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CLOSURES OF LOCALLY DIVERGENT ORBITS OF
MAXIMAL TORI AND VALUES OF HOMOGENEOUS FORMS

GEORGE TOMANOV

ABSTRACT. Let G be a semisimple algebraic group over a number field K,
S a finite set of places of K, Kg the direct product of the completions
K,,v € S, and O the ring of S-integers of K. Let G = G(Ks), I' = G(O)
and 7 : G — G/T" the quotient map. We describe the closures of the locally
divergent orbits T'm(g) where T is a maximal Kg-split torus in G. If #S5 = 2
then the closure Tm(g) is a finite union of T-orbits stratified in terms of
parabolic subgroups of G x G and, consequently, T7(g) is homogeneous (i.e.,
Tw(g) = Hn(g) for a subgroup H of G) if and only if T'7(g) is closed. On the
other hand, if #8 > 2 and K is not a CM-field then T'r(g) is homogeneous
for G = SL,, and, generally, non-homogeneous but squeezed between closed
orbits of two reductive subgroups of equal semisimple K-ranks for G # SL,,.
As an application, we prove that f(O") = Kg for the class of non-rational
locally K-decomposable homogeneous forms f € Kg[xy, - ,x,].

1. INTRODUCTION

Let G be a semisimple algebraic group defined over a number field K. Let
S be a finite set of places of K containing the archimedean ones and let O be
the ring of S-integers in K. Denote by K,, v € S, the completion of K with
respect to v and by Kgs the direct product of the topological fields K,. Put
G = G(Kgs). The group G is naturally identified with the direct product of the
locally compact groups G, = G(K,), v € S, and G(K) is diagonally imbedded
in G. Let I' be an S-arithmetic subgroup of G, that is, I' N G(O) have finite
index in both I" and G(O). Recall that the homogeneous space G/I" endowed
with the quotient topology has finite volume with respect to the Haar measure.
Let H be a closed subgroup of G acting on G/I" by left translations, that is,

h(g) < w(hg),h € H,

where 7 : G — G/I is the quotient map. An orbit Hm(g) is called divergent if
the orbit map H — G/I', h — hm(g), is proper, i.e., if {h;7(g)} leaves compacts
of G/T" whenever {h;} leaves compacts of H. It is clear that the divergent

orbits are closed. The closure Hm(g) of Hm(g) in G/T" is called homogeneous if

Hr(g) = Lw(g) for a closed subgroup L of G.
Fix a maximal K-split torus T of G and for every v € § a maximal K,-split

torus T, of G containing T. Recall that, given a field extension F/K, the
1
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F-rank of G, denoted by rankgG, is the common dimension of the maximal
F-split tori of G. So, ranky, G > rankx G and rankyg, G = rankx G if and only
if T =T,. Let T, = T,(K,) and T' = [[,.s Tv C G. An orbit T'n(g) is called
locally divergent if T,m(g) is divergent for every v € S.

The locally divergent orbits, in general, and the closed locally divergent or-
bits, in particular, are completely described by the following.

Theorem 1.1. ([T1, Theorem 1.4 and Corollary 1.5]) With the above notation,
we have:

(a) An orbit T,m(g) is divergent if and only if
(1) ranky, G = rankx G
and
(2) 9 € No(T,,)G(K),

where Ng(T,) is the normalizer of T, in G. So, T'w(g) is locally divergent
if and only if (1) and (2) hold for all v € S;

(b) An orbit Tn(g) is both locally divergent orbit and closed if and only if
(1) holds for allv € S and

g€ NG(T)G<K)7
where Ng(T') is the normalizer of T in G.

Our Theorem 1.1 is the accomplishment of several works (cf. [T-We|, [We]
and [T2]), the first being the classification by G.A.Margulis (see [T-We, Ap-
pendix]) of the divergent orbits for the action of the group of diagonal matrices
in SL,(R) on SL,(R)/SL,(Z). In the present paper, using completely different
ideas, we describe the closures of the locally divergent non-closed orbits. Ac-
cording to Theorem 1.1 such orbits exist if rankx G > 0, #S > 2 and (1) holds
forall v € S.

Essentially due to applications to Diophantine approximation of numbers,
the study of orbit closures in G/T" for different kind of subgroups H of G at-
tracted considerable interest during the last decades. In view of the classical
result [M4], the orbits of the 1-parameter unipotent subgroups are always recur-
rent. Hence if H is generated by 1-parameter unipotent subgroups then H(g)
is never divergent. Moreover, for such kind of H it is proved by M.Ratner in
[Ral] and [Ra2], in the real setting, and in [MT1] and [Ra3] (see also [MT?2]
and [To4]), in the S-adic setting, that Hm(g) is homogeneous. The special case
when H = SO(q), where ¢ is a non-degenerate indefinite quadratic form on
R"™ n > 3, is acting on SL, (R)/SL,(Z) was first established by Margulis [M1,
Theorem 2| for bounded orbits and by Dani and Margulis [DM, Theorem 2], in
general. The latter implies that ¢(Z™) = R provided ¢ is not a multiple of a form
with integer coefficients (see [DM, Theorem 1]) strengthening [M1, Theorem 1’|
which confirms the A.Oppenheim conjecture. Also by using the homogeneous
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space approach, the S-adic version of the Oppenheim conjecture is proved by
A Borel and G.Prasad [BoP]. The dynamics of the action of split tori 7' C G
on G/T" is much less understood and reveals completely different phenomena.

Concerning the orbit closures, it was believed up to recently that T'r(g) is homo-
geneous if G/T" does not admit rank 1 T-invariant factors (see [M3, Conjecture
1]). Affirmative results in the simplest case when G = SLy(K7) x SLa(K3),
where K7 and K5 are local fields, I' is an irreducible lattice in G and T is the
direct product of the subgroups of diagonal matrices in the first and the second
copy of SLy have been obtained in [F] and [Mo]). Nevertheless, it turned out

that if Tw(g) is locally divergent then T'r(g) is homogeneous only if T'7(g) is
closed which, in view of Theorem 1.1(b), contradicts [M3, Conjecture 1] (cf.
[T3, Corollary 1.2]). The result is generalized and strengthened for arbitrary
semisimple groups by Theorems 1.2 and 5.2 of the present paper. Sparse ex-
amples of non-homogeneous orbit closures of completely different nature are
given in [Mau] for the action of a n — 2-dimensional split torus on SL,(R)/T,
n > 6, and in [Sha] and [L-Sha| for the action of a 2-dimensional split torus
on SL3(R)/SL3(Z). The understanding of orbit closures of maximal split tori
admits deep number theoretical applications. For instance, if f € R[zq, -, x,]
is a product of n > 3 linearly independent real linear forms then [M3, Conjec-
ture 8] claims that f is a multiple of a form with integer coefficients whenever
0 is an isolated point in f(Z") and f(@) # 0 for all @ € Z"\ {0}. In terms of
group actions, [M3, Conjecture 8] is equivalent to [M3, Conjecture 9| stating
that every bounded orbit for the action of the group of diagonal matrices on
SL,(R)/SL,(Z), n > 3, is homogeneous. From its side, [M3, Conjecture 9]
implies a well-known conjecture of Littlewood [M3, Conjecture 7| formulated
around 1930 and seemingly still far from its final solution. (See [E-K-L], [E-K]I]
and [E-L] for recent results on the Littlewood conjecture.) Along the same line,
Theorem 1.4 below implies that f(O") = K for a natural class of non-rational
forms f on K2 (Theorem 1.5).

From now on, with the notation of Theorem 1.1, we suppose that #85 > 2
and Tm(g) is a locally divergent orbit. The cases #S = 2 and #S > 2 behave
in drastically different ways. The next two theorems describe T'r(g) in both
cases.

Theorem 1.2. Let #S = 2. Then

(1) Tw(g) is a union of finitely many T-orbits which are all locally divergent
and stratified in terms of parabolic subgroups of G x G;
(2) Tw(g) is open in Tn(g);
(3) The following conditions are equivalent:
(a) T'n(g) is closed,
(b) Tw(g) is homogenous,
(c) 9 € Na(T)G(K).
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Theorem 1.2 is a particular case of stronger but more technically formu-
lated results proven in §5. More precisely, the part (1) of Theorem 1.2 is a
particular case of Theorem 5.2, its part (2) is a particular case of Corollary
5.3 and its part (3) coincides with Corollary 5.5. The T-orbits contained in

Tm(g) are stratified in the following sense. (See §5 for details.) Given a lo-
cally divergent orbit T'w(g), we define a finite set P(g) of parabolic subgroups
of G x G and associate to each P € P(g) a T-orbit Orb,(P) contained in

Tr(g). We have G x G € P(g) and Tn(g) = Orb,(G x G). If P € P(g) then

Orby(P) = Uprep(y). prep Orby(P’), in particular, T7(g) = Upep(,) Orby(P)

and the closed T-orbits in T'7(g) correspond to the minimal parabolic sub-
groups contained in P(g) (see Corollary 5.4(b)). The correspondence between

the parabolic subgroups and the T-orbits in T'7(g) becomes bijective under
Zariski topology density conditions on g € G (see Corollary 5.6).

Recall that the semi-simple K-rank of a reductive K-group H, denoted by
s.s.rankg (H), is equal to rankgD(H) where D(H) is the derived subgroup of
H. Also, K is called a CM-field if it is a quadratic extension K/F where F'is a
totally real number field but K is totally imaginary. So, a totally real number
field is not a CM-field.

The main result for #S > 2 is the following.

Theorem 1.3. Let #S > 2 and K be not a CM-field. Then there exist hy
and hy € Ng(T)G(K) and reductive K -subgroups Hy and Hy of G such that
H, C H,, rankg(H;) = rankg (Hy) = rankg (G),

(3) s.s.ranky (Hy) = s.s.rankyg (Hy),
and
(4) hoHom(e) C T'n(g) C hyHymw(e),

where Hy = Hy(Ks), Hs is a subgroup of finite index in Hao(Ks), and the orbits
hiHym(e) and hoHom(e) are closed and T-invariant.

In the important case G = SL,,, Theorem 1.3 implies
Theorem 1.4. Let G = SL,, #S5 > 2 and K be not a CM-field. Then

Tn(g) = Hn(g), where H is a closed subgroup of G.

Theorem 8.1, proven in §8, provides examples showing that Theorem 1.4 is
not valid for CM-fields and, also, that Tw(g) as in the formulation of Theorem
1.3 might not be homogeneous. The orbit Tw(g) given by Theorem 8.1 is such
that Tw(g) \ Tm(g) is not contained in a countable union of closed orbits of
proper subgroups of G in contrast to the orbits T'7(g) with non-homogeneous
closures given in [Mau], [Sha|, [L-Sha] and our Theorem 1.2 where T'7(g)\T7(g)
is always contained in a finite union of closed orbits of proper subgroups of G.

Before stating the number theoretical application of Theorem 1.4 we need

to set up some notation and formulate a general conjecture. As usual, Kg[ 7]
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denotes the ring of polynomials in n variables ¥ = (z1, ..., x,) with coefficients
from the ring Ks. We suppose that n > 2. Note that Ks[7] = [] K,[Z]
veES

and the ring K[Z] is identified with its diagonal imbedding in Ks[Z]. Further
on, f(Z) = (fuo(¥))ves € Ks[Z] is a decomposable (over Kg) non-degenerated
homogeneous form, that is, f(Z) = [1(Z) - (%), where (%), ..., (Z) are
linearly independent over Kg linear forms with coefficients from Ks. Equiva-
lently, we suppose that every f,(7) = l§”)(a7:) e lﬁff)(f), where l§”)(f), Y (%)
are linearly independent over K, linear forms with coefficients from K,. The
form f is called rational if f(Z) = ¢ - h(Z), where h(Z) € K[Z] and ¢ € Ksg,
and non-rational, otherwise. According to [T1, Theorem 1.8] f is rational if
and only if f(O") is discrete in K. For non-rational forms f the following

conjecture is plausible.

