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 3 

ABSTRACT 33 

The relative influence of deterministic niche-based (i.e. abiotic conditions, biotic interactions) 34 

and stochastic-distance dependent neutral processes (i.e. demography, dispersal) in shaping 35 

communities has been extensively studied for various organisms, but is far less explored 36 

jointly across the tree of life, in particular in soil environments. Here, using a thorough DNA-37 

based census of the whole soil biota in a large tropical forest plot, we show that soil 38 

aluminium, topography, and plant species identity are all important drivers of soil richness 39 

and community composition. Body size emerges as an important feature of the comparative 40 

ecology of the different taxa at the studied spatial scale, with microorganisms being more 41 

importantly controlled by environmental factors, while soil mesofauna rather display random 42 

spatial distribution. We infer that niche-based processes contribute differently to community 43 

assembly across trophic levels due to spatial scaling. Body size could hence help better 44 

quantifying important properties of multitrophic assemblages. 45 

 46 

INTRODUCTION 47 

Over a century of documenting patterns of diversity has shown that niche-related, 48 

demographic, dispersal and evolutionary processes are all important determinants of 49 

ecological communities1-3. However, their relative contribution across spatial scales and 50 

organisms remains less well known2,4, especially when it comes to the soil biota. 51 

Soils are structurally complex environments5. They are often described as the “poor 52 

man's tropical rainforest”6 due to the large and elusive diversity of organisms they harbour7. 53 

Amplicon-based DNA analysis of environmental samples, or metabarcoding8 has recently 54 

enabled unravelling novel macroecological patterns for soil fauna, nematodes, bacteria, fungi, 55 

protists, and archaea across biomes and habitats7,9-11. These patterns often co-vary with 56 

environmental conditions such as pH and nutrient quality/availability. They also depend on 57 
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plant cover due to trophic and mutualistic/pathogenic interactions12-14, but this relationship 58 

appears context-dependent15-17. Also, dispersal limitation or stochastic processes have been 59 

unveiled in e.g. fungi or meiofauna10,18,19, although other studies reported the predominance 60 

of niche determinism11,20. 61 

Much of the difficulty in drawing general conclusions about soil community assembly 62 

lies in that studies often focus on single taxonomic groups (but see17,20-22) or consider different 63 

spatial scales. In addition, soil organisms harbour large differences in life-history traits; in 64 

particular their body size, whose spans six orders of magnitude (0.1 µm to 10 cm7). This 65 

property has important consequences for community assembly because organisms of different 66 

body size are ruled by contrasting metabolic and demographic processes23,24. Dispersal of 67 

microorganisms is mediated by external agents and is assumed to occur across large spatial 68 

distances. This, together with their large population size and short generation time, would 69 

limit local extinction and ecological drift, resulting in a homogeneous global microbial 70 

species pool20,25. However, microorganisms are also more responsive to small-scale changes 71 

in resources, subtle variations that may not be perceived by larger organisms24,26,27. Hence, 72 

microbial communities are often reported to be dominated by niche-based processes25. In 73 

contrast, larger organisms (e.g. mesofauna) are thought to be limited in their ability to 74 

disperse and have longer reproduction times. They are hence more prone to ecological drift 75 

and could display spatial aggregation patterns irrespective of environmental conditions (28 and 76 

references within). This has enormous consequences for the spatial scaling of soil biodiversity 77 

and the major biogeochemical cycles and ecosystem services they sustain7,12,14. However, 78 

existing knowledge on the scaling of soil communities across body sizes is based entirely on 79 

meta-analyses14,26,27 and is therefore indirect. This hampers our ability to predict the future of 80 

this important biological component29,30. 81 
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In order to assess the processes governing soil community assemblages, we combined 82 

an extensive characterization of abiotic and plant cover conditions with a comprehensive 83 

survey of soil biodiversity using DNA metabarcoding in a large tropical forest plot, where 84 

samples were collected every ten meters. We sought to (i) determine which factor, both 85 

abiotic (e.g. soil chemistry) and biotic (plant diversity, identity), influence soil communities 86 

composition, (ii) evaluate the relative importance of niche-based versus neutral processes in 87 

shaping these communities and (iii) determine how these effects depend on taxon body size. 88 

We predicted that in communities of small-bodied organisms, niche based-processes would be 89 

more important relative to larger organisms, which would display spatial aggregation patterns 90 

that are consistent with neutrality. 91 

 92 

RESULTS 93 

We found a total of 2,502 archaeal, 19,101 bacterial, and 11,470 eukaryotic OTUs within the 94 

12-ha plot (Table 1). Many of these OTUs were rare (relative abundance < 0.1%) and 95 

accounted for 36 ± 10 % (SD values here and after) of archaea OTUs, 86 ± 2 % of bacterial 96 

OTUs, and 80 ± 6 % of eukaryotic OTUs. Bacterial OTUs identified at the phylum level (88% 97 

of OTUs, 94% of reads) corresponded mainly to Actinobacteria, Alphaproteobacteria, and 98 

Acidobacteria. Identified eukaryotic OTUs (51% of OTUs, 70% of reads) belonged to fungi 99 

(mainly Agaricomycetes, Glomeromycetes and Orbiliomycetes; Supplementary Table 1), 100 

arthropods (mainly termites, mites and springtails) and annelids (Oligochaeta). Plants 101 

represented only 2% of all OTUs (10 % of reads). For Archaea, the identified OTUs (3% of 102 

