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Abstract

Motivated by a novel application of description logics in the area of
electronic commerce, this paper investigates a new instance of the problem
of rewriting concepts using terminologies, namely the best covering problem:
given a concept description () and a terminology 7, the problem consists in
finding a rewriting of () that uses only concept names from 7 and contains
as much as possible of common information with QQ and as less as possible
of extra information with respect to Q. This problem is investigated in
a restricted framework of description logics with a structural subsumption
algorithm.
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1 Introduction and Motivation

In [2], a general framework for rewriting using terminologies is defined as follows:
given a terminology 7 (i.e., a set of concept descriptions), a concept description @
that does not contain concept names defined in 7 and a binary relation p between
concept descriptions, can ) be rewritten into a description E, built using (some)
of the names defined in 7, such that QpE ?

Additionally, some optimality criterion is defined in order to select the rele-
vant rewritings. Already investigated instances of this problem are the minimal
rewriting problem [2] and rewriting queries using views [3, 7]. In the former, the
goal is to rewrite a concept description () into a shorter but equivalent description
(hence, p is instantiated by equivalence modulo 7 and the size of the rewriting is
used as the optimality criterion). The interest in this case is to obtain a rewriting
that is shorter and better readable than the original description. In the latter,
the purpose is to rewrite a query (Q into a query expression that uses only a set
of views V and is maximally contained in (). Rewriting queries using views plays
an important role in many applications such as query optimization, data ware-
housing or information integration. As highlighted in [2], since views can be seen
as concept definitions and queries as concepts, this problem can be regarded as
another instance of the general framework in which the relation p is instanciated
by subsumption and the optimality criterion is the inverse subsumption.



We investigate a new instance of the problem of rewriting concepts using termi-

nologies, namely the best covering problem. Informally, this problem can be stated
as follows: given a terminology 7 and a concept description @), find a description
E, built using (some) of the names defined in 7, such that E contains as much as
possible of common information with () and as less as possible of eztra information
with respect to (. We call such a rewriting E a best cover of () using 7.
Our goal is to rewrite a description Q into the closest description expressed as
a conjunction of (some) concept names in 7 (hence, p is neither equivalence nor
subsumption). To formally define the notion of best cover we need to be able to
characterize the notion of “extra information”, i.e., the information contained in
one description and not contained in the other. For that, we use a non standard
operation in description logics, the difference or subtraction operation. Roughly
spoken, the difference of two descriptions is defined in [9] as being a description
containing all information which is a part of one argument but not a part of the
other one.

We formally define the best covering problem in a restricted framework of de-
scription logics where the difference operation is always semantically unique. Then
we show that, in this framework, the problem of computing the best covers of a
concept () using a terminology 7 can be reduced to the problem of computing
minimal transversals in hypergraphs [5]. Therefore, one can reuse results known
for computing minimal transversals for solving the best covering problem. A (pos-
sible) extension of our approach to description logics where the difference is not
semantically unique is briefly discussed.

The motivation behind this work comes from an application in electronic com-
merce. We are interested in supporting a dynamic discovery of electronic services
(e-services). Informally speaking, an e-service can be defined as an application
made available via Internet by a service provider, and accessible by clients [1].
Examples of e-services currently available range from on-line travel reservation
or banking services to entire business functions of an organization. What makes
such a vision attractive is that e-services are capable of intelligent interaction by
being able to discover and negotiate with each other, compose themselves into
more complex services, etc [1]. This work is a part of an ongoing research project
called MKBEEM! intended to provide electronic marketplaces with intelligent,
knowledge-based multilingual services.

The rest of this paper is organized as follows. Section 2 introduces the difference
operation in description logics and some related results useful for our work. In
Section 3 we formally define the best covering problem in a restricted framework
of description logics with a structural subsumption algorithm. This problem is
then addressed in Section 4. We conclude in Section 5.

'MKBEEM stands for Multilingual Knowledge Based European Electronic Marketplace (IST-
1999-10589, 1st Feb. 2000 - 1st Aug. 2002).



2 Preliminaries

We assume that the reader is familiar with the field of description logics (e.g., see [4]
for a survey). A description logic £ is uniquely identified by the set of constructors
(e.g., M, V,...) it allows. A model-theoretic semantics of constructors, subsumption
(respectively equivalence) of concepts (C' C D) (respectively, C' = D) as well as
the notion of least common subsumer (lcs) of a set of descriptions are defined in
the usual way. A TBox (or a terminology) 7 is a (finite) set of concept definitions
(B = D, where B is a concept name and D is a concept). The semantics of TBoxes
is defined as usual. In the sequel, we assume that a terminology 7 is acyclic.

