1 2 3 4
Ym = || 0.57721 ... | —0.07281... | —0.00969... | 0.00205... | 0.00232...

The coefficients &, are defined by 6; = g, d2 = 2v1 + 72, and, for m > 1,
5m+1 Z 'YJ m— ]
7=0

15



1
These coefficients allow to compute the sums » , —-, see [5, p. 207 and 272]:
p

Zplm—uam—g(m)(pl), m = 2. (2.45)

2m
P
For m = 2, we get
1 72 9
Y 5 =1-—+2y+75 =-0.0461543172958046...

5 =
) P 8

2.4.2 Computation of 3° 1/|p(1+ p)| and >, 1/1Sp/%.

It is known (cf. [28]), that every non trivial root p of ¢ satisfies
S(p)| > 14.134 725141 734 693 79. (2.46)
Lemma 2.10. Under the Riemann Hypothesis, for k > 2,
1 10
S ity 2.4
Z [ 14k (2.47)
Proof. Under the Riemann Hypothesis, p = 1 — p and from (2.44),

1 1 1
— =y =0.04619141 - < —. 2.48
ZP: |p|? zp: p(1=p) 20 (2.48)

Using (2.46), we may write

1 1 1 196
< I
Ep: Ip|F = 14k—2 Zp: Ip|2 = 20 x 14k
which proves (2.47). O

Lemma 2.11. Let t be a complex number satisfying |t| < 1/2. We have

il (2.49)

[SSRIEN

ft)=((1 -3 —2t)"2 = i cat™  with  0< ¢, <
=0

and, if |t| < 1/6,
(2.50)

n! 22n \ n
Therefore,
n/2 , 0o 1 2n+2
0<c, = Z am(2n— man72m) A Z 47m = 3
m=0 m=0



which proves (2.49). If |¢t| < 1/6, then

n=1 n=1 n=1
whence
= 2 1
R(fE)=1+% b 1-— Wt > - = -
s =12 () 21 [Sar] 213
and
o) o0 2
S(f() = | t" ] < W < =
() =3 (St )| <[ <
which completes the proof of Lemma 2.11. U

Lemma 2.12. Under the Riemann Hypothesis, with the notation of (2.49), we have

I 25)

n=0 P
Proof. Let p = 1/2 + 1y ZZZ be a non trivial root of {(s) under the Riemann Hypothesis. First
we observe that f defined by (2.49) satisfies

(‘ptf (2)) T - 1/;)(1 —2/p) ~ o1 fp><p1+ D2 - p)

“haeor &%

so that —f(1/p)/p? is real. Let us write

f(1> =a+ b
o

As, by (2.46), |1/p| < 1/14, Lemma 2.11 gives a > 1/3, |b| <2/3 and

1 (1)2 (a—Hn (P -1/4+m)(a+ )

20 TR T T e

Thus the sign of —f(1/p)/p? is the sign of a(y? — 1/4) — by. As

(o258 559

we have —f(1/p)/p? > 0, which, with (2.52), shows that

e ()

Therefore, from Lemma 2.11, we get

1 1 [ e
Z p(I+p)] Zp: p? (Z p“) (259

n=0

1 1\ 2
21—y (42— =2
a(y" —1/4) = by > 5 (v 4> el

and, since from Lemmas 2.10 and 2.11, the sum Z r |n+2 is finite, we may permute the summa-

pyn
tions in (2.53), which yields (2.51). O
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By using Lemmas 2.10, 2.11 and 2.12 together with formula (2.45), it is possible to compute ¢
defined in (1.13) with a great precision.

1
Lemma 2.13. Under the Riemann Hypothesis, E S50 < 0.0462493.
vy

P

Proof. Let us set p = 1/2 + 4. From (2.46) we have |y| > 14.134 and from (2.48)

1
Z Zl+1/4v cy Mmmoe (1 g b
/it \p 1/4+ 2 4% 141342 ) £ |pP?

o
< 0.0462493

A more precise estimate can be obtained by writing v2 = —(p — 1/2)2,
(1- 1/ 2,0 m+1 1
S oy -y (v )
m= 12

To calculate the above series, choose some M > 0. For m < M, use (2.45) and, for m > M, use

Lemma 2.10 to get an upper bound of the remainder. O

3 Computation of h(n)

For n small, a table of h(n) for n < 105 has been precomputed by the naive algorithm described
in [7, §1.4].
For the computation of h(n) for n large, the algorithm described in [7] is used. Let us recall

some points about it.

3.1 Computing an isolated value of h(n) or logh(n) for n possibly large.

— The factorization of h(n). Let k = k(n) be defined above by Eq. (1.16). The value h(n) may
be written as the product (cf.[7, §8]:

h(n)sz-G(pk,n—Uk), (31)

where G(p,m) is defined in [9] by

G(p, m) = max Q1Q2 e QS )
q192 - -+ gs
the maximum being taken over primes Q1,Q2,...,Qs,q1,q2,--.,¢s, s = 0, satisfying

2< ¢ <1< <@ <P <@Q1<Q2<--<Qs

and i(@
i=1
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Of course, h(n) is an integer, and Equation (3.1) says that the prime factors of h(n) are

({p1sp2, - o \ a2, -, 4s}) U{Q1,Q2, ..., Qs } - (3.2)

Thus the computation of p, and G(pg,n — o)) gives the factorization of h(n). Let us remark
that, for large values of n, say n > 103°, this factorization is not really effective because we are

not able to enumerate the primes py,po, ..., pk.

