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Introduction

If n

1 is an integer, let us define h(n) as the greatest product of a family of primes q 1 < q 2 < • • • < q j the sum of which does not exceed n. Let be the additive function such that (p α ) = p α for p prime and α 1. In other words, if the standard factorization of M into primes is M = q α1 1 q α2 2 • • • q αj j we have (M ) = q α1 1 + q α2 2 + • • • + q αj j and (1) = 0. If µ denotes the Möbius function, h(n) can also be defined by

h(n) = max (M ) n µ(M ) =0
M.

(1.1)

The above equality implies h(1) = 1. Note that (h(n)) n.

(1.2)

Landau [16, p. 222-229] introduced the function g(n) as the maximal order of an element in the symmetric group S n ; he proved that

g(n) = max (M ) n M. (1.3) 
From (1.1) and (1.3), it follows that h(n) g(n), (n 1).

(1.4)

Sequences (h(n)) n 1 and (g(n)) n 1 are sequences A159685 and A000793 in the OEIS (On-line Encyclopedia of Integer Sequences). One can find results about h(n) in [START_REF] Deléglise | Maximal product of primes whose sum is bounded[END_REF][START_REF]On the largest product of primes with bounded sums[END_REF] and about g(n) in [START_REF] Massias | Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF][START_REF]Effective bounds for the maximal order of an element in the symmetric group[END_REF][START_REF] Deléglise | Le plus grand facteur premier de la fonction de landau[END_REF][START_REF] Deléglise | Landau's function for one million billions[END_REF]. In the introductions of [START_REF] Deléglise | Le plus grand facteur premier de la fonction de landau[END_REF][START_REF] Deléglise | Landau's function for one million billions[END_REF], other references are given. A fast algorithm to compute h(n) and g(n) is described in [7, §8] and [START_REF] Deléglise | Landau's function for one million billions[END_REF] while in [8, (4.13)] it is proved that log h(n) log g(n) log h(n) + 5.68 (n log n) 1/4 , n 1.

(1.5)

Let li denote the logarithmic integral and li -1 its inverse function (cf. below §2.2). In [17, Theorem 1 (iv)], it is stated that, under the Riemann Hypothesis, the inequality log g(n) < li -1 (n) (1.6) holds for n large enough. It is also proved (cf. [17, Theorem 1(i) and (ii)]) that under the Riemann Hypothesis,

log g(n) = li -1 (n) + O((n log n) 1/4 ) (1.7)
while, if the Riemann hypothesis is not true, there exists ξ > 0 such that

log g(n) = li -1 (n) + (n log n) 1/4 Ω ± ((n log n) ξ ). (1.8) 
With (1.5), (1.7) implies log h(n) = li -1 (n) + O((n log n) 1/4 ), (1.9) while (1.8) yields log h(n) = li -1 (n) + (n log n) 1/4 Ω ± ((n log n) ξ ).

(1.10)

From the expansion of li(x) given below in (2.7), the asymptotic expansion of li -1 (n) can be obtained by classical methods in asymptotic theory. A nicer method is given in [START_REF] Salvy | Fast computation of some asymptotic functional inverses[END_REF]. From (1.7) and (1.9), it turns out that the asymptotic expansions of log g(n) and log h(n) do coincide with the one of li -1 (n) (cf. [START_REF] Massias | Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF]Corollaire,p. 225]): The aim of this article is to make more precise the estimate (1.9) and to prove the following result.

log h(n) log g(n) li -1 (n)          = n log n 1 + log log n -1 2 log n - (log log n) 2
Theorem 1.1. Under the Riemann Hypothesis, we have Under the Riemann Hypothesis, the point (vi) of Theorem 1.1 shows that, for n large enough, b n > 2/3 -c. We prove (cf. (5.46) below) that b n > 2/3 -c holds for 78 n π 1 (10 10 ) = p 10 10 p, and it is reasonable to think that it holds for all n 78. In the point (iii), we have tried to replace the constant -0.22 by a positive one, but without success.

(i) log h(n) < li -1 (n) for n 1.
Corollary 1.2. Each of the six points of Theorem 1.1 is equivalent to the Riemann Hypothesis.

Proof. If the Riemann Hypothesis fails, (1.10) and (1.12) contradict (i), (ii), . . ., (vi) of Theorem 1.1.

Corollary 1.3. The inequalities li -1 (n) -1.045(n log n) 1/4 log g(n) li -1 (n) + 5.19 (n log n) 1/4 (1.14)

are true for each n 2, if and only if the Riemann Hypothesis is true.

Proof. From (1.12) and from the point (ii) of Theorem 1.1, for n 2, li -1 (n) -1.045(n log n) 1/4 log h(n) li -1 (n) -0.49 (n log n) 1/4 which, with (1.5), proves (1.14). If the Riemann Hypothesis is false, (1.8) contradicts (1.14).

Notation

-π r (x) = p x p r . For r = 0, π 0 (x) = π(x) = p x 1 is the prime counting function.

-Π r (x) =

p k x p rk k = κ k=1 π rk (x 1/k ) k with κ = log x log 2 .
-θ(x) = -

Λ(x) =      log p if x = p k 0 if not
is the von Mangoldt function.

-(p n ) n 1 is the sequence of prime numbers, where p 1 = 2.

-li(x) denotes the logarithmic integral of x (cf. below §2.2), and li -1 the inverse function.

-γ 0 = 0.57721566 . . . is the Euler constant. The coefficients γ m and δ m are defined in §2.4.

- -

ρ f (ρ) = lim T →∞ | (ρ)| T f (ρ) where f : C → C is a complex
If lim n→∞ u n = +∞, v n = Ω ± (u n ) is equivalent to lim sup n→∞ v n u n > 0 and lim inf n→∞ v n u n < 0.
-We use the following constants:

x 0 = 10 10 + 19 is the smallest prime exceeding 10 10 -Let us write σ 0 = 0, N 0 = 1, and, for j 1,

n 0 = π 1 (x 0 ) = 2
N j = p 1 p 2 • • • p j and σ j = p 1 + p 2 + • • • + p j = (N j ). (1.15)
-For n 0, let k = k(n) denote the integer k 0 such that

σ k = p 1 + p 2 + • • • + p k n < p 1 + p 2 + • • • + p k+1 = σ k+1 . (1.16)
In [7, Proposition 3.1], for j 1, it is proved that

h(σ j ) = N j .
(1.17)

We often implicitly use the following result: For u and v positive and w real, the function

t → (log t -w) u t v is decreasing for t > exp w + u v . (1.18)
1.2 Plan of the article.

In §2, we recall several results and state some lemmas that are used in the proof of Theorem (1.13)) is explained.

The computation of h(n) plays an important role in the proof of our results. The algorithm described in [START_REF] Deléglise | Maximal product of primes whose sum is bounded[END_REF] is shortly recorded in §3.

In §4, in preparation to the proof of Theorem 1.1, four lemmas about b n (defined in (1.12)) will be given.

The proof of Theorem 1.1 is given in §5. It follows the lines of the proof of Theorem 1 of [START_REF] Massias | Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF] about the asymptotic estimate, under the Riemann Hypothesis, of log g(n), starting from the explicit formula of Π 1 (x). But, here, we deal with effective estimates. The positive integers are split in three classes: the small ones ( n 0 = π 1 (10 2 Useful results

Effective estimates.

Platt and Trudgian [START_REF] Platt | On the first sign change of θ(x) -x[END_REF] have shown by computation that θ(x) < (1 + ) x for x 2, with = 7.5 × 10 -7 , (2.1) so improving on results of Schoenfeld [START_REF] Schoenfeld | Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II[END_REF].

Without any hypothesis, one knows that 

|θ(x) -x] < α x log 3 x for x x 1 = x 1 (α) (2.2) with α =         
ψ(x) - √ x - 4 3 x 1/3 θ(x) ψ(x) - √ x + 2.14. (2.4)
Proof. In [START_REF] Nicolas | Small values of the euler function and the riemann hypothesis[END_REF]Lemma 2.4] or in [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de riemann (in french)[END_REF]Lemma 3], the above lower bound is given and θ(x)

ψ(x) - √ x is proved for x 121. It remains to check that, for 1 x 121, θ(x) -ψ(x) + √ x < √ 8 -log 2 = 2.1352 . . . holds.

The logarithmic integral.

For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) = x 0 - dt log t = lim ε→0 + 1-ε 0 + x 1+ε dt log t = x 2 dt log t + li(2).
We have the following values: (2.5)

x
The function t → li(t) is an increasing bijection from (1,+∞) onto (-∞,+∞). We denote by li -1 (y) its inverse function that is defined and increasing for all y ∈ R. Note that li -1 (y) > 1 holds for all y ∈ R.

