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An arithmetic equivalence of the Riemann Hypothesis

Marc Deléglise, Jean-Louis Nicolas∗

February 18, 2018

Abstract

Let h(n) denote the largest product of distinct primes whose sum is 6 n. The main result

of this article is that the property “ for all n > 1, we have log h(n) <
√

li-1(n) ” (where

li-1 denotes the inverse function of the logarithmic integral) is equivalent to the Riemann

Hypothesis.

2010 Mathematics Subject Classification: primary 11A25; secondary 11N37, 11N05, 11-04.

Keywords: Arithmetic function, Riemann Hypothesis, Landau function.

1 Introduction

If n > 1 is an integer, let us define h(n) as the greatest product of a family of primes q1 <

q2 < · · · < qj the sum of which does not exceed n. Let ` be the additive function such that

`(pα) = pα for p prime and α > 1. In other words, if the standard factorization of M into primes

is M = qα1
1 qα2

2 · · · q
αj
j we have `(M) = qα1

1 + qα2
2 + · · ·+ q

αj
j and `(1) = 0. If µ denotes the Möbius

function, h(n) can also be defined by

h(n) = max
`(M)6n
µ(M) 6=0

M. (1.1)

The above equality implies h(1) = 1. Note that

`(h(n)) 6 n. (1.2)

Landau [16, p. 222-229] introduced the function g(n) as the maximal order of an element in

the symmetric group Sn; he proved that

g(n) = max
`(M)6n

M. (1.3)

From (1.1) and (1.3), it follows that

h(n) 6 g(n), (n > 1). (1.4)

∗Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.
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Sequences (h(n))n>1 and (g(n))n>1 are sequences A159685 and A000793 in the OEIS (On-line

Encyclopedia of Integer Sequences). One can find results about h(n) in [7, 8] and about g(n) in

[17, 18, 6, 9]. In the introductions of [6, 9], other references are given. A fast algorithm to compute

h(n) and g(n) is described in [7, §8] and [9] while in [8, (4.13)] it is proved that

log h(n) 6 log g(n) 6 log h(n) + 5.68 (n log n)1/4, n > 1. (1.5)

Let li denote the logarithmic integral and li-1 its inverse function (cf. below §2.2). In [17,

Theorem 1 (iv)], it is stated that, under the Riemann Hypothesis, the inequality

log g(n) <

√
li-1(n) (1.6)

holds for n large enough. It is also proved (cf. [17, Theorem 1(i) and (ii)]) that under the Riemann

Hypothesis,

log g(n) =

√
li-1(n) +O((n log n)1/4) (1.7)

while, if the Riemann hypothesis is not true, there exists ξ > 0 such that

log g(n) =

√
li-1(n) + (n log n)1/4 Ω±((n log n)ξ). (1.8)

With (1.5), (1.7) implies

log h(n) =

√
li-1(n) +O((n log n)1/4), (1.9)

while (1.8) yields

log h(n) =

√
li-1(n) + (n log n)1/4 Ω±((n log n)ξ). (1.10)

From the expansion of li(x) given below in (2.7), the asymptotic expansion of
√

li-1(n) can be

obtained by classical methods in asymptotic theory. A nicer method is given in [23]. From (1.7)

and (1.9), it turns out that the asymptotic expansions of log g(n) and log h(n) do coincide with

the one of
√

li-1(n) (cf. [17, Corollaire, p. 225]):

log h(n)

log g(n)√
li-1(n)

=

√
n log n

(
1 +

log log n− 1

2 log n
− (log log n)2 − 6 log log n+ 9 + o(1)

8 log2 n

)
. (1.11)

Let us introduce the sequence (bn) defined, for n > 2, by

log h(n) =

√
li−1(n)− bn(n log n)1/4 i.e. bn =

√
li-1(n)− log h(n)

(n log n)1/4
, (1.12)

and the constant

c =
∑
ρ

1

|ρ(ρ+ 1)|
= 0.046 117 644 421 509 . . . (1.13)
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where ρ runs over the non trivial roots of the Riemann ζ function. The computation of the above

numerical value is explained below in §2.4.2.

The aim of this article is to make more precise the estimate (1.9) and to prove the following

result.

Theorem 1.1. Under the Riemann Hypothesis, we have

(i) log h(n) <

√
li-1(n) for n > 1.

(ii) b17 = 0.49795 . . . 6 bn 6 b1137 = 1.04414 . . . for n > 2.

(iii) bn >
2

3
− c− 0.22 log log n

log n
for n > 18.

(iv) bn 6
2

3
+ c+

0.77 log log n

log n
for n > 157 933 210.

(v)
2

3
− c = 0.620 . . . 6 lim inf bn 6 lim sup bn 6

2

3
+ c = 0.712 . . ..

(vi) For n tending to infinity,(
2

3
− c
)(

1 +
log log n+O (1)

4 log n

)
6 bn

6

(
2

3
+ c

)(
1 +

log log n+O (1)

4 log n

)
.

Under the Riemann Hypothesis, the point (vi) of Theorem 1.1 shows that, for n large enough,

bn > 2/3 − c. We prove (cf. (5.46) below) that bn > 2/3 − c holds for 78 6 n 6 π1(1010) =∑
p61010 p, and it is reasonable to think that it holds for all n > 78. In the point (iii), we have

tried to replace the constant −0.22 by a positive one, but without success.

Corollary 1.2. Each of the six points of Theorem 1.1 is equivalent to the Riemann Hypothesis.

Proof. If the Riemann Hypothesis fails, (1.10) and (1.12) contradict (i), (ii), . . ., (vi) of Theorem

1.1.

Corollary 1.3. The inequalities√
li-1(n)− 1.045(n log n)1/4 6 log g(n) 6

√
li-1(n) + 5.19 (n log n)1/4 (1.14)

are true for each n > 2, if and only if the Riemann Hypothesis is true.

Proof. From (1.12) and from the point (ii) of Theorem 1.1, for n > 2,√
li-1(n)− 1.045(n log n)1/4 6 log h(n) 6

√
li-1(n)− 0.49 (n log n)1/4

which, with (1.5), proves (1.14). If the Riemann Hypothesis is false, (1.8) contradicts (1.14).
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1.1 Notation

− πr(x) =
∑
p6x

pr. For r = 0, π0(x) = π(x) =
∑
p6x

1 is the prime counting function.

− Πr(x) =
∑
pk6x

prk

k
=

κ∑
k=1

πrk(x1/k)

k
with κ =

⌊
log x

log 2

⌋
.

− θ(x) =
∑
p6x

log p and ψ(x) =
∑
pk6x

log p =

κ∑
k=1

θ(x1/k) are the Chebyshev functions.

− Λ(x) =

log p if x = pk

0 if not

is the von Mangoldt function.

− (pn)n>1 is the sequence of prime numbers, where p1 = 2.

− li(x) denotes the logarithmic integral of x (cf. below §2.2), and li-1 the inverse function.

− γ0 = 0.57721566 . . . is the Euler constant. The coefficients γm and δm are defined in §2.4.

−
∑
ρ

f(ρ) = lim
T→∞

∑
|=(ρ)|6T

f(ρ) where f : C → C is a complex function and ρ runs over the

non-trivial roots of the Riemann ζ function.

− If limn→∞ un = +∞, vn = Ω±(un) is equivalent to

lim sup
n→∞

vn
un

> 0 and lim inf
n→∞

vn
un

< 0.

− We use the following constants:

x0 = 1010 + 19 is the smallest prime exceeding 1010

n0 = π1(x0) = 2 220 822 442 581 729 257 = 2.22 . . . 1018

L0 = log n0 = 42.244 409 270 801 490 . . .

λ0 = logL0 = 3.743 472 020 096 020 . . . . ν0 = λ0/L0 = 0.088614 . . .

− Let us write σ0 = 0, N0 = 1, and, for j > 1,

Nj = p1p2 · · · pj and σj = p1 + p2 + · · ·+ pj = `(Nj). (1.15)

− For n > 0, let k = k(n) denote the integer k > 0 such that

σk = p1 + p2 + · · ·+ pk 6 n < p1 + p2 + · · ·+ pk+1 = σk+1. (1.16)

In [7, Proposition 3.1], for j > 1, it is proved that

h(σj) = Nj . (1.17)
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We often implicitly use the following result: For u and v positive and w real, the function

t 7→ (log t− w)u

tv
is decreasing for t > exp

(
w +

u

v

)
. (1.18)

1.2 Plan of the article.

In §2, we recall several results and state some lemmas that are used in the proof of Theorem

1.1. §2.1 is devoted to effective estimates in prime number theory, §2.2 deals with the logarithmic

integral while §2.3 give effective estimates for πr(x) =
∑
p6x p

r and more specially for π1(x). In

§2.4 are recalled two explicit formulas (cf. (2.41) and (2.42)) of the Prime Number Theorem, some

results about the roots of the Riemann ζ function, and the computation of the constant c (cf.

(1.13)) is explained.

The computation of h(n) plays an important role in the proof of our results. The algorithm

described in [7] is shortly recorded in §3.

In §4, in preparation to the proof of Theorem 1.1, four lemmas about bn (defined in (1.12))

will be given.

The proof of Theorem 1.1 is given in §5. It follows the lines of the proof of Theorem 1 of

[17] about the asymptotic estimate, under the Riemann Hypothesis, of log g(n), starting from

the explicit formula of Π1(x). But, here, we deal with effective estimates. The positive integers

are split in three classes: the small ones (6 n0 = π1(1010 + 19)) that are mainly treated by

computation, the large ones > n0 and, to prove the point (vi), those tending to infinity. In each

class, the n’s belonging to the interval [σk, σk+1] (where σk is defined by (1.16)) are considered

globally because, from (1.17), h(σk) is easy to evaluate, and, for n ∈ [σk, σk+1], h(n) remains close

to h(σk).

Effective estimates are more technical to get than the asymptotic ones. It was why Landau in-

troduced his famous notation ”O ” and ” o ”. But fortunately nowadays computer algebra systems

help us.

On the web site [27], a Maple sheet is given, explaining the algebraic and numerical computa-

tions. The extensive computations described in §3.2 have been made in C++.

2 Useful results

2.1 Effective estimates.

Platt and Trudgian [21] have shown by computation that

θ(x) < (1 + ε)x for x > 2, with ε = 7.5× 10−7, (2.1)

so improving on results of Schoenfeld [24].
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Without any hypothesis, one knows that

|θ(x)− x] <
α x

log3 x
for x > x1 = x1(α) (2.2)

with

α =


1 and x1 = 89 967 803 (cf. [12, Theorem 4.2])

0.5 and x1 = 767 135 587 (cf. [12, Theorem 4.2])

0.15 and x1 = 19 035 709 163 (cf. [3, Theorem 1.1]) .