— Computing G(pg,n — ok). The execution of the algorithm described in [9, §9] is relatively
fast and shows that s is small and that, with the exception of the smallest one, g5, all primes of
{1,921 qs } U{Q1,Q2,...,Qs} are very closed to p;. But we are unable to prove this fact,
nor evaluate the complexity of this algorithm, nor even its termination. The time for computing

1000 values G (px,n — o) for n close to 10% is about 4 seconds.

— Computing py and oy,. For small values of n, say n < 10'® the trivial method may be used :
we add the first j primes until the sum o; exceeds n. If n is very large, say n > 10%* this
is impracticable. But the Lagarias-Miller-Odlysko algorithm for computing m(z) improved by
Deléglise-Rivat to cost O (z2/3/ log? x) operations (cf. [10]), may be adapted to compute at the
same coast sums of the form Sy (z) = Zpgm f(p) where f is a completely multiplicative function.
Choosing f(x) = x, we are able to compute 7 (z) = Y

p<a P with the same complexity, and also

to compute py, and sy in time O (n'/3/(logn)®/?) (cf. [7, §8] for more details).

— Computing log(h(n)). Once pk, sx and G(pg,n — sx) are computed, from the prime factors
(3.2) of h(n) we get

log h(n) = 6(p) + ) log(@;) — Y log(qj). (3.3)

1<5<s 1<5<s
The last two terms of this sum are obtained by computing a small number of log’s values, the
(log gi)1<i<s and (log Qi)1<i<s. It remains to compute 0(py). If py is small, say py < 1010, we
may use the naive algorithm, enumerate the primes up to px and add their logarithms. If py is

large, the naive algorithm is too slow.

To compute 6(z) more efficiently, we first compute 1(z) in O (22/3+¢), using the algorithm given
n [11], and then we add the difference ¢(z) — 6(z) which is easily computed in time O (z/%%¢)
by the naive algorithm (cf. [25]). Some values of 6(z) for x up to 10'® are given in [26]. Figure
2 shows, for 2 < n < 18, the largest prime py < 10", 8(py) = log h(ok) and by, .
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3.2 The computations we did for this work.
Computation of all the b,, for p; < 10000000019.

For the proof of (5.45) and (5.46) in Proposition 5.11 we need to compute b,, for all the primes
pr. < 100 + 19. The sophisticated method presented in [25] to compute 6(py) is useless because
each value 0(py) we need is obtained at once from the previous one 6(pi—1) by adding log p.

We enumerate the 455052 512 primes up to p4s5052712 = 10000000019, computing for each of
them oy, logh(ok) = 0(pr) and b,,. This was the most expansive computation we did. It took

about 7 hours.

Computation of isolated values of h(n).

For the proof of (5.47) in Proposition 5.11 we compute isolated values of b, for n < ny =
305926 023. Here also, for these small values of n we dont’t need the method presented in [25]
to speedup the computations of the 6(py) values. We content ourselves by using a precomputed
table of (o, 0r) values. The essential coast of each computation of h(n) is then reduced to the

coast of computation of G(pg,n — o).

4 Estimates of b,

In the proof of Theorem 1.1 we shall use Lemmas 4.1-4.4. The first of these establishes a concavity’s

property (cf. Figure 1 which displays the graph of (n,b,) for 2 < n < 100).

Lemma 4.1. Let b, be defined by (1.12) and k = k(n) by (1.16). For eachn > 2, if min(bs, , by, _,) <
1, we have

bn 2 min(bgk,bak+1)'

Proof. Computation shows that b, > min(b,,,b is satisfied if n < 41 = 0¢. Thus we may

Uk+l)
suppose n > 41. Let us set € = (logpg+1)/pr+1- The function ¢(t) = logt — et is concave for
t > 1. For k > 2, one has ¢(2) =log2 — 2log pgt1/pr+1 = log2 — 2log5/5 > 0 and ¢(pr+1) = 0.
Let ¢ denote an arbitrary prime number. Thus ¢(q) is > 0 for 2 < ¢ < pr and < 0 for ¢ > pr41.

Then, for each squarefree integer IV,

logN —et(N)=>_w(@)< > @@ < elq)

q|N q|N, q<pk q<pr

=log N — eop = log Nyy1 —e0g41. (4.1)

We write

n=aor+ Porr1 with 0<a<1l and f=1-aq. (4.2)

20



DIBI . ] o . " ...

bl'l | . . a ® -t ) w * - ’ . -.' '
. e * . . L
0.6 : .
LI L »
L [ ]
0.4}
0.2}
25 10 17 28 4l o8 Ir 100
n

Figure 1: Graph of (n, b,)2<n<100- The red points are the (o, by, ) points.

From (1.1), ¢(h(n)) < n holds and applying (4.1) to N = h(n) yields

log h(n) < el(h(n)) +log Ny, — oy, < en+ log N, —e oy,
=¢e(aog + Bogt1) + a(log Ny —eor) + B(log Nyp1 — €0g11)
= alog Ny, + Blog Ni1. (4.3)
Let us define ®(¢) on each interval [0, o)1) by
O(t) = \/li''(t) — min(by,, be, ., ) (tlog )2 (4.4)

Since min(bg, , by, ,) < 1 and op > 31 are assumed, from Lemma 2.5, ® is concave on [0, 0 y1].