OTUs, 64% of reads) corresponded to Nitrososphaeria and Methanomicrobia. Figure 2 103 

illustrates the spatial variation in local diversity for the focal taxonomic groups. The pairwise 104 

correlation of these spatial patterns, both in terms of OTU diversity and compositional 105 
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turnover, was moderate to low (|Pearson’s r| < 0.7) and showed low or no correlation with 106 

plant ones (Supplementary Table 2-3). 107 

The full RDA models, i.e. including abiotic, plant and spatial descriptors, explained 3-108 

13% of the variation in OTU composition across the 19 focal taxonomic groups (Fig. 3, 109 

Supplementary Table 4). Spatial total effects contributed for 77 ± 9 % of the total explained 110 

variation. Half of the spatial variation was explained by spatially structured abiotic conditions 111 

(Fig. 1, Supplementary Table 5), in particular, soil aluminium and topographic variables (i.e. 112 

elevation, convexity and wetness) or plant characteristics. They correlated negatively with the 113 

OTU diversity of most unicellular taxonomic groups for soil aluminium and of several 114 

bacterial groups and worms for topographic variables (Supplementary Fig. 1-2). The other 115 

half of the spatial variation corresponded to pure spatial effects (41 ± 15% of the total 116 

explained variation). Only 7 ± 2 % of the total explained variation was due to pure abiotic 117 

effects. 118 

Plant total effects also explained a significant fraction of the explained variation (28 ± 119 

11 %, Fig. 3) and the plant pure effects were more important than pure abiotic ones in most 120 

cases (13 ± 8 % of the total explained variation, Supplementary Table 4). The identity of the 121 

dominant plant genera in soil samples as detected with the plant DNA marker was the best 122 

plant predictors. These variables included 66 different dominant plant genera, 42 of which 123 

were unambiguously identified. With OTU diversity instead of OTU composition, 4 to 46% 124 

of the variation was explained and the relative importance of plant, abiotic and spatial factors 125 

was similar to what observed above (Supplementary Table 6, Supplementary Fig. 3). 126 

Across taxonomic groups, we found a negative relationship between dispersal unit size 127 

and the fraction of variation in OTU composition explained by the environmental variables, 128 

spatially structured or not (Fig. 4). This relationship held when the full variation or pure 129 

abiotic effects were considered alone (Pearson’s r = -0.58 and -0.51 respectively, p < 0.05). 130 
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We did not observe such a relationship when performing the analysis on OTU diversity 131 

(Supplementary Figure 4).  132 

 133 

DISCUSSION 134 

Several recent reviews have emphasized the impressive development of publications 135 

using high-throughput sequencing to describe the diversity in soils to the extent that it may 136 

shift research effort away from fundamental questions in soil ecology and evolutionary 137 

biology13,31. They emphasize the focus on single taxonomic groups (mainly bacteria/fungi) 138 

and the limited consideration for the biotic and abiotic environment at relevant spatial scales 139 

are major obstacles to a mechanistic understanding of the processes regulating soil diversity 140 

and functioning. This study is an attempt to address these limits, combining assessment of 141 

environmental conditions with patterns of soil diversity across the tree of life at relatively 142 

reduced spatial scales. We provide evidence for spatial scaling rules across soil taxonomic 143 

groups and discuss the general implications of our findings for the assembly of soil 144 

communities. 145 

In the spirit of classical community ecology, we sought to understand the spatial 146 

distribution of taxonomic groups using environmental and geographical variables. Although 147 

the spatial patterns of soil communities differed widely amongst clades, they were all related 148 

to several abiotic and biotic factors, albeit to a varying magnitude. This suggests that niche 149 

processes always contribute to the community assembly of soil taxa at the studied spatial 150 

scale, irrespective of the taxon. 151 

We found total aluminium content to be an important predictor of microbial (i.e. 152 

prokaryotes, protists) and nematodes communities. In addition, our study plot is an oxisol 153 

with a pH ≤ 5, conditions at which the toxic trivalent Al cation (Al3+) predominates over the 154 

other forms32. Al3+competes with other nutrients, inhibits transport, and binds to DNA, ATP 155 
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or cell walls32, as do other metallic ions33. In addition, aluminium abundance strongly 156 

correlated with that of many other metals (e.g. Ti, Cu, Zn, Cd and Pb, Supplementary Table 157 

4). We hence interpret the lower microbial diversity in Al-rich sites by its toxicity or that of 158 

co-varying metals, as suggested for soil tropical microbes16. Also, high metal concentration 159 

immobilizes nutrients that are essential for plant/microbial growth and protects organic matter 160 

from biological degradation34. This may explain why total N, C and P contents, which were 161 

typical of tropical soils (Methods), were poor predictors of soil diversity. These measures 162 

probably do not reflect their bioavailability. High metal conditions likely recruit microbial 163 

taxa able to accumulate Al or to exudate organic acids and enzymes to immobilize Al and 164 

increase P solubilisation33,34. Because soil Al correlates negatively with soil pH (see 165 