Under the Riemann Hypothesis, for x > 599, we shall use the upper bounds (cf. [24, (6.3)])

|ψ(x)− x| 6 1

8π

√
x log2 x and |θ(x)− x| 6 1

8π

√
x log2 x. (2.3)

Lemma 2.1. Under the Riemann Hypothesis, for x > 1,

ψ(x)−
√
x− 4

3
x1/3 6 θ(x) 6 ψ(x)−

√
x+ 2.14. (2.4)

Proof. In [20, Lemma 2.4] or in [22, Lemma 3], the above lower bound is given and θ(x) 6

ψ(x)−
√
x is proved for x > 121. It remains to check that, for 1 6 x 6 121, θ(x)− ψ(x) +

√
x <

√
8− log 2 = 2.1352 . . . holds.

2.2 The logarithmic integral.

For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) =

∫ x

0

− dt

log t
= lim
ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

dt

log t

)
=

∫ x

2

dt

log t
+ li(2).

We have the following values:

x 1 1.45136 . . . 1.96904 . . . 2 e2

li(x) −∞ 0 1 1.04516 . . . 4.95423 . . .

From the definition of li(x), it follows that

d

dx
li(x) =

1

log x
and

d2

dx2
li(x) = − 1

x log2 x
. (2.5)

The function t 7→ li(t) is an increasing bijection from (1,+∞) onto(−∞,+∞). We denote by li-1(y)

its inverse function that is defined and increasing for all y ∈ R. Note that li-1(y) > 1 holds for all

y ∈ R.

To compute numerical values of li(x), we used the following formula, due to Ramanujan (cf.

[4, p. 126-131]),

li(x) = γ0 + log log x+
√
x

∞∑
n=1

an(log x)n with an =
(−1)n−1

n! 2n−1

bn−1
2 c∑

m=0

1

2m+ 1
.
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Let N be a positive integer and s > 1 a real number. We have∫
ts−1

logN t
dt =

1

(N − 1)!

(
sN−1 li(ts)−

N−1∑
k=1

(k − 1)! sN−1−k ts

logk t

)
(2.6)

and, for x→∞,

li(x) =

N∑
k=1

(k − 1)!x

(log x)k
+O

(
x

(log x)N+1

)
. (2.7)

We shall need the following lemmas that gives bounds for the logarithmic integral.

Lemma 2.2. For t > 4,

li(t) >
t

log t
. (2.8)

For t > 1,

li(t) < t− 0.82 < t (2.9)

li(t) < 1.49
t

log t
. (2.10)

For t > 1010,

li(t) <
t

log t
+ 1.101

t

log2 t
. (2.11)

Proof.

− For t > 1, the function t 7→ li(t)− t/ log t is increasing and vanishes for t = 3.846 . . .

− The function t 7→ t− li(t) is minimal for t = e and e− li(e) = 0.823 . . .

− The maximum of t 7→ li(t)− 1.49 t/ log t is −0.04 . . . , obtained for t = exp(1.49/0.49).

− The function t 7→ li(t)− t/ log t− 1.101 t/ log2 t is decreasing for t > 2.95× 109 and its value

for t = 1010 is −5015.15 . . . < 0.

Lemma 2.3. For t > 77,

li(t) >
t

log t
+

t

log2 t
+

2t

log3 t
+

6t

log4 t
, (2.12)

for t > 4.96× 1012

li(t) <
t

log t
+

t

log2 t
+

2t

log3 t
+

7t

log4 t
(2.13)

and for t > 1

li(t) <
t

log t
+

t

log2 t
+

2t

log3 t
+

40

3

t

log4 t
. (2.14)
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Proof. For u ∈ {6, 7, 40/3}, we set

f = li(t)− t

log t
− t

log2 t
− 2t

log3 t
− u t

log4 t
.

From (2.5), one gets
df

dt
=

(6− u) log t+ 4u

log5 t
.

− For u = 6, f is increasing and vanishes for t = 76.54 . . . which proves (2.12).

− For u = 7, f is increasing for t < t0 = exp(28) = 1.446 . . . × 1012 and decreasing for t > t0.

One computes f(4.96× 1012) = −259.07 . . . < 0 and (2.13) follows.

− For u = 40/3, f is increasing for t < t1 = exp(80/11) = 1440.47 . . . and decreasing for t > t1.

Therefore, (2.14) results from the negativity of f(t1) = −0.0033 . . .

Lemma 2.4. If t > 3.28,

li-1(t) < t(log t+ log log t), (2.15)

for t > 41,

li-1(t) > t log t (2.16)

and, for t > 12 218,

li-1(t) > t(log t+ log log t− 1). (2.17)

Proof.

− For t > e, let us consider the function f(t) = li(t(log(t) + log log t))− t. By noting log t by L,

we have
df

dt
=

log t+ 1 + log log t+ 1/ log t

log(t(log t+ log log t))
− 1 =

L+ 1− L log(1 + logL/L)

L2 + L log(L+ logL)
.

The denominator is > 1 and the numerator is > L+ 1− logL > L+ 1− (L− 1) = 2 > 0. So f

is increasing and its value for t = 3.28 is 0.0073 . . . > 0, which completes the proof of (2.15).

− Now, let us consider f(t) = li(t log t)− t. One has

f ′(t) =
log t+ 1

log(t log t)
− 1 =

1− log log t

log t+ log log t
< 0

for t > ee = 15.15 . . ., which shows that f is decreasing for t > ee and, from f(41) = −0.048 . . . <

0, we get (2.16).

− Finally, for t > 1, we set f(t) = t(log t+log log t−1). One has f ′(t) = log t+log log t+1/ log t

which is positive for t > e so that f is increasing for t > e. As f(t0) = 1 for t0 = 3.1973 . . ., we

assume t > t0 so that f(t) > 1, L = log t > 1 and logL > 0 hold. We set
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y = t− li(f(t)) = t− li(t(log t+ log log t− 1))

and, by using the inequality log(1 + u) > u/(1 + u) (for u > −1), one gets

y′ log f(t) = log

(
1 +

logL− 1

L

)
− 1

L

>
logL− 1

L(1 + (logL− 1)/L)
− 1

L
=

(L− 1)(logL− 2)− 1

L(L+ logL− 1)
.

For t > ee
2

= 1618.17 . . ., the denominator is positive. The numerator is increasing, and positive

for t = 4 678. Therefore, y is increasing for t > 4678. It remains to calculate y(12218) =

0.00106 . . . > 0 to prove (2.17).

Lemma 2.5. The function t 7→
√

li-1(t) is defined and increasing for t ∈ R.

− It is concave for t > li(e2) = 4.954 . . ..

− Let a 6 1 be a real number. For t > 31, the function t 7→
√

li-1(t)− a(t(log t))1/4 is concave.

Proof.

− Let us set f1 =
√

li-1(t), f2 = (t(log t))1/4, F = f1 − af2 and u = li-1(t) i.e. t = li(u). We

have
df1
dt

=
log u

2
√
u
,

d2f1
dt2

= − logu(log u− 2)

4u3/2
,

d2f2
dt2

= −3 log2t+ 2 log t+ 3

16(t log t)7/4
.

Let us assume t > li(e2). We have u > e2, log u > 2 and d2f1
dt2 < 0 so that f1 is concave.

− Further,
d2f2
dt2

< 0 so that, if a 6 0 then F = f1 − af2 is concave. Moreover, from (2.9) and

(2.8), we have u/ log u < t = liu < u and

0 < −d2f2
dt2

6
3 log2 u+ 2 log u+ 3

16(u(1− (log log u)/ log u))7/4
.

If 0 < a 6 1 holds, it suffices to show that

∣∣∣∣d2f2
dt2

/
d2f1
dt2

∣∣∣∣ < 1. By writing L for log u, one gets

∣∣∣∣d2f2
dt2

/
d2f1
dt2

∣∣∣∣ 6 1

4 u1/4

(
1− logL

L

)−7/4(
3L2 + 2L+ 3

L(L− 2)

)
=

1

4 u1/4

(
1− logL

L

)−7/4(
3 +

8

L
+

19

L(L− 2)

)
. (2.18)

The three factors of the right handside of (2.18) are positive and decreasing on u so that their

product is decreasing, and for u = 103, t = 30.77 . . ., it is < 1.

Remark. By using more accurate inequalities, it would be possible to replace the bound t > 31

by t > 8.42 . . ..
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2.3 Study of πr(x) =
∑

p6x p
r.

Without any hypothesis, improving on results of Massias and Robin about the bounds of πr(x) =∑
p6x p

r (cf. [19, Théorème D]), by using recent improvements on effective estimates of θ(x), we

prove

Proposition 2.6. Let α, x1 = x1(α) be two real numbers such that 0 < α 6 1, x1 > 89 967 803

and |θ(x)− x| < αx/ log3 x for x > x1. Then, for r > 0.6 and x > x1,

πr(x) 6 C0 +
xr+1

(r + 1) log x
+

xr+1

(r + 1)2 log2x
+

2xr+1

(r + 1)3 log3x

+
(51α r4 + 176α r3 + 222α r2 + 120α r + 23α + 168)xr+1

24(r + 1)4 log4 x
(2.19)

with

C0 = πr(x1)− xr1θ(x1)

log x1
− 3α r4 + 8α r3 + 6α r2 + 24− α

24
li(xr+1

1 )

+
(3α r3 + 5α r2 + α r + 24− α )xr+1

1

24 log x1
+
α (3r2 + 2r − 1)xr+1

1

24 log2 x1

+
α (3r − 1)xr+1

1

12 log3 x1
− αxr+1

1

4 log4 x1
. (2.20)

Let r0(α) be the unique positive root of the equation 3r4 + 8r3 + 6r2 − 24α − 1 = 0. One has

r0(α) > r0(1) = 1.1445 . . . and,

for 0.06 6 r 6 r0(α) and x > x1(α), we have

πr(x) > Ĉ0 +
xr+1

(r + 1) log x
+

xr+1

(r + 1)2 log2 x
+

2xr+1

(r + 1)3 log3 x

− (2α r4 + 7α r3 + 9α r2 + 5α r + α− 6)xr+1

(r + 1)4 log4 x
(2.21)

while, if r > r0(α) and x > x1(α),

πr(x) > Ĉ0 +
xr+1

(r + 1) log x
+

xr+1

(r + 1)2 log2x
+

2xr+1

(r + 1)3 log3x

− (51α r4 + 176α r3 + 222α r2 + 120α r + 23α − 168)xr+1

24(r + 1)4 log4 x
, (2.22)

with

Ĉ0 = πr(x1)− xr1θ(x1)

log x1
+

3α r4 + 8α r3 + 6α r2 − α− 24

24
li(xr+1

1 )

− (3α r3 + 5α r2 + α r − α− 24)xr+1
1

24 log x1
− α (3r2 + 2r − 1)xr+1

1

24 log2 x1

− α (3r − 1)xr+1
1

12 log3 x1
+

αxr+1
1

4 log4 x1
. (2.23)

Proof. It is convenient to set

s = r + 1.
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By Stieltjes integral, we have

πr(x) =
∑
p6x

pr = πs−1(x) = πs−1(x1) +

∫ x

x1

ts−1

log t
d[θ(t)]

and, by partial integration,

πs−1(x) = πs−1(x1) +
xs−1θ(x)

log x
− xs−11 θ(x1)

log x1

−
∫ x

x1

(
(s− 1)ts−2

log t
− ts−2

log2 t

)
θ(t) dt. (2.24)

Since x > x1(α) holds, in (2.24), from our assumption, we have θ(x) 6 x + αx/ log3 x. Under

the integral sign, as s > 1 + 1/ log x1(α) > 1 + 1/ log(89 967 803) = 1.054 . . ., the parenthesis is

positive and θ(t) > t− α t/ log3 t, which implies

πs−1(x) 6 πs−1(x1)− xs−11 θ(x1)

log x1
+
xs

L
+
αxs

L4
− (s− 1)I1 + I2 + (s− 1)α I4 − α I5, (2.25)

with L = log x and, for i > 1, Ii =

∫ x

x1

ts−1

logi t
dt = fi(x) − fi(x1) with fi(t) =

∫
ts−1

logi t
. By (2.6),

one gets

f1 = li(ts), f2 = s li(ts)− ts

log t
, f3 =

s2

2
li(ts)− s ts

2 log t
− ts

2 log2 t
,

f4 =
s3 li(ts)

6
− s2ts

6 log t
− s ts

6 log2 t
− ts

3 log3 t
,

f5 =
s4 li(ts)

24
− s3ts

24 log t
− s2ts

24 log2 t
− s ts

12 log3 t
− ts

4 log4 t
.