Conjecture 1. Suppose that #5 > 2, K is not a CM-field and f is non-
rational. Then f(O") = K.

The form f is called locally K-decomposable if for every v € S each of the
linear forms 15”) (@),... ,lﬁﬁ)(f) is a multiple of a linear form with coefficients

from K. Theorem 1.4 implies:

Theorem 1.5. Conjecture 1 is true for the locally K-decomposable homoge-
neous forms.

Theorems 8.2 and 8.3 of section 8.3 show that the analog of Theorem 1.5
(and, therefore, of Conjecture 1) is not true if #§ =2 or #S§ > 2 and K is a
CM-field.

2. PRELIMINARIES: NOTATION AND SOME BASIC CONCEPTS

2.1. Numbers. As usual, N, Z, Q, R, and C denote the non-negative integer,
integer, rational, real and complex numbers, respectively. Also, N, = {z € N :
z>0}and Ry ={z e R: x> 0}.

In this paper K is a number field, that is, a finite extension of Q. If v is
a place of K then K, is the completion of K with respect to v and | - |, is
the corresponding normalized norm on K, (see [CF, ch.2, §7]). Recall that if
K, = R (respectively, K,, = C) then |-|, is the absolute value on R (respectively,
the square of the absolute value on C). If v is non-archimedean then O, = {z €
K, : |z |, <1} denotes the ring of integers in K.

Further on we denote by K an universal domain, that is, an algebraically
closed field containing K and all completions of K, of K.

We fix a finite set S = {vq,- -+, v,} of places of K containing all archimedean
places of K. The archimedean places in & will be denoted by S,,. We let
Sr=85\ S.

Sometimes we will write K; instead of K,, and | - |; instead of | - |,,.
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We denote by O the ring of S-integers in K, i.e., O = K ﬂ(mvgs 0,). Also,
Oo = K((N,gs.. Ov) is the ring of integers in K.

Let Kgs el [I,cs K. considered with the product topology. The diagonal
imbedding of K into the topological ring K is dense and O is a lattice in Kg.
We denote K, = Hvesm K,.

As usual, if R is a ring R* denotes the multiplicative group of units of R.

2.2. Groups. Further on, we use boldface letters to denote the algebraic groups
defined over K (shortly, the K-algebraic groups or the algebraic K-groups).
Let H be a K-algebraic group. As usual, R,(H) (respectively, Lie(G)) stands
for the unipotent radical (respectively, the Lie algebra) of H. Given v € S,

we write H, = H(K,) or simply H; if S = {vy,---,v.} and v = v;. Put

oY H(Ks). The group H(K) is identified with its diagonal imbedding in H.
On every H, we have Zariski topology induced by the Zariski topology on H
and Hausdorff topology induced by the Hausdorff topology on K,. The formal
product of the Zariski (resp., the Hausdorff) topologies on H,, v € S, is the
Zariski (respectively, the Hausdorff) topology on H. In order to distinguish the
two topologies, all topological notions connected with the first one will be used
with the prefix ”Zariski”.

The algebraic groups in this paper are always linear. Every K-algebraic
group H is a Zariski closed K-subgroup of GL; for some [ € N,. The group
GL; itself is identified with GL;(K) where K is the universal domain defined
in 2.1. We have GL;(O) = O* and H(O) = GL,;(O) "H. A K-subgroup T of
H is a K-split torus if T is K-isomorphic to GL‘f for some d € N. A subgroup
A of H is called S-arithmetic if A and H(O) are commensurable, that is, if
ANH(O) has finite index in both A and H(O). Recall that if H is semisimple
then A is a lattice in H, i.e. H/A has finite Haar measure.

The Zariski connected component of the identity e € H is denoted by H°.
In the case of a real Lie group L the connected component of the identity is
denoted by L°.

If A and B are subgroups of an abstract group G then N4(B) (resp., Z4(B))
is the normalizer (resp., the centralizer) of B in A. As usual, Z(G) denotes the
center of G and D(G) the derived subgroup of G.

2.3. K-roots. In this paper G is a connected, semisimple, K-isotropic alge-
braic group and T is a maximal K-split torus in G.

We denote by ®(= ®(T,G)) the system of K-roots with respect to T. Let
O be a system of positive K-roots in ® and II be the system of simple roots in
Ot (We refer to [Bo, §21.1] for the standard definitions related to the K-roots.)

If x € ® we let g, be the corresponding root-space in Lie(G). For every
a € Il we define a projection 7, : @ — Z by 7 (X) = no Where x = > 5 ngf.
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Let U C IT and Ty & (MNacy ker(a))°. We denote by Py the (standard)

parabolic subgroup corresponding to ¥ and by Py, the opposite parabolic sub-
group corresponding to W. The centralizer Zg(Ty) is a common Levi subgroup
of P‘I’ and PE,, P\Il = Z(;<T\p) X Ru(P\II) and P‘E, = Z(;<T\p) X Ru(P\i) We
will often use the simpler notation Vg = Ru(Py) and Vg = Ru(Py). Recall
that

(5) Lie(Ve)= P s,

Jaell\¥, 7 (x)>0

(6) Lie(Vg) = & g,

JacI\V, 7 (x)<0

(7) Lie(Zg(Ty)) = Lie(Zg(T)) @ & g,

Vo ell\¥, mq(x)=0

It is well known that the map ¥ +— Py is a bijection between the subsets of
IT and the parabolic subgroups of G containing B, cf. [Bo, §21.11]. Note that
Py, Py~ are minimal parabolic subgroups and G = Py = Py;.

Given a € ® we let () be the set of roots which are positive multiple of
a. Then g, = @5E(a) g5 is the Lie algebra of a unipotent group denoted
by U(y. Given ¥ C II, let ¥’ be the set of all non-divisible positive roots
x such that 3o € A\ ¥, m,(x) > 0. Then the product morphism in any

order H\p U, — Vy is an isomorphism of K-varieties, that is, Vy is directly
Xew’

spanned in any order by its subgroups Uy, x € ¥’ [Bo, 21.9].
It follows from the above definitions that ¥y C ¥, < Py, C Py, &
de
V\pl D) V\Ifz & Z(;(T\pl) - Zg<T\p2>. Let V[\pz\\pl} f

= Z(;(qug) N V\pl and
Vi) = Za(Ty,) NVy,. It is easy to see that

(8> V‘Ifl = V‘I’2V[‘If2\‘1’1] = V[‘1’2\‘111]V‘1’2’

Recall that the Weyl group W et Ng(T)/Zg(T) acts by conjugation sim-
ply transitively on the set of all minimal parabolic K-subgroups of G con-
taining T. When this does not lead to confusion, we will identify the ele-
ments from W with their representatives from Ng(T). It is easy to see that
Wy = Nzg(1y)(T)/Zc(T) is the Weyl group of Zg(Ty). Note that W = Wj.

We will denote by wy the element from W such that woPpw, ' = P,.

3. ON THE GROUP OF UNITS OF O
Recall that S = {vy, -+ 0.}, r > 2, K; = K,, and Ks = [[K;. By the

7
S-adic version of Dirichlet’s unit theorem, the Z-rank of O* is equal to r — 1.
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Moreover, if Kt = {(x1, - ,2,) € K& : |z1|1-- - |7,|, = 1} then O* is a lattice
of Kg.

For every m € N,, we denote OF, = {{™[|¢ € O*}. The next proposition
follows easily from the compactness of K%/Ox,.

Proposition 3.1. For every m € N, there exists a constant k,, > 1 such that
given (a;) € K} there exists £ € OF, satisfying

1
— < |lail; < km

m

foralll <i <.

Let Soo = {v1,--- ,vp} and Sy = {vpy1, -, 0.}, So, K1 = Ror C. Let

p: K§ — K be the natural projection and L = p(O*). Remark that, in view
of Dirichlet’s unit theorem mentioned above, L is co-compact in K7. Specific
information on the connected component L*® of L is provided by the following

Proposition 3.2. With the above notation, we have:
(1) If r = 2 then L* = {1};
(2) Letr > 3. We have:
(a) L* # {1}. In particular, if K1 =R then L* =R,;
(b) Let K; = C.
(i) If L* =Ry then K is a CM-field;
(ii) If K is not a CM-field and L # C* then L® coincides with
the unit circle group in C* unless r = 3 when L* might be a
spiral.

Proof. (1) follows easily from the compactness of K&/Of,.

(2) If » > 3 in view of Dirichlet’s unit theorem O* contains a subgroup of
Z-rank 2. Therefore p(O*) is not discrete, proving that L® # {1}.

Let K; = C. Suppose that L* = R,. Therefore L is a finite extension of L°.
Hence there exists m such that p(O;)) is a dense subgroup of L*. Let F' be the
number field generated over Q by O;,. Then F'is proper subfield of K and its
unit group has the same Z-rank as that of K, i.e. K has a "unit defect”. It is
known that the fields with "unit defect” are exactly the CM-fields (cf.[Re]).

It remains to consider the case when K is not a CM-field, L # C* and r > 3.
Since L*® is a 1- dimensional subgroup of C* we need to prove that L*® couldn’t
be a spiral. This will be deduced from the following six exponentials theorem
due to Siegel: if x1, x9, x5 are three complex numbers linearly independent over
Q and yy, yo are two complex numbers linearly independent over Q then at least
one of the six numbers {e*¥% : 1 <i < 3,1 < j < 2} is transcendental.

Now, suppose by the contrary that L® is a spiral, that is, L* = {e(@¥) .
t € R} for some a and b € R*. Since r > 3 there exist &1, & and & € p(O¥)
which are multiplicatively independent over the integers. We may suppose that
£ = ettt & = e et and & = (¢t where u and v € R* and i = /—1.
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Remark that {1, u,v} are linearly independent over Q, {a + ib,ib} are linearly
independent over QQ, and the six numbers &, &, &3, %, ‘5—2, % are all algebraic.
This contradicts the six exponentials theorem. O

If K1 = C and K is not a CM-field, it is not difficult to give examples when
L* is the circle group and when L = C*.

Examples.1) For every n > 1, let f,(z) = (z* — (Vn?2 + 1+ n)z + 1)(2? —
(—vn?+1+n)x+1). Then f,(z) is an irreducible polynomial in Q[X] with
two real and two (conjugated) complex roots. Let K; = Q(«,) where a, is one
of the complex roots of f,,(x). Then L® is the circle group of C*.

2) It is easy to see that if K is a totally imaginary, Galois, non-CM-number
field of degree > 6 then L = C*.

Finally, the following is quite plausible:
Conjecture 2. L* is never a spiral.

In response to a question of the author, Federico Pellarin observed that Con-
jecture 2 follows from the still open four exponentials conjecture. Recall that
the four exponentials conjecture says that the conclusion of the six exponentials
theorem remains valid if replacing the three complex numbers x1, z9, x3 by two
complex numbers x1, xs. The use of the six exponentials theorem in our proof
of Proposition 3.2 is inspired by Pellarin’s argument *.

4. ACCUMULATIONS POINTS FOR LOCALLY DIVERGENT ORBITS

As in the introduction, I' is an S-arithmetic subgroup of G = G(Ks) and
T =T(Ks) acts on G/I" by left translations.

In the next lemma T is identified with GL™*™*%€ via a K-isomorphism (see
§2.2). Under this identification T(QO) is commensurable with (O*)rankxG,

Lemma 4.1. Let h € G(K). The following assertions hold:

(a) There exists a positive integer m such that En(h) = 7w(h) for all £ €
(O;>rankKG’.