Methods), our results are also consistent with the decrease of microbial diversity as soil pH 166 

decreases repeatedly observed16,20. Soil metal content may hence provide a mechanistic 167 

understanding of the pervasive soil-pH – microbial diversity relationship, and should be more 168 

often considered in addition to other classical measurements. 169 

Topographic variables were also important predictors of OTU composition for many 170 

taxonomic groups. They co-vary with many soil properties (e.g. water availability, 171 

biogeochemical processes) and most likely reflect meso-habitat heterogeneity. As such, they 172 

are often used to predict tropical tree distributions (e.g.35) and could be useful to model soil 173 

communities. In particular, topographic variables are closely related to soil moisture, and 174 

were the most important predictors of OTU diversity of flat/earthworms, known for their 175 

sensitivity to this parameter36,37, and of some bacterial groups, such as Deltaproteobacteria, an 176 

anaerobic clade highly dependent on water availability38. This observation generalizes 177 

previous findings for soil bacteria39 or animals40 in tropical environments. We also retrieved 178 

high arthropod:earthworm reads abundance ratios consistent with biomass of these groups 179 

reported for the dry season36, a time where the topographic control in soil humidity is highest 180 
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and where earthworms migrate deeper into the soil. Accordingly, the arthropod:earthworm 181 

reads abundance ratios was lower in a pilot experiment conducted during the wet season. 182 

Seasonal dynamics of soil communities should have important implications for 183 

biogeochemical cycles, and may be directly impacted by the forecasted increased frequency 184 

of Amazonian droughts41. 185 

Our environmental parameters further included plant species distribution inferred from 186 

DNA metabarcoding. Within our samples, we expected that plant DNA presence relates 187 

directly to the quantity/quality of litter or roots exudates26, which is poorly controlled by plant 188 

diversity/community turnover per se42. In agreement with this expectation, we found that the 189 

locally dominant plant genera influenced the community composition of most focal 190 

taxonomic groups (previously termed the “tree identity effect”7,17). Neotropical trees species 191 

indeed greatly differ in the quantity, quality and chemistry of their litter43 and this may hold 192 

true for the chemical composition of their root exudates, their influence on soil physical 193 

structure or their involvement in specific mutualistic/trophic interactions. This result hence 194 

calls for a more mechanistic interpretation of plant-soil interactions13,14. 195 

The pervasive contribution of niche-based processes found here echoes previous meta-196 

analyses44,45. However, environmental variables explained little variation, whether alone or 197 

combined with spatial variables. Previous studies on various soil taxonomic groups reported 198 

soil moisture, cation exchange capacity, nutrient or organic matter availability/quality to co-199 

vary with community composition11,17,20,37. Although we have characterized the 200 

environmental conditions to the best of our ability, we did not quantify directly these 201 

important predictors. These often display strong spatial structures in tropical soils16,35 and 202 

hence potentially contributed to the pure spatial effects observed here. We may also have 203 

neglected parameters acting at fine spatial scales, which, together with the high number of 204 

samples considered, most likely contribute to the amount of unexplained variance found for 205 
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 10 

all taxa. For instance, we did not quantify soil microstructure, which is important in 206 

explaining the small-scale distribution of microbial organisms and water moisture26,31, nor did 207 

we quantify the geometry of roots as could be imaged by e.g. neutron tomography5. We also 208 

did not considered soil organisms interactions. These parameters do exhibit considerable fine-209 

scale spatial heterogeneity and might explain the apparent idiosyncrasy of each sample. We 210 

might therefore underestimate the contribution of niche-based processes, but expect this to be 211 

consistent across the studied soil taxa. 212 

A major problem in attempts to explain patterns of biodiversity is the difficulty of 213 

observing ecological processes at the precise scale at which they manifest themselves4. Soils 214 

are complex media where ecological processes operate at a hierarchy of scales, and any 215 

attempt to interpret them should carefully examine the spatial scale of study and the grain of 216 

the sampling unit5,26,27,31. 217 

For instance, we found no correlation between the species diversity/composition of 218 

plants and that of our focal taxonomic groups, contrary to previous reports15,46. We interpret 219 

this discrepancy as a problem of size and sampling grain. Previous analyses were based on 220 

sampling units of typically 20 to 30 m on a side where several soil samples were pooled and 221 

compared with aboveground floristic surveys. At this scale, local plant community 222 

composition averages over confounding environmental conditions. Our sampling unit was a 223 

local soil core of ca. 15 g from which we inferred both local soil richness and plants. Thus, we 224 

were able to relate the co-presence of microbial cells and plant cells at the centimetric scale13. 225 

This allowed us to observe the “tree identity effect” reported above. Recently, Barberan et al. 226 

(2015)16 reported that the strength of plant-microbial diversity relationship decreased with 227 

decreasing sizes of sampling units and vanished at the scale of the sampling point. Our results 228 

confirm these findings and extend them to the whole soil biota. Hence, soil biodiversity 229 

cannot be inferred from plant floristic patterns at the field scale. As we did not find strong 230 
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similarities between the spatial patterning of the soil taxonomic groups, we confirm that this 231 

conclusion extents to any inference of soil biodiversity patterns from one or few taxa21. 232 

Such differences can be explained by strong among-clade differences in body size. 233 