Recall that acyclic TBoxes can be unfolded by replacing defined names by their
definitions until no more defined names occur on the right-hand sides. Therefore,
the notion of lcs of a set of descriptions can be obviously extended to concepts
containing defined names. In this case we write lcs7(C, D) to denote the least
common subsumer of the concepts C' and D w.r.t. a terminology 7 (i.e., the les
is applied to the unfolded descriptions of C' and D).

In our application, concept definitions are used to specify e-services. So, in
the following, when appropriate, we use the term e-services to understand defined
concepts in our application.

The formal definition of the difference operation is given below.

Definition 1 (difference operation) [9] Let C, D be two concept descriptions
with C' C D. The difference C'— D of C and D is defined by C'— D := mjax{B|Bl_l

D=C}

The set {B|B M D = C} is called the difference candidates. Please note that
this definition of difference requires that the second argument subsumes the first
one. However, the difference C'— D between two incomparable descriptions C' and
D can be given by constructing the least common subsumer of C' and D, that is,
C—D:=C—les(C,D).

In a description logic £, where all the descriptions in the set of difference candi-
dates are semantically equivalent, the difference is semantically unique. However,
in some description logics, the set C' — D may contain descriptions which are not
semantically equivalent as illustrated in the example below.

Ezample 1 Let us consider the following descriptions C' := (VYR.P) M (VR.—P)
and D := (VR.P') N (VR(<L 45)). The following two non-equivalent descriptions
(VR.=P') and (VR(> 5S)) are both members of the set C' — D.

Teege [9] provides sufficient conditions to characterize the logics where the
difference operation is always semantically unique and can be implemented in a
simple syntactical way. Some basic notions and useful results of this work are
introduced below.



Definition 2 (reduced clause form and structure equivalence) Let £ be a
description logic.

e A clause in £ is a description A with the following property: A = BMA' =
B = TVB = A. Every conjunction A;lM...MA, of clauses can be represented
by the clause set {Aq,..., A,}.

e A clause set A = {A;,..., A,} is called reduced if either n = 1, or no clause
subsumes the conjunction of the other clauses: V1 < i <n: A; 2 A\ A;. The
set A is then called a reduced clause form (RCF) of every description
B=AnN...MA,.

o Let A ={Ay,...,A,} and B = {By,..., B} be reduced clause sets in a
description logic £. A and B are structure equivalent (denoted by A = B)
iff: n=mAV1I<i<nIl<jk<n:A;=B;ANB;=A4;

e If in a description logic for every description all its RCFs are structure equiv-
alent, we say that RCFs are structurally unique in that logic.

The structural difference operation, denoted by \z, is defined as being the set
difference of clause sets where clauses are compared on the basis of the equivalence
relation. The following theorem shows that in description logics with structurally
unique RCFs, the difference operation can be straightforwardly calculated using
the structural difference operation.

Theorem 1 [9] Let £ be a description logic with structurally unique RCFs. Let
A, B € L descriptions given by their RCFs with A J B. Then the difference B— A
is semantically unique and is given by the structural difference: B — A = B \= A.

Let us now introduce the notion of structural subsumption as defined in [9].

Definition 3 The subsumption relation in a description logic L is said structural
iff for any clause A € £ and any description B = B;M...M B, € L which is given
by its RCF, the following holds: A D B« 31 <i<m:AJ B; (%)

The following theorem provides a sufficient condition for a description logic to have
structurally unique RCFs.

Theorem 2 Let £ be a description logics with structural subsumption. Let A
and B be two reduced clause sets in £. Then the following property holds true:
A=B=A=ZB.

Note that definition 3 of structural subsumption is different from the one usually
used in the literature: generally, A is not necessary a clause and the condition (x)
applies on some kind of normal form (and not for all the RCFs of B). Unfortu-
nately, a consequence of this remark is that many description logics for which a
structural subsumption algorithm exists (e.g., ALN [8]) do not have structurally
unique RCF's.

Nevertheless, the result of theorem 2 is still interesting in practice since there
exists many description logics whith this property. Examples of such logics include



F Ly or the more expressive description logic, denoted by £; in [9], which contains
the following constructors:

e MU, T, L, (IR.C),(3f.C), (> R) for concepts where C' denotes a concept, R
a role and f a feature (i.e., a functional role),

e | o, | for roles,

e | . o for features.

In the rest of this paper we use the term structural subsumption in the sense
of definition 3.

Size of a description Let £ be a description logic with structural subsumption.
We define the size |C| of an L-concept description C' as being the number of clauses
in its RCFs 2. If necessary, a more precise measure of a size of a description can
be defined by also taking into account the size of each clause (e.g., by counting
the number of occurrences of concept and role names in each clause). However,
in this case one must use some kind of canonical form to abstain from different
descriptions of equivalent clauses. Please note that, in a description logic with
structurally unique RCFs it is often possible to define a canonical form which is
itself an RCF [9].