Moreover, from the definition of by, and b,,,,, one has log Ny = logh(oy) = /lit(ok) —

be,, (o logop)/* < ®(0) and log Npi1 = logh(opy1) < ®(opy1), which, from (4.3) and (4.2),

implies

logh(n) < alog Ny + Blog Nit1 < a (oy) + 8 ®(0k+1)
< ®(aoy + Boks1) = (n).
With (1.12) defining b,, and (4.4), this gives b,, > min(by, ,bs, . ,)- O

Lemma 4.2. Let ny, ng be integers such that 2 < ny < na. If li_l(ng) > logh(ny), for
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n1 < n < ne we have
11_1(”2) — log h(n1)

(n1logng)t/4

bn < (4.5)

Proof. Tt results from(1.12), defining b,, and from the non-decreasingness of Vi, logh and
nlogn. O

Lemma 4.3. Let p > 0, n1, ng be integers such that 16 < ny < ny and

li—l(ng) —logh(ny) 2 ot log log no (4.6)
(n1logng)t/4 =3 a logng '
then the inequality
2 loglogn
- —_— 4.
bn<3—|—c+,u logn (47)
is true for each n € [ny, na).
h_l(nz) — log h(n1) 1
Proof. We have b,, < . I 4 /liT (n2) — logh(ny) < 0, then b, < 0 and
(nlogmn)t/4
(4.7) holds. If /li"*(ng) — logh(ny) > 0, (4.7) results from (4.6) and the decreasingness of
c+2/3+ ploglogn/logn for n > 16. O

Lemma 4.4. Let py satisfy pr > o = 1010 + 19, 0}, = Zpgpkp > ng = m(xp), and n be an

integer such that o, < n < opy1. Then

LI ! (4.8)
logor, ~ logn = (1+3x10-19)log oy, '
and
\/li‘l(n) - \/li'l(ak) < 1.14 log oy. (4.9)

Proof. First, from Bertrand’s postulate, we have pyy1 < 2py and

N — 0 < Ogt1 — Ok = Dt1 < 2Dk

From Lemma 2.8, as o = m1(pg) holds, we have

log 1 log 1
e < \JorTogor <1 N Ogogmv) < <1 N Ogogno> o Tonon

2log oy, 2log ng

< 1.045 /oy log o,

so that

n < opy1 < 0 + 2p; < o + 2.09 /o log oy,

I
— oy <1+2.09 N 05_”’“) (4.10)
k
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holds. Further, one gets

log oy, 2.09
1 <1 +2.09 =1 1+ ——
ogn < log oy p” og oy, ( 5 Tos Uk)

2.09
<1 I+ ———) < (1+3x10711
oo (14 ) < 14 s
which implies (4.8).
. loglirt(t) . ..
Let us set f(t) = 1/1i"*(¢). From Lemma 2.5, we know that f’(t) = ———== is positive and
F() = VET@) 1) = s

decreasing for 1i'1(t) > e2. By the mean value theorem, one has f(n) — f(ox) < (n — ox)f'(o%)

and, from (4.10) and (2.16),

) ) loglit (o) log (o log o)
lit(n) — 1/li't(ok) < (n — 0p) ————xz < 2.09v/0, log o), —m2l2
Vi) = i (0 < (1= o) 2 logay o ZE 0k
logl
= 1.045log oy, (1 + 08 98 Tk Uk)
log o,
log1
< 1.045 (1 + Ogogno> log o = 1.1376 ... log o..
log ng
which proves (4.9). O

5 Proof of Theorem 1.1
Let x satisfy pr, < < pr41. Then, from (1.15) and (1.17)
or =m(z), logh(or)=1log Ny = 60(x)

and, from (1.12),

= VIt (m(x)) — 6(x)
7 (m(@) logm (x)) /1
The aim of §5.1-5.4 is to obtain, under the Riemann Hypothesis, an effective estimate of the

numerator of by, .

5.1 Estimate of 1i(6*(z)).

Lemma 5.1. Under the Riemann Hypothesis, for x > xo = 10'° + 19,

X

(6% (x)) = li(2?) + (0(z) — z) + K1 (z) (5.1)

log x

with 0 < K7 (z) < 0.0008 z log3 z.

Proof. Let us assume that > x¢ holds. Applying Taylor’s formula to the function ¢ + li(t?)

yields
x

li(6%(x)) = li(z?) +

o (0@) — )+ Ko )
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with

Kl(x)< 1 1 >(9(:c)—x)2 52)

logv N 10g2 ) 2

where v satisfies v > min(x, 0(x)). From (2.3), we get

_ log? x S log? z
x 8tz ~ 8T/ To
and v > 0.9997 x holds. By setting ¢ = —10g 0.9997, one gets logv > logx — € and

= 0.9997

1 1 1 1 1 €
- —5—< < = 1+
logv log°v logv ~logz—¢ logx logx — ¢

1 € 1.000014
< 1+ < .
log x logaxg — ¢ log x

Finally, (2.3) and (5.2) imply

1.000014 [ 1 2
0< Ki(z) < ———— [ —+/xlog?z ) <0.000792x log® z
2logx 8
which completes the proof of (5.1). O

5.2 Estimate of II;(z) — m(z).

Lemma 5.2. Under the Riemann Hypothesis, for x > xo = 10'° + 19,

(p+1)logx *

A . aA()
II = =1 — K 5.3
1(@) Z m i) Z(p+1)logz+210gx+ 2(7) (5:3)
pm<z P
23/2
with | ()| < 0.04625—5—.
log” x
o0 p—t
Proof. In view of (2.42), we first consider the integral / dt where p is a non trivial zero
-1 P
of . By partial integration, one gets
0o xpft l.p+1 P 00 eftlogz
dt = J ith J, = dt
[1 p—t (h+ Dlogz p@)  with Jy(z) 10gw[1 (p—1t)?
and, since R(p) = 1/2,
oo —tlogz 3/2
< L [T e
logz J_; S(p) (log” )3(p)?
Let us set J(z) =3_, Jy(z). Applying Lemma 2.13 yields
23/2 1 23/2
J(z)| = J(x)| € —— —— < 0.0462493
/()] ; o) log? ; J(p)? log?
and (2.42) imply
A p+1
I (2) = li(a?) + 2@ _ y K () (5.4)
P



with

°° dt
Kg(x)—*10g12*‘](x)+/m (2 = 1)logt’
1 4

Fort >z > 2, < d
o “ (t2 —1)logt ~ 3t?logx an

/°° a4 /“’@7 1
. (t2—1)logt ~ 3logz J, t2 3xlogx

3/2

so that
|Ka(z)| <

(5.5)