Indeed, a striking result from our analysis was that the amount of variation in diversity or 234 

composition explained by environmental variables decreased significantly and linearly with 235 

increasing propagule size across taxonomic groups. 236 

The smallest body-size category includes bacteria, which was primarily explained by 237 

environmental factors, owing to the clear environmental gradient at our site. This is in 238 

agreement with the view that niche-based processes dominate bacterial community 239 

assembly25. Micro-eukaryotes displayed an intermediate amount of explained variation, 240 

suggesting niche filtering is less important for these groups than for bacteria. This generalizes 241 

previous comparisons of bacteria and fungi community assembly22. Whether it is due to 242 

longer generation time, lower dispersal ability or broader resources distribution remains to be 243 

determined. In fungi, the mycelium can spread across heterogeneous environments and the 244 

apparent distribution of fungi may be less related to environmental conditions at the scale of 245 

observation. Archaea and certain bacterial groups (i.e. Firmicutes and Bacteroidetes) 246 

displayed similar features. These groups are of low abundance in soils or associated with 247 

termites9,16,20,47, which suggests that they have smaller population sizes in soils or dispersal 248 

rates similar to those of macroorganisms, and could be hence more prone to ecological drift. 249 

On the other hand, the OTUs corresponding to large-bodied organisms, i.e. arthropods, 250 

annelids and flatworms, had a random spatial distribution. Soil mesofauna assembly may 251 

hence be rather determined by neutral processes at the scale of our 12 ha plot and grain 252 

studied. However, pure spatial variation, which is usually indicative of dispersal limitation, 253 

was less important for this group than for microbes, which contrasts with previous reports28,44. 254 

We explain this result by the minimal distance between sampling points, 10 m, which was the 255 
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result of a compromise between spatial resolution and sampling effort. It may have been 256 

insufficient to detect spatial aggregates for soil mesofauna, which usually displays spatial 257 

aggregation below 10 m19,26,37. This roughly corresponds to the horizontal distance 258 

earthworms can disperse per year. Alternative sampling strategies should be hence considered 259 

for multi-taxa assessments at the studied spatial scale. Still, studies using a finer sampling 260 

grain suggest these aggregates to seldom covary with environmental factors and to most likely 261 

result from stochastic processes19,37. On the opposite end of the range, niche-based 262 

community patterns emerge at scales larger than 12-ha where soils properties are highly 263 

distinct in tropical trees35 or mesofauna40,48. 264 

This observation is in line with Levin’s argument on the problem of scales4. For a 265 

unique studied area and sampling grain, we considered patterns of diversity at a multitude of 266 

spatial scales across the studied taxa owing to their body size; with large-scale patterns (i.e. 267 

microbes) being more predictable than fine-scale ones (i.e. mesofauna). This result further 268 

points to an interesting juncture between two fields of ecological theory that have heretofore 269 

been loosely connected, namely the role of body size in explaining the scaling rules of 270 

metabolism23 and that of environment and dispersal in explaining the assembly of ecological 271 

communities2. In that light the fact that small-bodied organisms are more influenced by 272 

environmental conditions, while large-bodied organisms display neutral assembly is 273 

consistent with the main predictions of macroecology2 and soil science26,27. Our finding of a 274 

log-linear relationship between the contribution of niche-based processes in community 275 

assembly and propagule size generalizes previous empirical observations in freshwater 276 

ecosystems (28 and references within). Although other important biological features also likely 277 

explain the differences of spatial distribution between soil organisms (e.g. clonal/sexual 278 

reproduction, mutualistic/pathogenic interactions, transport that is active, mediated by 279 

animals, by water or wind), the body size trait constitutes an operational parameter that cuts 280 
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across the tree of life. It is indicative of the way organisms perceive – or move across – 281 

space3,24,26,27 and of their trophic status in its broadest sense29. Hence, our result provides 282 

empirical evidence of spatial scaling rules across the soil food web.  283 

The recent explosion of DNA-based studies has considerably increased our knowledge 284 

on the taxonomic, genetic and functional diversity of soil organisms7, but has so far provided 285 

limited understanding of the mechanisms shaping soil biodiversity31. We do believe that 286 

quantifying soil biodiversity using amplicon-based techniques is a useful endeavour. It is 287 

increasingly obvious that important properties of multitrophic systems, e.g. species richness, 288 

distribution and extinction rates, cannot be easily retrieved from one or a small set of 289 

surrogate taxa (this study, 21,30). Co-occurrences multitrophic networks can now be 290 

reconstructed using such DNA-based approaches49, and these approaches hold great promises 291 

in assessing soil ecological networks properties at spatial and temporal scales that have been 292 

heretofore inconceivable. Our results show that accounting for body size differences helps 293 

unravel spatial patterns in such complex communities and, combined with DNA-based 294 

approaches, could improve predictive models of soil food webs. 295 

 296 

METHODS 297 

Study site and sampling 298 

The study site is located at the Nouragues Ecological Research Station, in the lowland 299 

rain forest of French Guiana (latitude: 4° 4' 28" N, longitude: 52° 40' 45" W). Rainfall is 2861 300 

mm.y-1 (average 1992-2012), with a two-month dry season (< 100 mm.month-1), from late 301 

August to early November, and a shorter dry season in March. Our sampling campaign was 302 

conducted November 7-20, 2012, towards the end of the dry season, which lasted from early 303 

September to late November. Cumulated rainfall during the 60 days preceding the sampling 304 
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session was 134 mm, with 44 days without rain, and over 90% of the rainfall concentrated in 305 

seven days. 306 

We surveyed a 12-ha (300 x 400 m) plot established in 1992. This plot extends on a 307 

gentle slope between a ridge and a small creek50. The 5,640 trees occurring in the plot 308 