To compute numerical values of li(x), we used the following formula, due to Ramanujan (cf.

[4, p. 126-131]),

li(x) = γ 0 + log log x + √ x ∞ n=1 a n (log x) n with a n = (-1) n-1 n! 2 n-1 n-1 2 m=0 1 2m + 1 .
Let N be a positive integer and s 1 a real number. We have

t s-1 log N t dt = 1 (N -1)! s N -1 li(t s ) - N -1 k=1 (k -1)! s N -1-k t s log k t (2.6)
and, for x → ∞,

li(x) = N k=1 (k -1)! x (log x) k + O x (log x) N +1 .
(2.7)

We shall need the following lemmas that gives bounds for the logarithmic integral. -For u = 6, f is increasing and vanishes for t = 76.54 . . . which proves (2.12).

-For u = 7, f is increasing for t < t 0 = exp(28) = 1.446 . . . × 10 12 and decreasing for t > t 0 .

One computes f (4.96 × 10 12 ) = -259.07 . . . < 0 and (2.13) follows.

-For u = 40/3, f is increasing for t < t 

-1 = L + 1 -L log(1 + log L/L) L 2 + L log(L + log L) .
The denominator is 1 and the numerator is

L + 1 -log L L + 1 -(L -1) = 2 > 0. So f
is increasing and its value for t = 3.28 is 0.0073 . . . > 0, which completes the proof of (2.15).

-Now, let us consider f (t) = li(t log t) -t. One has

f (t) = log t + 1 log(t log t) -1 = 1 -log log t log t + log log t < 0
for t > e e = 15.15 . . ., which shows that f is decreasing for t > e e and, from f (41) = -0.048 . . . < 0, we get (2.16).

-Finally, for t > 1, we set f (t) = t(log t + log log t -1). One has f (t) = log t + log log t + 1/ log t which is positive for t > e so that f is increasing for t > e. As f (t 0 ) = 1 for t 0 = 3.1973 . . ., we assume t > t 0 so that f (t) > 1, L = log t > 1 and log L > 0 hold. We set

y = t -li(f (t)) = t -li(t(log t + log log t -1))
and, by using the inequality log(1 + u) u/(1 + u) (for u > -1), one gets

y log f (t) = log 1 + log L -1 L - 1 L log L -1 L(1 + (log L -1)/L) - 1 L = (L -1)(log L -2) -1 L(L + log L -1) .
For t > e e 2 = 1618.17 . . ., the denominator is positive. The numerator is increasing, and positive for t = 4 678. Therefore, y is increasing for t > 4678. It remains to calculate y(12218) = 0.00106 . . . > 0 to prove (2.17).

Lemma 2.5. The function t → li -1 (t) is defined and increasing for t ∈ R.

-It is concave for t > li(e 2 ) = 4.954 . . ..

-Let a 1 be a real number. For t 31, the function t → li -1 (t) -a(t(log t)) 1/4 is concave.

Proof.

-Let us set

f 1 = li -1 (t), f 2 = (t(log t)) 1/4 , F = f 1 -af 2 and u = li -1 (t) i.e. t = li(u). We have df 1 dt = log u 2 √ u , d 2 f 1 dt 2 = - logu(log u -2) 4u 3/2 , d 2 f 2 dt 2 = - 3 log 2 t + 2 log t + 3 16(t log t) 7/4 .
Let us assume t > li(e 2 ). We have u > e 2 , log u > 2 and d 2 f1 dt 2 < 0 so that f 1 is concave.

-Further, d 2 f 2 dt 2 < 0 so that, if a 0 then F = f 1 -af 2 is concave. Moreover, from (2.9) and (2.8), we have u/ log u < t = li u < u and 0 < -

d 2 f 2 dt 2 3 log 2 u + 2 log u + 3 16(u(1 -(log log u)/ log u)) 7/4 . If 0 < a 1 holds, it suffices to show that d 2 f 2 dt 2 d 2 f 1 dt 2 < 1. By writing L for log u, one gets d 2 f 2 dt 2 d 2 f 1 dt 2 1 4 u 1/4 1 - log L L -7/4 3L 2 + 2L + 3 L(L -2) = 1 4 u 1/4 1 - log L L -7/4 3 + 8 L + 19 L(L -2) . (2.18)
The three factors of the right handside of (2.18) are positive and decreasing on u so that their product is decreasing, and for u = 103, t = 30.77 . . ., it is < 1.

Remark. By using more accurate inequalities, it would be possible to replace the bound t 31 by t 8.42 . . ..

Study of

π r (x) = p x p r .
Without any hypothesis, improving on results of Massias and Robin about the bounds of π r (x) = p x p r (cf. [19, Théorème D]), by using recent improvements on effective estimates of θ(x), we prove Proposition 2.6. Let α, x 1 = x 1 (α) be two real numbers such that 0 < α 1, x 1 89 967 803 and |θ(x) -x| < α x/ log 3 x for x x 1 . Then, for r 0.6 and x x 1 ,

π r (x) C 0 + x r+1 (r + 1) log x + x r+1 (r + 1) 2 log 2 x + 2x r+1 (r + 1) 3 log 3 x + (51α r 4 + 176α r 3 + 222α r 2 + 120α r + 23α + 168)x r+1 24(r + 1) 4 log 4 x (2.19)
with

C 0 = π r (x 1 ) - x r 1 θ(x 1 ) log x 1 - 3α r 4 + 8α r 3 + 6α r 2 + 24 -α 24 li(x r+1 1 ) + (3α r 3 + 5α r 2 + α r + 24 -α )x r+1 1 24 log x 1 + α (3r 2 + 2r -1)x r+1 1 24 log 2 x 1 + α (3r -1)x r+1 1 12 log 3 x 1 - α x r+1 1 4 log 4 x 1 . (2.20) 
Let r 0 (α) be the unique positive root of the equation 3r 4 + 8r 3 + 6r 2 -24α -1 = 0. One has r 0 (α) r 0 (1) = 1.1445 . . . and, for 0.06 r r 0 (α) and x x 1 (α), we have

π r (x) C 0 + x r+1 (r + 1) log x + x r+1 (r + 1) 2 log 2 x + 2x r+1 (r + 1) 3 log 3 x - (2α r 4 + 7α r 3 + 9α r 2 + 5α r + α -6)x r+1 (r + 1) 4 log 4 x (2.21) while, if r > r 0 (α) and x x 1 (α), π r (x) C 0 + x r+1 (r + 1) log x + x r+1 (r + 1) 2 log 2 x + 2x r+1 (r + 1) 3 log 3 x - (51α r 4 + 176α r 3 + 222α r 2 + 120α r + 23α -168)x r+1 24(r + 1) 4 log 4 x , (2.22) 
with

C 0 = π r (x 1 ) - x r 1 θ(x 1 ) log x 1 + 3α r 4 + 8α r 3 + 6α r 2 -α -24 24 li(x r+1 1 
)

- (3α r 3 + 5α r 2 + α r -α -24)x r+1 1 24 log x 1 - α (3r 2 + 2r -1)x r+1 1 24 log 2 x 1 - α (3r -1)x r+1 1 12 log 3 x 1 + α x r+1 1 4 log 4 x 1 . (2.23) Proof. It is convenient to set s = r + 1.
By Stieltjes integral, we have

π r (x) = p x p r = π s-1 (x) = π s-1 (x 1 ) + x x1 t s-1 log t d[θ(t)]
and, by partial integration,

π s-1 (x) = π s-1 (x 1 ) + x s-1 θ(x) log x - x s-1 1 θ(x 1 ) log x 1 - x x1 (s -1)t s-2 log t - t s-2 log 2 t θ(t) dt. (2.24)
Since x x 1 (α) holds, in (2.24), from our assumption, we have θ(x)

x + α x/ log 3 x. Under the integral sign, as s 1 + 1/ log x 1 (α) 1 + 1/ log(89 967 803) = 1.054 . . ., the parenthesis is positive and θ(t) t -α t/ log 3 t, which implies

π s-1 (x) π s-1 (x 1 ) - x s-1 1 θ(x 1 ) log x 1 + x s L + α x s L 4 -(s -1)I 1 + I 2 + (s -1)α I 4 -α I 5 , (2.25) 
with L = log x and, for i 1,