41 log 12) log?
<00462493+ ogz , (logl12)log x)

lo g T 325/2 x3/2

n (5.5), the parenthesis is decreasing for > x¢ and its value for z = xg is < 0.04625, which,

together with (5.4), completes the proof of (5.3). O

Lemma 5.3. Forz > 2,

- 1
L (2) — mi(z) = lozx () — ()~ > B with r = L‘()E;J (5.6)
k=2
and e
1 [* v
Bi=1 /2 ooy lost = DA . (5.7)

Proof. From the definition of IIy,

R RO VL
I (z) — m(z) = Z P Ma

and, by Stieltjes integral,

so that

b2 k(logx)/k o log
- )= 0) - 3B

5.3 Bounding > ;% B

Proposition 5.4. Under the Riemann Hypothesis, for x > xo = 10'° + 19 and k = “Z?SJ’ By
defined by (5.7) satisfies

94:3/2 2x3/2 23/2

3logx 1og x Z kS 310gx ]ogZx
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The proof of this proposition is rather technical. We begin by establishing some lemmata. For
k < K, one has xl/k > glog2/logz — 9 and, for t > 2 and k£ > 2, one has klogt > 1, so that B > 0
holds.

Lemma 5.5. For x > xg, we have the bounds

24/3
ZBk 10667 s (5.9)

Proof. First, by using (2.1) and (2.6),

at/k

1+e¢ r ktk s A1F1/kY  irok+l s 141/k
B, < —dt=(1+ )(h(x ) —1i(2 )) < (1+e)li(x )
k Js logt

with € = 7.5-10~7 . Now, by (2.11),

g H1/k 1.101 1.05 5! H1/*
B <(1+¢) Tk . (5.10)
log x log xq (1+1/k)logx
Hypothesis x > xq implies k > 33. Further, we have
K 26 —
3B, < 1.(1)5 xi/3 (Z ail/kllf N llog;r x1/27—1/3>
P ogw =1+ / og
< 1.05 ZL'4/3 20 Ié/k_1/3 IOg To 1/27-1/3 1.066 4/3
o 11 1/k  log2 "0 < e
gr \fm 1+1/ 0g 0g T
O

The upper bound (5.10) is good for k > 3, but for k£ = 2 we need a better one. For a € C let

us define
1 [ve . , 2t t
I, =—- F(t)t*dt with F(t) = — — —5—. (5.11)
2 /s logt log”t
; 11 10
Lemma 5.6. For a belonging to < 0, 313 15 and x > 29 = 10" 4+ 19 one has
2 (a+2)/2 2 (a+2)/2
I, = z U + 64 (5.12)

a+2 logzx (a +2)2log” =
with 1 <n < 1.101 and —3.15 < §, < —2.88.

Proof. From (2.6), we have [ F(t)t*dt = —ali(t?>T®) + ¢ /logt and

(a+2)/2 9a+2
a T a
Ip=—=li(z et/ = 15, ith  d, = = 1i(2°72) —

2 i(e )+ log x + A 2 i ) 2log 2

and 0, satisfies —3.15 < §, < —2.88. Further, by using inequalities (2.8) and (2.11), for x > =z,

one gets y (@s2)
9 (a+2)/2 4 a+2)/2
li(z(e+2)/2y = =2 y—
(a+2)logx (a+2)2log”x
with 1 < 7 < 1.101 and, from there we get (5.12). O
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In view of applying the explicit formula (2.41), we shall need an estimate of S = _ I,/p

where p is a non trivial zero of (.

I 5/4
Lemma 5.7. Let us note S = Z ~2. Under the Riemann Hypothesis, for x > xq, |S| < 0.148laﬂg
p ogx
P
Proof. By partial integration, one gets
1 [ve 1 [VE o2t t
1,3:7/ F(t)t”dt:f/ (- i )t"dt
2 J, 2/ logt  log”t
g2/ 2 2 2rtt /2 1
opt1 (logx a 10g2x> Cp+1 <1og2 a 1og22>
VT P+l
—/ —F'(t)dt
2 2(p+1)
and, since F'(t) satisfies for ¢ > 2
2log®t — 3logt +2 _ 2log®t 2
0<F'(t): og 330g+ < og3 _ 7
log” t log”t  logt
one has, from (2.6) and R(p) = 1/2,
245/4  93/2(9 _ 1/1oe 2 VT 43/2
o+ I, < 2 L
logz log 2 5 logt
25/4 23/2(2 — 1/1og 2)
— li 5/4\ _ li 25/2
log x (@) — Hi( )+ log 2
21.5/4
< li(25/4). 5.13
o+l (5.13)
Further, (5.13), (2.10) and (1.13) yield
I 1 22°/4
Sl = L1 < < + li(z™/* )
s1= |27 (Z p<p+1>|> logz T ")
1.49Y 25/4 zo/4
<cl|24+— <0.148 .
C( * 5/4) log x log
O
Now we come back to the proof of Proposition 5.4 From Lemma 2.1, it follows that
4 1V
J =15 — g[l/g < By <J— 13 +214 Iy with J = 5/ F(t)y(t) dt. (5.14)
2