Let us set

f(t) = −(s− 1)f1 + f2 + (s− 1)α f4 − α f5 =
3α s4 − 4α s3 + 24

24
li(ts)

− (3α s3 − 4α s2 + 24)ts

24 log t
− α s(3s− 4)ts

24 log2 t
− α (3s− 4)ts

12 log3 t
+

α ts

4 log4 t
. (2.26)

From (2.25), one has

πs−1(x) 6 C0 +
xs

L
+
αxs

L4
+ f(x) with C0 = πs−1(x1)− xs−11 θ(x1)

log x1
− f(x1).

Now, s = r + 1 > 1.6, xs > x1(α)1.6 > 89 967 8031.6 > 4.96 · 1012 and one may use the upper

bound (2.13) of li(xs) in (2.26) to get

πs−1(x) 6 C0 +
xs

sL
+

xs

s2L2
+

2xs

s3L3
+

(51α s4 − 28α s3 + 168)xs

24s4L4
(2.27)

which, by substituting r + 1 to s, proves (2.19) and (2.20).

To get a lower bound for πs−1(x), in (2.24), we use inequalities θ(x) > x − αx/L3, and

θ(t) 6 t+ α t/ log3 t. One gets

f̂(t) = −(s− 1)f1 + f2 − (s− 1)α f4 + α f5 =
−3α s4 + 4α s3 + 24

24
li(ts)

+
(3α s3 − 4α s2 − 24)ts

24 log t
+
α s(3s− 4)ts

24 log2 t
+
α(3s− 4)ts

12 log3 t
− α ts

4 log4 t
(2.28)
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(note that f̂(t) is obtained by substituting −α to α in (2.26)) and

πs−1(x) > Ĉ0 +
xs

L
− αxs

L4
+ f̂(x) with Ĉ0 = πs−1(x1)− xs−11 θ(x1)

log x1
− f̂(x1). (2.29)

Let us set ϕ(r) = 3r4 + 8r3 + 6r2 − 24/α − 1, we have ϕ′(r) = 12r(r + 1)2, ϕ is minimal and

negative for r = 0 and has one negative and one positive root, r0(α). Note that r0(α) is decreasing

on α. One computes r0(1) = 1.1445 . . ., r0(0.5) = 1.4377 . . . and r0(0.15) = 2.1086 . . .

The coefficient of li(xs) in f̂(x) is

−3α s4 + 4α s3 + 24

24
=
−3α r4 − 8α r3 − 6α r2 + α + 24

24
= −αϕ(r)

24

and changes of sign for r = r0(α). For 0.06 6 r 6 r0(α) we have xs > xs1 > x1.061 > 77 and we

use the lower bound (2.12) of li(xs) in f̂(x) to get (2.21), while, for r > r0(α), xs > x1(α)2.14 >

89 967 8032.14 > 4.96 · 1012 and we use (2.13) to get (2.22).

Corollary 2.7. For x > 110 117 910,

π1(x) 6
x2

2 log x
+

x2

4 log2 x
+

x2

4 log3 x
+

107 x2

160 log4 x
(2.30)

and, for x > 905 238 547,

π1(x) >
x2

2 log x
+

x2

4 log2 x
+

x2

4 log3 x
+

3x2

20 log4 x
. (2.31)

Proof. We choose r = 1, α = 0.15, x1 = 19 035 709 163 and, from (2.2), we apply (2.19). By

computation we get π1(x1) = 7 823 414 443 039 054 263,

θ(x1) = 19 035 493 858.482 419 137 . . . , f(x1) = −7.485 421 258 . . .× 1018

and C0, defined by (2.20) with r = 1 is equal to −1.586 . . .× 1013 < 0 so that (2.30) follows from

(2.19) for x > x1 and, by computation, for 110 117 909 6 x < x1.

Similarly, Ĉ0 defined by (2.23) is equal to 1.655 . . .× 1014 > 0 which implies (2.31) from (2.21)

for x > x1 and by computation for 905 238 546 6 x < x1.

Remark. In [2, Theorem 6.7 and Proposition 6.9], C. Axler gives similar estimates for π1(x).

Lemma 2.8. Let us assume that x > x0 = 1010 + 19 and n = π1(x) hold. Then x satisfies

√
n log n

(
1 + 0.365

log log n

log n

)
6 x 6

√
n log n

(
1 +

log log n

2 log n

)
. (2.32)

Proof. When x→∞, from n = π1(x) = li(x2) +O
(
x2 exp(−a log x)

)
with a > 0 (cf. [17, Lemme

B]), one can see that the asymptotic expansion of x is given by (1.11). In particular,

x =
√
n log n

(
1 +

log log n− 1 + o(1)

2 log n

)
, n→∞. (2.33)
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Now, we have to prove the effective bounds (2.32) of x. For convenience, we write L for log n

and λ for log log n. We suppose x > x0 = 1010 + 19. We have n > n0 = π1(x0) = 2.22 . . . 1018,

L = log n > 42.24 and λ = log log n > 3.74.

The upper bound. Let us note f(n) =
√
nL

(
1 +

λ

2L

)
.

Since
t2

2 log t

(
1 +

1

2 log t

)
is increasing as a function of t for t > e, the inequality x 6 f(n) is

equivalent to
x2

2 log x

(
1 +

1

2 log x

)
6

f(n)2

2 log f(n)

(
1 +

1

2 log f(n)

)
. (2.34)

From (2.31), for x > x0,
x2

2 log x

(
1 +

1

2 log x

)
6 π1(x) = n. Note that this result has been proved

in [3, Corollary 6.10] for x > 302 971. Thus to ensure (2.34) it suffices to prove

n <
f(n)2

2 log f(n)

(
1 +

1

2 log f(n)

)
.

As we have 2 log f(n) = L+ λ+ 2 log(1 + λ/(2L)) 6 L+ λ+ λ/L, it suffices to show that

nL
(1 + λ/(2L))2

L+ λ+ λ/L

(
1 +

1

L+ λ+ λ/L

)
> n

or, equivalently that

L(1 + λ/(2L))2(L+ λ+ λ/L+ 1)− (L+ λ+ λ/L)2 > 0.

But the above left hand side is equal to

L+
λ2

4

(
1− 3

L
− 4

L2

)
+
λ3

4L

(
1 +

1

L

)
,

which is positive for L > 4, i.e. for n > e4.

The lower bound. First, from (2.30), for x > x0,

n = π1(x) 6
x2

2 log x
+

x2

4 log2 x

(
1 +

1

log x0
+

107

40 log2 x0

)
6

x2

2 log x

(
1 +

a

2 log x

) (2.35)

with a = 1.049. This time, we set f(n) =
√
nL(1 + b λ/L), with b = 0.365. One has 2 log f(n) =

L+ λ+ 2 log(1 + bλ/L). By using the inequality log(1 + u) > u/(1 + u0) valid for 0 6 u 6 u0, one

has

2 log f(n) > L+ λ+ c0λ/L with c0 = 0.7 < 2b/(1 + bλ0/L0) = 0.707 . . . (2.36)

We have to prove that x > f(n) holds for n > n0. From the increasingness of the mapping

t 7→ t2

2 log t

(
1 +

a

2 log t

)
, it suffices to show that

x2

2 log x

(
1 +

a

2 log x

)
>

f(n)2

2 log f(n)

(
1 +

a

2 log f(n)

)
. (2.37)
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From (2.35) and (2.36), to prove (2.37), it suffices to prove

n >
nL(1 + bλ/L)2

L+ λ+ c0λ/L

(
1 +

a

L+ λ+ c0λ/L

)
i.e.

L

(
1 +

bλ

L

)2(
L+ λ+

c0λ

L
+ a

)
−
(
L+ λ+

c0λ

L

)2

6 0 (2.38)

and equivalently, by expanding (2.38) and dividing by λL, that

2b− 1 +
a

λ
+

(b2 + 2b− 1)λ+ 2ab

L
+
b2λ2 + ab2λ

L2

+ c0

(
− 1

L
+

2λ(b− 1)

L2
+
b2λ2

L3

)
− c20λ

L3
6 0. (2.39)

The coefficient of c0 in (2.39) satisfies

c0

(
− 1

L
+

2λ(b− 1)

L2
+
b2λ2

L3

)
6 −c0

L
+
c0λ

L2

(
2b+

b2λ0
L0
− 2

)
6 −c0

L
− dλ

L2

with d = 0.88 < c0(2− 2b− b2λ0/L0) = 0.8807 . . . so that it suffices to show that

B = 2b− 1 +
a

λ
+

(b2 + 2b− 1)λ+ 2ab

L
+
b2λ2 + (ab2 − d)λ

L2
− c0
L
6 0,

for L = exp(λ) and λ > λ0. For that, one writes c0 = c1 + c2 + c3 with c1 = 0.44 and c2 + c3 = 0.26.

Then,

B =
[
2b− 1 +

a

λ
− c1
L

]
+

(b2 + 2b− 1)λ+ 2ab− c2
L

+
b2λ2 + (ab2 − d)λ− c3L

L2
. (2.40)

It is easy to see that a/λ− c1/L = 1.049/λ− 0.44e−λ is decreasing for λ > 0 and its value for

λ = λ0 is equal to 0.2698 . . ., so that the square bracket in (2.40) is negative.