I i = x x1 t s-1 log i t dt = f i (x) -f i (x 1 ) with f i (t) = t s-1 log i t . By (2.6),
one gets

f 1 = li(t s ), f 2 = s li(t s ) - t s log t , f 3 = s 2 2 li(t s ) - s t s 2 log t - t s 2 log 2 t , f 4 = s 3 li(t s ) 6 - s 2 t s 6 log t - s t s 6 log 2 t - t s 3 log 3 t , f 5 = s 4 li(t s ) 24 - s 3 t s 24 log t - s 2 t s 24 log 2 t - s t s 12 log 3 t - t s 4 log 4 t .
Let us set 

f (t) = -(s -1)f 1 + f 2 + (s -1)α f 4 -α f 5 = 3α s 4 -4α s 3 + 24 24 li(t s ) - (3α s 3 -4α s 2 + 24)t s 24 log t - α s(3s -4)t s 24 log 2 t - α (3s -4)t s 12 log 3 t + α t s 4 log 4 t . (2.26) From (2.25), one has π s-1 (x) C 0 + x s L + α x s L 4 + f (x) with C 0 = π s-1 (x 1 ) - x s-1 1 θ(x 1 ) log x 1 -f (x 1 ). Now, s = r + 1 1.6, x s x 1 (α)
π s-1 (x) C 0 + x s sL + x s s 2 L 2 + 2x s s 3 L 3 + (51α s 4 -28α s 3 + 168)x s 24s 4 L 4 (2.27)
which, by substituting r + 1 to s, proves (2. [START_REF] Massias | Bornes effectives pour certaines nfonctions concernant les nombres premiers (in french)[END_REF]) and (2.20).

To get a lower bound for π s-1 (x), in (2.24), we use inequalities θ(x)

x -α x/L 3 , and θ(t) t + α t/ log 3 t. One gets 

f (t) = -(s -1)f 1 + f 2 -(s -1)α f 4 + α f 5 = -3α s 4 + 4α s 3 +
π s-1 (x) C 0 + x s L - α x s L 4 + f (x) with C 0 = π s-1 (x 1 ) - x s-1 1 θ(x 1 ) log x 1 -f (x 1 ). (2.29)
Let us set ϕ(r) = 3r 4 + 8r 3 + 6r 2 -24/α -1, we have ϕ (r) = 12r(r + 1) 2 , ϕ is minimal and negative for r = 0 and has one negative and one positive root, r 0 (α). Note that r 0 (α) is decreasing on α. One computes r 0 (1) = 1.1445 . . ., r 0 (0.5) = 1.4377 . . . and r 0 (0.15) = 2.1086 . . .

The coefficient of li(x s ) in f (x) is -3α s 4 + 4α s 3 + 24 24 = -3α r 4 -8α r 3 -6α r 2 + α + 24 24 = - α ϕ(r) 24 
and changes of sign for r = r 0 (α). For 0.06 r r 0 (α) we have x s x s 1

x 

Proof. When x → ∞, from n = π 1 (x) = li(x 2 ) + O x 2 exp(-a log x) with a > 0 (cf. [17, Lemme B]
), one can see that the asymptotic expansion of x is given by (1.11). In particular,

x = n log n 1 + log log n -1 + o(1) 2 log n , n → ∞. (2.33)
Now, we have to prove the effective bounds (2.32) of x. For convenience, we write L for log n and λ for log log n. We suppose x x 0 = 10 10 + 19. We have n n 0 = π 1 (x 0 ) = 2.22 . . . 10 18 , L = log n > 42.24 and λ = log log n > 3.74.

The upper bound. Let us note f (n) = √ nL 1 + λ 2L . Since t 2 2 log t 1 + 1 2 log t
is increasing as a function of t for t > e, the inequality x f (n) is equivalent to 

x 2 2 log x 1 + 1 2 log x f (n) 2 2 log f (n) 1 + 1 2 log f (n) . ( 2 
n < f (n) 2 2 log f (n) 1 + 1 2 log f (n) .
As we have 2 log

f (n) = L + λ + 2 log(1 + λ/(2L)) L + λ + λ/L, it suffices to show that nL (1 + λ/(2L)) 2 L + λ + λ/L 1 + 1 L + λ + λ/L > n
or, equivalently that

L(1 + λ/(2L)) 2 (L + λ + λ/L + 1) -(L + λ + λ/L) 2 > 0.
But the above left hand side is equal to

L + λ 2 4 1 - 3 L - 4 L 2 + λ 3 4L 1 + 1 L ,
which is positive for L 4, i.e. for n e 4 .

The lower bound. First, from (2.30), for x x 0 , We have to prove that x f (n) holds for n n 0 . From the increasingness of the mapping

n = π 1 (x) x 2 2 log x + x 2 4 log 2 x 1 + 1 log x 0 + 107 40 log 2 x 0 x 2 2 log x 1 + a 2 log x (2.
t → t 2 2 log t 1 + a 2 log t
, it suffices to show that 

x 2 2 log x 1 + a 2 log x f (n) 2 2 log f (n) 1 + a 2 log f (n) . ( 2 
n nL(1 + bλ/L) 2 L + λ + c 0 λ/L 1 + a L + λ + c 0 λ/L i.e. L 1 + bλ L 2 L + λ + c 0 λ L + a -L + λ + c 0 λ L 2 0 (2.38)
and equivalently, by expanding (2.38) and dividing by λL, that

2b -1 + a λ + (b 2 + 2b -1)λ + 2ab L + b 2 λ 2 + ab 2 λ L 2 + c 0 - 1 L + 2λ(b -1) L 2 + b 2 λ 2 L 3 - c 2 0 λ L 3 0. (2.39)
The coefficient of c 0 in (2.39) satisfies

c 0 - 1 L + 2λ(b -1) L 2 + b 2 λ 2 L 3 - c 0 L + c 0 λ L 2 2b + b 2 λ 0 L 0 -2 - c 0 L - dλ L 2 with d = 0.88 < c 0 (2 -2b -b 2 λ 0 /L 0 ) = 0.8807 .
. . so that it suffices to show that

B = 2b -1 + a λ + (b 2 + 2b -1)λ + 2ab L + b 2 λ 2 + (ab 2 -d)λ L 2 - c 0 L 0,
for L = exp(λ) and λ λ 0 . For that, one writes c 0 = c 1 + c 2 + c 3 with c 1 = 0.44 and c 2 + c 3 = 0.26.

Then,

B = 2b -1 + a λ - c 1 L + (b 2 + 2b -1)λ + 2ab -c 2 L + b 2 λ 2 + (ab 2 -d)λ -c 3 L L 2 . (2.40)
It is easy to see that a/λ -c 1 /L = 1.049/λ -0.44e -λ is decreasing for λ > 0 and its value for λ = λ 0 is equal to 0.2698 . . ., so that the square bracket in (2.40) is negative.

For λ 0 λ 4. 

2.4

The Riemann ζ function and explicit formulas for ψ and Π 1 .

Explicit formulas.

We shall use the two explicit formulas 

ψ(x) = x + Λ(x) 2 - ρ x ρ ρ -log(2π) - 1 2 log 1 - 1 x 2 , x > 1 (2.
Π 1 (x) = li(x 2 ) + xΛ(x) 2 log x - ρ ∞ -1 x ρ-t ρ -t dt -log 12 + ∞ x dt (t 2 -1) log t , x > 1 (2.
ζ(s) = 1 s -1 + ∞ m=0 γ m m! (s -1) m .
The 

δ m+1 = (m + 1) γ m m! + m-1 j=0 γ j δ m-j j! .
These coefficients allow to compute the sums ρ 1 ρ m , see [5, p. 207 and 272]:

ρ 1 ρ m = 1 + δ m -ζ(m) 1 - 1 2 m , m 2.
(2.45)

For m = 2, we get Lemma 2.11. Let t be a complex number satisfying |t| < 1/2. We have

ρ 1 ρ 2 = 1 - π 2 8 + 2γ 1 + γ 2 0 = -0.
f (t) = ((1 -t 2 )(1 -2t)) -1/2 = ∞ n=0 c n t n with 0 c n 4 3 2 n (2.49) and, if |t| 1/6, (f (t)) 1 3 and | (f (t))| 2 3 .
(2.50)

Proof. We have (1 -t) -1/2 = n 0 a n t n with 0 a n = (-1) n (-1 2 )(-3 2 ) . . . (-2n-1 2 ) n! = 1 2 2n 2n n 1.
Therefore,

0 c n = n/2 m=0 a m (2 n-2m a n-2m ) 2 n ∞ m=0 1 4 m = 2 n+2 3 , which proves (2.49). If |t| 1/6, then ∞ n=1 c n t n ∞ n=1 c n 6 n 4 3 ∞ n=1 2 6 n = 2 3 whence (f (t)) = 1 + ∞ n=1 c n t n 1 - ∞ n=1 c n t n 1 - 2 3 = 1 3
and

| (f (t))| = ∞ n=1 c n t n ∞ n=1 c n t n 2 3
which completes the proof of Lemma 2.11.