Now, under the integral sign, we may replace 1(¢) by its value in the explicit formula (2.41), and

using equality (2.43) of Lemma 2.9, we get

1
J=1,-S—J; withS:Z;Ip
P

1 v 1 1
and J; = 5/ F(t) ( log(2m) + 3 log(1— =) |dt.
2

2
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For t > 2, one has F(t) > 0 and 0 < log2m + 1log 2 < log2r + $log(1 — %) < log2m < 1.84

whence

0 < Jl < 10g(27T)I() < 1.84 IO
and, with the upper bound of By given by (5.14), it gives

BQ < Il + |S| - 11/2 +214 IO.

From Lemma 5.6 and Lemma 5.7, one gets

2 3/2 2 3/2 5/4 4 5/4
P = S 2884 0.148— — —
3logz  9log”x logx 5logx
4.404 2574
LA L 515 42,14 <x - 2.88)
25 log” x log
2232 22%/2 54 (4 17.616  2.14
< — —— 4+ 01484 —— + — 5.15
3logx 910g2x+logx( 5+ +10010gx+:131/4> (5.15)
and, as the above parenthesis is decreasing for x > x¢ and its value for x = z( is negative, we get

2$3/2 2%3/2

< - )
> 3logx 9log®

Now we use (5.9) to get

- 203/2  g3/2 2 1.066 logx
B, < = 5.16
kzzz g 310g$+10g2x < 9" x1/6 > (5.16)

<

2 x3/2 N x3/2 2 1.066 log zo 2 4:3/2 N 0.3123/2
3logz  logz 9 mé/6 =~ 3logx log? x
which proves the upper bound of (5.8). Note that, for z > 8.48 x 1012, the parenthesis in (5.16)

is negative and that Y ;_, By < 223/ /(3logz). Similarly, we have the lower bound
4 4
By > J -1y — 511/3 D e e e §I1/3

4
> 1~ |S| = 1841y~ Ijs = 5 Lys

9 3/2 2.902 3/2 4 5/4 4 5/4
S (L ST I (e L S
310gx Qlog T 5logac 25 log x

514 4 [ 6p7/6 7/6
—0.148 % ( bz 6z7” 2.88) —1.84 ( ro_ 2.88)

logz 3 \Tlogz 49 log? log =
923/2 9909 £3/2 5/4 7/6
L Y VT S A VO
3logz 9log” x logz T7logx log z
_ 2482 282 02202 0.948logx  8logx | 1.84logux
~ 3logz  log?z \ 9 xl/4 Txl/3 zl/2

and, as the last parenthesis is decreasing on x for © > xg and its value for x = z( is < 0.327, we

get

which completes the proof of Proposition 5.4.
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5.4 Estimate of 1i(6*(x)) — m ().

Proposition 5.8. Under the Riemann Hypothesis, for x > xo = 100 + 19,

(

3/2 3/2

x
logx ' log” x

T

< i) — 1i(0%(x))

<g+c
S \3

with ¢ defined in (1.13).

Proof. From (5.1) and (5.3) we deduce

with

zA(x) Z Pl
2logx p (p+1)logz

1i(0%(z)) = I, ()

T

- K
2(2) + log x

s

=+ 2 T g

~ zA(2) x
2logz  logx

A(z) =TI (x) — 71 ()

23/2

X

3/2

log

Kl(CL‘) — KQ(!.C) + A(:v)

(0(3:) — x)

+0.36
T

log

(6(z) — z) + K1(z)

2

T

Further, from Equation (5.6) of Lemma 5.3 and from the explicit formula (2.41) of ¥(t),

and (5.18) implies 1i(6%(z)) = 71 () — Z

TA(z) &

(1/}(37) —x) B 2logx B ZBk

k=2

xT

A(z)

- log x

T xf 1 1 -
- N egen) - clog(1- =) | -S"B
logx< Zp: S~ log(2m) — 3 og( x2>> kzzz k

lans

— 4+ K ith
p(p+1)logx + Ka(w) wi

p

Ks(2) = K1 (2) — Ko(z) — % <log(27r) + %log (1 - ;)) - éBk.

(5.17)

(5.18)

1 1
For © > x, we have 0 < log(27) + §log (1 - 2) < log(2m) < 1.84 and, from (5.1), (5.3) and
x

(5.8), one gets the upper bound

K3(z) < 0.0008 2 log® z +

0.04625 z3/2  223/2  (0.327 23/

1og2 €T B 3 log x

9 3/2 23/2
_3log3§ + log2x (
- 223/2 | 0426 x3/2
= 3logx log?
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1 5
0.04625 + 0.327 4 0.0008—2_~

2172
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for x > zy. In the same way, one gets the lower bound for = > z¢:

0.04625 z3/2  1.84x 2232  0.31 23/2

Ks(z) > — — _
3(@) log? x logx  3logx log” x

223/2 3/2 1.841

=_r_ _ T (0.31 +0.04625 + Ogg”)
3logx log” z xl/2
223/2 1.841 3/2

> -2 (0314004625 + —— 270 ) T
3logx T log” x
) 3/2 3/2

L 0.3567——
3logx log” x
which completes the proof of Proposition 5.8. O

5.5 Bounds of b, for n large.

For convenience, in this and the next section we will use the following notation:

z:pk>x0:1010+19, U:Uk:ﬂl(x)v

L=logo>Ly, A=logL>X\, v=ML<y. (519)