For λ0 6 λ 6 4.3 one chooses c2 = 0.26, c3 = 0 and one has

(b2 + 2b− 1)λ+ 2ab− c2 6 (b2 + 2b− 1)λ0 + 2ab− c2 = −0.0062 . . . < 0

and b2λ+ (ab2 − d) 6 4.3b2 + (ab2 − d) = −0.167 . . ., so that B is negative.

For λ > 4.3, one chooses c2 = 0.18, c3 = 0.08 and one has

(b2 + 2b− 1)λ+ 2ab− c2 < 4.3(b2 + 2b− 1) + 2ab− c2 = −0.0023 . . . < 0.

The inequality λ2 6 4eλ−2 = 4L/e2 implies

b2λ2 − c3L 6 (4b2e−2 − c3)L = −0.0078 . . . L < 0

and, as we also have ab2 − d = −0.74 . . . < 0, we conclude that B is still negative, which completes

the proof of Lemma 2.8.
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2.4 The Riemann ζ function and explicit formulas for ψ and Π1.

2.4.1 Explicit formulas.

We shall use the two explicit formulas

ψ(x) = x+
Λ(x)

2
−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

)
, x > 1 (2.41)

(cf. [16, p. 334 and p. 353] with r = 0 and ζ ′(0)/ζ(0) = log(2π)) and

Π1(x) = li(x2) +
xΛ(x)

2 log x
−
∑
ρ

∫ ∞
−1

xρ−t

ρ− t
dt− log 12 +

∫ ∞
x

dt

(t2 − 1) log t
, x > 1 (2.42)

(cf. [16, p. 360 and 361], with R = 1 and ζ(−1) = −1/12).

In connection with (2.41) we shall use the following lemma (cf. [15, p. 169 Théorème 5.8.(b)]

or [14, p. 162 Theorem 5.8.(b)]):

Lemma 2.9. If a, b are fixed real numbers satisfying 1 6 a < b <∞, and g any function with a

continuous derivative on the interval [a, b], then

∫ b

a

g(t)ψ(t) dt = ∫ b

a

g(t)

[
t− log(2π)− 1

2
log

(
1− 1

t2

)]
dt−

∑
ρ

∫ b

a

g(t)
tρ

ρ
dt. (2.43)

We also have (cf. [13, p. 67] or [5, p. 272 ])∑
ρ

1

ρ
= 1 +

γ0
2
− 1

2
log π − log 2 = 0.023 095 708 966 121 033 . . .

and ∑
ρ

1

ρ(1− ρ)
=
∑
ρ

(
1

ρ
+

1

1− ρ

)
= 2

∑
ρ

1

ρ
= 0.046 191 417 932 2420 . . . (2.44)

The coefficients γm are defined by the Laurent expansion of ζ(s) around 1 (cf. [5, §10.3.5]) :

ζ(s) =
1

s− 1
+

∞∑
m=0

γm
m!

(s− 1)m.

The first values of γm are

m = 0 1 2 3 4

γm = 0.57721 . . . −0.07281 . . . −0.00969 . . . 0.00205 . . . 0.00232 . . .

The coefficients δm are defined by δ1 = γ0, δ2 = 2γ1 + γ20 , and, for m > 1,

δm+1 = (m+ 1)
γm
m!

+

m−1∑
j=0

γjδm−j
j!

.
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These coefficients allow to compute the sums
∑
ρ

1

ρm
, see [5, p. 207 and 272]:

∑
ρ

1

ρm
= 1 + δm − ζ(m)

(
1− 1

2m

)
, m > 2. (2.45)

For m = 2, we get ∑
ρ

1

ρ2
= 1− π2

8
+ 2γ1 + γ20 = −0.046 154 317 295 804 6 . . .

2.4.2 Computation of
∑
ρ 1/|ρ(1 + ρ)| and

∑
ρ 1/|=ρ|2.

It is known (cf. [28]), that every non trivial root ρ of ζ satisfies

|=(ρ)| > 14.134 725 141 734 693 79. (2.46)

Lemma 2.10. Under the Riemann Hypothesis, for k > 2,∑
ρ

1

|ρ|k
6

10

14k
. (2.47)

Proof. Under the Riemann Hypothesis, ρ = 1− ρ and from (2.44),∑
ρ

1

|ρ|2
=
∑
ρ

1

ρ(1− ρ)
= 0.046 191 41 · · · 6 1

20
. (2.48)

Using (2.46), we may write ∑
ρ

1

|ρ|k
6

1

14k−2

∑
ρ

1

|ρ|2
6

196

20× 14k

which proves (2.47).

Lemma 2.11. Let t be a complex number satisfying |t| < 1/2. We have

f(t) = ((1− t2)(1− 2t))−1/2 =

∞∑
n=0

cnt
n with 0 6 cn 6

4

3
2n (2.49)

and, if |t| 6 1/6,

<(f(t)) >
1

3
and |=(f(t))| 6 2

3
. (2.50)

Proof. We have (1− t)−1/2 =
∑
n>0 ant

n with

0 6 an = (−1)n
(− 1

2 )(− 3
2 ) . . . (− 2n−1

2 )

n!
=

1

22n

(
2n

n

)
6 1.

Therefore,

0 6 cn =

n/2∑
m=0

am(2n−2man−2m) 6 2n
∞∑
m=0

1

4m
=

2n+2

3
,
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which proves (2.49). If |t| 6 1/6, then∣∣∣∣∣
∞∑
n=1

cnt
n

∣∣∣∣∣ 6
∞∑
n=1

cn
6n
6

4

3

∞∑
n=1

(
2

6

)n
=

2

3

whence

<(f(t)) = 1 + <

( ∞∑
n=1

cnt
n

)
> 1−

∣∣∣∣∣
∞∑
n=1

cnt
n

∣∣∣∣∣ > 1− 2

3
=

1

3

and

|=(f(t))| =

∣∣∣∣∣=
( ∞∑
n=1

cnt
n

)∣∣∣∣∣ 6
∣∣∣∣∣
∞∑
n=1

cnt
n

∣∣∣∣∣ 6 2

3

which completes the proof of Lemma 2.11.

Lemma 2.12. Under the Riemann Hypothesis, with the notation of (2.49), we have∑
ρ

1

|ρ(1 + ρ)|
= −

∞∑
n=0

cn
∑
ρ

1

ρn+2
. (2.51)

Proof. Let ρ = 1/2 + ıγ ZZZ be a non trivial root of ζ(s) under the Riemann Hypothesis. First

we observe that f defined by (2.49) satisfies(
− 1

ρ2
f

(
1

ρ

))2

=
1

ρ4(1− 1/ρ2)(1− 2/ρ)
=

1

ρ(1− ρ)(ρ+ 1)(2− ρ)

=
1

|ρ(1 + ρ)|2
(2.52)

so that −f(1/ρ)/ρ2 is real. Let us write

f

(
1

ρ

)
= a+ bı.

As, by (2.46), |1/ρ| < 1/14, Lemma 2.11 gives a > 1/3, |b| 6 2/3 and

− 1

ρ2
f

(
1

ρ

)
= − a+ bı

(1/2 + ıγ)2
=

(γ2 − 1/4 + ıγ)(a+ bı)

(1/4 + γ2)2
.

Thus the sign of −f(1/ρ)/ρ2 is the sign of a(γ2 − 1/4)− bγ. As

a(γ2 − 1/4)− bγ > 1

3

(
γ2 − 1

4

)
− 2

3
|γ|

=
1

3

(
|γ| − 2 +

√
5

2

)(
|γ| − 2−

√
5

2

)
> 0

we have −f(1/ρ)/ρ2 > 0, which, with (2.52), shows that

1

|ρ(1 + ρ)|
= − 1

ρ2
f

(
1

ρ

)
.

Therefore, from Lemma 2.11, we get∑
ρ

1

|ρ(1 + ρ)|
= −

∑
ρ

1

ρ2

( ∞∑
n=0

cn
ρn

)
(2.53)

and, since from Lemmas 2.10 and 2.11, the sum
∑
ρ,n

cn
|ρ|n+2

is finite, we may permute the summa-

tions in (2.53), which yields (2.51).
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By using Lemmas 2.10, 2.11 and 2.12 together with formula (2.45), it is possible to compute c

defined in (1.13) with a great precision.

Lemma 2.13. Under the Riemann Hypothesis,
∑
ρ

1

=(ρ)2
6 0.0462493.

Proof. Let us set ρ = 1/2 + iγ. From (2.46) we have |γ| > 14.134 and from (2.48)

∑
ρ

1

γ2
=
∑
ρ

1 + 1/(4γ2)

1/4 + γ2
6
∑
ρ

1 + 1
4×14.1342

1/4 + γ2
=

(
1 +

1

4× 14.1342

)∑
ρ

1

|ρ|2

6 0.0462493

A more precise estimate can be obtained by writing γ2 = −(ρ− 1/2)2,

∑
ρ

1

γ2
=
∑
ρ

− (1− 1/(2ρ))−2

ρ2
= −

∞∑
m=0

m+ 1

2m

(∑
ρ

1

ρm+2

)
.

To calculate the above series, choose some M > 0. For m 6 M , use (2.45) and, for m > M , use

Lemma 2.10 to get an upper bound of the remainder.

3 Computation of h(n)

For n small, a table of h(n) for n 6 106 has been precomputed by the naive algorithm described

in [7, §1.4].

For the computation of h(n) for n large, the algorithm described in [7] is used. Let us recall

some points about it.

3.1 Computing an isolated value of h(n) or log h(n) for n possibly large.

− The factorization of h(n). Let k = k(n) be defined above by Eq. (1.16). The value h(n) may

be written as the product (cf.[7, §8]:

h(n) = Nk ·G(pk, n− σk), (3.1)

where G(p,m) is defined in [9] by

G(p,m) = max
Q1Q2 · · ·Qs
q1q2 · · · qs

,

the maximum being taken over primes Q1, Q2, . . . , Qs, q1, q2, . . . , qs, s > 0, satisfying

2 6 qs < qs−1 < · · · < q1 6 pk < Q1 < Q2 < · · · < Qs

and

s∑
i=1

(Qi − qi) 6 m.
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Of course, h(n) is an integer, and Equation (3.1) says that the prime factors of h(n) are

({p1, p2, . . . , pk} \ {q1, q2, . . . , qs}) ∪ {Q1, Q2, . . . , Qs} . (3.2)

Thus the computation of pk and G(pk, n − σk) gives the factorization of h(n). Let us remark

that, for large values of n, say n > 1030, this factorization is not really effective because we are

not able to enumerate the primes p1, p2, . . . , pk.

− Computing G(pk, n − σk). The execution of the algorithm described in [9, §9] is relatively

fast and shows that s is small and that, with the exception of the smallest one, qs, all primes of

{q1, q2, . . . , qs} ∪ {Q1, Q2, . . . , Qs} are very closed to pk. But we are unable to prove this fact,

nor evaluate the complexity of this algorithm, nor even its termination. The time for computing

1000 values G(pk, n− σk) for n close to 108 is about 4 seconds.