Lemma 2.12. Under the Riemann Hypothesis, with the notation of (2.49), we have

ρ 1 |ρ(1 + ρ)| = - ∞ n=0 c n ρ 1 ρ n+2 .
(2.51)

Proof. Let ρ = 1/2 + ıγ ZZZ be a non trivial root of ζ(s) under the Riemann Hypothesis. First we observe that f defined by (2.49) satisfies

- 1 ρ 2 f 1 ρ 2 = 1 ρ 4 (1 -1/ρ 2 )(1 -2/ρ) = 1 ρ(1 -ρ)(ρ + 1)(2 -ρ) = 1 |ρ(1 + ρ)| 2 (2.52) so that -f (1/ρ)/ρ 2 is real. Let us write f 1 ρ = a + bı.
As, by (2.46), |1/ρ| < 1/14, Lemma 2.11 gives a 1/3, |b| 2/3 and

- 1 ρ 2 f 1 ρ = - a + bı (1/2 + ıγ) 2 = (γ 2 -1/4 + ıγ)(a + bı) (1/4 + γ 2 ) 2 .
Thus the sign of -f (1/ρ)/ρ 2 is the sign of a(γ 2 -1/4) -bγ. As

a(γ 2 -1/4) -bγ 1 3 γ 2 - 1 4 - 2 3 |γ| = 1 3 |γ| - 2 + √ 5 2 |γ| - 2 - √ 5 2 > 0
we have -f (1/ρ)/ρ 2 > 0, which, with (2.52), shows that

1 |ρ(1 + ρ)| = - 1 ρ 2 f 1 ρ .
Therefore, from Lemma 2.11, we get 

ρ 1 |ρ(1 + ρ)| = - ρ 1 ρ 2 ∞ n=0 c n ρ n (2.
= -(ρ -1/2) 2 , ρ 1 γ 2 = ρ - (1 -1/(2ρ)) -2 ρ 2 = - ∞ m=0 m + 1 2 m ρ 1 ρ m+2 .
To calculate the above series, choose some M > 0. For m M , use (2.45) and, for m > M , use Lemma 2.10 to get an upper bound of the remainder.

Computation of h(n)

For n small, a table of h(n) for n 10 6 has been precomputed by the naive algorithm described in [7, §1.4].

For the computation of h(n) for n large, the algorithm described in [START_REF] Deléglise | Maximal product of primes whose sum is bounded[END_REF] is used. Let us recall some points about it.

Computing an isolated value of h(n)

or log h(n) for n possibly large.

-The factorization of h(n). Let k = k(n) be defined above by Eq. (1.16). The value h(n) may be written as the product (cf. [7, §8]:

h(n) = N k • G(p k , n -σ k ), (3.1) 
where G(p, m) is defined in [START_REF] Deléglise | Landau's function for one million billions[END_REF] by

G(p, m) = max Q 1 Q 2 • • • Q s q 1 q 2 • • • q s ,
the maximum being taken over primes Q 1 , Q 2 , . . . , Q s , q 1 , q 2 , . . . , q s , s 0, satisfying

2 q s < q s-1 < • • • < q 1 p k < Q 1 < Q 2 < • • • < Q s and s i=1 (Q i -q i ) m.
Of course, h(n) is an integer, and Equation (3.1) says that the prime factors of h(n) are ({p 1 , p 2 , . . . , p k } \ {q 1 , q 2 , . . . , q s }) ∪ {Q -Computing G(p k , n -σ k ). The execution of the algorithm described in [9, §9] is relatively fast and shows that s is small and that, with the exception of the smallest one, q s , all primes of {q 1 , q 2 , . . . , q s } ∪ {Q -Computing p k and σ k . For small values of n, say n 10 18 the trivial method may be used :

we add the first j primes until the sum σ j exceeds n. If n is very large, say n > 10 24 this is impracticable. But the Lagarias-Miller-Odlysko algorithm for computing π(x) improved by Deléglise-Rivat to cost O x 2/3 / log 2 x operations (cf. [START_REF] Deléglise | Computing pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method[END_REF]), may be adapted to compute at the same coast sums of the form S f (x) = p x f (p) where f is a completely multiplicative function.

Choosing f (x) = x, we are able to compute π 1 (x) = p x p with the same complexity, and also to compute p k and s k in time O n 1/3 /(log n) 5/3 (cf. [7, §8] for more details).

-Computing log(h(n)). Once p k , s k and G(p k , n -s k ) are computed, from the prime factors

(3.2) of h(n) we get log h(n) = θ(p k ) + 1 j s log(Q j ) - 1 j s log(q j ). (3.3)
The last two terms of this sum are obtained by computing a small number of log's values, the (log q i ) 1 i s and (log Q i ) 1 i s . It remains to compute θ(p k ). If p k is small, say p k 10 10 , we may use the naive algorithm, enumerate the primes up to p k and add their logarithms. If p k is large, the naive algorithm is too slow.

To compute θ(x) more efficiently, we first compute ψ(x) in O x 2/3+ , using the algorithm given in [11], and then we add the difference ψ(x) -θ(x) which is easily computed in time O x 1/2+ by the naive algorithm (cf. [25]). Some values of θ(x) for x up to 10 18 are given in [26]. Figure 2 shows, for 2 n 18, the largest prime p k < 10 n , θ(p k ) = log h(σ k ) and b σ k .

The computations we did for this work.

Computation of all the b σ k for p k 10 000 000 019.

For the proof of (5.45) and ( 5 

Computation of isolated values of h(n).

For the proof of (5.47) in Proposition 5.11 we compute isolated values of b n for n n 1 = 305 926 023. Here also, for these small values of n we dont't need the method presented in [25] to speedup the computations of the θ(p k ) values. We content ourselves by using a precomputed Let q denote an arbitrary prime number. Thus ϕ(q) is 0 for 2 q p k and 0 for q p k+1 .

table of (σ k , θ k ) values. The essential coast of each computation of h(n) is then reduced to the coast of computation of G(p k , n -σ k ).
Then, for each squarefree integer N ,

log N -ε (N ) = q|N ϕ(q) q|N, q p k ϕ(q) q p k ϕ(q) = log N k -εσ k = log N k+1 -εσ k+1 . (4.1)
We write 

n = ασ k + βσ k+1 with 0 α 1 and β = 1 -α. (4.2)
N = h(n) yields log h(n) ε (h(n)) + log N k -ε σ k εn + log N k -ε σ k = ε(α σ k + β σ k+1 ) + α(log N k -εσ k ) + β(log N k+1 -εσ k+1 ) = α log N k + β log N k+1 . (4.3) Let us define Φ(t) on each interval [σ k , σ k+1 ] by Φ(t) = li -1 (t) -min(b σ k , b σ k+1 )(t log t) 1/4 . ( 4 
N k = log h(σ k ) = li -1 (σ k ) - b σ k (σ k log σ k ) 1/4 Φ(σ k ) and log N k+1 = log h(σ k+1 ) Φ(σ k+1 ), which, from (4.3) and (4.2), implies log h(n) α log N k + β log N k+1 α Φ(σ k ) + β Φ(σ k+1 ) Φ(ασ k + βσ k+1 ) = Φ(n).
With (1.12) 

is true for each n ∈ [n 1 , n 2 ]. Proof. We have b n li -1 (n 2 ) -log h(n 1 ) (n log n) 1/4 . If li -1 (n 2 ) -log h(n 1 ) 0,
1 log σ k 1 log n > 1 (1 + 3 × 10 -10 ) log σ k (4.8) and li -1 (n) -li -1 (σ k ) 1.14 log σ k . (4.9) 
Proof. First, from Bertrand's postulate, we have p k+1 < 2 p k and

n -σ k σ k+1 -σ k = p k+1 < 2p k .
From Lemma 2.8, as σ k = π 1 (p k ) holds, we have

p k σ k log σ k 1 + log log σ k 2 log σ k 1 + log log n 0 2 log n 0 σ k log σ k < 1.045 σ k log σ k so that n σ k+1 < σ k + 2p k < σ k + 2.09 σ k log σ k = σ k 1 + 2.09 log σ k σ k (4.10)
holds. Further, one gets

log n log σ k + 2.09 log σ k σ k = log σ k 1 + 2.09 √ σ k log σ k log σ k 1 + 2.09 √ n 0 log n 0 < (1 + 3 × 10 -10 ) log σ k which implies (4.8).
Let us set f (t) = li -1 (t). From Lemma 2.5, we know that

f (t) = log li -1 (t) 2 li -1 (t)
is positive and decreasing for li -1 (t) > e 2 . By the mean value theorem, one has

f (n) -f (σ k ) (n -σ k )f (σ k )
and, from (4.10) and (2.16),

li -1 (n) -li -1 (σ k ) (n -σ k ) log li -1 (σ k ) 2 li -1 (σ k ) 2.09 σ k log σ k log(σ k log σ k ) 2 √ σ k log σ k = 1.045 log σ k 1 + log log σ k log σ k 1.045 1 + log log n 0 log n 0 log σ k = 1.1376 . . . log σ k .
which proves (4.9).