Proposition 5.9. Assume the Riemann hypothesis. Let n = ng, by, be defined by (1.12) and ¢ by
(1.13). Then we have

2 log 1 2 log1
S 022880 Sy eqoqT 28T (5.20)
3 logn 3 logn
Proof. First, in &5.5.1 and &5.5.2, we consider the case n = o, = m(z).
5.5.1 Lower bound of b,, .
By (5.17), (5.19) and the fact that
0.69(2/3 — ¢) > 0.426 holds, we can write
, , 2 z%/? 0.69
li(0%(z)) < mi(z) =0 =0 — 6 with 6 = <3 - c) gz (1 - log:z:) . (5.21)

From (1.17), we have 6(z) = log Ny =logh(o). Aso =3_ ,
1-0.69/logz >1—1.38/logo > 1—1.38\/(AgL) =1—1.38v/Xo > 1 — 0.37v so that

p < 22, we have logo < 2logz and

2 X /
(; > - — I —“.:;] . :)22

Further, since the function t +— ¢3/2/logt is increasing, from (2.32), one gets

z3/? - (olog a)3/*(1 4 0.365 v)3/2 - (ologa)?/*(1 4 0.365 v)3/?
logz = $L+ $A+1og(1+0.365v) = FL+ $A+0.365v
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which, as the denominator satisfies

L A L 0.73 L 0.73
2+2+0365l/ 2<1+V<1+ L)) 2(1+u<1+ L0>>

L
< (1 +1.018v),
yields
3/2 3\ /4 3/2
o (T (14+0.365v) (5.23)
log x L 1+1.018v
For t > li(e?) = 4.54.. ., the function f(¢) = /li"!(¢) is increasing and concave (cf. Lemma 2.5)

and we have

B log(li't(t))(2 — log(lit (¢))

_losl®) g = 4(11(2))3/2

2,/1i"L(t)

Inequality (5.21) with the increasingness of f gives f(1i(0?(x))) < f(o — §). Applying Taylor’s

f'(t)

formula, with the concavity of f we get

log h(0) = 0(z) = Fi(6%()) < F(o — ) < /(o) — 6f(0) (5.24)

and we need a lower bound for f/(¢). From (2.15), one has li'*(¢) < o(L + A). As the function
t — log(t)/(2V/t) is decreasing on ¢, one gets

_ log(lirt () S log(o(L+A)) L+ A+log(l+v)

f@ 2/1i(0) = 2y/o(L+ ) 2./o(L + \)
L+x I +v)
NG (5.25)
and (5.22), (5.23) and (5.25) imply
v 3/2 v 1/2 —0. v
51 (o) > (; _c> (aloga)1/4(1+0'365 )14511318)1/ (1-0.37v) (5.26)

We observe that

(1+0.3650)3(1 + ) (1 — 0.37v)%* — (1 4+ 1.018 ¥)?(1 — 0.3405)?
= 0.31552675 1% + 0.09873042 1> — 0.198647103641 v/*

+ 0.0253884884125 1° + 0.0066570534125 1/°.

The above polynomial is positive for 0 < v < 1, which implies that in (5.26) the fraction is
>1—0.3405v and

5f'(0) = (; — c) (olog o) /4(1 — 0.3405 ).

Therefore, from the definition (1.12) of b,, and (5.24), for py > xg, we have

df'(o) 2 log log o,
b, > —r -l > (2 1 —0.3405 —=—2F
boy, = bo Tlogo)7i = 3¢ 0.3405 ="

2 log]
>§—c—0.2113w. (5.27)

log o,
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5.5.2 Upper bound of b,,.

The proof is similar to the one of the lower bound. Using (5.17)

2 3/2 0.51
i(f*(z)) >0 —n with n= <3+c> f)gx (Hbg:c)' (5.28)

Further, from the left handside inequality of (2.32), with & = p;, and with the notation (5.19), one
gets x > /o log o which implies logz > (L + \)/2 > L/2,

0.51 1.02 1.02 A
1 <1+ 2«1 < 14028
+ log = + L + AoL + v
and, from the right handside inequality of (2.32) with the increasingness of fj;i,

x3/? B 2(cL)3/*(1 +v/2)3/?
logz L+ A

The third derivative of ¢ — (1 + t)*/? is negative so that

v\ 3/2 v 32 3 v 3 vy
1 f) <14+ 242 g —(1 f)g f(1 7)<1 .
(+2 + =l g) <1+ (145 +0.76 v

and

(14+0.76v)(14+0.28v) <1+ v(1.04+0.212815) < 1+ 1.06 v
which implies

2 2(cL)3/*
< | = _ . . .
n\<3+c> LT (1+1.06 v) (5.29)

From (5.28) and Taylor’s formula we get
2
1 — 2 _ — lo-l _ / i "
oghlo) =0(z) = flo —n) = \/li" (o) —nf'(o) + 5 f(€)
with oc—n<{<o (5.30)

To estimate (n%/2)f” (&), we need a crude upper bound for 7. From (5.29), one has

(2 ) 2(cL)3/4 o3/

Q

3 7 (14 1.06 1) < 1.56 T <5 (5.31)

As¢>o0—0/2=0/2and |f"(t)] is decreasing on ¢, we have

log? (i (0/2))

@1 <170/ < s gy

But, from (2.16),

It (f) > %1og (3) _ oL (1 - 1°g2> > oL <1 - IOgQ) > 049 oL

2 2 2 L 2 Lo
and )
1 A490L L+ \)? L+ )\)?
4(0.49 o L)3/2 ~ 4(0.49)%(c L)3/2 (oL)3/2
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Therefore, from (5.31),

(1.56)2 x 1.05
< -7 T T

772 "
2 e < L50

5 (1+v)? <1.28(1 +v)? < 1.28(1 + 1p)? < 1.52. (5.32)

Inequality (2.16), with the decreasingness of logt/+/t, implies

~ log(lit(0)) < log(ologo) L+

f(o) = N O GTE (5.33)
and from (5.29)
nf' (o) < <§ +c> (ologo)/4(1+1.06 v). (5.34)

From (5.30), (5.32) and (5.34), one gets

log h(o) >

lit(o) — @) + c> (ologo)t/4 (1 +v (1.06 + (2/3:0‘;’5(0”)) .