(diameter at breast ≥ 10 cm) belong to over 600 species, with the two dominant species 309 

accounting each for only 2.3% of individuals51. Sand and clay fractions are about 40% each in 310 

the soil top 10 cm. The parent material is Caribbean granite. Soil edaphic conditions are 311 

typical of tropical oxisols, with an acidic pH (pH = 5.0) and low exchangeable cation content 312 

(ECEC = 3.5 cmolc.kg-1). The C:N and N:P ratios are typical of tropical forests52 313 

(median=13.4 and 40.5 respectively). 314 

We sampled the plot following a regular grid scheme with a 10-m mesh, excluding 315 

bordering points, hence resulting in a total of 1,132 sampling points. At each point, 50-100g 316 

soil cores were collected with an auger at ~10 cm depth, excluding the organic horizon. We 317 

did so because the organic and mineral horizons harbor different arthropods and microbial 318 

communities53,54. Lumping together these compartments may hence complicate the 319 

interpretation of the spatial distribution of certain soil clades. Consequently, we focused on 320 

the surface soil layer, which it is the most biogeochemically active in the mineral horizon55. 321 

The soil cores were stored and sealed in sterile plastic bags after collection and transported to 322 

the field station laboratory. Extracellular DNA was extracted from 15 g of soil per soil core as 323 

described previously56,57 within 4 hours after sample collection to prevent from microbial 324 

growth. DNA was extracted twice for each soil core, and the remaining soil material was 325 

dried and stored for analytical chemistry analyses. 326 

Molecular analyses 327 

Soil biodiversity was surveyed through DNA metabarcoding using four DNA markers, 328 

with primers targeting three in hypervariable regions of the ssu rRNA gene in Archaea (this 329 
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study), Bacteria58 and Eukaryota59 domains respectively (see Supplementary Table 7) and a 330 

plastid DNA marker (P6 loop of the trnL intron60) to characterize the plant composition at the 331 

scale of the sampling point. The universal primers do not present particular amplification 332 

biases (see Supplementary Material for a detailed description of primer similarity with 333 

priming sites across phyla). 334 

We conducted duplicated PCRs for each marker and each DNA extract, hence 335 

representing a total of 18,112 independent PCRs. To discriminate PCR products after 336 

sequencing, forward and reverse primers were tagged with a combination of two different 8-337 

nucleotide labels. Each PCR reaction was performed in a total volume of 20 µl and comprised 338 

10 µl of AmpliTaq Gold® Master Mix (Life Technologies, Carlsbad, CA, USA), 0.25 µM of 339 

each primer, 3.2µg of BSA (Roche Diagnostic, Basel, Switzerland), and 2 µl DNA template 340 

that was 10-fold diluted to reduce PCR inhibition by humic substances. Thermocycling 341 

conditions are shown in Appendix S1. All PCR products were then purified using a 342 

MinEluteTM PCR purification kit (Qiagen, Hilden, Germany). For each marker, PCR products 343 

were distributed into 4 different sequencing libraries, which were pooled and loaded on up to 344 

7 Illumina sequencing lanes, depending on the marker and sequencing platform used 345 

(Supplementary Table 7), using the paired-end sequencing technology. To control for 346 

potential contaminants61 and false positive caused by tag-switching events62, the sequenced 347 

multiplexes comprised extractions/PCR blank controls, as well as unused tag combinations. 348 

Sequence analyses and curation 349 

The ca. 109 sequencing reads produced were curated using the OBITools package63 350 

and R scripts (www.r-project.org).  351 

We first assembled paired-end reads and assigned them to their respective samples and 352 

taxonomic groups on the basis of the tags and primer sequences, by allowing 2 and 0 353 

mismatches on primers and tags, respectively. Reads were dereplicated, and low-quality 354 
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sequences excluded (i.e. shorter than 7, 13, 50 and 100 nt for the plant, eukaryota, archaea and 355 

bacterial markers, respectively; containing “Ns”; and singletons). We then clustered the 356 

remaining unique sequences into operational taxonomic units (OTUs), as follows. We 357 

computed pairwise dissimilarities between sequences (i.e. the number of mismatches, allowed 358 

to be 0-3) using the Sumatra algorithm64, then we formed OTUs using the Infomap 359 

community detection algorithm65. We excluded OTUs represented by a single sequence 360 

because PCR/sequencing almost always produce at least one error on amplified fragments. 361 

The true sequence of an OTU was assumed to be the most abundant one in the cluster.  362 

OTUs were assigned a taxonomic clade with the ecotag program of the OBITools 363 

package. Since this algorithm requires full-length barcodes as reference, we constructed a set 364 

of reference databases for each marker by running in silico PCRs with the primer pairs used 365 

here (Supplementary Table 7). This was done with the ecoPCR program66 by using Genbank 366 

(release 197; ftp://ftp.ncbi.nlm.nih.gov/genbank) and the MOTHUR-formatted SILVA 367 

database (release 119; http://www.mothur.org/wiki/Silva_reference_files) as sequence 368 

template. We here only considered references with unambiguous taxonomic annotation at the 369 

order level. We also used a reference database of tropical plants occurring at the study site, 370 

built with the plant primers, so as to improve plant OTU identification (available in 56 and the 371 