Proof of Theorem 1.1

Let x satisfy p k x < p k+1 . Then, from (1.15) and (1.17)

σ k = π 1 (x), log h(σ k ) = log N k = θ(x)
and, from (1.12),

b σ k = li -1 (π 1 (x)) -θ(x) (π 1 (x) log π 1 (x)) 1/4 .
The aim of §5.1-5.4 is to obtain, under the Riemann Hypothesis, an effective estimate of the numerator of b σ k .

Estimate of li(θ 2 (x)).

Lemma 5.1. Under the Riemann Hypothesis, for x x 0 = 10 10 + 19,

li(θ 2 (x)) = li(x 2 ) + x log x (θ(x) -x) + K 1 (x) (5.1) 
with 0 K 1 (x) 0.0008 x log 3 x.

Proof. Let us assume that x x 0 holds. Applying Taylor's formula to the function t → li(t 2 )

yields li(θ 2 (x)) = li(x 2 ) + x log x (θ(x) -x) + K 1 (x) with K 1 (x) = 1 log v - 1 log 2 v (θ(x) -x) 2 2 (5.2)
where v satisfies v min(x, θ(x)). From (2.3), we get

θ(x) x 1 - log 2 x 8π √ x 1 - log 2 x 0 8π √ x 0 0.9997
and v 0.9997 x holds. By setting ε = -log 0.9997, one gets log v log x -ε and

0 < 1 log v - 1 log 2 v < 1 log v 1 log x -ε = 1 log x 1 + ε log x -ε 1 log x 1 + ε log x 0 -ε 1.000 014 log x .
Finally, (2.3) and (5.2) imply

0 K 1 (x) 1.000 014 2 log x 1 8π √ x log 2 x 2 0.000 792 x log 3 x
which completes the proof of (5.1).

Estimate of

Π 1 (x) -π 1 (x).
Lemma 5.2. Under the Riemann Hypothesis, for x x 0 = 10 10 + 19,

Π 1 (x) = p m x p m m = li(x 2 ) - ρ x ρ+1 (ρ + 1) log x + xΛ(x) 2 log x + K 2 (x) (5.3) with |K 2 (x)| 0.04625 x 3/2 log 2 x .
Proof. In view of (2.42), we first consider the integral ∞ -1

x ρ-t ρ -t dt where ρ is a non trivial zero of ζ. By partial integration, one gets

∞ -1 x ρ-t ρ -t dt = x ρ+1 (ρ + 1) log x + J ρ (x) with J ρ (x) = x ρ log x ∞ -1 e -t log x (ρ -t) 2 dt and, since (ρ) = 1/2, |J ρ (x)| √ x log x ∞ -1 e -t log x (ρ) 2 dt = x 3/2 (log 2 x) (ρ) 2 .
Let us set J(x) = ρ J ρ (x). Applying Lemma 2.13 yields

|J(x)| = ρ J ρ (x) x 3/2 log 2 x ρ 1 (ρ) 2 0.046 249 3 x 3/2 log 2 x and (2.42) imply Π 1 (x) = li(x 2 ) + xΛ(x) 2 log x - ρ x ρ+1 (ρ + 1) log x + K 2 (x) (5.4) with K 2 (x) = -log 12 -J(x) + ∞ x dt (t 2 -1) log t . For t x 2, 1 (t 2 -1) log t 4 3t 2 log x and ∞ x dt (t 2 -1) log t 4 3 log x ∞ x dt t 2 = 4 3 x log x so that |K 2 (x)| x 3/2 log 2 x 0.046 249 3 + 4 log x 3x 5/2 + (log 12) log 2 x x 3/2 . ( 5.5) 
In (5.5), the parenthesis is decreasing for x x 0 and its value for x = x 0 is < 0.04625, which, together with (5.4), completes the proof of (5.3).

Lemma 5.3. For x 2, Π 1 (x) -π 1 (x) = x log x (ψ(x) -θ(x)) - κ k=2 B k with κ = log x log 2 (5.6) 
and

B k = 1 k x 1/k 2 t k-1 log 2 t (k log t -1)θ(t) dt. (5.7) 
Proof. From the definition of Π 1 ,

Π 1 (x) -π 1 (x) = κ k=2 p x 1/k p k k = κ k=2 π k (x 1/k ) k ,
and, by Stieltjes integral,

π k (y) = y 2 - t k log t d[θ(t)] = θ(y)y k log y - y 2 t k-1 log 2 t (k log t -1)θ(t) dt so that Π 1 (x) -π 1 (x) = κ k=2 θ(x 1/k )x k(log x)/k - κ k=2 1 k x 1/k 2 t k-1 log 2 t (k log t -1)θ(t) dt = x log x ψ(x) -θ(x) - κ k=2 B k . 5.3 Bounding +∞ k=2 B k .
Proposition 5.4. Under the Riemann Hypothesis, for x x 0 = 10 10 + 19 and κ = log x log 2 , B k defined by (5.7) satisfies

2x 3/2 3 log x -0.327 x 3/2 log 2 x κ k=2 B k 2x 3/2 3 log x + 0.31 x 3/2 log 2 x .
(5.8)

The proof of this proposition is rather technical. We begin by establishing some lemmata. For k κ, one has x 1/k x log 2/ log x = 2 and, for t 2 and k 2, one has k log t > 1, so that B k > 0 holds.

Lemma 5.5. For x x 0 , we have the bounds

0 κ k=3 B k 1.066 x 4/3 log x .
(5.9)

Proof. First, by using (2.1) and (2.6),

B k 1 + k x 1/k 2 kt k log t dt = (1 + ) li(x 1+1/k ) -li(2 k+1 ) (1 + ) li(x 1+1/k ) with = 7.5 • 10 -7
. Now, by (2.11),

B k (1 + ) x 1+1/k log x 1+1/k 1 + 1.101 log x 0 1.05 x 1+1/k (1 + 1/k) log x .
(5.10) Hypothesis x x 0 implies κ 33. Further, we have 

κ k=3 B k 1.05 x 4/3 log x 26 k=3 x 1/k-1/3 1 + 1/k + log x log 2 x 1/27-1/3
I a = 2 a + 2 x (a+2)/2 log x - 2aηx (a+2)/2 (a + 2) 2 log 2 x + δ a (5.12)
with 1 < η < 1.101 and -3.15 < δ a < -2.88.

Proof. From (2.6), we have F (t)t a dt = -a li(t 2+a ) + t 2+a / log t and

I a = - a 2 li(x (a+2)/2 ) + x (a+2)/2 log x + δ a with δ a = a 2 li(2 a+2 ) - 2 a+2 2 log 2
and δ a satisfies -3.15 < δ a < -2.88. Further, by using inequalities (2.8) and (2.11), for x x 0 , one gets li(x (a+2)/2 ) = 2 x (a+2)/2 (a + 2) log x + η 4 x (a+2)/2 (a + 2) 2 log 2 x with 1 < η < 1.101 and, from there we get (5.12).

In view of applying the explicit formula (2.41), we shall need an estimate of S = ρ I ρ /ρ where ρ is a non trivial zero of ζ. Proof. By partial integration, one gets Now, under the integral sign, we may replace ψ(t) by its value in the explicit formula (2.41), and using equality (2.43) of Lemma 2.9, we get

I ρ = 1 2 √ x 2 F (t)t ρ dt = 1 2 √ x 2 2t log t - t log 2 t t ρ dt = x (ρ+2)/2 ρ + 1 2 log x - 2 log 2 x - 2 ρ+1 ρ + 1 2 log 2 - 1 log 2 2 - √ x 2 t ρ+1 2(ρ + 1) F (t)
J = I 1 -S -J 1 with S = ρ 1 ρ I ρ and J 1 = 1 2 √ x 2 F (t) log(2π) + 1 2 log 1 - 1 t 2 dt.
5.4 Estimate of li(θ 2 (x)) -π 1 (x). with c defined in (1.13).

Proof. From (5.1) and ( 5.