(b) If h; is a sequence in G such that {mw(h;)} converges to an element from
G/T then the sequence {m(h;h)} admits a converging to an element from
G /T subsequence.

The lemma is an easy consequence from the commensurability of I' and

hTh=t.

IThe author is grateful to Federico Pellarin for the useful discussion.
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4.1. Main proposition. Further on we use the notation about the linear al-
gebraic groups as given in §2.3.

Proposition 4.2. Let n € Ng(T) and ¥ C II. The following conditions are
equivalent:
(i) n c w()W\p,'
(ii) VywonPy is Zariski dense in G;
(iii) wenVy(wen)™! C V.

Proof. The implications (i) = (ii) and (i) = (iii) follow trivially from the
definitions in §2.3.

Let (ii) holds. Then n~'VynPy is Zariski dense in G. Since n™'Vyn and Py
are T-invariant

(9) Lie(n 'Vyn) = Lie(Vy) + Lie(n ' Vyn N Py).
Therefore
(10) n"Von = Vg (n 'Vyn N Py).

Since n~'Vyn is a product of root groups, if n='Vyn N'Vy # {e} then, in view
of (10), n~'Vyn contains two opposite root groups which is not possible. So,

n'Vgn N Vy = {e}.

This implies n™'Vyn N Py = n™'Vyn N Zg(Ty). In view of (9), n='Vyn N
Zg(Ty) is a maximal unipotent subgroup of Zg(Ty). Let n’ € Wy be such
that n/(n"'"Vyn N Zg(Ty))n'~' C V. Since n’ normalizes Vy, it follows from
(10) that
n'n"'Vonn'™ =V

which implies (i).

Suppose that (iii) holds. Then (wgn) 'Pgwen D V. Hence, won € Py by
[Bo, 14.22(iii)]. Therefore won € Wy, proving (i). O

Further on, g = (g1, 92, - ,9) € G where g; € G;. We will use the following
notational convention: if h = (hy,--- ,h,) € G and g; € G(K), writing 7(hg;)
we mean that g; is identified with its the diagonal imbedding in G, that is,
hgz = (hlgi7 cee ahrgi) e G.

Our main proposition is the following.

Proposition 4.3. Let #S > 2, rankxG = rankx, G = rankyg, G, ¢1 and
g2 € G(K) and ¥ be a proper subset of II. Let (sp,tn,e,---,e) € T be a
1

sequence and C' > 1 be a constant such that for all n we have: |a(sy))1 > &

for all o € 11, |a(ty)]2 - 0 for all o € I\ ¥ and & < |a(ty)|z < C for all

a € W. Then the sequence (Sp,tn, €, ,e)m(g) is bounded in G/T" if and only
if the following conditions are satisfied:

(1) g195" € Vg Py, and
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(ii) there exists a constant C' > 1 such that & < |a(sy)|1 - |a(ty)|2 < C" for
all o € A and n.

Proof. <) Suppose that (i) and (ii) hold. Then ¢g; = wpgs where v €
Vi (K) and p € Py(K). It follows from the assumption (ii), Lemma 4.1(a) and

Proposition 3.1 that there exists a sequence d,, € Stabr{m(pgs)} such that the
sequence (s,d, ' t,d 1, d -+ d ') is bounded in T.

Now
(Snatm €, 6) ' (917927 T 791")77(6) =
(Snstns €, e) - (upg2, p ' pg2, g3+ -+ gr)w(e) =
(Snvsglat 71tn17 €, 76)'(8n7tn7€7”' 76)'
(e,e gs(pg2) L gn(pge) m(pgs) =
(snvs 125_1,6,---,6) (s dltd;, e, e, €)-
(e,e 93(]792) Yt gu(pge) Tty )T (pgs).

Note that t,p~'t. ! is bounded in Gs. Since |a(t,)]s — 0 for all « € I\ ¥, it

follows from (i4) that |a(s,)|1 — oo for all & € IT'\ ¥. Therefore s,vs,! — e

in G;. Now using the choice of d,, we conclude that (s,,t,,e,---,e)m(g) is
bounded in G/T.
=) Let (sn,tn, e, ,e)m(g) be bounded. Using Bruhat decomposition one

can write g1g, ' = v wonp where v~ € V,,ne Ng(T), p € Py and, as usual,
onawal = Vy. Suppose that gig;' ¢ VyPy. Since V,Py = V,Py it
follows from Proposition 4.2 the existence of a root x such that U, C Vg and
xolnt(won)~t is a negative root. As above, using Lemma 4.1(a) and Proposition
3.1, we fix a sequence d,, € T'N Stabg{m(pg2)} such that the sequence {t,d '}
is bounded in G5 and the sequence {d,} is bounded in every G;, i > 3. Since
[a(sy)|1 > & for all & € IT we get that {|x((won) *s,wen)|1} is bounded from
above and since |a(t,)]2 — 0 for all @ € II'\ VU it follows from Proposition 3.1

and the choice of {d,} that |x(d')|; — 0. Therefore

(11) x((won) ™ snwon)x(d, )1 — 0.

1

Hence {(won) s, (won)d,'} is unbounded in Tj.

Note that
(Snytn, €, ,e)m(g) =
(Snstns€y-- -, €) - (VT won,p~", g3(pg2) -+ gr(pg2) )7 (pg2) =
((snv ™5, won) ((won) ™ sn(won)d, ), (tap™ 1, tnd, s 93(pg2) ™',
-, 9r(pg2) " d, ) (pg2).

where {s,v™s, 'won} is bounded in Gy, {t,p~'t; ')t,d;'} is bounded in G5 and
{9:(pg2)~'d; '} is bounded in G; for every i > 3. Since Tym(pgs) is divergent,
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it follows from the above that (s,,t,, e, - ,e)m(g) is unbounded, contradicting
our hypothesis. We have proved (i).

Let g1 = v™pge, where v~ € V,, p € Py. Then, with d,, chosen as above,
we have

(Sm ln, €, ,6)71'(9) - ((snv_sgl)(sndT:l)? (tnp_ltgl)(tndrtl)’
g3(pg2) 't - g0 (pg2) T dy ) (pga).

Since {s,v~s,;'} is bounded in Gy, {t,p~ 't '} and {t,d,'} are both bounded
in Gy, and {d,} is bounded in G; for each ¢ > 3 it follows from the as-
sumptions that (s,,t,, e, - ,e)m(g) is bounded in G/T" and Ti7(g) is diver-
gent that {s,d, '} is bounded in G;. Hence there exists C; > 1 such that
C% < |a(spd; Y|y - Ja(t,d;M)]2 < Cy for all € II. By Artin’s product formula
[L.cv la(dn)|y = 1 where V is the set of all normalized valuations of K. This
implies (ii). O
The above proposition implies:

Corollary 4.4. Let s, € Ty and t,, € Ty be such that for every a € ® each of
the sequences |a(sy,)|1 and |a(t,)|2 converges to an element from R U oco. We
suppose that g1 and g € G(K) and that (s, t,, e, -+ ,e)m(g) converges in G/I'.
Then there exist ¥ C II and wy,ws € W with the following properties:
(1) wngwfl(Kl) X WQPngl(KQ) =
= {(x,y) € G1 x Gy : Int(s,, t,)(x,y) is bounded in Gy x Ga},
(ii) g195 " € Wi Vg Pywy .
(iii) If g1g; " = wivgzgvgwsy ', where vg € Vg (K), 2y € Zg(Ty)(K) and
vy € Vy(K), then

(s, tn, e, ,e)m(g) € T(wi(vg) 'wi ', wovgwy e, -+ e)m(g).

Proof. Since |a(s,)]1 converges for every o € ®, there exists a parabolic K-
subgroup P containing T such that P(K) = {x € G(K;) : Int(s,)z is bounded}.
Let ¥ C II and w; € W be such that P = wlPE,wfl. Similarly, we find ¥’ C II
and wy € W such that woPyiw; ' (Ky) = {z € G(K>) : Int(t,)x is bounded}.

Put § = (w;'91,w5 92,03, , Gr), Spn = Wi 'spwi and t, = wy tpwy. Then
(Bnytnye, -, e)m(g) converges, Py (K,) = {z € G(K,) : Int(5,)z is bounded}

and Py (K3) = {2 € G(K>) : Int(¢,)z is bounded}. By the choice of ¥ and
U’, there exists a constant C' > 1 such that C' > |«(5,)[; > & for all a € ¥,
|(5)|1 — oo for all T\ U, |a(t,)|> — 0 for all IT\ ¥ and C > |a(t,)]s > &
for all a g U’. Replacing, if necessaliy,n C by a larger constant we may suppose
that for every a € ® either C' > |a(ty,)]s > & for all n or |a(t,)|s is converging
to 0 or co. It follows from Proposition 4.3(ii) that & < |o(3,)]1 - la(t,)]y < C

for all a € II and n. This implies easily that ¥ = W', In view of Proposition
4.3(1) g195 " € w1 Vg Pywy . Hence (i) and (ii) hold.
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Let wl_lgl = v;z\yv\yw;lgg. Then

(gmzm CTRR e)ﬂ'(g) =

(gna %VTLJ €y 6) (U\EZ\IH U\£17 93(7)‘1/("}2_192)_17 U 7gT(U‘I’w2_192)_1)7T<U\Pw2_192)7
Lemma 4.1(a) and Proposition 3.1 imply the existence of d,, € TyNStabg{m(vyw, 'g2)}
such that {s,d,'} is bounded in Gy, {t,d;'} is bounded in Gy and {d,} is
bounded in G; for all i > 3. Since d,vgd;' — 0 in G; and d,vg'd,! — 0 in
G, we get that

lim (3, tn, e, ,e)m(g) € T((vg) twit vewy e, -+ e)m(g),

which implies (iii). O

5. CLOSURES OF LOCALLY DIVERGENT ORBITS FOR #S§ = 2

In this section S = {vy,v2}, g = (g1,91) € G and T'w(g) is a locally divergent
orbit.

We continue to use the notation II, ¥ C II, Py, Py, Vy, V§ and Z¢(Ty)
as introduced in §2.3. Further on by a parabolic subgroup we mean a parabolic
subgroup defined over K.

For every W C II, we put

Pu(g) = {wiPgw; ' X woPywy H|wi,ws € Ng(T), 91951 € w1 VgPywy '}
It is trivial but worth mentioning that Py(g) is a finite set of parabolic sub-
groups of G x G and wPyw;! X woPyw;' € Py(g) if and only if gig5"
belongs to the non-empty Zariski open subset legP\pw;l. It is clear that
Pu(g) = {G x G} and Py(g) consists of minimal parabolic K-subgroups of
G x G.

Denote

Plg) = | Pulg).
vl

To every P € P(g) we associate a locally divergent T-orbit as follows. Let

P= wlP\},wfl X wgP\pwgl and

(12) glgz_1 = wlv;z\pv\pw;l,

where vy € Vg, z¢ € Za(Ty), vy € Vy wy and wy € Ng(T). The locally
divergent orbit associated to P is

d N—1 — —
(13) Orb, (P) < T(wi(vg) 'wy ', wavwwy )(9).
Clearly, Orby(G x G) = T'n(g).
2Note that Py, and Py are not always conjugated. Therefore we can not replace Py, by

Py in the definition of Py(g) . For exemple, if G is of type D;, | > 4, and « € II be such
that wo(a) # —a then P, is not conjugated to Pqy.
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Concerning (13), note that the matrices wy, wo, vy and vy are with coefficients

from the universal domain K (see 2.2) and they are not uniquely defined by
the decomposition (12). Proposition 5.1(a) shows that the orbit Orb,(P) is
well-defined, i.e., it does not depend on the decomposition (12).