Dryad Digital Repository, doi:10.5061/dryad.1qt12). At the end of this analysis, we had two 372 

taxonomic assignments for each OTU. We gave priority to assignments from SILVA or our 373 

local plant database when the similarity between the query and its best match was > 98%. We 374 

did so because the SILVA and our local plant databases yield taxonomic annotations that are 375 

more reliable than those from Genbank. Otherwise, the taxonomic assignment yielding the 376 

highest similarity score was kept. Paired-end reads were assembled, assigned to their 377 

respective samples/marker and dereplicated. Low-quality sequences were excluded; the 378 
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remaining ones were clustered into operational taxonomic units (OTUs) and assigned a 379 

taxonomic clade. 380 

We paid particular attention to minimize PCR/sequencing errors, contaminant and 381 

false positive sequences as well as potential non-functional PCRs by using several 382 

conservative quality criteria. First, we assumed that OTUs peaking in abundance in the 383 

negative controls were a contaminant. Any OTU with a best-match similarity in any reference 384 

database below < ca. 75% was considered as a chimera or highly degraded sequence. Any 385 

OTU that did not fall into the clade targeted by the primer pair was also excluded. Finally, we 386 

also curated the dataset from false positives caused by tag-switching events. This 387 

phenomenon is suspected to occur during the preparation of the sequencing library and 388 

translates into low abundance “contaminant OTUs” in samples coming from other samples 389 

that were part of the amplicons multiplex. To remove them, we considered each OTU 390 

separately and set to 0 any abundance representing < 0.03% of the total OTU abundance in 391 

the entire dataset, similarly to 62. This abundance threshold was found to be the one for which 392 

most OTUs with unused tag combinations could be removed from the dataset. 393 

Verifying the success of our 18,000 PCRs was not possible. Therefore, we used the 394 

PCR replicates to filter out potential non-functional PCR reactions, i.e. containing low 395 

amounts of reads or high amounts of contaminants or false positives that could not be filtered 396 

out with the process described above. First, for each sample we defined an average 397 

community (hereafter centroid) by averaging OTUs counts of the four PCR replicates. 398 

Second, we compared the distribution of dissimilarities (as defined by Euclidean distances) of 399 

PCR replicates with their respective centroid (hereafter dw) against the distribution of pairwise 400 

dissimilarities between all centroids (hereafter db). As we expect dw < db, we defined the 401 

intersection of dw and db distribution curves as the dissimilarity level above which a PCR 402 

replicate is too distant from its centroid to be reliable. Any PCR above this threshold was 403 
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excluded from the analysis. This process was repeated iteratively until no more PCR were 404 

removed from the dataset. If a sample was represented by only one PCR product, then it was 405 

excluded during the iterative process. At the end of this procedure, the remaining PCR 406 

replicates were summed for each sample. See Supplementary Table 8 for raw and curated 407 

datasets statistics. 408 

Finally, the sequencing depth of each sample was standardized for each marker by 409 

randomly resampling a number of reads equal to the first quartile of read number across 410 

samples. Although such procedure has been recently questioned67, the data loss caused by 411 

rarefaction is minimal when the subsampling size well covers the sample diversity, as it is the 412 

case here. It had therefore no or weak effects on the dataset characteristics and the retrieve 413 

patterns of diversity (Supplementary Fig. 5). Raw and curated sequencing data as well as 414 

associated metadata are available on the Dryad Digital Repository under the accession XXX. 415 

Focus taxonomic groups and body size 416 

Within the Eukaryota and Bacteria domains, we distinguished groups on the basis of 417 

their taxonomic affiliation at the phylum level (Table 1). We did so because broadly defined 418 

functional traits such as body size and trophic categories are relatively well conserved within 419 

phyla38,68. We restricted our analysis to the most abundant phyla (i.e. representing ≥ 1% of the 420 

total bacterial or eukaryotic OTU diversity). Archaea were analysed as a single group due to 421 

imprecise taxonomic assignments. 422 

Body size classes were defined as the size of the dispersal unit (propagule), rather than 423 

that of the mature individual: in some taxa, like fungi, mature bodies may extend over large 424 

areas through mycelium growth (i.e. the vegetative part of fungi). The intraspecific variability 425 

of these mature forms besides vary from 1 to 2 orders of magnitude69. This makes it difficult 426 

to decide on an effective definition of a ‘body’. In contrast, spore size is more stable and 427 

proportional to the reproduction rate and to the fructification size of certain fungal groups69,70. 428 
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This definition also cuts across the domains of life as it corresponds to average cell size for 429 

unicellular organisms (i.e. archaea, bacteria and protists) and average body size of adults for 430 

the soil meiofauna. For fungi, we used their spore size, as the operational definition of body 431 

size18. Body sizes were inferred from71 for bacterial cells, from72,73 for fungal propagules, and 432 

from68 for the other groups (Table 1). 433 

Environmental parameters 434 

Soil chemistry and airborne lidar. Total content in soil chemical elements was assessed on 435 

one soil sample in two (i.e. every 20 meters). Soils were ground and attacked by hydrochloric 436 

and nitric acid. Major element concentration was measured by inductively coupled plasma 437 

optical-emission spectroscopy (ICP-OES). Carbon and nitrogen concentration was measured 438 

by a CHN elemental analyzer (NA 2100 Protein, CE Instruments). All other chemical 439 