− Computing pk and σk. For small values of n, say n 6 1018 the trivial method may be used :

we add the first j primes until the sum σj exceeds n. If n is very large, say n > 1024 this

is impracticable. But the Lagarias-Miller-Odlysko algorithm for computing π(x) improved by

Deléglise-Rivat to cost O
(
x2/3/ log2 x

)
operations (cf. [10]), may be adapted to compute at the

same coast sums of the form Sf (x) =
∑
p6x f(p) where f is a completely multiplicative function.

Choosing f(x) = x, we are able to compute π1(x) =
∑
p6x p with the same complexity, and also

to compute pk and sk in time O
(
n1/3/(log n)5/3

)
(cf. [7, §8] for more details).

− Computing log(h(n)). Once pk, sk and G(pk, n − sk) are computed, from the prime factors

(3.2) of h(n) we get

log h(n) = θ(pk) +
∑

16j6s

log(Qj)−
∑

16j6s

log(qj). (3.3)

The last two terms of this sum are obtained by computing a small number of log’s values, the

(log qi)16i6s and (logQi)16i6s. It remains to compute θ(pk). If pk is small, say pk 6 1010, we

may use the naive algorithm, enumerate the primes up to pk and add their logarithms. If pk is

large, the naive algorithm is too slow.

To compute θ(x) more efficiently, we first compute ψ(x) in O
(
x2/3+ε

)
, using the algorithm given

in [11], and then we add the difference ψ(x)− θ(x) which is easily computed in time O
(
x1/2+ε

)
by the naive algorithm (cf. [25]). Some values of θ(x) for x up to 1018 are given in [26]. Figure

2 shows, for 2 6 n 6 18, the largest prime pk < 10n, θ(pk) = log h(σk) and bσk .
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3.2 The computations we did for this work.

Computation of all the bσk for pk 6 10 000 000 019.

For the proof of (5.45) and (5.46) in Proposition 5.11 we need to compute bσk for all the primes

pk 6 1010 + 19. The sophisticated method presented in [25] to compute θ(pk) is useless because

each value θ(pk) we need is obtained at once from the previous one θ(pk−1) by adding log pk.

We enumerate the 455 052 512 primes up to p455052712 = 10 000 000 019, computing for each of

them σk, log h(σk) = θ(pk) and bσk . This was the most expansive computation we did. It took

about 7 hours.

Computation of isolated values of h(n).

For the proof of (5.47) in Proposition 5.11 we compute isolated values of bn for n 6 n1 =

305 926 023. Here also, for these small values of n we dont’t need the method presented in [25]

to speedup the computations of the θ(pk) values. We content ourselves by using a precomputed

table of (σk, θk) values. The essential coast of each computation of h(n) is then reduced to the

coast of computation of G(pk, n− σk).

4 Estimates of bn

In the proof of Theorem 1.1 we shall use Lemmas 4.1–4.4. The first of these establishes a concavity’s

property (cf. Figure 1 which displays the graph of (n, bn) for 2 6 n 6 100).

Lemma 4.1. Let bn be defined by (1.12) and k = k(n) by (1.16). For each n > 2, if min(bσk , bσk+1
) 6

1, we have

bn > min(bσk , bσk+1
).

Proof. Computation shows that bn > min(bσk , bσk+1
) is satisfied if n < 41 = σ6. Thus we may

suppose n > 41. Let us set ε = (log pk+1)/pk+1. The function ϕ(t) = log t − εt is concave for

t > 1. For k > 2, one has ϕ(2) = log 2− 2 log pk+1/pk+1 > log 2− 2 log 5/5 > 0 and ϕ(pk+1) = 0.

Let q denote an arbitrary prime number. Thus ϕ(q) is > 0 for 2 6 q 6 pk and 6 0 for q > pk+1.

Then, for each squarefree integer N ,

logN − ε`(N) =
∑
q|N

ϕ(q) 6
∑

q|N, q6pk

ϕ(q) 6
∑
q6pk

ϕ(q)

= logNk − εσk = logNk+1 − εσk+1. (4.1)

We write

n = ασk + βσk+1 with 0 6 α 6 1 and β = 1− α. (4.2)
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Figure 1: Graph of (n, bn)26n6100. The red points are the (σk, bσk) points.

From (1.1), `(h(n)) 6 n holds and applying (4.1) to N = h(n) yields

log h(n) 6 ε`(h(n)) + logNk − ε σk 6 εn+ logNk − ε σk

= ε(ασk + β σk+1) + α(logNk − εσk) + β(logNk+1 − εσk+1)

= α logNk + β logNk+1. (4.3)

Let us define Φ(t) on each interval [σk, σk+1] by

Φ(t) =

√
li-1(t)−min(bσk , bσk+1

)(t log t)1/4. (4.4)

Since min(bσk , bσk+1
) 6 1 and σk > 31 are assumed, from Lemma 2.5, Φ is concave on [σk, σk+1].

Moreover, from the definition of bσk and bσk+1
, one has logNk = log h(σk) =

√
li-1(σk) −

bσk(σk log σk)1/4 6 Φ(σk) and logNk+1 = log h(σk+1) 6 Φ(σk+1), which, from (4.3) and (4.2),

implies

log h(n) 6 α logNk + β logNk+1 6 α Φ(σk) + β Φ(σk+1)

6 Φ(ασk + βσk+1) = Φ(n).

With (1.12) defining bn and (4.4), this gives bn > min(bσk , bσk+1
).

Lemma 4.2. Let n1, n2 be integers such that 2 6 n1 < n2. If
√

li−1(n2) > log h(n1), for
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n1 6 n 6 n2 we have

bn 6

√
li−1(n2)− log h(n1)

(n1 log n1)1/4
. (4.5)

Proof. It results from(1.12), defining bn, and from the non-decreasingness of
√

li-1, log h and

n log n.

Lemma 4.3. Let µ > 0, n1, n2 be integers such that 16 6 n1 < n2 and√
li−1(n2)− log h(n1)

(n1 log n1)1/4
6

2

3
+ c+ µ

log log n2
log n2

, (4.6)

then the inequality

bn <
2

3
+ c+ µ

log log n

log n
(4.7)

is true for each n ∈ [n1, n2].

Proof. We have bn 6

√
li−1(n2)− log h(n1)

(n log n)1/4
. If

√
li−1(n2) − log h(n1) 6 0, then bn 6 0 and

(4.7) holds. If
√

li−1(n2) − log h(n1) > 0, (4.7) results from (4.6) and the decreasingness of

c+ 2/3 + µ log log n/ log n for n > 16.

Lemma 4.4. Let pk satisfy pk > x0 = 1010 + 19, σk =
∑
p6pk

p > n0 = π1(x0), and n be an

integer such that σk 6 n 6 σk+1. Then

1

log σk
>

1

log n
>

1

(1 + 3× 10−10) log σk
(4.8)

and √
li-1(n)−

√
li-1(σk) 6 1.14 log σk. (4.9)

Proof. First, from Bertrand’s postulate, we have pk+1 < 2 pk and

n− σk 6 σk+1 − σk = pk+1 < 2pk.

From Lemma 2.8, as σk = π1(pk) holds, we have

pk 6
√
σk log σk

(
1 +

log log σk
2 log σk

)
6

(
1 +

log log n0
2 log n0

)√
σk log σk

< 1.045
√
σk log σk

so that

n 6 σk+1 < σk + 2pk < σk + 2.09
√
σk log σk

= σk

(
1 + 2.09

√
log σk
σk

)
(4.10)
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holds. Further, one gets

log n 6 log σk + 2.09

√
log σk
σk

= log σk

(
1 +

2.09√
σk log σk

)
6 log σk

(
1 +

2.09√
n0 log n0

)
< (1 + 3× 10−10) log σk

which implies (4.8).

Let us set f(t) =
√

li-1(t). From Lemma 2.5, we know that f ′(t) =
log li-1(t)

2
√

li-1(t)
is positive and

decreasing for li-1(t) > e2. By the mean value theorem, one has f(n) − f(σk) 6 (n − σk)f ′(σk)

and, from (4.10) and (2.16),√
li-1(n)−

√
li-1(σk) 6 (n− σk)

log li-1(σk)

2
√

li-1(σk)
6 2.09

√
σk log σk

log(σk log σk)

2
√
σk log σk

= 1.045 log σk

(
1 +

log log σk
log σk

)
6 1.045

(
1 +

log log n0
log n0

)
log σk = 1.1376 . . . log σk.

which proves (4.9).

5 Proof of Theorem 1.1

Let x satisfy pk 6 x < pk+1. Then, from (1.15) and (1.17)

σk = π1(x), log h(σk) = logNk = θ(x)

and, from (1.12),

bσk =

√
li-1(π1(x))− θ(x)

(π1(x) log π1(x))1/4
.

The aim of §5.1–5.4 is to obtain, under the Riemann Hypothesis, an effective estimate of the

numerator of bσk .

5.1 Estimate of li(θ2(x)).

Lemma 5.1. Under the Riemann Hypothesis, for x > x0 = 1010 + 19,

li(θ2(x)) = li(x2) +
x

log x
(θ(x)− x) +K1(x) (5.1)

with 0 6 K1(x) 6 0.0008x log3 x.

Proof. Let us assume that x > x0 holds. Applying Taylor’s formula to the function t 7→ li(t2)

yields

li(θ2(x)) = li(x2) +
x

log x
(θ(x)− x) +K1(x)
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with

K1(x) =

(
1

log v
− 1

log2 v

)
(θ(x)− x)2

2
(5.2)

where v satisfies v > min(x, θ(x)). From (2.3), we get

θ(x)

x
> 1− log2 x

8π
√
x
> 1− log2 x0

8π
√
x0
> 0.9997

and v > 0.9997x holds. By setting ε = − log 0.9997, one gets log v > log x− ε and

0 <
1

log v
− 1

log2 v
<

1

log v
6

1

log x− ε
=

1

log x

(
1 +

ε

log x− ε

)
6

1

log x

(
1 +

ε

log x0 − ε

)
6

1.000 014

log x
.

Finally, (2.3) and (5.2) imply

0 6 K1(x) 6
1.000 014

2 log x

(
1

8π

√
x log2 x

)2

6 0.000 792x log3 x

which completes the proof of (5.1).

5.2 Estimate of Π1(x)− π1(x).

Lemma 5.2. Under the Riemann Hypothesis, for x > x0 = 1010 + 19,

Π1(x) =
∑
pm6x

pm

m
= li(x2)−

∑
ρ

xρ+1

(ρ+ 1) log x
+
xΛ(x)

2 log x
+K2(x) (5.3)

with |K2(x)| 6 0.04625
x3/2

log2 x
.

Proof. In view of (2.42), we first consider the integral

∫ ∞
−1

xρ−t

ρ− t
dt where ρ is a non trivial zero

of ζ. By partial integration, one gets∫ ∞
−1

xρ−t

ρ− t
dt =

xρ+1

(ρ+ 1) log x
+ Jρ(x) with Jρ(x) =

xρ

log x

∫ ∞
−1

e−t log x

(ρ− t)2
dt

and, since <(ρ) = 1/2,

|Jρ(x)| 6
√
x

log x

∫ ∞
−1

e−t log x

=(ρ)2
dt =

x3/2

(log2 x)=(ρ)2
.