Proposition 5.1. Let P € P(g). Then
(a) Orby(P) is well-defined and locally divergent;
(b) If w € W x W then wPw™! € P(wg) and
(14) wOrb,(P) = Orb,,(wPw™).

Proof. (a) The decomposition (12) is determined by the choice of w; and
wy € Ng(T). If w; = ;007 and wy = asWs, where a; and ay € Zg(T), then
o — wlvq_,zq,vq,wgl = &15‘1_,5\1,5\1,@2_1, where vy, = Int(@fla@l)(v;), Zy =
(@1 ta1@1) 29 (05t agws) ! and Ty = Int(@; 'agws) " (vy). Therefore wi (vg ) twi™
01(0g) "ty and wyvgw, ' = Gytgw, !, proving that (13) does not depend on
the choice of w; and wy.

In remains to prove that Orb,(P) is locally divergent. Since T'w(g) is locally
divergent, there exist a = (a1,a2) € Z¢(T) and g = (g1, 92) € G(K) x G(K)
such that g = ag. It is well-known that Ng(T) = Zg(T)Ng(T)(K) ([Bo, The-
orem 21.2]). We choose w; = a1 and wy = aswWs with @y and &y € Ng(T)(K).
With the above notation, glg;1 = al'gvl'gvglagl = alﬁlv\;z@v\p@;lagl. So,
011015 '@y = vy zgvy € G(K). Since the product map Vg x Zg(Ty) x Vg —
Vi Z2c(Ty)Vy is a regular K-isomorphism (cf. [Bo, Theorem 21.15]), we get
that vy, z¢ and vy € G(K). Therefore

Orby(P) = aT'(@y (vy) ~'@7 ", Dovew, )7 (9)

completing the proof.
The part (b) follows from the definition (13) by a simple computation. [

Theorem 5.2. With the above notation, let P € P(g). Then
Orb,(P)= |  Orhy(P).
P'cP(g), P'CP

In particular,

Tr(g)= [J Orb,(P).
)

PeP(yg

Theorem 5.2 implies immediately:

Corollary 5.3. Let P € P(g). Choose a P € P(g) with Orby(P) = Orb,(P)

and being minimal with this property. Then
Orb,(P) \ Orb,(P) = lJ  Orb,(P).
P’'eP(g), P’gf’

In particular, Tw(g) is open in its closure.
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5.1. Proof of Theorem 5.2. In view of (14), it is enough to prove the theorem
for P = Py x Py. In this case g1g; ' = vg 20y, where vy, € Vy, 2¢ € Zg(Ty)
and vy € Vy. It follows from (13) that

(15) Orby(P) = T'(2, €)m(vyga).

Note that Zg(Ty) is a reductive K-algebraic group and the orbit Z¢(Ty)7(vyge)
is closed containing Orb,(P). The T-orbits on Z¢(Ty)m(vege) contained in
Orb,(P) are given by Corollary 4.4 (iii) applied to Z¢(Ty) instead of G. More

precisely, if T'm is such an orbit there exist U C ¥ and (wy,wy) € Wy X Wy

such that P' % wiPywi! X woPywy' € P(g) and Tm = Orb,(P’). Hence

Orby(P) C Uprep(y), prep Orby(P’). In order to prove the opposite inclusion,
choose a sequence (s,,t,) € T x Ty such that a(w;s,w;) = a(w; t,wy) = 1
for all & € V', |a(w; 's,wi)|i — oo for all @ € TT\ ¥’ and |a(w; Haws)]z — 0

for all a € IT'\ ¥'. It is easy to see that (s,,t,)(zw,€)T(vyga) converges to an
element from Orb,(P’) completing the proof of the theorem. O

The theorem implies that the closed T-orbits in T'w(g) are parameterized by
the elements of Py(g), that is, by the minimal parabolic subgroups of G x G
belonging to P(g).

Corollary 5.4. If P is minimal in P(g) then Orb,(P) is closed and P is a
manimal parabolic subgroup of G x G. In particular, Py(g) # 0 and {Orb,(P) :
P € Py(g)} is the set of all closed T-orbits in Tm(g).

Proof. By (14) and Theorem 1.1(a) we may (and will) suppose that g; and
g2 € G(K) and P = Py x Py. In this case Orb,(P) is explicitly given by
the formula (15). If P is minimal among the subgroups in P(g) then Orb,(P)
is closed in view of Theorem 5.2. It follows from Theorem 1.1 (b) that z¢ €
NZG(T\I})(T)' 807

9195 " = vg (zgvyzyt)zy € V, Pyzy,

implying that Py x z5'Pyzy € P(g). Since P is minimal in P(g) and P, x
zglP@z\p C Py x Py, we get that P = P x Z‘I_IIPQ)Z\;[;, i.e. P is a minimal
parabolic subgroup of G x G. O

Theorem 5.2 easily implies the following refinement of Theorem 1.1(b) for

4S8 = 2.

Corollary 5.5. The following conditions are equivalent:
(a) Tm(g) is closed,
(b) Tm(g) is homogenous,
(c) g € Na(T)G(K),

Proof. In view of Theorem 1.1(b), we need only to prove that (b) = (a). If

Tm(g) is homogeneous then T7w(g) = Hm(g), where H is a closed subgroup of
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G containing T'. Since T'w(g) is a finite union of T-orbits, T is a subgroup of
finite index in H. Therefore T'r(g) is closed. O

It is easy to see that the map P +— Orby(P), P € P(g), is not always
injective. It becomes injective if gig;' belongs to a non-empty Zariski dense
subset of G.

Corollary 5.6. For every ¥ C II, denote by ng the number of parabolic sub-
groups contarning T and conjugated to Py. We have

(a) The number of different T-orbits in T (g) is bounded from above by
> wen My and the number of different closed T-orbits in Tw(g) is bounded
from above by nj;

(b) Given g2 € G(K), there exists a non-empty Zariski dense subset £ C
G(K) such that if g1g5 " € Q then Tw(g) is a union of exactly >,y n%,
pairwise different T-orbits and among them exactly n% are closed. In
particular, the map Orb,(-) is injective.

Proof. The part (a) is an immediate consequence from Theorem 5.2 and the
definition of Orb,(P).
Let us prove (b). Denote by P the set of all parabolic subgroups

wngwfl X wgP\pwgl

where w; and w; € Ng(T) and ¥ C II. Let Oy = N UJ1_1P®_P@CU2.
(w1,w1)EWXW

Then 4 is W-invariant, Zariski open, non-empty and P = P(g) if and only if

919, € .

Since every parabolic subgroup of G x G containing T x T is generated by
its minimal parabolic subgroups containing T x T, it is enough to prove the
existence of a Zariski dense 2 C G(K) Ny such that the restriction of Orb,(-)
to the set of minimal parabolic subgroups of G x G containing T x T is injective
whenever g g," € Q.

Let W, C Ng(T)(K) be a finite set containing e such that the natural
projection W, — W is bijective.

Let A = goI'g;". Since the product map V; x Zg(T) x Vy — G is a K-
rational isomorphism, the projection Vi x Zg(T)xVy — V; induces a rational
map p : G — V; whose restriction on (2; is regular. Fix a non-archimedean

completion F' of K different from K; and Kj. Let p(A) be the closure of p(A) in
V,, (F) for the topology on V (F') induced by the topology on F'. Then p(A) is
compact in Vi (F'). There exists a non-empty Zariski open subset {2y C € such
that if 2 € O, NG(F), w € W, \ {e} and wrw™" = v~ 2v, where v~ € V(F),
2z € Zg(T)(F) and v € Vy(F), then p(w™ v w) # e. Moreover, there exists a
compact C' C G(F) such that if, with the above notation, z € QN G(F) \ C

then p(w™v™1lw) € p(A).
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Let 2 = QoNG(K)\ C. It is clear that €2 is non-empty and Zariski dense in
G. Let g1 € Qgo. Let P and P’ € Py be such that Orby(P) = Orb,(P’). We
need to prove that P = P’. In view of (14), we may assume that P = P; x Py
and P’ = wflPawl X wy ' Pywy, where wy and w; € W,. Then

-1 _ 1 —
g1gs = Uy 2101 = Wy U 2ZVWa,

where v~ and vy € Vj(K), z and 21 € Zg(T)(K), and v and v; € Vy(K).
Using (13) we get (t1,t2) € T and § € A such that

(16) t 210 = W] 2vwad and tyv; = wi vwsd.
This implies
witwy = (tizty V) (wy tews) € Za(T).
Therefore w; = wy = w. Using (16)
(w v W)t € A,

Hence

plw™v™w) € p(A)
implying that w = e, i.e. P =P’. 0

6. PROOFS OF THEOREM 1.3 AND THEOREM 1.4

We assume that »r = #S > 2 and rankxG = rankg, G > 0 for all v € S.
Recall that T is a maximal K-split torus in G, G, = G(K,) and T, = T(K,).
We let § = {vy,- -+ ,v,} and use often the simpler notation K; = K,,, G; = G,,
and T; =T,,.

6.1. Horospherical subgroups. Let t € T,,,v € §. We set
Wtt)={z € G,: lim t"at" = e},
n—-+00

W=(t)={xe€G,: lim t"zt™" =e}

n—-+0o
and
Z(t)={z € G, :t"at™", n € Z, is bounded}.

Then W (t) (respectively, W~ (t)) is the positive (respectively, negative) horo-
spherical subgroup of G, corresponding to t.

The next proposition is well known. It follows easily from the assumption
that rankx G = rankx, G > 0 for all v € S.

Proposition 6.1. With the above notation, there exist a basis I of ®(T, G) and
U C II such that Z(t) = Zq(Ty)(K,), WH(t) = Ru(Pw)(K,), and W (t) =
Ru(Py)(Ky).
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Lemma 6.2. Let W C I, 0 € G(K) and 1 < s1 < so < r. There exists
a sequence t, € Ty(K) N olo™ such that for every a € I\ ¥ we have:
lim|a(t,;Y)]; = 0 when 1 < i < sy, lim|a(t,)]; = 0 when sy +1 < i < 89, and

la(t,)]; is bounded when so +1 < i <r.
Proof. The lemma follows from Proposition 3.1 and the commensurability

of T(O) and T(K)Nolo™ L. O

Lemma 6.3. Let V, o, s1, and so be as in the formulation of Lemma 6.2. Also
let u; € Vo (K;) if 1 <i <1, u; € Vo(K;) if s1+1 < i< sy and g; € G; if
sg+ 1 <i<r. Then the closure of the orbit Tym(ui0, -+ ,Us, 0, Gsyi1s** 5 Gr)
contains w(o, -+ 0, gsy41," " 5 Gr)-

Proof. Let t, € T(K)Nolo~! be as in Lemma 6.2. Passing to a subsequence
we suppose that for every i > sy the projection of the sequence t, in T; is
convergent. In view of the choice of t,, t,m(0) = (o) and lim t,u;t; ' = e for

all 1 <14 < sy (cf. (5) and (6)). Therefore
liELn tnm (U0, -+ Uy O,y Gogrts 5 Gr) = (€500 s € hgyin, -, he)(0),
where h; = lim tngia_lt; 14 > s,. Using once again the convergence of t,, in
every T;, 1 > 22, we get
li7£n tle e hayyt, b)) (0) =7(0, 0, Gegits 5 Gr)-
O
Lemma 6.4. Let ¥V C Il and g € G(K). Then

(a) g = wzv,v_, where w € Ng(T)(K), z € Za(Ty)(K), vy € V§(K) and
v_ € Vi (K). Moreover,

Zry(9) = Z14 (v-) N 21y (v4) N 2, (w).