3 A restricted framework for the best covering
problem

In this section, we investigate the best covering problem in the framework of de-
scription logics with structural subsumption.

Let £ be a description logic with structural subsumption, 7 be an £-terminology,
and (Q Z L be a coherent L-concept description. The set of defined names oc-
curring in 7, hereafter called e-services, is denoted by Sy = {S;,i € [1,n]} with
S; # L,¥i € [1,n]. We assume that the query () and the e-services S;,i € [1,n]
are given by their RCFs.

Definition 4 (cover) A cover of () using 7 is a conjunction E of some names S;
from 7 such that: Q — lesr(Q, E) £ Q.

Hence, a cover of a concept () using 7 is defined as being any conjunction of
concept names occurring in 7 which shares some common information with ).
Please note that a cover E of ) is always consistent with @ (i.e., QM E #.1) since
L is a description logic with structurally unique RCFs® and we have () # L and
S; # L,Viel[l,n].

2We recall that, since £ have structurally unique RCFs, all the RCFs of an £-description are
equivalent and thus have the same number of clauses.

3If the language £ contains the incoherent concept L, then L must be a clause, i.e., non
trivial decompositions of L is not possible (that means we cannot have incoherent conjunction
of coherent clauses), otherwise it is easy to show that £ does not have structurally unique RCFs.




To define the notion of best cover, we first need to characterize more precisely
the remaining descriptions both in the input concept description @ (hereafter
called the rest) and in its cover E (hereafter called the miss).

Definition 5 (rest and miss) Let @) be an L-concept description and E a cover
of @ using 7. The rest of @) with respect to E, written Resty(Q), is defined as
follows: Restp(Q) = Q — lesr(Q, E).
The missing information of @) with respect to E, written Missg(Q), is defined as
follows: Missg(Q) = FE —lesT(Q, E).

Now we can define the notion of best cover.

Definition 6 (best cover) A concept description F is called a best cover of @
using a terminology 7T iff:
e F is a cover of () using 7, and
e there doesn’t exist a cover E’ of @ using T such that
(|Restp (Q)], [Missp (Q)]) < (|Restg(Q)], |Missg(Q)]), where < stands for
the lexicographic order.
The best covering problem, noted BCOV(T,Q), is then the problem of computing
all the best covers of () using 7.

Theorem 3 (Complexity of BCOV(T,(Q)) The best covering problem is NP-
hard.

The proof of this theorem easily follows from results already shown for the minimal
rewriting problem [2].

4 Computing best covers using hypergraphs
Let us first recall some useful definitions regarding hypergraphs.

Definition 7 (hypergraph and transversals) [5]

A hypergraph # is a pair (X,T") of a finite set ¥ = {V3,...,V,,} and a set " of
subsets of 3. The elements of ¥ are called vertices, and the elements of ' are
called edges.

A set T C ¥ is a transversal of H if for each e € I', T Ne # (. A transversal T
is minimal if no proper subset 7" of T" is a transversal. The set of the minimal
transversals of an hypergraph # is noted Tr(H).

Now we can show that the best covering problem can be interpreted in the
framework of hypergraphs as the problem of finding the minimal transversals with
a minimal cost. In the sequel, a sketch of proof is given for each lemma.

Definition 8 (hypergraph H7, generated from 7 and ()) Let £ be a de-
scription logic with structural subsumption, 7 be an L-terminology, and ) be
an L-concept description. Given an instance BCOV(T, Q) of the best covering
problem, we build an hypergraph Hyq = (X,T") as follows:



e cach e-service S; in 7 becomes a vertex Vs, in the hypergraph Hsq. Thus
Y ={Vs,i€[l,n]}.

e ecach clause A; € @, for i € [1,k]|, becomes an edge in Hrq, noted wy,,
with wa, = {Vs, | S; € Sy and A; €= lesy(Q, S;)} where €= stands for the
membership test modulo equivalence of clauses and lesr(Q, S;) is given by
its RCF.

For the sake of clarity we introduce the following notation.

Notation For any set of vertices X = {Vs, }, subset of ¥, we note Fx = I_IVSiGXSZ-
the concept obtained from the conjunction of the e-services corresponding to the
vertices in X. Mutually, for any concept £ = Mjc[1 ) S;;, we note Xp = {Vsi]_,j €
[1,m]} the set of vertices corresponding to the e-services in E.

With lemmas 1 and 2 given below, we show that computing a cover of () using
T that minimizes rest amounts to computing a transversal of Hr¢ by considering
only the non empty edges.