Let us set J(x) =
∑
ρ Jρ(x). Applying Lemma 2.13 yields

|J(x)| =

∣∣∣∣∣∑
ρ

Jρ(x)

∣∣∣∣∣ 6 x3/2

log2 x

∑
ρ

1

=(ρ)2
6 0.046 249 3

x3/2

log2 x

and (2.42) imply

Π1(x) = li(x2) +
xΛ(x)

2 log x
−
∑
ρ

xρ+1

(ρ+ 1) log x
+K2(x) (5.4)
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with

K2(x) = − log 12− J(x) +

∫ ∞
x

dt

(t2 − 1) log t
.

For t > x > 2,
1

(t2 − 1) log t
6

4

3t2 log x
and

∫ ∞
x

dt

(t2 − 1) log t
6

4

3 log x

∫ ∞
x

dt

t2
=

4

3x log x

so that

|K2(x)| 6 x3/2

log2 x

(
0.046 249 3 +

4 log x

3x5/2
+

(log 12) log2 x

x3/2

)
. (5.5)

In (5.5), the parenthesis is decreasing for x > x0 and its value for x = x0 is < 0.04625, which,

together with (5.4), completes the proof of (5.3).

Lemma 5.3. For x > 2,

Π1(x)− π1(x) =
x

log x
(ψ(x)− θ(x))−

κ∑
k=2

Bk with κ =

⌊
log x

log 2

⌋
(5.6)

and

Bk =
1

k

∫ x1/k

2

tk−1

log2 t
(k log t− 1)θ(t) dt. (5.7)

Proof. From the definition of Π1,

Π1(x)− π1(x) =

κ∑
k=2

∑
p6x1/k

pk

k
=

κ∑
k=2

πk(x1/k)

k
,

and, by Stieltjes integral,

πk(y) =

∫ y

2−

tk

log t
d[θ(t)] =

θ(y)yk

log y
−
∫ y

2

tk−1

log2 t
(k log t− 1)θ(t) dt

so that

Π1(x)− π1(x) =

κ∑
k=2

θ(x1/k)x

k(log x)/k
−

κ∑
k=2

1

k

∫ x1/k

2

tk−1

log2 t
(k log t− 1)θ(t) dt

=
x

log x

(
ψ(x)− θ(x)

)
−

κ∑
k=2

Bk.

5.3 Bounding
∑+∞

k=2Bk.

Proposition 5.4. Under the Riemann Hypothesis, for x > x0 = 1010 + 19 and κ =
⌊
log x
log 2

⌋
, Bk

defined by (5.7) satisfies

2x3/2

3 log x
− 0.327

x3/2

log2 x
6

κ∑
k=2

Bk 6
2x3/2

3 log x
+ 0.31

x3/2

log2 x
. (5.8)
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The proof of this proposition is rather technical. We begin by establishing some lemmata. For

k 6 κ, one has x1/k > xlog 2/ log x = 2 and, for t > 2 and k > 2, one has k log t > 1, so that Bk > 0

holds.

Lemma 5.5. For x > x0, we have the bounds

0 6
κ∑
k=3

Bk 6 1.066
x4/3

log x
. (5.9)

Proof. First, by using (2.1) and (2.6),

Bk 6
1 + ε

k

∫ x1/k

2

ktk

log t
dt = (1 + ε)

(
li(x1+1/k)− li(2k+1)

)
6 (1 + ε) li(x1+1/k)

with ε = 7.5 · 10−7 . Now, by (2.11),

Bk 6 (1 + ε)
x1+1/k

log x1+1/k

(
1 +

1.101

log x0

)
6

1.05x1+1/k

(1 + 1/k) log x
. (5.10)

Hypothesis x > x0 implies κ > 33. Further, we have

κ∑
k=3

Bk 6
1.05x4/3

log x

(
26∑
k=3

x1/k−1/3

1 + 1/k
+

log x

log 2
x1/27−1/3

)

6
1.05x4/3

log x

(
26∑
k=3

x
1/k−1/3
0

1 + 1/k
+

log x0
log 2

x
1/27−1/3
0

)
< 1.066

x4/3

log x
.

The upper bound (5.10) is good for k > 3, but for k = 2 we need a better one. For a ∈ C let

us define

Ia =
1

2

∫ √x
2

F (t)ta dt with F (t) =
2t

log t
− t

log2 t
. (5.11)

Lemma 5.6. For a belonging to

{
0,

1

3
,

1

2
, 1

}
and x > x0 = 1010 + 19 one has

Ia =
2

a+ 2

x(a+2)/2

log x
− 2aηx(a+2)/2

(a+ 2)2 log2 x
+ δa (5.12)

with 1 < η < 1.101 and −3.15 < δa < −2.88.

Proof. From (2.6), we have
∫
F (t)ta dt = −a li(t2+a) + t2+a/ log t and

Ia = −a
2

li(x(a+2)/2) +
x(a+2)/2

log x
+ δa with δa =

a

2
li(2a+2)− 2a+2

2 log 2

and δa satisfies −3.15 < δa < −2.88. Further, by using inequalities (2.8) and (2.11), for x > x0,

one gets

li(x(a+2)/2) =
2x(a+2)/2

(a+ 2) log x
+ η

4x(a+2)/2

(a+ 2)2 log2 x

with 1 < η < 1.101 and, from there we get (5.12).
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In view of applying the explicit formula (2.41), we shall need an estimate of S =
∑
ρ Iρ/ρ

where ρ is a non trivial zero of ζ.

Lemma 5.7. Let us note S =
∑
ρ

Iρ
ρ

. Under the Riemann Hypothesis, for x > x0, |S| 6 0.148
x5/4

log x
.

Proof. By partial integration, one gets

Iρ =
1

2

∫ √x
2

F (t)tρ dt =
1

2

∫ √x
2

(
2t

log t
− t

log2 t

)
tρ dt

=
x(ρ+2)/2

ρ+ 1

(
2

log x
− 2

log2 x

)
− 2ρ+1

ρ+ 1

(
2

log 2
− 1

log2 2

)
−
∫ √x
2

tρ+1

2(ρ+ 1)
F ′(t) dt

and, since F ′(t) satisfies for t > 2

0 6 F ′(t) =
2 log2 t− 3 log t+ 2

log3 t
6

2 log2 t

log3 t
=

2

log t
,

one has, from (2.6) and <(ρ) = 1/2,

|(ρ+ 1)Iρ| 6
2x5/4

log x
+

23/2(2− 1/ log 2)

log 2
+

∫ √x
2

t3/2

log t
dt

=
2x5/4

log x
+ li(x5/4)− li(25/2) +

23/2(2− 1/ log 2)

log 2

6
2x5/4

log x
+ li(x5/4). (5.13)

Further, (5.13), (2.10) and (1.13) yield

|S| =

∣∣∣∣∣∑
ρ

Iρ
ρ

∣∣∣∣∣ 6
(∑

ρ

1

|ρ(ρ+ 1)|

)(
2x5/4

log x
+ li(x5/4)

)

6 c

(
2 +

1.49

5/4

)
x5/4

log x
6 0.148

x5/4

log x
.

Now we come back to the proof of Proposition 5.4 From Lemma 2.1, it follows that

J − I1/2 −
4

3
I1/3 6 B2 6 J − I1/2 + 2.14 I0 with J =

1

2

∫ √x
2

F (t)ψ(t) dt. (5.14)

Now, under the integral sign, we may replace ψ(t) by its value in the explicit formula (2.41), and

using equality (2.43) of Lemma 2.9, we get

J = I1 − S − J1 with S =
∑
ρ

1

ρ
Iρ

and J1 =
1

2

∫ √x
2

F (t)

(
log(2π) +

1

2
log

(
1− 1

t2

))
dt.
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For t > 2, one has F (t) > 0 and 0 < log 2π + 1
2 log 3

4 6 log 2π + 1
2 log(1 − 1

t2 ) < log 2π < 1.84

whence

0 6 J1 6 log(2π)I0 6 1.84 I0

and, with the upper bound of B2 given by (5.14), it gives

B2 6 I1 + |S| − I1/2 + 2.14 I0.

From Lemma 5.6 and Lemma 5.7, one gets

B2 6
2x3/2

3 log x
− 2x3/2

9 log2 x
− 2.88 + 0.148

x5/4

log x
− 4x5/4

5 log x

+
4.404x5/4

25 log2 x
+ 3.15 + 2.14

(
x

log x
− 2.88

)
6

2x3/2

3 log x
− 2x3/2

9 log2 x
+
x5/4

log x

(
−4

5
+ 0.148 +

17.616

100 log x
+

2.14

x1/4

)
(5.15)

and, as the above parenthesis is decreasing for x > x0 and its value for x = x0 is negative, we get

B2 6
2x3/2

3 log x
− 2x3/2

9 log2 x
.

Now we use (5.9) to get

κ∑
k=2

Bk 6
2x3/2

3 log x
+

x3/2

log2 x

(
−2

9
+

1.066 log x

x1/6

)
(5.16)

6
2x3/2

3 log x
+

x3/2

log2 x

(
−2

9
+

1.066 log x0

x
1/6
0

)
6

2x3/2

3 log x
+

0.31x3/2

log2 x
,

which proves the upper bound of (5.8). Note that, for x > 8.48 × 1012, the parenthesis in (5.16)

is negative and that
∑κ
k=2Bk 6 2x3/2/(3 log x). Similarly, we have the lower bound

B2 > J − I1/2 −
4

3
I1/3 > I1 − |S| − J1 − I1/2 −

4

3
I1/3

> I1 − |S| − 1.84 I0 − I1/2 −
4

3
I1/3

>

(
2x3/2

3 log x
− 2.202 x3/2

9 log2 x
− 3.15

)
−
(

4x5/4

5 log x
− 4

25

x5/4

log2 x
− 2.88

)
− 0.148

x5/4

log x
− 4

3

(
6x7/6

7 log x
− 6 x7/6

49 log2 x
− 2.88

)
− 1.84

(
x

log x
− 2.88

)
>

2x3/2

3 log x
− 2.202 x3/2

9 log2 x
− 0.948

x5/4

log x
− 8x7/6

7 log x
− 1.84

x

log x

=
2x3/2

3 log x
− x3/2

log2 x

(
2.202

9
+

0.948 log x

x1/4
+

8 log x

7x1/3
+

1.84 log x

x1/2

)
and, as the last parenthesis is decreasing on x for x > x0 and its value for x = x0 is < 0.327, we

get
κ∑
k=2

Bk > B2 >
2x3/2

3 log x
− 0.327

x3/2

log2 x

which completes the proof of Proposition 5.4.

�
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5.4 Estimate of li(θ2(x))− π1(x).