But the above fraction is maximal for o = ng and, therefore, is < 0.0003, so that,

log h(oy) = log(h(o))

2 log 1
>\l (on) — (= +¢) (ox logop) /4 1+ 1.061 2828k
3 log oy,
and, from (1.12) and (1.13),
2 log 1 2 log1
boy < (2 4+¢) (14+1.061 2228k - 24 4 757 2208k (5.35)
3 log o 3 log o

5.5.3 Bounds of b, for n > nyg.

Let us recall that oy, is defined by o, < n < oj41. From (5.35), it follows that b,, < 2/3 4+ c+
0.757 vy < 0.78 < 1 and we may apply Lemma 4.1 so that, from (5.27),

b, > min 2—c—0.2113 bglﬂ,g_c_o,zllg loglogop+1 ) _
3 logo, "3 10g 0ht1
2 02113 BBk S 2 gy 08108
3 log o, 3 log o,

Now, from Lemma 4.4, 1/log oy < (1 + 3 x 10719)/logn holds, which proves the lower bound of
(5.20).

Note that ¢ + 0.22loglogn/logn < ¢+ 0.22vy < 2/3 which implies that the lower bound in
(5.20) is positive so that, for n > ng, b, > 0 and /1i*(n) — logh(n) > 0 hold. Therefore, from
the definition (1.12) of b,,, one has

b — VIt (n) — log h(n) - 1i''(n) — log h(n)

(nlogn)/4 = (oplogoy)t/*

li(op41) — log h(oy)
(Uk log O'k)l/4

=7, + by, (5.36)
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with, from (4.9),

_ VI (okg1) — Vi (on) (log o1,)3/*
= 1 1/ <1.14 e
(o log o) oy

Therefore, from (5.35) and (4.8), one gets

2 log1 1 /4
bn < 5 et 2280 (0,757 4 114 %
3 log o, o, loglog oy

Tk

(5.37)

2 log1 1 /4
< et 208k (07574 114 f/jg#
3 log o ny ~ loglog ng

2 log 1
<Z4ct0763 28Tk

3 log oy,
loglogn 2 _10y1oglogn
——— < -4+c¢+0.763(1+3x107")—=——

2
<= 0.763
3 et log o, 3 logn

which completes the proof of (5.20) and of Proposition 5.9. O

5.6 Asymptotic bounds of b,.

Proposition 5.10. Under the Riemann Hypothesis, when k and oy, tend to infinity,

b > <2 _C) <1+ 10g10g0k+0(1)> (5.35)

4 log o,

and

b, < <§ + c) (1 ;- loglogax +O (1)> . (5.39)

4log oy,
Proof. The proof follows the lines of the proof of Proposition 5.9 of which we keep the notation.

Lower bound.

First, from (2.33), with the notation of (5.19),

22— (gL (1 N 3(10gL4—£(’)(1))> ’

logz = %(L—l—logL—i—O(l)) _L (1+logL+(’)(1)),

2 L

?/? Z(UL)3/4 . log L+ O (1)

logz L 4L ’

3/2 )3/4

L (9<(” )2 )
log” x L

whence, from (5.21),
2 203/ A+0(1)
= (20) 22 (1 Arow) o0

Further, from (5.24) and (5.25), one gets

L 0f'0) 6/L(1+v) oLY* (1+ >\+0(1)>

bo. 2 (cL)¥/4 7 2\/o(cL)V/4 — 203/4 2L
which, with (5.40), yields (5.39).
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Upper bound.

As for the lower bound, but using (5.28) instead of (5.21) one gets

2 z3/2 2 203/4 A+0(1)
n—<3+c> logx_<3+c> T1/4 (1— 1L ) (5.41)

Further, (5.30) and (5.32) yield

log h(o) = \/lit(a) —nf' (o) + O (1) (5.42)
which implies
B lirt(o) —log h(o) ~nf'(o)+0(1)
by, = AT =D (5.43)

Here, for f/(o), we need a sharper upper bound than the one of (5.33). From (2.15) and (2.17), for
o tending to inﬁnity, we have li'! (0) = o(L+A+0O (1)), log(li't (o)) = L+ +og(1+(A+0O (1))/L) =
L+X+0(1), V1iit(o) =+VeL(1l+ (A+ 0O (1))/(2L)) and

(o) = log(lit(o)) L+X+0(1)
C2yliT(o)  2VoL(1+ (A +0(1)/(2L))

Now, from (5.41) and (5.44), one gets

nf'(oe) = @ + c) (cL)Y/* (1 4 /\2(2(1)> .