Lemma 1 (characterization of the minimal rest) Let £ be a description
logic with structural subsumption, 7 be an £-terminology, and ) be an £-concept
description. Let H7g = (3,I') be the hypergraph built from the ontology of e-
services 7 and the concept Q = A, M...M Ay provided by its RCF. Whatever the
cover F of () using 7 we consider, the minimal rest (i.e., the rest which size is
minimal) is: Restyi, = Aj, M...MA;j, Vj; € [1,k] | Wy, = 0.

Proof (sketch)

First, to prove the existence of a cover E of ) using 7 having such a rest, it is
sufficient to consider E as being the combination of all the e-services in T, i.e.,
E=5N..MmS,.

Second, we show that Rest,,;, has the minimal size. We recall that, for any cover F,
we have Restg(Q) := Q\=lcs7(Q, E). Assume that @ and lesr(Q, S;), Vi € [1,n],
are given by their RCFs. We have A; €= @ and Aj, &= lcsr(Q,S;) for all
ji € [1, k] such that wa; = 0 (by construction of H7). Then we can prove that
for all j; € [1,k] such that ws, = 0 we have Aj;, ¢= lesy(Q, E) (since E is a
conjunction of some e-services S;; and L is a description logic with structural
subsumption). This implies that for all j; € [1, k] such that wa, = () we have
A € Q\=lest(Q, E) and thus |Rest,n| < |Restp(Q)| for any cover E of Q. O

Lemma 2 (characterization of covers that minimize the rest) Let ﬁm =
(X,I") be the hypergraph built by removing from H 7 the empty edges. A rewrit-
ing Epin = 5;, M...1S;,, with1 <m <nand S;, € Sy for 1 < j < m,is a cover
of  using 7 that minimizes the rest Restp,,, (Q) iff Xp,,, = {Vs, ,j € [L,m]} is

a transversal of ﬁm.

Proof (sketch) The main steps of the proof are:



Lemma 1 & Ywy, € ﬁm, the corresponding clause A; ¢= Q \= lest(Q, Enmin)
= VwAi S 3{27’@, A; €= lCST(Q, Emm)
& Ywy, € ﬁm, 38, with j € [1,m] | A; €= lesT(Q, Sy;) (since L is a
description logic with structural subsumption)
& Yy, € Hr, Vs, € X
& Xp, . is a transversal of ﬁTQ (since X, . intersects each edge of /;ZTQ)

min

Vs, € wa,
J

(I

Having covers that minimize the rest, it remains to isolate those which minimize

the miss in order to have the best covers. To express miss minimization in the
hypergraphs framework, we introduce the following notion of cost.

Definition 9 (cost of a set of vertices)

Let BCOV(T, Q) be an instance of the best covering problem and ﬁTQ = (%,I)
its associated hypergraph. The cost of the set of vertices X is defined as follows:
cost(X) = |Missg, (Q)].

Therefore, the BCOV(T, Q) problem can be reduced to the computation of the
transversals with minimal cost of the hypergraph ﬁTQ. Clearly, it appears that we
can only care about minimal transversals. To sum up, the BCOV(T, Q) problem
can be reduced to the computation of the minimal transversals with minimal cost
of the hypergraph Hyg. Therefore, one can reuse results known for computing
minimal transversals for solving the best covering problem.

5 Discussion

In this paper we have investigated the problem of the best covering problem in
a restricted framework of description logics with structural subsumption. These
logics ensure that the difference operation is always semantically unique. In this
context, we have shown that the best covering problem can be reduced to the
problem of computing the minimal transversals with minimum cost of a weighted
hypergraph.

The problem of computing minimal transversals of an hypergraph is central in
various fields of computer science [5]. The precise complexity of this problem is
still an open problem. In [6], it is shown that the generation of the transversal
hypergraph can be done in incremental subexponential time k°(°%) where k is
the combined size of the input and the output. To our knowledge, this is the
best theoretical time bound for the problem of the generation of the transversal
hypergraph.

In our case, since the problem is slightly different, we are working on an adap-
tation of an existing algorithm with a combinatorial optimization technic (branch-
and-bound) to compute the transversals with a minimum cost.

Our future work will be devoted to the extension of the proposed framework
to hold the definition of the best covering problem for description logics where



the difference operation is not semantically unique. In this case, the difference
operation does not yield a unique result and thus the proposed definition of a best
cover is no longer valid. However, we argue that in many practical applications
(e.g., the dynamic discovery of e-services) it is sufficient to compute some kind
of a single "representative” description of the difference candidates (i.e., only one
description that is useful from the application point of view). This implies that,
given a description logic £, one must first identify the typical cases leading to
a non unique difference, for example, by identifying the sources of structurally
non-unique RCFs (e.g., nontrivial decompositions of ). These cases can then be
handled separately.
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