Proposition 5.8. Under the Riemann Hypothesis, for x > x0 = 1010 + 19,(
2

3
− c
)
x3/2

log x
− 0.426

x3/2

log2 x
6 π1(x)− li(θ2(x))

6

(
2

3
+ c

)
x3/2

log x
+ 0.36

x3/2

log2 x
(5.17)

with c defined in (1.13).

Proof. From (5.1) and (5.3) we deduce

li(θ2(x)) = Π1(x)− xΛ(x)

2 log x
+
∑
ρ

xρ+1

(ρ+ 1) log x

−K2(x) +
x

log x

(
θ(x)− x

)
+K1(x)

= π1(x) +
∑
ρ

xρ+1

(ρ+ 1) log x
+K1(x)−K2(x) +A(x) (5.18)

with

A(x) = Π1(x)− π1(x)− xΛ(x)

2 log x
+

x

log x

(
θ(x)− x

)
.

Further, from Equation (5.6) of Lemma 5.3 and from the explicit formula (2.41) of ψ(t),

A(x) =
x

log x

(
ψ(x)− x

)
− xΛ(x)

2 log x
−

κ∑
k=2

Bk

=
x

log x

(
−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

))
−

κ∑
k=2

Bk

and (5.18) implies li(θ2(x)) = π1(x)−
∑
ρ

xρ+1

ρ(ρ+ 1) log x
+K3(x) with

K3(x) = K1(x)−K2(x)− x

log x

(
log(2π) +

1

2
log

(
1− 1

x2

))
−

κ∑
k=2

Bk.

For x > x0, we have 0 < log(2π) +
1

2
log

(
1− 1

x2

)
< log(2π) 6 1.84 and, from (5.1), (5.3) and

(5.8), one gets the upper bound

K3(x) 6 0.0008x log3 x+
0.04625 x3/2

log2 x
− 2x3/2

3 log x
+

0.327 x3/2

log2 x

= − 2x3/2

3 log x
+

x3/2

log2 x

(
0.04625 + 0.327 + 0.0008

log5 x

x1/2

)
6 − 2x3/2

3 log x
+

0.426 x3/2

log2 x
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for x > x0. In the same way, one gets the lower bound for x > x0:

K3(x) > −0.04625 x3/2

log2 x
− 1.84 x

log x
− 2x3/2

3 log x
− 0.31 x3/2

log2 x

= − 2x3/2

3 log x
− x3/2

log2 x

(
0.31 + 0.04625 +

1.84 log x

x1/2

)
> − 2x3/2

3 log x
−

(
0.31 + 0.04625 +

1.84 log x0

x
1/2
0

)
x3/2

log2 x

> − 2x3/2

3 log x
− 0.3567

x3/2

log2 x

which completes the proof of Proposition 5.8.

5.5 Bounds of bn for n large.

For convenience, in this and the next section we will use the following notation:

x = pk > x0 = 1010 + 19, σ = σk = π1(x),

L = log σ > L0, λ = logL > λ0, ν = λ/L 6 ν0. (5.19)

Proposition 5.9. Assume the Riemann hypothesis. Let n > n0, bn be defined by (1.12) and c by

(1.13). Then we have

2

3
− c− 0.22

log log n

log n
< bn <

2

3
+ c+ 0.77

log log n

log n
. (5.20)

Proof. First, in &5.5.1 and &5.5.2, we consider the case n = σk = π1(x).

5.5.1 Lower bound of bσk .

By (5.17), (5.19) and the fact that

0.69(2/3− c) > 0.426 holds, we can write

li(θ2(x)) 6 π1(x)− δ = σ − δ with δ =

(
2

3
− c
)
x3/2

log x

(
1− 0.69

log x

)
. (5.21)

From (1.17), we have θ(x) = logNk = log h(σ). As σ =
∑
p6x p < x2, we have log σ < 2 log x and

1− 0.69/ log x > 1− 1.38/ log σ > 1− 1.38λ/(λ0L) = 1− 1.38ν/λ0 > 1− 0.37 ν so that

δ >

(
2

3
− c
)
x3/2

log x
(1− 0.37 ν). (5.22)

Further, since the function t 7→ t3/2/ log t is increasing, from (2.32), one gets

x3/2

log x
>

(σ log σ)3/4(1 + 0.365 ν)3/2

1
2L+ 1

2λ+ log(1 + 0.365 ν)
>

(σ log σ)3/4(1 + 0.365 ν)3/2

1
2L+ 1

2λ+ 0.365 ν
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which, as the denominator satisfies

L

2
+
λ

2
+ 0.365 ν =

L

2

(
1 + ν

(
1 +

0.73

L

))
6
L

2

(
1 + ν

(
1 +

0.73

L0

))
6
L

2
(1 + 1.018 ν),

yields

x3/2

log x
> 2

(
σ3

L

)1/4
(1 + 0.365 ν)3/2

1 + 1.018 ν
. (5.23)

For t > li(e2) = 4.54 . . ., the function f(t) =
√

li-1(t) is increasing and concave (cf. Lemma 2.5)

and we have

f ′(t) =
log(li-1(t))

2
√

li-1(t)
and f ′′(t) =

log(li-1(t))(2− log(li-1(t))

4(li-1(t))3/2
.

Inequality (5.21) with the increasingness of f gives f(li(θ2(x))) 6 f(σ − δ). Applying Taylor’s

formula, with the concavity of f we get

log h(σ) = θ(x) = f(li(θ2(x)) 6 f(σ − δ) 6
√

li-1(σ)− δf ′(σ) (5.24)

and we need a lower bound for f ′(σ). From (2.15), one has li-1(σ) < σ(L + λ). As the function

t 7→ log(t)/(2
√
t) is decreasing on t, one gets

f ′(σ) =
log(li-1(σ))

2
√

li-1(σ)
>

log(σ(L+ λ))

2
√
σ(L+ λ)

=
L+ λ+ log(1 + ν)

2
√
σ(L+ λ)

>
L+ λ

2
√
σ(L+ λ)

=

√
L(1 + ν)

2
√
σ

(5.25)

and (5.22), (5.23) and (5.25) imply

δf ′(σ) >

(
2

3
− c
)

(σ log σ)1/4
(1 + 0.365 ν)3/2(1 + ν)1/2(1− 0.37 ν)

1 + 1.018 ν
. (5.26)

We observe that

(1 + 0.365 ν)3(1 + ν)(1− 0.37 ν)2 − (1 + 1.018 ν)2(1− 0.3405)2

= 0.31552675 ν2 + 0.09873042 ν3 − 0.198647103641 ν4

+ 0.0253884884125 ν5 + 0.0066570534125 ν6.

The above polynomial is positive for 0 < ν 6 1, which implies that in (5.26) the fraction is

> 1− 0.3405 ν and

δf ′(σ) >

(
2

3
− c
)

(σ log σ)1/4(1− 0.3405 ν).

Therefore, from the definition (1.12) of bn and (5.24), for pk > x0, we have

bσk = bσ >
δf ′(σ)

(σ log σ)1/4
>

(
2

3
− c
)(

1− 0.3405
log log σk

log σk

)
>

2

3
− c− 0.2113

log log σk
log σk

. (5.27)
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5.5.2 Upper bound of bσk .

The proof is similar to the one of the lower bound. Using (5.17)

li(θ2(x)) > σ − η with η =

(
2

3
+ c

)
x3/2

log x

(
1 +

0.51

log x

)
. (5.28)

Further, from the left handside inequality of (2.32), with x = pk and with the notation (5.19), one

gets x >
√
σ log σ which implies log x > (L+ λ)/2 > L/2,

1 +
0.51

log x
6 1 +

1.02

L
6 1 +

1.02λ

λ0L
6 1 + 0.28 ν

and, from the right handside inequality of (2.32) with the increasingness of t3/2

log t ,

x3/2

log x
6

2(σL)3/4(1 + ν/2)3/2

L+ λ
.

The third derivative of t 7→ (1 + t)3/2 is negative so that(
1 +

ν

2

)3/2
6 1 +

3ν

4
+

3ν2

32
= 1 +

3

4
ν
(

1 +
ν

8

)
6 1 +

3

4
ν
(

1 +
ν0
8

)
6 1 + 0.76 ν

and

(1 + 0.76 ν)(1 + 0.28 ν) 6 1 + ν(1.04 + 0.2128 ν0) 6 1 + 1.06 ν

which implies

η 6

(
2

3
+ c

)
2(σL)3/4

L+ λ
(1 + 1.06 ν). (5.29)

From (5.28) and Taylor’s formula we get

log h(σ) = θ(x) > f(σ − η) =

√
li-1(σ)− ηf ′(σ) +

η2

2
f ′′(ξ)

with σ − η 6 ξ 6 σ. (5.30)

To estimate (η2/2)f ′′(ξ), we need a crude upper bound for η. From (5.29), one has

η 6

(
2

3
+ c

)
2(σL)3/4

L
(1 + 1.06 ν0) 6 1.56

σ3/4

L1/4
<
σ

2
. (5.31)

As ξ > σ − σ/2 = σ/2 and |f ′′(t)| is decreasing on t, we have

|f ′′(ξ)| 6 |f ′′(σ/2)| 6 log2(li-1(σ/2))

4(li-1(σ/2))3/2
.

But, from (2.16),

li-1
(σ

2

)
>
σ

2
log
(σ

2

)
=
σL

2

(
1− log 2

L

)
>
σL

2

(
1− log 2

L0

)
> 0.49 σL

and

|f ′′(ξ)| 6 log2(0.49 σL)

4(0.49 σL)3/2
<

(L+ λ)2

4(0.49)2(σL)3/2
< 1.05

(L+ λ)2

(σL)3/2
.

32



Therefore, from (5.31),

η2

2
|f ′′(ξ)| 6 (1.56)2 × 1.05

2
(1 + ν)2 6 1.28(1 + ν)2 6 1.28(1 + ν0)2 < 1.52. (5.32)

Inequality (2.16), with the decreasingness of log t/
√
t, implies

f ′(σ) =
log(li-1(σ))

2
√

li-1(σ)
6

log(σ log σ)

2
√
σ log σ

=
L+ λ

2
√
σL

(5.33)

and from (5.29)

ηf ′(σ) 6

(
2

3
+ c

)
(σ log σ)1/4(1 + 1.06 ν). (5.34)

From (5.30), (5.32) and (5.34), one gets

log h(σ) > √
li-1(σ)−

(
2

3
+ c

)
(σ log σ)1/4

(
1 + ν

(
1.06 +

1.52

(2/3 + c)ν(σL)
1
4

))
.