(b) With g = wzvyv_ as in (a), suppose that dim Zr,(g) > dim Zr,(0g)
for every 0 € Ng(T). Then

ZTq/<w)O 2 Zqu<g)o = (ZT\J/(U*) N ZT@(UJr))O'

Proof. It follows from the Bruhat decomposition [Bo, 21.15] and the struc-
ture of the standard parabolic subgroups (see 2.3) that

G(K) = Vi (K)Na(T)(K)Vy (K) = Na(T)(K)V{ (K)V (K) =
Nea(T) (KW (K)Py (K) = Na(T)(K) Za(Tq) (K)VE(K)Vy (K).
So, g = wzvyv_ as in the formulation of the lemma. Let t € 21, (g). We have
g=tgt ' = wzviv_ = w(w Hwt ) (vt (fu_t ).
The product map
Za(Ty)(K)x VHK)x V3 (K) = Za(To)(K)VEH(K)V4(K), (z,y, 2) — zyz,
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being bijective, we obtain
2 =w Mtwt 'z, vy =toyt ' and vo = to_t™L.

We have proved that Zr,(g9) C 271, (v-)NZ1, (v4)NZ7, (w). Since the opposite
inclusion is obvious, (a) is proved.
The part (b) of the lemma follows immediately from (a). O

Proposition 6.5. Let g € G(K) be such that dim Z¢(g) > dim Z¢(0g) for all
0 € Na(T). Let A be a subset of ® and S = ( () ker ). Then there exist

aEA
systems of simple roots I1 and IT" in ® and subsets ¥ C II and W' C II" with the

following properties:
(a) S = T\Ij = T‘l/’;'
(b) g = wzvyv_ = W2V V), where w and W' € Ng(T)(K), 2z and 2’ €
Za(S)(K), vy € Vy(K), v= € Vy(K), v, € Vu(K) and v €
V. (K), and

Z5(9)” = Zs(v4)” = Zs(v))°.

Proof. Let us prove the existence of W. (The proof of the existence of W
is analogous.) Fix v € §. We may (as we will) choose a t € S(K,) with the
property: |a(t)|, # 1 for every root o which is not a linear combination of
roots from A. Applying Proposition 6.1, fix a system of simple roots Il and a
subset U of II such that S = Ty, W (t) = Vg (K,), W (t) = Vg (K,) and
Zg(t) = 2g(Ty). Let g = wzv,v_ as given by Lemma 6.4. Suppose that
t is chosen in such a way that dim Zg(vy) is minimum possible. In view of
Lemma 6.4(b), in order to show that W is as needed, it is enough to prove that
Zs(v4)° C Zg(v-)°. Suppose by the contrary that Zs(vy)° € Zs(v_)°. Pick a
t" € Zg(v,)° such that the subgroup generated by t' is Zariski dense in Zg(v4)°
and for every K-root § either S(t') = 1 or |5(¢')], # 1. Then v_ = w wow_
where wy € WH(t'), w_ € W= (t') and wy € Zg(t'). (We use that Vy is directly
spanned in any order by its subgroups Uy, see [Bo, 21.9].) Since Zg(vy)° €
Zg(v_)°, we have that either w, # e or w_ # e. Replacing, if necessary, t’
by t'~! we may (and will) suppose that w, # e. Put t = tt'*, n € N. With n
chosen sufficiently large, ¢ has the properties: |a(t)|, # 1 for every root o which
is not a linear combination of roots from A, vyw, € W*(t) and wow_ € W (1).
In view of the choice of w,, Zs(vyw,) = Zs(vy)NZs(wy ). Since wy # e and ¢/
centralizes v, but not w,, we obtain that dim Zg(viw,) < dim Zg(v,) which
contradicts the choice of t. Therefore Zg(v;)° C Zg(v_)° proving that V¥ is as
needed. O

Proposition 6.6. Let g = (g1, ,9,) € G where g; € G(K) for all i. Let
U C 1T and g;g;' = wiziviv;, where w; € Ng(T)(K), 2z € Za(Ty)(K),

v € VH(K) and v; € Vi (K), foralll < i <r—1. Put h; = v; - g,

7
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1<i<randh, =g,. Then Tn(g) contains the elements

W((gla co G, wizihyy o w1201 by, h'r))
foralll <i<r—1.

Proof. Assume, as we may, that all w; = 1. In this case it is enough to prove
that Ty7(g), where Ty = Ty (Ks), contains 7((g1, -+ , gi—1, Zili, =+ Zr—1hr—1, hy)).
Since z; centralize Ty, without restriction, we assume that all z; = e. We will

proceed by induction on r — ¢. Writing
gr—1 =01 (v, 19,) and g = (v, )" (v, 190),

it follows from Lemma 6.3 that Tym(g) contains 7((g1, -+ , gr—2, hr_1, hy)). Sup-
pose, by the induction hypothesis, that w((g1, -+ , gi, hiv1, -, hy)) € Tym(g).
Since ¢; = v;" (v; g,;) and hiy1 = v (v; )" (v; g-), applying again Lemma 6.3,

we obtain that 7((g1, -+, gi—1, hi, -+, h)) € Tem(g). O

6.2. Definition of hyHi7m(e) in (4). Let g = (91, - ,9,) € G and T'r(g) be a
locally divergent orbit. According to Theorem 1.1, g = z¢' where z € Z4(T),
g = (91, ,9.) € G and all g, € G(K). Clearly, 2Tn(¢') = Tn(g) where
the orbit T'w(g’) is locally divergent. Hence we may (and will) assume that all
9i € G(K).

r—1

Next choose w; € Ng(T)(K),1 <i < r—1,insuch a way that dim () Zt(w;g;g, ")
i=1

r—1

is maximum possible. Let H] = Z¢ (( Z1(wigig,*))°) and H{ = H{(Ks). In
i=1

view of [Bo, 11.12], H) is a connected reductive K-group containing T and

r—1
(N Zr(wigigt))° is its connected center. We put
i=1

Hl - gr_lHllgr
Let us show that
Tﬂ(g) C thle(e),
where hy = (W 'gy, - - ,wr__llgr,gT) and H; = H;(Kjs). Indeed, since w;g;g, ' €
H; for all 4, (wy,--- ,w,_1,€) normalizes T and 7' C Hj, we have
Tﬂ_(g) - (wla s, We1, 6)_1H{(w17 s, Wee, 6)7’((9) =
(w17 s, Weet, e)ilH{(wlglgril? T awrflgrflg;la €>7T<gr) =

(wi, wr_1,e) "Him(g,) = hiHyw(e).

Remark that the orbit H{m(g,) is closed and T-invariant. Therefore hyHim(e)
is closed and T-invariant as in the formulation of Theorem 1.3.
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6.3. Reducing the proof of Theorem 1.3. The proof of the existence of
hoHom(e) as in (4) represents the main part of the proof of Theorem 1.3.
With the notation of 6.2, we have

r—1
(17) H = ZG((ﬂZT(wgwigigr_l))O)
i=1
for all choices of w; € Ng, (T).
r—1

Note that g, 'Tg, C Hy, g 'wig; € H, for all i, Z(Hy)° = () 21 (g, 'wig:))°,
i=1

hi'Tr(g) = (g9, Tg.)mw((g;  wrgr, -+, gy 'wrm1gr—1,€)) C Him(e)

and Hj is an almost direct product over K of Z(H;) and D(H;). Therefore
the locally divergent orbit h'T'w(g) gives rise to a locally divergent orbit on
the quotient of D(H;)(Ks) by an arithmetic subgroup reducing the proof of
Theorem 1.3 to the following case:

() all gi € G(K), g- = e, (2r(wigi) is finite for all choices of w; €

N (T)(K) and, in view of (17), dim Z¢(g;) > dim Z1(wg;) whenever 1 <i <r
and w € Ng(T)(K).

It remains to prove that, under the conditions of (x), there exists a semisimple
K-subgroup H of G with rankx (G) = rankg(H), a subgroup of finite index H
in H(Ks), and h € G(K) such that hHn(e) is T-invariant and

hHm(e) C Tm(g).
6.4. Special elements in T'7(g). We will suppose up to the end of section 6.8
that the conditions of (x) are fulfilled.

Proposition 6.7. For every j, 1 < j < r, Tn(g) contains an element of the
form w(e,--- ,e,u,e,--- e)n(h), where h € G(K), w € Ng(T), and u is a
j

unipotent element in G(K) such that Zr(u) is finite.

Proof. First, we will prove the proposition in the particular case when Zy(g;)
is finite for some i. Let ¢ = 1. By Proposition 6.5 there exists a system of simple
roots II such that every g; = zu; u; , where u; € Vy(K), u; € Vy(K), and

2 € Ng(T)(K), and, moreover, Zy(u]) is finite. Shifting g from the left by
an appropriate element from Ng(T) we may assume that all z; = e. It follows

from Proposition 6.6 that T'r(g) contains

W((ufufvugv e 7“5)) = (u;ruli(u;)ilv €y ,6)71'(165).

Put h = u;. By Proposition 6.5 there exist opposite minimal parabolic K-

subgroups P~ and P~ containing T such that ufuj (uy)™! = zu~u, where
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2 € No(T)K), u= € Ry(P)(K), u € Ry(PT)(K) and Zr(u) is finite. We
may suppose that z =e. Let 1 < j <r. Writing

(uu,e, - ,e)m(h) = (u u,e,--- e, (u) e -, e)m(h),

Lemma 6.3 implies that T'w(g) contains (u,e,--- ,u,---,e)w(h). Using the
j
assumption r > 2 and applying once again Lemma 6.3, we obtain that T'7(g)
contains both (e, -+ ,u,--- ,e)m(h) and (u,e,--- ,e)mw(h).
j

In order to reduce the proof of the proposition to the case considered above,
it is enough to prove that if i # j, say « = 1 and j = 2, then T'r(g) contains
an element 7 ((g, gb,93, -+ ,g-)) such that ¢/ and ¢, € G(K), dim Z1(g}) >
dim Zr(wg;) for all w € Ng(T) and i € {1,2}, and

Zr(91)° = (Zx(g1) N Zx(92)) "

We choose ¢ = g1 if Zr(91)° C Z1(g2). Suppose that Z1(g1)° € Zr1(g2).

By Lemma 6.4 and Proposition 6.5 there exists a system of simple roots II
and ¥ C II such that Ty = Z1(g1)°, g2 = wzv_v,, where w € Ng(T)(K),
2z € Za(Ty)(K), vy € Vy(K) and v_ € Vi (K), and
Zr, (92)0 = Zr, (U+)O-

Since 7(g) = (g1(vy) vy, wzv_vy, g3, ,g.)7(e), Lemma 6.3 implies that
Tn(g) contains (g1vy,wzv4, 93, , g, )m(e). It is clear that

Zr(g1v4)° = (Zr(g1) N Zx(v4))° =

(Z1(91) N Z14(92))° = (Z1(91) N Z1(g2))°,
compleating the proof. O

Proposition 6.7 is strengthen as follows.

Corollary 6.8. With the notation and assumptions of Proposition 6.7, Tm(g)
contains an element of the form w(u,e,--- ,e)w(h), where w € Ng(T), h €
G(K), u belongs to an abelian unipotent subgroup of G(K) normalized by T(K),
and Zy(u) is finite.

We need the following.