elements were quantified by ICP-MS. In total, our dataset included 55 elemental 440 

concentrations, which were krigged using an exponential variogram model so as to obtain 441 

values for all the points of the initial sampling design. This analysis was conducted with the 442 

sp (http://rspatial.r-forge.r-project.org/) and gstat (http://gstat.r-forge.r-project.org/) R 443 

packages. Despite soil pH is a common predictor of soil microbes74, we did not assess this 444 

parameter here. Soil pH is indeed well known to correlate negatively with soil total 445 

aluminium, in both temperate75 and tropical soils76. Because tropical soils are Al-rich, 446 

conditions that are extreme for the soil biota34, we believe this variable to be more relevant in 447 

our study plot than soil pH per se, as the latter results from mixed biochemical/chemical 448 

pathways and hence provides a poor mechanistic explanation of the processes shaping soil 449 

communities. Airborne lidar data were obtained previously77,78 and were used here to retrieve 450 

a 1-m2 digital elevation model (DEM), from which we derived slope, light penetration, and 451 

topographic wetness indices (see Supplementary Methods). 452 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154278doi: bioRxiv preprint 

https://doi.org/10.1101/154278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Plants. We used several plant-related variables to explain soil community assembly. The first 453 

corresponded to the canopy closure derived from the lidar data. The other corresponded to 454 

plant diversity (Shannon index) and the identity of the three most dominant plant genera in 455 

each soil sample as inferred from the plant metabarcoding dataset. Dominant plant genera 456 

represented on average 70 ± 15% of the plant reads in each sample, which provides a good 457 

description of the local plant community composition. Sampling points for which we did not 458 

obtained any plant sequences (330 of the 1,132) were redrawn by a multinomial resampling of 459 

reads from neighboring points. This approach is reasonable because tree roots influence is 460 

detectable up to 20 m from their corresponding stems in tropical forests16. 461 

Statistical analyses 462 

To disentangle the relative importance of niche-based and neutral processes in the 463 

assembly of soil communities, we used variation partitioning and redundancy analysis 464 

(RDA44,79) on each focus taxonomic group. We used RDA because preliminary analyses 465 

indicated a linear relationship between soil diversity/community distribution and explanatory 466 

variables. First, we Hellinger-transformed OTU tables to down-weight rare OTUs, as these 467 

may be artifactual, as well as to preserves the Euclidean distance among sites80. Next, we 468 

constructed three parsimonious models by applying a forward selection procedure. This 469 

avoids inflating the amount of explained variance and Type I error81.  470 

A first model corresponded to RDAs including soil chemistry and lidar-derived data. 471 

The second corresponded to RDAs including plant explanatory variables (Fig. 1, 472 

Supplementary Table 9). For these two models, explanatory variables were preselected to 473 

reduce multicollinearity (|Pearson’s r| ≥ 0.7, Supplementary Fig. 6) and normalized with a 474 

Box-Cox transformation to meet the normality assumption. The third model was a spatial 475 

RDA using spatial eigenvectors as explanatory variables, derived from a Principal 476 

Components of Neighbours Matrices (PCNM) approach82. These represent spatial structures 477 
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at different spatial scales that allow modelling the spatial structure of community composition 478 

variation. To further reduce inflation of R2 statistics caused by the PCNM analyses83, we 479 

preselected PCNM eigenvectors prior the forward selection procedure. These corresponded to 480 

eigenvectors explaining significantly (p ≤ 0.02) the variability in the biological response, as 481 

assessed though partial canonical redundancy analysis (pRDA). This pre-selection was 482 

performed for each studied clade independently. Geographic coordinates were also included 483 

in the model to account for possible linear trends along the study area82. 484 

Abiotic, plant and spatial models were then combined into a single, “full” RDA 485 

model, which was subjected to variation partitioning. This analysis decomposes the variance 486 

of community composition explained either by abiotic, plant or spatial variables alone as well 487 

their combined effects. The contribution of pure environmental vs. spatial effects in the 488 

variation of community composition is usually considered to be indicative of the relative 489 

importance of niche-base processes vs. dispersal limitation in the community assembly44,79, 490 

provided that the environmental context is well characterized and that neutral processes are 491 

not correlated with the environment. Significance of the total RDA models and pure effects 492 

were determined with 1,000 Monte-Carlo permutations. We here only report R2
adj statistics, 493 

which are less inflated when the numbers of explanatory variables is high[84]. To further 494 

identify the environmental parameters that were spatially structured in our plot, each PCNM 495 

eigenvector was regressed against the set of plant and abiotic variables using pRDA. 496 

To test an effect of body size on community assembly patterns, we compared it with 497 

the amount of variance explained by the full model and each pure effect using a Pearson 498 

product-moment correlation test. Finally, we repeated the whole analysis by considering OTU 499 

diversity as a response variable. OTU diversity was calculated as the exponential of the 500 

Shannon entropy, an effective number of species85 that is less sensitive to rare OTUs. All 501 

analyses were conducted with the vegan R package (http://vegan.r-forge.r-project.org/). 502 
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Data availability 503 

Raw and curated sequencing data as well as associated metadata and codes are available on 504 

the Dryad Digital Repository (XXX provided upon manuscript acceptance). 505 
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Figures and Tables 713 