3) we deduce li(θ 2 (x)) = Π 1 (x) - xΛ(x) 2 log x + ρ x ρ+1 (ρ + 1) log x -K 2 (x) + x log x θ(x) -x + K 1 (x) = π 1 (x) + ρ x ρ+1 (ρ + 1) log x + K 1 (x) -K 2 (x) + A(x) (5.18) 
with

A(x) = Π 1 (x) -π 1 (x) - xΛ(x) 2 log x + x log x θ(x) -x .
Further, from Equation (5.6) of Lemma 5.3 and from the explicit formula (2.41) of ψ(t),

A(x) = x log x ψ(x) -x - xΛ(x) 2 log x - κ k=2 B k = x log x - ρ x ρ ρ -log(2π) - 1 2 log 1 - 1 x 2 - κ k=2 B k and (5.18) implies li(θ 2 (x)) = π 1 (x) - ρ x ρ+1 ρ(ρ + 1) log x + K 3 (x) with K 3 (x) = K 1 (x) -K 2 (x) - x log x log(2π) + 1 2 log 1 - 1 x 2 - κ k=2 B k .
For x x 0 , we have 0 < log(2π) + 1 2 log 1 -1 x 2 < log(2π) 1.84 and, from (5.1), (5.3) and (5.8), one gets the upper bound

K 3 (x) 0.0008 x log 3 x + 0.04625 x 3/2 log 2 x - 2 x 3/2 3 log x + 0.327 x 3/2 log 2 x = - 2 x 3/2 3 log x + x 3/2 log 2 x 0.04625 + 0.327 + 0.0008 log 5 x x 1/2 - 2 x 3/2 3 log x + 0.426 x 3/2 log 2 x
for x x 0 . In the same way, one gets the lower bound for x x 0 :

K 3 (x) - 0.04625 x 3/2 log 2 x - 1.84 x log x - 2 x 3/2 3 log x - 0.31 x 3/2 log 2 x = - 2 x 3/2 3 log x - x 3/2 log 2 x 0.31 + 0.04625 + 1.84 log x x 1/2 - 2 x 3/2 3 log x -0.31 + 0.04625 + 1.84 log x 0 x 1/2 0 x 3/2 log 2 x - 2 x 3/2 3 log x -0.3567 x 3/2 log 2 x
which completes the proof of Proposition 5.8.

Bounds of b n for n large.

For convenience, in this and the next section we will use the following notation: 

x = p k x 0 = 10 10 + 19, σ = σ k = π 1 (x), L = log σ L 0 , λ = log L λ 0 , ν = λ/L ν 0 . ( 5 
(x)) π 1 (x) -δ = σ -δ with δ = 2 3 -c x 3/2 log x 1 - 0.69 log x . ( 5 

.21)

From (1.17), we have θ(x) = log N k = log h(σ). As σ = p x p < x 2 , we have log σ < 2 log x and

1 -0.69/ log x > 1 -1.38/ log σ 1 -1.38λ/(λ 0 L) = 1 -1.38ν/λ 0 > 1 -0.37 ν so that δ 2 3 -c x 3/2 log x (1 -0.37 ν). (5.22) 
Further, since the function t → t 3/2 / log t is increasing, from (2.32), one gets

x 3/2 log x (σ log σ) 3/4 (1 + 0.365 ν) 3/2 1 2 L + 1 2 λ + log(1 + 0.365 ν) (σ log σ) 3/4 (1 + 0.365 ν) 3/2 1 2 L + 1 2 λ + 0.365 ν
which, as the denominator satisfies

L 2 + λ 2 + 0.365 ν = L 2 1 + ν 1 + 0.73 L L 2 1 + ν 1 + 0.73 L 0 L 2 (1 + 1.018 ν), yields x 3/2 log x 2 σ 3 L 1/4 (1 + 0.365 ν) 3/2
1 + 1.018 ν .

(5.23)

For t li(e 2 ) = 4.54 . . ., the function f (t) = li -1 (t) is increasing and concave (cf. Lemma 2.5)

and we have

f (t) = log(li -1 (t)) 2 li -1 (t) and f (t) = log(li -1 (t))(2 -log(li -1 (t)) 4(li -1 (t)) 3/2 .
Inequality (5.21) with the increasingness of f gives f (li(θ 2 (x))) f (σ -δ). Applying Taylor's formula, with the concavity of f we get

log h(σ) = θ(x) = f (li(θ 2 (x)) f (σ -δ) li -1 (σ) -δf (σ) (5.24) 
and we need a lower bound for f (σ). From (2.15), one has li -1 (σ) < σ(L + λ). As the function 

t → log(t)/(2 √ t) is decreasing on t, one gets f (σ) = log(li -1 (σ)) 2 li -1 (σ) log(σ(L + λ)) 2 σ(L + λ) = L + λ + log(1 + ν) 2 σ(L + λ) L + λ 2 σ(L + λ) = L(1 + ν) 2 √ σ ( 
δf (σ) 2 3 -c (σ log σ) 1/4 (1 + 0.365 ν) 3/2 (1 + ν) 1/2 (1 -0.37 ν) 1 + 1.018 ν . (5.26) 
We observe that

(1 + 0.365 ν) 3 (1 + ν)(1 -0.37 ν) 2 -(1 + 1.018 ν) 2 (1 -0.3405) 2 = 0.31552675 ν 2 + 0.09873042 ν 3 -0.198647103641 ν 4
+ 0.0253884884125 ν 5 + 0.0066570534125 ν 6 .

The above polynomial is positive for 0 < ν 1, which implies that in (5.26) the fraction is

> 1 -0.3405 ν and δf (σ) 2 3 -c (σ log σ) 1/4 (1 -0.3405 ν).
Therefore, from the definition (1.12) of b n and (5.24), for p k x 0 , we have 

b σ k = b σ δf (σ) (σ log σ) 1/4 2 3 -c 1 -0.3405 log log σ k log σ k > 2 3 -c -0.2113 log log σ k log σ k . ( 5 
(σ) = θ(x) f (σ -η) = li -1 (σ) -ηf (σ) + η 2 2 f (ξ)
with σ -η ξ σ. (5.30)

To estimate (η 2 /2)f (ξ), we need a crude upper bound for η. From (5.29), one has .

η 2 3 + c 2(σL) 3/4 L (1 + 1.06 ν 0 ) 1.56 σ 3/4 L 1/4 < σ 2 . ( 5 
But the above fraction is maximal for σ = n 0 and, therefore, is < 0.0003, so that, log h(σ k ) = log(h(σ))

li -1 (σ k ) - Upper bound.

As for the lower bound, but using (5.28) instead of (5. Here, for f (σ), we need a sharper upper bound than the one of (5.33). From (2.15) and (2.17 As (σL) 1/4 /L → ∞, with (5.43), this yields (5.39).

5.7 Bounds of b n for n small. 

  -6 log log n + 9 + o(1) 8 log 2 n . (1.11) Let us introduce the sequence (b n ) defined, for n 2, by log h(n) = li -1 (n) -b n (n log n) 1/4 i.e. b n = li -1 (n) -log h(n) (n log n) 1/4, ρ runs over the non trivial roots of the Riemann ζ function. The computation of the above numerical value is explained below in §2.4.2.

(

  ii) b 17 = 0.49795 . . . b n b 1137 = 1.04414 . . . for n 2. 0.620 . . . lim inf b n lim sup b n 2 3 + c = 0.712 . . .. (vi) For n tending to infinity,

  1/k ) are the Chebyshev functions.

  function and ρ runs over the non-trivial roots of the Riemann ζ function.

  220 822 442 581 729 257 = 2.22 . . . 10 18 L 0 = log n 0 = 42.244 409 270 801 490 . . . λ 0 = log L 0 = 3.743 472 020 096 020 . . . . ν 0 = λ 0 /L 0 = 0.088614 . . .

  35) with a = 1.049. This time, we set f (n) = √ nL(1 + b λ/L), with b = 0.365. One has 2 log f (n) = L + λ + 2 log(1 + bλ/L). By using the inequality log(1 + u) u/(1 + u 0 ) valid for 0 u u 0 , one has 2 log f (n) L + λ + c 0 λ/L with c 0 = 0.7 < 2b/(1 + bλ 0 /L 0 ) = 0.707 . . . (2.36)

3 one chooses c 2

 2 = 0.26, c 3 = 0 and one has(b 2 + 2b -1)λ + 2ab -c 2 (b 2 + 2b -1)λ 0 + 2ab -c 2 = -0.0062 . . . < 0 and b 2 λ + (ab 2 -d) 4.3b 2 + (ab 2 -d) = -0.167 . . ., so that B is negative.For λ > 4.3, one chooses c 2 = 0.18, c 3 = 0.08 and one has(b 2 + 2b -1)λ + 2ab -c 2 < 4.3(b 2 + 2b -1) + 2ab -c 2 = -0.0023 . . . < 0.The inequality λ 2 4e λ-2 = 4L/e 2 implies b 2 λ 2 -c 3 L (4b 2 e -2 -c 3 )L = -0.0078 . . . L < 0 and, as we also have ab 2 -d = -0.74 . . . < 0, we conclude that B is still negative, which completes the proof of Lemma 2.8.