Lemma 6.9. Consider the Q-vector space Q™ endowed with the standard scalar
product: ((xl, ), (Y Yn)) def leyl Let vy, -+ v, be pairwise non-
proportional vectors in Q" and v € Q™ be such that (v;,v) > 0 foralll <i < m.
Let C = {Zalvl|aZ € Q,a; > 0}. Suppose that m > n and the interior of the

cone C wzth respect to the topology on Q" induced by (-,-) is not empty. Then
there exist 1 < i, < m and w € Q" such that {v;|i # i.} contains a basis of
Q", (w,v,) <0, and (w,v;) >0 for all i # i,.
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Proof. Put Cg = {D _a;vi|a; € R,a; > 0}. Rearranging the indices of v;, we
i=1

may assume that {vy, -+, vy, } is a minimal subset of {vy, -, v,,} such that
mi
Cr = {D_avi|a; € R,a; > 0} and, moreover, {vy,--- ,v,} is a bases of R". If

i=1
n

Unt1 = »_bjv; then at least one of the b; is strictly positive. Let by > 0. Let
i=1

R = {D_avia; € Rya; > 0}. Then Cp & Cr, v1 € Cr \ Cp and {vg, -+ , v}
=2

contains a basis of Q™. Using, for example, the Hahn-Banach theorem about
separation of convex subsets of an affine space by hyperplans [Be, 11.4.1], one
can prove by a standard argument the existence of w € R™ such that (w,v;) <0
and (w,v;) > 0 for alli > 1. Since Q" is dense in R", we can choose w in Q. [

Proof of Corollary 6.8. By Proposition 6.7 Tw(g) contains an element
w(u, e, e)m(h), where w € Ng(T'), h € G(K) and u € G(K) is a unipotent
element such that Zr(u) is finite. Let V be the minimal T-invariant unipotent
K-subgroup of G containing u. We assume, with no loss of generality, that the
element u with the above properties is such that dim V is minimal possible.
It remains to prove that V is abelian. The proof is easily reduced to the case
when w = e. Suppose by the contrary that V is not abelian. There exists a
system of positive roots ®* in ® such that the corresponding to ®* maximal
unipotent K-subgroup of G contains V. Let @ be the subset of non-divisible
roots in @+ and {oq, -+, an} = {a € &, : Uy NV # {e}} where Uy, is the
corresponding to o subgroup (see 2.3). Put V(,,) = U(,,) N V. Rearranging

{ag, -+, }, we assume that [ < m is such that every «;, i > [, is a linear
combination with strictly positive coefficients of at least two different roots
from {aq, -+, ;} and no one of the roots in {ay, -, a;} has this property. It

follows from the standard rule [gq, §o] C ga+ps that the product in any order of
all Viq,), © > [, is a normal subgroup of V which we denote by V'. Also, for
every ¢ < [, the product in any order of all V(,,), where 1 < j <m and j # 1,
is a normal subgroup of V which we denote by V.. Since V/V/ is isomorphic
to V(a,) and the group Uy, is abelian if (o) = {a} or metabelian with center
Uy, if (o) = {a, 2} [Bo, 21.10], it follows from the definition of V that V)
is abelian if 7 <. Hence V' contains the derived subgroup ©(V) of V.

Let w = uy - - - Uy, Where u; € V(4,)(K). Suppose on the contrary that D(V)
is not trivial. Then u; # e for all 1 <14 <[ and u; # e for some j > [. Consider

the Q-vector space X (T)QQ and the cone C = {> a;q;]a; € Q,a; > 0}. Using
Z i=1

Lemma 6.9 and the natural pairing between the group of characters of T and
the group of the multiplicative one-parameter subgroups in T [Bo, 8.6], we
find 1 <i <[, sayi =1, and t € Ty such that lim t"u;t™" = e in G; and

n—-4o00
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lim t"u;t™™ = e in Gy for all ¢ > 1. Put ¥/ = wus---u,,. It follows from
n——o00
Proposition 6.6 that T'r(g) contains (v, e,--- ,e)m(h). It remains to note that
Zr(u') is finite and «’ is contained in a proper T-invariant K-subgroup of V

which is a contradiction. O

6.5. Unipotent orbits on T'7(g). Further on, we denote by O a subring of
finite index in O and put O = O, N O".

Some propositions in S-adic setting will be deduced from their archimedean
analogs when § = §,. For this purpose we need

Lemma 6.10. Let 'V be a unipotent K -algebraic group and U be its K -subgroup.
Put U = U(Ks) and Uy, = U(K). Let M be a subset of Uy, such that

MV (OL) = Uy V(O.,). Then

MV(O) =UV(0O).

Proof. By the strong approximation for unipotent groups (see, for example,
[PR, §7.1, Corollary]), we have that U = U, U(0"). Using that U(Q’) C V(O'),
V(O.,) C V(O') and UV(Q') is closed, we get

UV(O') = U V(O = U V(O V(O) = MV(OL)V(O) = MV (0.
L]

Proposition 6.11. We suppose that K is not a CM-field and the completion
K is archimedean. Let 'V be an abelian unipotent K -subgroup of G normalized
by T. Let u € V(K) and Zr(u) be finite. Then there exists a K-subgroup U
of V which is T-invariant, contains u, and

(18)  Un(e) = T(O)(w e, e)m(e) = {(Gul Le,-—-)n(e) : £ € T(O]},
where U = U(Kg).

We denote by L the closure of the projection of O™ in K}. We will consider
separately the two cases: L has finite index in K7 and L has infinite index in
K. (Clearly, L has finite index in K7 if and only if either L = K] = C* or
K; =R and L contains the strictly positive reals.)

Proof of Proposition 6.11 when L has finite index in K. With the
notation of 2.3, there exists an order ®* of the set of K-roots with respect to
T such that V C Vy. Identifying Ty with (K7)¥™T, the map Ty — V(K}),t —
tut™!, can be regarded as the restriction to (K;)%™7T of a polynomial map
KImT — V(K;). Let Moo @ Vo = Vo /V(O.,) where V,, = V(K,), be the
natural projection. Remark that V. /V(O,)) is a usual topological compact
torus. By the polynomial orbit rigidity for tori (see [Wey, Theorem 8] or [Sh,
Corollary 1.2] for a general recent result), there exists a T-invariant K-subgroup
U of V such that

UsoToo(€) = {(tut=t e, -+ ;e)m(e) : t € T1},
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where Uy, = U(K ). Since L = K7, (18) follows from Lemma 6.10 applied to
def

M = {(tut™te,--- ,e): t € T(O)} C Us. O

Proof of Proposition 6.11 when L has infinite index in K7. Since K is
not a CM-field, Proposition 3.2 implies that K1 = C, dimL =1, L # R, and
K /L is compact. Up to a subgroup of finite index there are two possibilities
for L: (a) L is a direct product of the unit circle group S! and an infinite cyclic
group, i.e. L = {e*™ :n e Z 0 <t < 2r}, wherei? = —1 and a € R*, and
(b) L is a spiral, i.e. L = {el@t)+2m) .y ¢ 7.0 < t < 27} where a € R*.
Further on, we denote by L a subgroup of K7 satisfying (a) or (b). With the
above notation, the case a < 0 being analogous to the case a > 0, we will
suppose that « > 0. In order to treat (a) and (b) simultaneously, we write
L = {e¥me+(@+)t . p € 7.0 <t < 2r} where @ = 0 in case (a) and @ = a in
case (b). (We use the equality e?mmet(atit — glati)(t+2m) )

Fix an ordering ®* of the root system ® such that V. C Vy. The group V
is K-isomorphic to, and will be identified with, a K-vector space. There exist

l
pairwise different positive roots ay, -+, a; such that V.= @V, where V; is a

7
weight subspace with weight «; for the action of T on V. Since aq, -+ ,qq are
pairwise different and positive there exists a 1-parameter group A : GL; — T
such that a; o A(t) = t™ where n; are pairwise different positive integers. With
u as in the formulation of the proposition let © = > u; where u; € V;(K).

Denote by U the subspace of V spanned by all ;. Let U = U(Kg). Then
Un(e) is closed containing T(O')(u,e,--- ,e)n(e). The opposite inclusion (and
the proof of Proposition 6.11) follows from the next lemma.

Lemma 6.12. Let GL; act K-rationally on a finite dimensional K -vector space
!
U and U = @U,, be the decomposition of U as a sum of weight sub-spaces

U, with weights \;(t) = t". Suppose that r > 2, K is not a CM-field, n;
are pairwise different positive integers, and every Uy, is spanned by an u; €
U,,(K)\ {0}. Then for every real C > 1, we have

U={_N(a)u;,0,---,0): a € L ]|y > C} + U(0),

where U = U(Kg).

Proof. In the course of the proof, given 6 € [0,27) and b < ¢, we denote
Ry = {re? : r € R} and [b,c]p = {re" : a < r < b}. Both Ry and [b, c]y are
imbedded in K; and the latter is one of the factors in the direct product Kgs
(or Ku).

If o € GL(U(K)) then o(U(0’)) is commensurable with U(Q’). Since there

is no restriction on the choice of the subring of finite index O’ in O, we may
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(and will) identify U(K) with K'. and u; with the standard basis of K'. The
projection of K into Ks/O being dense, it follows from [Sh, Corollary 1.2] (or
[Wey]) that for every C' > 1

KfS = {(Z)‘Z(a)u’uoa e 70) ta € Kla |a|1 Z C} + O/l.

In view of Lemma 6.10, it is enough to prove that

Uso ={()_Nia)u;,0,---,0) 1 a € L,|ay > C} + U(OL,),

where Uy, = U(K ).

It is enough to consider the case when 0 < n; < ng < --- < n;. For every
i we introduce a parametric curve f; : [0,27) — K, t — e(@+)7? Recall that
0., is a group of finite type, the diagonal imbedding of O/ in K, is a lattice
and K; + O = K. Therefore Ry + O, 0 < 0 < 2m, is a subspace of the
real vector space K., and the set of all § € [0,27) such that Ry + O’ & K
is countable. Note that the tangent line at ¢ of each curve f; runs over all
directions when 0 <t < 27w. By the above there exists 0 < ¢ < 27 such that
if the tangent line at ¢ of the curve f; is parallel to Ry, 0 < ; < 2, then
Ry, + O, = K forall 1 <4 <.

For every n € N, let

F,:[0,2m) = K., t ((X"™f(t),---,0),---, (™™ fy(t),---,0)).

Let e > 0. A subset M of K_/©O"_ will be called e-dense if the e-neighborhood
of any point in K /O"_ contains an element from M. (As usual, K /O"_ is
endowed with a metrics induced by the standard metrics on K, considered as
a real vector space.) Remark that since K’ /O"_ is a compact torus if M is
e-dense then every shift of M by an element of K'_ /O’ fx, is also e-dense.

Now the lemma follows from the next

Claim. With ¢ and F,, as above, let € > 0. There exist reals A. > 0 and
b. > 0 such that if v —b. < ¢ < d < +0b. and e (d —c¢) > A, where ¢ and
d € R and n € Ny, then

(F,(t) + O e <t < d}
is e-dense in K'_/O"_.

We will prove the claim by induction on [. Let | =1, ie. F, : [0,271) —
Koo, t = (2™ f(1),0,---,0), where fi(t) = e@)mt Tt follows from the
choice of 1 that there exists a real B. > 0 such that the projection of [0, B.]y,
into K /O, is 5-dense. Every shift of [0, B.]s, + Os by an element from Ko
is also $-dense in K. /O.,. Choosing A. > 0 sufficiently large and b. > 0

sufficiently close to 0 we get that if n is such that e*™"1(2b.) > A, then the
length of the curve {F,(¢)|¢) —b. <t <1+ b.} is greater than B, and if [ is
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any connected piece of this curve of length B, then I is $-close (with respect
to the Hausdorff metrics on C) to a shift of [0, B.]y,. Hence the projection of I
into K /O., is e-dense completing the proof for [ = 1.