Table 1. Soil biota characteristics in the 12 ha plot. Relative abundances were calculated 714 

for each marker separately and correspond to the % of reads of each clade. Richness values 715 

correspond to the number of OTUs (mean ± SD for values per sample). Diversity values 716 

correspond to the effective number of OTUs (exponential Shannon diversity index; mean ± 717 

SD for values per sample). Occupancy corresponds to the averaged proportion of samples 718 

where an OTU is detected (± SD). NA: not applicable. 719 

Clade Total rel. 
abundance 
(%) 

Total Richness 
(per sample) 

Total Diversity 
(per sample)  

OTU 
occupancy 
(%) 

Propagule 
size (m) 

Archaea NA 2,502 (43 ± 30) 30 (9 ± 8) 1.707 ± 6.197 0.5e-6 
Bacteria NA 19,101 (1,391 ± 232) 885 (453 ± 102) 7.281 ± 16.379 NA 
  Acidobacteria 19.81 1,601 (231 ± 46) 132 (80 ± 32) 14.42 ± 22.686 0.5e-6 
  Actinobacteria 20.578 1,696 (167 ± 37) 86 (54 ± 13) 9.869 ± 20.329 5e-6 
  Bacteroidetes 1.023 767 (31 ± 12) 97 (22 ± 8) 4.088 ± 11.389 0.5e-6 
  Chloroflexi 5.22 2,147 (136 ± 48) 268 (73 ± 29) 6.341 ± 12.358 1e-6 
  Firmicutes 2.658 873 (19 ± 6) 4 (3 ± 2) 2.147 ± 8.048 1e-6 
  Alphaproteobacteria 19.865 3,234 (303 ± 57) 242 (129 ± 25) 9.373 ± 19.381 0.5e-6 
  Betaproteobacteria 3.469 482 (45 ± 13) 24 (14 ± 7) 9.392 ± 19.023 5e-6 
  Deltaproteobacteria 4.364 1,357 (75 ± 31) 73 (34 ± 15) 5.513 ± 14.073 0.5e-6 
  Gammaproteobacteria 8.589 888 (72 ± 11) 30 (21 ± 5) 8.109 ± 19.47 5e-6 
  Verrucomicrobia 4.989 353 (51 ± 12) 33 (22 ± 5) 14.357 ± 24.53 0.5e-6 
Eukaryota NA 11,470 (475 ± 137) 228 (51 ± 23) 4.138 ± 11.113 NA 
  Ascomycota 3.486 317 (25 ± 9) 22 (8 ± 3) 7.813 ± 15.365 100e-6 
  Basidiomycota 16.941 387 (31 ± 8) 44 (8 ± 4) 7.911 ± 16.184 10e-6 
  Glomeromycota 1.078 38 (7 ± 2) 8 (5 ± 1) 19.431 ± 28.548 200e-6 
  Annelida 6.623 49 (8 ± 3) 6 (3 ± 1) 17.182 ± 23.828 20e-3 
  Arthropoda 17.648 1,777 (63 ± 21) 91 (15 ± 7) 3.569 ± 9.393 10e-3 
  Nematoda 0.469 359 (9 ± 5) 35 (6 ± 2) 2.64 ± 7.257 100e-6 
  Platyhelminthes 0.538 117 (4 ± 3) 15 (3 ± 1) 3.361 ± 9.778 20e-3 
  Protists 1.947 1,610 (53 ± 40) 126 (27 ± 18) 3.29 ± 8.488 100e-6 

 720 

  721 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154278doi: bioRxiv preprint 

https://doi.org/10.1101/154278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Figure 1. Maps of environmental characteristics in the 12 ha plot. a-d) Soil content in 722 

Carbon, Aluminium, Phosphorous and Potassium. e) site topography, f) soil wetness (TWI 723 

index, unitless) and g) canopy height as inferred from LiDAR data. h) Distribution of the 724 

most dominant plant genus found in each soil sample as inferred from the plant molecular 725 

dataset. Only the six most frequent dominant genera are shown: red: Apocynoideae; orange: 726 

Andira; yellow: Ingeae; green: Brosimum; lightblue: Sapotaceae; blue: Drypetes. x/y axes are 727 

not shown for representation purposes and range between 10-290 and 10-390 meters 728 

respectively. 729 
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Figure 2. Spatial distribution of OTU diversity per focal clade. The colour scale is 732 

expressed as effective numbers of OTUs (exponential Shannon diversity index) for archaea 733 

(a), bacterial clades (b-k) and eukaryotic clades (l-s). Maps were obtained by ordinary 734 

kriging. Grey dots represent the samples available for each clade. 735 
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Figure 3. Variation partitioning of OTU composition in each focus taxonomic group. 738 

Variations of OTU composition are partitioned into pure (i.e. abiotic (A), plant (P) or spatial 739 

(S)) and shared components (A.P, P.S, A.S and A.P.S). The corresponding R2
adj statistics are 740 

reported. See Supplementary Table 4 for corresponding R2
adj values and their significance (for 741 

pure components and full models only, shared components not testable). 742 
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Figure 4. Variation of OTU composition explained by environmental variables 745 

according to organism propagule size. The variation (R2
adj statistics) includes pure plants 746 

and abiotic effects as well as their combined effect with spatial variables. The negative 747 

relationship between organism propagule size and the variance explained by environmental 748 

effects is significant (Pearson’s r = -0.67, p = 0.002). 749 
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