But the above fraction is maximal for σ = n0 and, therefore, is < 0.0003, so that,

log h(σk) = log(h(σ))

>
√

li-1(σk)−
(

2

3
+ c

)
(σk log σk)1/4

(
1 + 1.061

log log σk
log σk

)
and, from (1.12) and (1.13),

bσk 6

(
2

3
+ c

)(
1 + 1.061

log log σk
log σk

)
<

2

3
+ c+ 0.757

log log σk
log σk

. (5.35)

5.5.3 Bounds of bn for n > n0.

Let us recall that σk is defined by σk 6 n < σk+1. From (5.35), it follows that bσk < 2/3 + c +

0.757 ν0 < 0.78 < 1 and we may apply Lemma 4.1 so that, from (5.27),

bn > min

(
2

3
− c− 0.2113

log log σk
log σk

,
2

3
− c− 0.2113

log log σk+1

log σk+1

)
=

2

3
− c− 0.2113

log log σk
log σk

>
2

3
− c− 0.2113

log log n

log σk
.

Now, from Lemma 4.4, 1/ log σk < (1 + 3× 10−10)/ log n holds, which proves the lower bound of

(5.20).

Note that c + 0.22 log log n/ log n 6 c + 0.22ν0 < 2/3 which implies that the lower bound in

(5.20) is positive so that, for n > n0, bn > 0 and
√

li-1(n) − log h(n) > 0 hold. Therefore, from

the definition (1.12) of bn, one has

bn =

√
li-1(n)− log h(n)

(n log n)1/4
6

√
li-1(n)− log h(n)

(σk log σk)1/4

6

√
li-1(σk+1)− log h(σk)

(σk log σk)1/4
= τk + bσk (5.36)
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with, from (4.9),

τk =

√
li-1(σk+1)−

√
li-1(σk)

(σk log σk)1/4
< 1.14

(log σk)3/4

σ
1/4
k

. (5.37)

Therefore, from (5.35) and (4.8), one gets

bn 6
2

3
+ c+

log log σk
log σk

(
0.757 + 1.14

(log σk)7/4

σ
1/4
k log log σk

)

<
2

3
+ c+

log log σk
log σk

(
0.757 + 1.14

(log n0)7/4

n
1/4
0 log log n0

)

<
2

3
+ c+ 0.763

log log σk
log σk

6
2

3
+ c+ 0.763

log log n

log σk
<

2

3
+ c+ 0.763(1 + 3× 10−10)

log log n

log n

which completes the proof of (5.20) and of Proposition 5.9.

5.6 Asymptotic bounds of bn.

Proposition 5.10. Under the Riemann Hypothesis, when k and σk tend to infinity,

bσk >

(
2

3
− c
)(

1 +
log log σk +O (1)

4 log σk

)
(5.38)

and

bσk 6

(
2

3
+ c

)(
1 +

log log σk +O (1)

4 log σk

)
. (5.39)

Proof. The proof follows the lines of the proof of Proposition 5.9 of which we keep the notation.

Lower bound.

First, from (2.33), with the notation of (5.19),

x3/2 = (σL)3/4
(

1 +
3(logL+O (1))

4L

)
,

log x =
1

2
(L+ logL+O (1)) =

L

2

(
1 +

logL+O (1)

L

)
,

x3/2

log x
= 2

(σL)3/4

L

(
1− logL+O (1)

4L

)
,

x3/2

log2 x
= O

(
(σL)3/4

L2

)
,

whence, from (5.21),

δ =

(
2

3
− c
)

2σ3/4

L1/4

(
1− λ+O (1)

4L

)
. (5.40)

Further, from (5.24) and (5.25), one gets

bσk >
δf ′(σ)

(σL)1/4
>
δ
√
L(1 + ν)

2
√
σ(σL)1/4

=
δL1/4

2σ3/4

(
1 +

λ+O (1)

2L

)
which, with (5.40), yields (5.39).
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Upper bound.

As for the lower bound, but using (5.28) instead of (5.21) one gets

η =

(
2

3
+ c

)
x3/2

log x
=

(
2

3
+ c

)
2σ3/4

L1/4

(
1− λ+O (1)

4L

)
. (5.41)

Further, (5.30) and (5.32) yield

log h(σ) =

√
li-1(σ)− ηf ′(σ) +O (1) (5.42)

which implies

bσk =

√
li-1(σ)− log h(σ)

(σL)1/4
=
ηf ′(σ) +O (1)

(σL)1/4
. (5.43)

Here, for f ′(σ), we need a sharper upper bound than the one of (5.33). From (2.15) and (2.17), for

σ tending to infinity, we have li-1(σ) = σ(L+λ+O (1)), log(li-1(σ)) = L+λ+log(1+(λ+O (1))/L) =

L+ λ+O (1),
√

li-1(σ) =
√
σL(1 + (λ+O (1))/(2L)) and

f ′(σ) =
log(li-1(σ))

2
√

li-1(σ)
=

L+ λ+O (1)

2
√
σL(1 + (λ+O (1))/(2L))

=

√
L

2
√
σ

(
1 +

λ+O (1)

2L

)
. (5.44)

Now, from (5.41) and (5.44), one gets

ηf ′(σ) =

(
2

3
+ c

)
(σL)1/4

(
1 +

λ+O (1)

4L

)
.

As (σL)1/4/L→∞, with (5.43), this yields (5.39).

5.7 Bounds of bn for n small.

Proposition 5.11. Let us recall that n0 = π1(1010 + 19) and that bn is defined by (1.12). The

following assertions hold

1. For n, 2 6 n < n0

b17 = 0.49795 . . . 6 bn 6 b1137 = 1.04414 . . . (5.45)

2. For 78 6 n < n0,

bn > b100 = bσ9
= 0.62328 . . . > 2/3− c (5.46)

3. For 157 933 210 6 n 6 n0,

bn <
2

3
+ c+ 0.77

log log n

log n
. (5.47)

Proof. First, we calculate bσk for 2 6 σk < n0 (cf. §3.2). For k > 9,

b100 = bσ9
= 0.62328 . . . 6 bσk 6 b31117 = bσ112

= 0.88447 . . . < 1.
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Therefore, we may apply Lemma 4.1 which implies, for 100 6 n < n0,

bn > b100 = 0.62328 . . . > 2/3− c.

The computation of bn for 2 6 n < 100 completes the proof of (5.46) and of the lower bound of

(5.45).

To prove the upper bound of (5.45), for σ253 = 186914 6 σk < n0, we compute bσk + τk (with

τk defined by (5.37)) and observe that bσk + τk < 1.044 holds, which implies (cf. (5.36)) that bn

is smaller than 1.044 for 186 914 6 n < n0. It remains to calculate bn for 2 6 n 6 186 913 to

complete the proof of (5.45).

The proof of (5.47) is more complicated. If the following inequality

bσk + τk <
2

3
+ c+

0.77 log log σk+1

log σk+1
(5.48)

holds, then, from (5.36), we have

bn <
2

3
+ c+

0.77 log log σk+1

log σk+1
<

2

3
+ c+

0.77 log log n

log n
(5.49)

for σk 6 n < σk+1. In the same time we compute all the bσk for 2 6 σk 6 n0 (cf. the begining

of this proof), we check that inequality (5.48) holds for 305 926 023 6 σk < n0, so that one has

(5.49) for 305 926 023 6 n < n0.

It remains to compute the largest n 6 n1 = 305 926 023 such that inequality (5.47) is wrong.

This could be expansive because the computation of bn is not very fast. Let us recall that for an

n which is not of the form n = σk, for computing h(n) we have to compute G(pk, n−σk), and this

coasts about 0.004 seconds. If we used the trivial method, computing h(n) for n = n1−1, n2−1, . . .

until we find n not satisfying (5.47), we should have to compute about 1.5 × 108 values of h(n),

taking about one week of computation.

Lemma 4.3 gives us a test, proving in O (1) time that all the n′s in [n1, n2] satisfy (5.47). Mor-

ever there are a lot of intervals [n1, n2] passing this test. The boolean function good interval(n1,

n2) returns true if and only if [n1, n2] is such an interval, i.e. if (n1, n2) satisfy inequality (4.6)

with µ = 0.77.

Now, adopting Python’s style, we define below, by a dichotomic recursion a boolean function

ok rec(n1, n2) which returns true if, and only if, every n in [n1, n2] satisfies (5.47). Furthermore,

when it return false, before returning, it prints the largest n in [n1, n2] which doesn’t satisfy this

inequality.

def ok(n):

if bn(n) >= 2/3 + c + 0.77 ∗ log log n / log n :

print n, ‘ does not satisfy inequality (iv) of Theorem 1.1 ‘
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return False

return True

def ok rec(n1, n2):

if n2 − n1 >= 2:

if good interval(n1,n2):

return True

nmed = (n1 + n2)//2

if not ok rec(nmed,n2):

return False

return ok rec(n1,nmed)

if n1==n2:

return ok(n1)

if n2 == n1 + 1:

if ok(n2):

return ok(n1)

return False

The correctness of ok rec(n1, n2) is proved by recursion about the size of n2−n1. The largest

n which doesn’t satisfy (5.47), n = 157 933 209, is given by the call ok rec(2,305926023). It

computed four values of ok(n) and 11 395 values of good interval(n1,n2), and took 35.27s.

5.8 Completing the proof of Theorem. 1.1

Proposition 5.9 implies that, for n > n0 = π1(1010 + 19)

0.6010 . . . =
2

3
− c− 0.22

log log n0
log n0

< bn <
2

3
+ c+ 0.77

log log n0
log n0

= 0.781 . . .

which, together with inequality (5.45), proves the point (ii) of Theorem 1.1

− Point (i) is equivalent to bn > 0 which follows from (ii).

− Inequalities (5.20) and (5.46) imply bn >
2
3 −c−0.22 log logn

logn for n > 78, and the computation

of bn for 2 6 n < 78 proves point (iii).

− Similarly, inequalities (5.20) and (5.47) imply bn <
2
3 + c+ 0.77 log logn

logn for n > 157 933 210.

− The point (v) follows from (iii) and (iv).
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− To prove (vi), we assume n→∞ and σ = σk 6 n 6 σk+1 so that n = σ+O (pk) holds. From

Lemma 2.8, σ = σk = π1(pk) yields

n = σ +O
(√

σ log σ
)

= σ(1 +O
(√

(log σ)/σ
)
∼ σ.

This implies

log n = log σ +O
(√

(log σ)/σ
)

= (log σ)(1 +O
(

1/
√
σ log σ

)
log log n = log log σ +O (1)

log log σ +O (1)

log σ
=

log log n+O (1)

(log n)

(
1 +

O (1)

log log n

) =
log log n+O (1)

log n

=
log log σk+1 +O (1)

log σk+1
.

From Lemma 4.1 and (5.38), we get

bn > min(bσk , bσk+1
) >

(
2

3
− c
)(

1 +
log log n+O (1)

4 log n

)
,

which proves the lower bound of (vi).

− From (5.36), (5.37) and (5.39), one gets

bn 6 bσk + τk =

(
2

3
+ c

)(
1 +

log log σk +O (1)

4 log σk

)
+O

(
log3/4 σ

σ1/4

)

=

(
2

3
+ c

)(
1 +

log log n+O (1)

4 log n

)
,

which proves the upper bound of (vi). �
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