Suppose that [ > 1 and the claim is valid for [ — 1. Let

Fn(t) = ((e%nmafl(t)a e 70)’ B (62ﬂnn171aflfl(t)> T 70))'
By the induction hypothesis for [ —1 and the validity of the Claim for K, /O._,
given € > 0 there exist positive reals A. and b. such that if p —b. <c<d <
¥+ b. and 2™ (d — ¢) > A, for some n € N, then {F,(t) + 0" e <t < d}
is e-dense in K'2'/O0" ! and

{(627rnnlafl(t)’0,.. 70)_{_0(/30’0’ <t< d/}

is e-dense in K, /Oy whenever ¢ < ¢ < d' < d and e*™(d' — ) > A..
Further on, given ¢, < d,, we define the length of the parametric curve
{F.(t)|e. <t < d.} ¢ KZ' as the maximum of the lengths of the curves
{emmiafi(t)|c, <t <d,} CC,1<i<l—1. With b, A. and n as above, let
x € KIZ1/O'" ! There exist ¢, and d,, such that ¢ < ¢, < dy, < d and
{F, ()40 epn < t < dyptis of length 5 and contained in an e-neighborhood
of x. In view of the definition of ﬁn, there exists 0 not depending on x and n
such that e?mmm-1 (dyp — Con) > 6. Now, since n; > n;_y, choosing n sufficiently
large we get that e*™"(d, ,, — ¢;.n) > A. completing the proof of the claim. O

6.6. A refinement of Jacobson-Morozov lemma. We will need the follow-
ing known lemma (see [E-L, Lemma 3.1]):

Lemma 6.13. Let L be a semisimple group over a field F' of characteristic 0,
S be a maximal F-split torus in L, a be an indivisible root with respect to S
and V() be the corresponding to o root group. Denote

U:{((l) f):xeF} andDz{(g yol):yEF*}.

Let a = exp(v) where v € g, if 2a is not a root or v € g,Uga, otherwise. Then
there exists an F'-morphism f : SLy — L such that a € f(U) and f(D) C S(F).

6.7. Actions of epimorphic subgroups on homogeneous spaces in S-
adic setting. Recall that G is a K-isotropic semisimple K-group, S O S, and
G = Goo X Gy where Goo = [[,cs. Gv and Gy = Hvesf G,. Let H be a closed
subgroup of G, which have finite index in its Zariski closure. Recall that a
subgroup B of H is called epimorphic if all B-fixed vectors are H-fixed for every
rational linear representation of H. For example, the parabolic subgroups in H
are epimorphic. Also, if f: K, — G,,v € §, is a K,-rational homomorphism
then {f(t) : t € K;} is called 1-parameter unipotent subgroup of G, (or G).

In the case when § = S, the following proposition is proved in [Sh-W,
Theorem 1].
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Proposition 6.14. Let H be a subgroup of G generated by 1-parameter unipo-
tent subgroups and B be an epimorphic subgroup of H. Then any closed B-
invariant subset of G/T" is H-invariant.

Proof. It is enough to prove that Bw(g) is H-invariant for every g € G.
Since ¢g~!Bg is an epimorphic subgroup of g !Hg, the proof is easily reduced
to the case when g = e. Let Gy, be a decreasing sequence of open compact
subgroups of Gy such that (), Gy, = {e}. Let G;, = Gooc X Gy, and ', = I'NG,,.
Let ¢, : G, = G be the natural projection and I'y, oo = ¢,,(I',). Since T, is
a lattice in G, and Gy, is compact, ',  is a lattice in G. It follows from

[Sh-W, Theorem 1] that

BTy oo = HI'), o

for every n. Since H is generated by 1-parameter unipotent subgroups, in view
of [Ral], there exists a connected subgroup L,, of G, which contains H,

HFTL,OO = Lnrn,ooy

and L, NI, » is a lattice in L,,. Since G, has finite index in G, I'ni1,00
has finite index in I', . Now using the connectedness of L,, we get that all L,
coincide, i.e. L, = L. So, ¢,(Bl',) = Bl = LI'; ». Therefore for every
x € L there exists a, € Gy, such that za, € BT,,. Since {za,} converges to

r in G, we get that © € BT, i.e. L C BI. Hence, in view of the inclusions
BCHCL,

BT = HT,

which proves our contention. U

6.8. Proof of Theorem 1.3. We keep the assumptions from section 6.3 and
suppose that K; = R or C. By Propositions 6.7 and 6.11 there exist h € G(K),
w € Ng(T), and a nontrivial defined over K unipotent subgroup U of G such
that if U = U(Ks) and Uy = U(K}) then wUn(h) C Tn(g) and Zp,(Uy) is
finite. Shifting the orbit T'r(g) from the left by w™ we reduce the proof of
the theorem to the case when w = e. Let P; be the maximal subgroup of G,
with the properties: P; is generated by 1-parameter unipotent subgroups of G,
and (P, x {e} x --- x {e})m(h) C Tn(g). Note that U; C P, and, therefore,
Zr, (Py) is finite. Since the projection of T(O) into T is Zariski dense and the
stabilizer of 7(h) in T(O) has finite index in T(O), P; is normalized by T7.
Put X = T(P, x{e} x---x {e})m(h). It is clear that X C T'r(g) and that
every l-parameter unipotent subgroup of G; which fixes X (after its natural
embedding in G) is contained in P;.

Let us prove that P; is semisimple. Suppose on the contrary that the unipo-
tent radical R, (P;) of Py is not trivial. Hence, there exists a € R,(P1),a # e,
such that a = exp(v) where v € g, for some root a of G; with respect to T;. By

Lemma 6.13 there exists a Kj-morphism f : SLy(K;) — Gy such that a € f(V)
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and f(D) C T where V is the subgroup of the upper triangular unipotent ma-
trices in SLy(K7) and D is the subgroup of the diagonal matrices in SLo(K7).
Denote by B the subgroup of P; generated by f(V) and f(D). Then B is an
epimorphic subgroup of f(SLy(K)) which fixes X. It follows from Proposition
6.14 that X is fixed by f(SL2(K;)) too. Therefore f(SLy(K;)) C P. Since
f(U) € Ru(H;) and the unipotent subgroups of f(SL2(K;)) are conjugated we
get that f(SLy(K7)) C Ry.(H;p) which is a contradiction because f(SLy(K7)) is
not solvable. _

Let P, be the Zariski closure of Py in GG;. Then P has finite index in P
and Ty C P, because T normalizes Pj, P; is semisimple and Z7, (P;) is finite.
By [To4, Theorems 1 and 3] there exists unique connected K-subgroup H of
G with the following properties: (P; x {e} x -+ x {e})n(h) = Hn(h) where H
is a subgroup of finite index in H(Ks), P, is contained in H; = H(K;), and
for each proper normal K-algebraic subgroup Q of H there exists 1 < i < r
such that (H/P)(K;) contains a unipotent element different from the identity.
Since R,(H;) C P, and P, is semisimple we get that H is semisimple. In
particular, Hm(h) is closed. Also, a subgroup of finite index in T(O) fixes
(P x {e} x --- x {e})m(h) which implies that T normalizes H. Therefore T C
H and we may assume that 7' C H. So, T'r(g) contains the closed T-invariant
orbit Hm(h). O

6.9. Proof of Theorem 1.4. We suppose that G = SL,,,n > 2. As usual,
SL,, = SL(W) where W is the K-vector space with W(K) = K™ and W(O) =
on.

Theorem 1.4 follows from the next proposition.

Proposition 6.15. Let H be a Zariski connected reductive K -subgroup of SL,,
containing the subgroup of diagonal matrices T of SL,, and let W = W& ---P
W, where W, are irreducible H-subspaces defined over K. Then
(a) H={g € SL,, : gW,; = W, for all i} and D(H) = SL(W;) x --- x
SL(Wl)7
(b) if H' is a reductive K -subgroup of SL,, such that H' D H and s.s.ranky (H) =
s.s.ranky (H') then H=H'.

Proof. The proof is based on the following observation. Let L = L; x- - - x L
be a direct product of simple algebraic K-groups and let p : L — SL(V) be
an irreducible K-representation with finite kernel. It is well-known that p is a
tensor product of irreducible representations of L;,1 < i < s. In view of the
description in [Bou, Table 2] of the dimensions of the irreducible representations
of the simple algebraic groups, we have that dim(V) > rankg(L) + 1 and
dim(V) = rankg (L) + 1 if and only if p is a K-isomorphism.

The group H as in the formulation of the proposition is an almost direct prod-
uct of its center Z and D(H). Hence, every W; is an irreducible D(H)-subspace,
dimZ <[ —1 and, since D(H) C SL(W;) X --- x SL(W,), rankg(D(H)) <
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!
> (dim(W;) — 1) = n — . But rankg(H) = rankg(D(H)) + dimZ = n — 1.
i=1

l
Therefore, dimZ = | — 1 and s.s.rankg(D(H)) = > (dim(W;) — 1). It fol-

=1
lows from the above observation that D(H) = SL(W;) x --- x SL(W,) and
H = {g € SL, : gW,; = W, for all i}, proving (a). Note that every irreducible
D(H')-subspace is D(H)-invariant and the center of H' is contained in Z. This
implies (b). O

Theorem 1.4 is deduced from Theorem 1.3 and Proposition 6.15 as follows.
Let H;, Hy, and T be as in the formulation of Theorem 1.3. It follows from
Proposition 6.15 that H; = Hy, = H. Let H be a subgroup of finite index in
H(Ks) containing T(Kgs). Since SL;(F') does not contain subgroups of finite
index whenever F' is a field of characteristic 0, we get that H = H(Ks) which
implies Theorem 1.4.

7. A NUMBER THEORETICAL APPLICATION

7.1. Reduction of the proof of Theorem 1.5 to the case m = n. The
reduction is based on the following general

Proposition 7.1. Let M;, where 1 < <1 and r > 1, be subsets of the vector
space K™ each of them consisting of m linearly independent vectors. Suppose
that there exist i # j and W € M; such that K@ N M; = (. Then there
exists a linear map ¢ : K™ — K™ such that every ¢p(M;) consists of m linearly
independent vectors and K¢(w) N ¢(M;) = 0.

Proof. Let M be the subset of Endg (K™, K™) consisting of all ¢ as in
the formulation of the proposition. One can prove by a standard argument
that M is a Zariski open non-empty subset of Endg (K™, K™) which proves the
proposition. O

With the notation from the formulation of Theorem 1.5, let m < n. We
identify K" with Kay + - + K, and put M, = {I{"'(@),.. ., IV(#)}, v € S.
By the assumptions of the theorem there exist v; and v, € Sand 1 <7 < m
such that Kll(vl)(a_:') N M,, = (. There exists a basis § = (y1,...,yn) of K1 +
-+ Kx, such that the map ¢ as in the formulation of Proposition 7.1 is given
by ¢(a1y1+- - -+ any,) = biy1+- - -+ bpnym where by depend linearly on a;. Every
1)(Z) is a linear form on v, .. ., y, denoted by A (). Put 5 (y1, -+, ym) =

7

/\Z(U)(yla"' 7ym707”' 70) and ﬁ)(ylv 7ym> - HZ}U)(yl’ 7ym)7 v €S. Then
=1
IR

NEIREE ,Z(W?{) are linearly independent over K and ﬁ,l is not proportional to ﬁ,z.
So, the validity of the theorem for f € Kglxy,--- ,z,] follows from its validity

for }‘v: (}:})UES € KS[yla T ;ym] -
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In the framework of Theorem 1.5, it is a natural problem to understand the
distribution of f(O™) in K. Presumably, it is a matter of uniform distribution.