As (0L)Y/*/L — oo, with (5.43), this yields (5.39). O

5.7 Bounds of b, for n small.

Proposition 5.11. Let us recall that ng = m(10'° + 19) and that b, is defined by (1.12). The

following assertions hold

1. Forn,2<n<nyg

bir = 0.49795 ... < by < biygy = 1.04414 . . | (5.45)

2. For 78 < n < ng,
b, = b1oo = boy = 0.62328...>2/3 —¢ (5.46)

3. For 157933210 < n < ng,

loglogn

2
bo < 5 +c+0.77 (5.47)

logn

Proof. First, we calculate b,, for 2 < o, < ng (cf. §3.2). For k > 9

bigo = bgg =0.62328... < bo—k < b31117 = bgnz =0.88447...< 1
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Therefore, we may apply Lemma 4.1 which implies, for 100 < n < ny,
by, = bigp = 0.62328... > 2/3 —C.

The computation of b, for 2 < n < 100 completes the proof of (5.46) and of the lower bound of
(5.45).

To prove the upper bound of (5.45), for o353 = 186914 < 0y, < ng, we compute by, + 7 (with
71, defined by (5.37)) and observe that b,, + 7 < 1.044 holds, which implies (cf. (5.36)) that b,
is smaller than 1.044 for 186914 < n < ng. It remains to calculate b,, for 2 < n < 186913 to
complete the proof of (5.45).

The proof of (5.47) is more complicated. If the following inequality

2 0.77 logl
bo, + T < = +c+ 08 08 Tkl (5.48)
3 log o141
holds, then, from (5.36), we have
2 0.77 logl 2 0.77 logl
by, < = +c+ OB OBOTkHL 2 4 o4 L O80T (5.49)
3 log 041 3 logn

for o, < m < ok41. In the same time we compute all the b,, for 2 < o, < ng (cf. the begining
of this proof), we check that inequality (5.48) holds for 305926023 < oj, < ng, so that one has
(5.49) for 305926 023 < n < ng.

It remains to compute the largest n < n; = 305926 023 such that inequality (5.47) is wrong.
This could be expansive because the computation of b,, is not very fast. Let us recall that for an
n which is not of the form n = oy, for computing h(n) we have to compute G(pg,n — o), and this
coasts about 0.004 seconds. If we used the trivial method, computing h(n) forn =ny—1,n9—1, ...
until we find n not satisfying (5.47), we should have to compute about 1.5 x 108 values of h(n),
taking about one week of computation.

Lemma 4.3 gives us a test, proving in O (1) time that all the n’s in [n1, na] satisfy (5.47). Mor-
ever there are a lot of intervals [n1,n2] passing this test. The boolean function good_interval(nl,
n2) returns true if and only if [n1,n2] is such an interval, i.e. if (ny,ng) satisfy inequality (4.6)
with p = 0.77.

Now, adopting Python’s style, we define below, by a dichotomic recursion a boolean function
ok rec(nl, n2) which returns true if, and only if, every n in [n1, no] satisfies (5.47). Furthermore,
when it return false, before returning, it prints the largest n in [n1, ns] which doesn’t satisfy this

inequality.

def ok(n):
if bn(n) >= 2/3 + ¢ + 0.77 * log logn / log n :

print n, ‘ does not satisfy inequality (iv) of Theorem 1.1
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return False

return True

def ok_rec(nl, n2):
if n2 — nl >= 2:
if good_interval(nl,n2):
return True
nmed = (nl1 + n2)//2
if not ok_rec(nmed,n2):
return False

return ok_rec(nl,nmed)

if nl==n2:

return ok(nl)

if n2 == nl1 + 1:
if ok(n2):
return ok(nl)

return False

The correctness of ok_rec(nl, n2) is proved by recursion about the size of no —ny. The largest
n which doesn’t satisfy (5.47), n = 157933209, is given by the call ok_rec(2,305926023). It
computed four values of ok(n) and 11395 values of good_interval(nl,n2), and took 35.27s. O

5.8 Completing the proof of Theorem. 1.1

Proposition 5.9 implies that, for n > ng = 71(101° + 19)

log log ng

2 2 log 1
0.6010... = = —c—0.22 <bn<§+c+0.77w20.781...

log ng logng

which, together with inequality (5.45), proves the point (ii) of Theorem 1.1

— Point (i) is equivalent to b, > 0 which follows from (ii).

— Inequalities (5.20) and (5.46) imply b,, > %—0—0.22 loigol% for n > 78, and the computation

of b, for 2 < n < 78 proves point (iii).
— Similarly, inequalities (5.20) and (5.47) imply b, < 2 + ¢+ 0.77 bﬁj% for n > 157933 210.

— The point (v) follows from (iii) and (iv).
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— To prove (vi), we assume n — 0o and 0 = 0 < n < og41 S0 that n = o+ O (pg) holds. From

Lemma 2.8, 0 = oy, = m1(pg) yields
n=oc+0 (x/ologcr) =c(1+0 (\/(logo)/cr> ~ 0.
This implies

logn = loga—i-(?( (loga)/a) = (logo)(1+ 0O (1/\/@)

loglogn = loglogo + O (1)

loglogo + O (1)  loglogn+ O (1) _loglogn + O (1)
logo (logn) (1+ O(1) logn
loglogn

_loglogopy1+ 0O (1)
log 0341 '

g—c 1+loglogn—|—(’)(l) 7
3 4logn

From Lemma 4.1 and (5.38), we get

WV

bn 2 min(bgk,bak,+1)

which proves the lower bound of (vi).

— From (5.36), (5.37) and (5.39), one gets

2 log 1 1 log3/4
by <bs, +T= 1|35 +cC 1+Og0g0k+o() +0 og’ o
3 410g0’k
_ (2 loglogn + O (1)
- (3+9) (2252,

which proves the upper bound of (vi). O
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