  41) (cf. [16, p. 334 and p. 353] with r = 0 and ζ (0)/ζ(0) = log(2π)) and

Lemma 2 . 9 .

 29 42) (cf. [16, p. 360 and 361], with R = 1 and ζ(-1) = -1/12). In connection with (2.41) we shall use the following lemma (cf. [15, p. 169 Théorème 5.8.(b)] or [14, p. 162 Theorem 5.8.(b)]): If a, b are fixed real numbers satisfying 1 a < b < ∞, and g any function with a continuous derivative on the interval [a, b], then also have (cf. [13, p. 67] or [5, p. 272 ]) coefficients γ m are defined by the Laurent expansion of ζ(s) around 1 (cf. [5, §10.3.5]) :

first values of γ m areγ

  m = 0.57721 . . . -0.07281 . . . -0.00969 . . . 0.00205 . . . 0.00232 . . . The coefficients δ m are defined by δ 1 = γ 0 , δ 2 = 2γ 1 + γ 2 0 , and, for m 1,

  .46) in Proposition 5.11 we need to compute b σ k for all the primes p k 10 10 + 19. The sophisticated method presented in [25] to compute θ(p k ) is useless because each value θ(p k ) we need is obtained at once from the previous one θ(p k-1 ) by adding log p k . We enumerate the 455 052 512 primes up to p 455052712 = 10 000 000 019, computing for each of them σ k , log h(σ k ) = θ(p k ) and b σ k . This was the most expansive computation we did. It took about 7 hours.

4Lemma 4 . 1 .

 41 Estimates of b n In the proof of Theorem 1.1 we shall use Lemmas 4.1-4.4. The first of these establishes a concavity's property (cf. Figure 1 which displays the graph of (n, b n ) for 2 n 100). Let b n be defined by (1.12) and k = k(n) by (1.16). For each n 2, if min(b σ k , b σ k+1 ) 1, we have b n min(b σ k , b σ k+1 ). Proof. Computation shows that b n min(b σ k , b σ k+1 ) is satisfied if n < 41 = σ 6 . Thus we may suppose n 41. Let us set ε = (log p k+1 )/p k+1 . The function ϕ(t) = log t -εt is concave for t > 1. For k 2, one has ϕ(2) = log 2 -2 log p k+1 /p k+1 log 2 -2 log 5/5 > 0 and ϕ(p k+1 ) = 0.

Figure 1 :

 1 Figure 1: Graph of (n, b n ) 2 n 100 . The red points are the (σ k , b σ k ) points.

. 4 )

 4 Since min(b σ k , b σ k+1 ) 1 and σ k 31 are assumed, from Lemma 2.5, Φ is concave on [σ k , σ k+1 ]. Moreover, from the definition of b σ k and b σ k+1 , one has log

then b n 0 and ( 4 . 7 )Lemma 4 . 4 .

 4744 holds. If li -1 (n 2 ) -log h(n 1 ) > 0, (4.7) results from (4.6) and the decreasingness of c + 2/3 + µ log log n/ log n for n 16. Let p k satisfy p k x 0 = 10 10 + 19, σ k = p p k p n 0 = π 1 (x 0 ), and n be an integer such that σ k n σ k+1 . Then

Lemma 5 . 7 .

 57 Let us note S = ρ I ρ ρ. Under the Riemann Hypothesis, for x x 0 , |S| 0.148 x 5/4 log x .

  5.25) and (5.22), (5.23) and (5.25) imply

2 3 + 3 log log σ k log σ k 2 3 -

 333 c (σ k log σ k ) 1/4 1 + 1.061 log log σ k log σ k and, from (1.12) and (1.13), Bounds of b n for n n 0 . Let us recall that σ k is defined by σ k n < σ k+1 . From (5.35), it follows that b σ k < 2/3 + c + 0.757 ν 0 < 0.78 < 1 and we may apply Lemma 4.1 so that, from (5.27), c -0.2113 log log n log σ k . Now, from Lemma 4.4, 1/ log σ k < (1 + 3 × 10 -10 )/ log n holds, which proves the lower bound of (5.20).Note that c + 0.22 log log n/ log n c + 0.22ν 0 < 2/3 which implies that the lower bound in (5.20) is positive so that, for n n 0 , b n > 0 and li -1 (n) -log h(n) > 0 hold. Therefore, from the definition (1.12) of b n , one hasb n = li -1 (n) -log h(n) (n log n) 1/4 li -1 (n) -log h(n) (σ k log σ k ) 1/4 li -1 (σ k+1 ) -log h(σ k ) (σ k log σ k ) 1/4 = τ k + b σ k (5.36)

  30) and(5.32) yield log h(σ) = li -1 (σ) -ηf (σ) + O (1) (5.42) which implies b σ k = li -1 (σ) -log h(σ) (σL) 1/4 = ηf (σ) + O (1) (σL) 1/4 .(5.43)

  ), for σ tending to infinity, we have li-1 (σ) = σ(L+λ+O (1)), log(li -1 (σ)) = L+λ+log(1+(λ+O (1))/L) = L + λ + O (1), li -1 (σ) = √ σL(1 + (λ + O (1))/(2L)) and f (σ) = log(li -1 (σ)) li -1 (σ) = L + λ + O (1

Proposition 5 . 11 . 2 .

 5112 Let us recall that n 0 = π 1 (10 10 + 19) and that b n is defined by (1.12). The following assertions hold 1. For n, 2 n < n 0 b 17 = 0.49795 . . . b n b 1137 = 1.04414 . . . (5.45) For 78 n < n 0 , b n b 100 = b σ9 = 0.62328 . . . > 2/3 -c (5.46) 3. For 157 933 210 n n 0 , b n < 2 3 + c + 0.77 log log n log n . (5.47) Proof. First, we calculate b σ k for 2 σ k < n 0 (cf. §3.2). For k 9, b 100 = b σ9 = 0.62328 . . . b σ k b 31117 = b σ112 = 0.88447 . . . < 1.

  1.1. §2.1 is devoted to effective estimates in prime number theory, §2.2 deals with the logarithmic integral while §2.3 give effective estimates for π r (x) = p x p r and more specially for π 1 (x). In §2.4 are recalled two explicit formulas (cf. (2.41) and (2.42)) of the Prime Number Theorem, some results about the roots of the Riemann ζ function, and the computation of the constant c (cf.

  1 = exp(80/11) = 1440.47 . . . and decreasing for t > t 1 .

	Therefore, (2.14) results from the negativity of f (t 1 ) = -0.0033 . . .
	Lemma 2.4. If t 3.28,
			li -1 (t) < t(log t + log log t),	(2.15)
	for t > 41,		
			li -1 (t) > t log t	(2.16)
	and, for t > 12 218,	
			li -1 (t) > t(log t + log log t -1).	(2.17)
	Proof.		
	-For t e, let us consider the function f (t) = li(t(log(t) + log log t)) -t. By noting log t by L,
	we have		
	df dt	=	log t + 1 + log log t + 1/ log t log(t(log t + log log t))

  Let us assume that x x 0 = 10 10 + 19 and n = π 1 (x) hold. Then x satisfies

	Corollary 2.7. For x 110 117 910,							
	π 1 (x)	x 2 2 log x	+	x 2 4 log 2 x	+	x 2 4 log 3 x	+	107 x 2 160 log 4 x	(2.30)
	and, for x 905 238 547,									
	π 1 (x)	x 2 2 log x	+	x 2 4 log 2 x	+	x 2 4 log 3 x	+	3 x 2 20 log 4 x	.	(2.31)
	Remark. In [2, Theorem 6.7 and Proposition 6.9], C. Axler gives similar estimates for π 1 (x).
	Lemma 2.8. n log n 1 + 0.365	log log n log n	x	n log n 1 +	log log n 2 log n	.	(2.32)

1.06 

1 > 77 and we use the lower bound (2.12) of li(x s ) in f (x) to get (2.21), while, for r > r 0 (α), x s x 1 (α) 2.14 > 89 967 803 2.14 > 4.96 • 10 12 and we use (2.13) to get (2.22). Proof. We choose r = 1, α = 0.15, x 1 = 19 035 709 163 and, from (2.2), we apply (2.19). By computation we get π 1 (x 1 ) = 7 823 414 443 039 054 263, θ(x 1 ) = 19 035 493 858.482 419 137 . . . , f (x 1 ) = -7.485 421 258 . . . × 10 18 and C 0 , defined by (2.20) with r = 1 is equal to -1.586 . . . × 10 13 < 0 so that (2.30) follows from (2.19) for x x 1 and, by computation, for 110 117 909 x < x 1 . Similarly, C 0 defined by (2.23) is equal to 1.655 . . . × 10 14 > 0 which implies (2.31) from (2.21) for x x 1 and by computation for 905 238 546 x < x 1 .