7.2. Proof of Theorem 1.5. Let G = SL,,, G = SL,,(Ks) and I = SL,(0).
The group G is acting on Ks[Z] according to the law (0¢)(Z) = ¢(o~'Z), where
o € G and ¢ € Kg[Z]. We denote fo(Z) = x129...7,. Let f(Z) be as in the
formulation of the theorem with m = n. There exists g = (g, )ves € G such that
every g, € G(K) and f(Z) = a(g' fo)(Z) where a € K. Since f,(Z),v, € S,
are not pairwise proportional the orbit T'7(g) is locally divergent but non-
closed (Theorem 1.1). Note that f(Z) = a(wgfo)(Z) for every w € Ng(T).
In view of Theorem 1.4 there exist a reductive K-subgroup H with T ¢ H
and 0 € G(K) such that T'w(g) = Hn(o) where H = H(Ks). By Proposition
6.15 there exists a direct sum decomposition W = W; @ --- & W, such that
H = {g € SL, : gW, =W, for all i} and at least one of the subspaces W;, say
W.., has dimension > 1. (Recall that SL,, = SL(W).) Pick a = (a,)yes € Ks
with a, # 0 for all v. Using dim W, > 1, we find Z€ O™ and h = (hy)yes € H
such that fo(ho(Z)) = a. Since Hol' = Tgl there exist t; € T and ; € I with

limt;gv; = ho.

Therefore
lim f(7;2) = a,
proving the theorem. U

8. EXAMPLES

In this section we provide examples showing that T'r(g) in the formulation
of Theorem 1.3 might be not homogeneous and that the claims of Theorem 1.4
and Theorem 1.5 are not true for a CM-field K. For simplicity, we will suppose
that S = S,. So, let K be a CM-field, that is, K = F(v/—d), where F is a
totally real number field, d € F' and d > 0 in every archimedean completion of
F. We denote in the same way the archimedean places of F' and their (unique)
extensions to K. So, K, = C and F, = R for all v € §. Also, let O (resp.
Ok) be the ring of integers of F' (resp. K). Recall that Op (resp. Ok) is a
lattice in Fs = [[ F, (resp. Ks = [[ K.).

veES vES
8.1. Restriction of scalars functor for CM-fields. Denote by G the group
SL, considered as a K-algebraic group. Let = : K — K be the non-trivial
automorphism of K/F. For every v € S we keep the same notation ~ for the
complex conjugation of K, = C and for the group automorphism SLy(K,) —
t t
F-rank 1, denoted by Rg/r(G), and a K-morphism p : Rg/r(G) — G such
that the map (p,p) : Ri/r(G) = G x G, g+ (p(g),p(g)), is a K-isomorphism

SLy(K,), ( z Y ) > ( ; y ) There exists a simple F-algebraic group of
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of K-algebraic groups and p(Rk/p(G)(F')) = G(K). The pair (Rg/r(G),p)
is uniquely defined by the above properties up to an F-isomorphism and the
F-algebraic group Rk,p(G) is obtained from the K-algebraic group G via the
restriction scalars functor Ry, p. (We refer to [BoT, 6.17-6.21] or [W2, 1.3] for
the general definition and basic properties of Rg/p.)

Given v € &, the isomorphism Ry /p(G)(F) — G(K),g — p(g) admits a
unique extension to an isomorphism Rg/p(G)(F,) — G, denoted by p,. Let
ps be the direct product of all p,,v € S. Further on Rg/p(G)(Fs) will be
identified with G via the isomorphism ps. Let T be the subgroup of the diagonal
matrices in G. Under the above identification I' = G(Ok) = Rk/r(G)(OF)
and T' = T(Ks) = Ri/r(T)(Fs). For every v € S we have that T, = T(K,)
is the the group of complex diagonal matrices in G,(= SLy(C)). The F-torus
RK/F(T) is not split and contains a maximal 1-dimensional F-split torus Tp.
Note that Tr(F,), v € S, is the the group of real diagonal matrices in T,.
Denote Tg = Tx(Fs). Then T =Tk - N where N is a compact group.

8.2. Non-homogeneous T-orbits closures when r > 2. We continue to use
the notation and the assumptions from §8.1. Also, let u™(z) = ( i_ (1) ) and

u*(x):([l) T),S:{vl,-n,vr} and G = Gy, X -+ X Gy, .

Theorem 8.1. Suppose that r > 2. Let g = (u™ (B)ut(a),e, - ,e) € G where
a € F* and p € K\ F. Then the following holds:

(a) Each of the orbits Tw(g) and Trm(g) is not dense in G /T,

(b) Each of the sets Tn(g) \ Tw(g) and Trm(g) \ Trm(g) is not contain in a
union of countably many closed orbits of proper subgroups of G.

In particular, each of the closures Tm(g) and Trm(g) is not homogeneous.

Proof. A direct calculation shows that v~ (5)u™(a) = du™(ay)u™(f1) where
1 -1 0 .
a; = (14 af)a, i = (14 af)'f and d = ( ( +84/3) 1+ ap ) Since
e K\ F we get that f; € K\ F.
Define subgroups L; and Ly of G as follows. Put L; = SLy(Fs) and Ly =

~1
{< zig yﬂ; ) € G:uxy,zt € Fs}. The group Ly N T is commensurable
1

with SLy(Op) and, therefore, is a lattice in Ly. Hence Ly7(e) is closed. Since

—1
the map G — G, YY) e Tooyh , is a K-isomorphism we get
z t 2’51 t

that Lom(e) is closed too.
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It follows from the definitions of L; and Ly that
(19)
Ter(g) € | J {(u ce)bim(e)} | | {(d-ut(vay), -+ e)Lom(e)}.

0<pu<l 0<r<1

Since the right hand side of (19) is a proper closed subset of G/T, Tgm(g) # G/T.
Also, it is easy to see that the shift of the right hand side of (19) by the compact
group N (defined at the end of §8.1) remains a proper subset of G/I'. Since
T =Tg-N, Tr(g) # G/T', completing the proof of (a).

Let U; T be the subgroup of all upper triangular unipotent matrices in L,
and Us~ be the group of all lower triangular unipotent matrices in Lo. It
follows from Proposition 6.11 and Proposition 3.2(2a) that Tgn(g) D Uy 7(e) U
(d,e,--- ,e)Uy m(e). In view of Proposition 6.14 we have

(20) Te7(g) D Lim(e) U (d,e,--- ,e)Lom(e).

Fix a real transcendental number a. Using again Proposition 3.2 we get that
Tem(g) contains 7(g) where g = (u™ (e 28)u*(a*a), -+ ,e). Note that

(21) Tgm(g) = Tgm(g)-

6 791 € SLy(C) and
m € SLy(K) such that v (8)ut(a)m = tu™ (e ?8)ut(a*a). The upper left co-
efficient of tu~(a28)u'(a?a) is equal to 7 and u~ (8)u™(a)m € SLy(K). Hence
7 € K. On the other hand, the upper right coefficient of tu~(a=?8)u™(a’a) is
equal to Ta?a. Therefore a is an algebraic number which is a contradiction. We
have proved that

Suppose that 7(g) € T'n(g). Then there exist t =

7(9) € Tgn(g) \ Tm(g)-

Since

Tem(9) \Tn(g) C (Tgm(g) \ Trm(g)) N (Tw(g) \ T (g)),
in order to prove (b) it is enough to show that if T (g) \ T (g) C U Qim(hi),

where (); are connected closed subgroups of G and Q;7w(h;) are closed orbits,
then one of the subgroups Q; is equal to G. It follows from Baire’s category
theorem, applied to a compact neighborhood of 7(g) in T (g), that there exists
i, such that Ty C Q;, and 7(g) € Q; 7m(h;,). Using (20) and (21), we obtain
that L1 U (d,e, -+ ,e)La(d,e,-++ €)™t C Q;,. Since B € K \ F it follows from
the definitions of Ly and Lo that @);, contains {e} x --- x G(K,, ). But I" is an
irreducible lattice in G. Therefore ({e} x --- x G(K,,)) - T is dense in G and

Qi, =G. ]

Remark. The orbit Tn(g) C SLo(Ks)/SLy(Ok) provides an example showing
that Theorem 1.4 is not valid for CM-fields. On the other hand, Tr7(g) C
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Ri/p(SL2)(Fs)/Rk/r(SL2)(Op) provides an example showing that T'm(g) as
in the formulation of Theorem 1.3 is not always homogeneous.

8.3. Values of decomposable forms when #S = 2 or #S > 2 and K
is a CM-field. Let us provide the necessary counter-examples showing that
the assertion of Theorem 1.5 does not hold if #5 = 2 or K is a CM-field and
#S > 2.

We keep the notation f(Z), f,(Z) and ll@) (%) as in the formulation of Theorem
1.5. We will assume that m =n = 2.

The following is a particular case of [T3, Theorem 1.10]:

Theorem 8.2. Let #S = 2. Then f(O%)NKY is a countable set. In particular,
f(O%) is not dense in K%.

Remark that in the formulation of Theorem 8.2 K is not necessarily a CM-
field.

Theorem 8.3. Let K be a CM-field which is a quadratic extension of a totally

real field F'. We suppose that #S > 2 and that all l§”) are with coefficients from
F. Then there erists a real C' > 0 such that for every Z € O% either

(22) I[[r@lec-N,

veES

or there exists a € C* such that

(23) fo(2) €a-RiorallvesS.

In particular, f(O?) is not dense in Ks.

Proof. Choose d € Op such that K = F(v/—d). Let 0;, 1 <i < r, be the
set of all nontrivial morphisms of the field F' into C. Given o;, we will keep the
same notation for its extension to the morphism from K into C which maps
v—d to \/—0;(d). The normalized archimedean valuation of K corresponding
to o; is defined by |z|,, := ||o(2)]|?, where € K and || - || is the usual norm
on C. Also, recall that Ng/g(x) := []|z|,, is the algebraic norm of z and

Ng/o(z) € Nif 2 € Ok (see [CF, ch.2, Theorem 11.1]).
Let lz@j)(xl,xg) = hg)xl + hg)xg where j € {1,--- ,r} and ¢ € {1,2}. Put
' h(j) h(j) W) +(v5)
hU) = h%;) h%f) . We have f; =137 - 157, Multiplying f; by appropriate
21 Nag
elements from F* we suppose without loss of generality that all hU) € SLy(F).
Further on, if @), = (w1, wy2) € C? and Wy = (wy,wes) € C* we denote by

IR : Wy w : Wy W
det(wy, ws) the determinant of 12 ) Also, given w = e
W21 W22 Wa1 W22

and @ = (ay,az) € C? we write w(@) = (wy1a1 + Wi2as, Wara; + Wenas).
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Let Z = 7+ v/—db € O% where 7 = (y1,7) € F2 and § = (6,,6,) € F2.
Denote by [ the index of Op[v/—d| in Ok. Then (Iv1,17) € O% and (16y,10,) €
O2.. Since det(h\9(7), h(j)(é)) = det(i, d), we get

H\det (h9(5 H\det 5,0 \U] l4’"

We have
0, (1(2)) = 031 7)) + iy o3 (o, (1 (5)) = r e
and
Gy = (o),
where rgj ) (resp. gpgj )) is the absolute value (resp. the argument) of the complex
number aj(l§”j )(Z)) A simple computation shows that

4et (65, BV G, = LT s -

Therefore if ¥ and § are not proportional then

) Nrro(d Ni/o(d)
H|f] z |v] NK/Q 1_[|det 7 )|”J € l47/" N,

proving (22). Let § = a7, a € F. Then fo,(2) = (1 + av/—d)* f,, () for all j
which implies (23). O
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