  046 154 317 295 804 6 . . . 2.4.2 Computation of ρ 1/|ρ(1 + ρ)| and ρ 1/| ρ| 2 .

	ρ	1 |ρ| 2 =	ρ	1 ρ(1 -ρ)	= 0.046 191 41 • • •	1 20	.	(2.48)
	Using (2.46), we may write							
			1		1		1	196
		ρ	|ρ| k	14 k-2	ρ	|ρ| 2	20 × 14 k
	which proves (2.47).							

It is known (cf. [28]), that every non trivial root ρ of ζ satisfies | (ρ)| > 14.134 725 141 734 693 79. (2.46) Lemma 2.10. Under the Riemann Hypothesis, for k 2, ρ 1 |ρ| k 10 14 k . (2.47) Proof. Under the Riemann Hypothesis, ρ = 1 -ρ and from (2.44),

  using Lemmas 2.10, 2.11 and 2.12 together with formula (2.45), it is possible to compute c defined in (1.13) with a great precision.

	By Lemma 2.13. Under the Riemann Hypothesis,	ρ	1 (ρ) 2	0.0462493.
	Proof. Let us set ρ = 1/2 + iγ. From (2.46) we have |γ| 14.134 and from (2.48)
	ρ	1 γ 2 =	ρ	1 + 1/(4γ 2 ) 1/4 + γ 2	ρ	1 + 1/4 + γ 2 = 1 + 1 4×14.134 2	1 4 × 14.134 2	ρ	1 |ρ| 2
			0.0462493					
	A more precise estimate can be obtained by writing γ 2	

53) and, since from Lemmas 2.10 and 2.11, the sum ρ,n c n |ρ| n+2 is finite, we may permute the summations in (2.53), which yields (2.51).

  1 , Q 2 , . . . , Q s } . (3.2)Thus the computation of p k and G(p k , n -σ k ) gives the factorization of h(n). Let us remark that, for large values of n, say n 10 30 , this factorization is not really effective because we are not able to enumerate the primes p 1 , p 2 , . . . , p k .

  Lemma 4.3. Let µ > 0, n 1 , n 2 be integers such that 16 n 1 < n 2 and

	b n	li -1 (n 2 ) -log h(n 1 ) (n 1 log n 1 ) 1/4	.	(4.5)
	Proof. It results from(1.12), defining b n , and from the non-decreasingness of	√	li -1 , log h and
	n log n.					
	li -1 (n 2 ) -log h(n 1 ) (n 1 log n 1 ) 1/4	2 3	+ c + µ	log log n 2 log n 2	,	(4.6)
	then the inequality					
	b n <	2 3	+ c + µ	log log n log n		(4.7)

defining b n and (4.4), this gives b n min(b σ k , b σ k+1

). Lemma 4.2. Let n 1 , n 2 be integers such that 2 n 1 < n 2 . If li -1 (n 2 ) log h(n 1 ), for n 1 n n 2 we have

  Proof. First, in &5.5.1 and &5.5.2, we consider the case n = σ k = π 1 (x). 5.5.1 Lower bound of b σ k .

	(1.13). Then we have								
	2 3	-c -0.22	log log n log n	< b n <	2 3	+ c + 0.77	log log n log n	.	(5.20)
	By (5.17), (5.19) and the fact that							
	0.69(2/3 -c) > 0.426 holds, we can write						
	li(θ 2								

.19) Proposition 5.9. Assume the Riemann hypothesis. Let n n 0 , b n be defined by (1.12) and c by

  .27) 5.5.2 Upper bound of b σ k .

	The proof is similar to the one of the lower bound. Using (5.17)
					li(θ 2 (x)) σ -η with η =	2 3	+ c	x 3/2 log x	1 +	0.51 log x	.	(5.28)
	Further, from the left handside inequality of (2.32), with x = p k and with the notation (5.19), one
	gets x	√	σ log σ which implies log x (L + λ)/2 > L/2,
						1 +	0.51 log x	1 +	1.02 L	1 +	1.02 λ λ 0 L	1 + 0.28 ν
	and, from the right handside inequality of (2.32) with the increasingness of t 3/2 log t ,
										x 3/2 log x		2(σL) 3/4 (1 + ν/2) 3/2 L + λ	.
	The third derivative of t → (1 + t) 3/2 is negative so that
		1 +	ν 2	3/2	1 +	3ν 4	+	3ν 2 32	= 1 +	3 4	ν 1 +	ν 8	1 +	3 4	ν 1 +	ν 0 8	1 + 0.76 ν
	and															
					(1 + 0.76 ν)(1 + 0.28 ν) 1 + ν(1.04 + 0.2128 ν 0 ) 1 + 1.06 ν
	which implies													
									η		2 3	+ c	2(σL) 3/4 L + λ	(1 + 1.06 ν).	(5.29)
	From (5.28) and Taylor's formula we get				
	log h															

  10 n p k θ(10 n ) = θ(p k ) = log(h(σ k )) b σ k Values of p k , θ(p k ), b σ kwhere p k is the largest prime < 10 n .

	10 2	97	83.72839039906392294502	0.797141877
	10 3	997	956.2452651200588678124	0.866433156
	10 4	9973	9895.991379156987312668	0.825165752
	10 5	99991	99685.38926861255083662	0.773752564
	10 6	999983	998484.1750256342921339	0.736790483
	10 7	9999991 9.995179317856311896844 e6 0.714394280
	10 8	99999989 9.998773001802200438321 e7 0.714080633
	10 9	999999937 9.999689785775661447991 e8 0.703113573
	10 10	9999999967 9.999939830657757384159 e9 0.677576960
	10 11	99999999977 9.999973765310744469485 e10 0.672240206
	10 12	999999999989 9.999990303330962246369 e11 0.669158053
	10 13	9999999999971 9.999996988293034199653 e12 0.670195267
	10 14	99999999999973 9.999999057324697853840 e13 0.675058840
	10 15	999999999999989 9.999999657526609398407 e14 0.675161272
	10 16	9999999999999937 9.999999887717104034899 e15 0.663260174
	10 17	99999999999999997 9.999999970658237245237 e16 0.652185840
	10 18 999999999999999989 9.999999991441156345121 e17 0.669367571
	Figure 2:		
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For t 2, one has F (t) > 0 and 0 < log 2π + 1 2 log 3 4 log 2π + 1 2 log(1 -1 t 2 ) < log 2π < 1.84 whence 0 J 1 log(2π)I 0 1.84 I 0 and, with the upper bound of B 2 given by (5.14), it gives B 2 I 1 + |S| -I 1/2 + 2.14 I 0 .

From Lemma 5.6 and Lemma 5.7, one gets and, as the above parenthesis is decreasing for x x 0 and its value for x = x 0 is negative, we get

Now we use (5.9) to get and, as the last parenthesis is decreasing on x for x > x 0 and its value for x = x 0 is < 0.327, we

which completes the proof of Proposition 5.4.

with, from (4.9),

(5.37) Therefore, from (5.35) and (4.8), one gets

which completes the proof of (5.20) and of Proposition 5.9.

Asymptotic bounds of b n .

Proposition 5.10. Under the Riemann Hypothesis, when k and σ k tend to infinity,

(5.39)

Proof. The proof follows the lines of the proof of Proposition 5.9 of which we keep the notation.

Lower bound.

First, from (2.33), with the notation of (5.19),

whence, from (5.21),

(5.40) Further, from (5.24) and (5.25), one gets

which, with (5.40), yields (5.39).

Therefore, we may apply Lemma 4.1 which implies, for 100 n < n 0 ,

The computation of b n for 2 n < 100 completes the proof of (5.46) and of the lower bound of (5.45).

To prove the upper bound of ( -The point (v) follows from (iii) and (iv).

-To prove (vi), we assume n → ∞ and σ = σ k n σ k+1 so that n