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Abstract
Describing how ecological interactions change over space and time and how they are shaped by
environmental conditions is crucial to understand and predict ecosystem trajectories. However,
it requires having an appropriate framework to measure network diversity locally, regionally and
between samples (α-, γ- and β- diversity). Here, we propose a unifying framework that builds
on Hill numbers and accounts both for the probabilistic nature of biotic interactions and the
abundances of species or groups. We emphasize the importance of analyzing network diversity
across different species aggregation levels (e.g., from species to trophic groups) to get a better
understanding of network structure. We illustrate our framework with a simulation experiment and
an empirical analysis using a global food-web database. We discuss further usages of the framework
and show how it responds to recent calls on comparing ecological networks and analyzing their
variation across environmental gradients and time.
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Introduction
Since the pioneering work of Humboldt (von Humboldt 1805), understanding the patterns of bio-
diversity across space and time has been a question central to both biogeography and community
ecology (Gaston 2003). The recent upsurge of large-scale databases has made possible to pro-
duce comprehensive syntheses of biodiversity patterns (Belmaker et al. 2012; Mazel et al. 2017)
by analyzing local assemblages on the one hand (α-diversity, Hawkins et al. 2003) and composi-
tion turnover between such assemblages on the other (β-diversity, Mazel et al. 2017). A plethora
of diversity indices and unifying frameworks have thus been proposed to partition biodiversity
into α− and β−diversity components (Whittaker 1960; Routledge 1979; Ellison 2010; Chao et al.
2014b; Chao & Chiu 2016). However, not only does biodiversity reflect species coexistence but
also the trophic and non-trophic interactions that link them to one another (Kéfi et al. 2016). The
development of the trophic theory of island biogeography (Gravel et al. 2011; Massol et al. 2017)
has recently paved the way for a new biogeography synthesis by accounting for trophic interactions
in theoretical predictions of biodiversity patterns. Similarly, empiricists do not only investigate
species distribution patterns but also analyze how ecological interactions (i.e. ecological networks)
vary over space and time (Pellissier et al. 2017; Tylianakis & Morris 2017). To this aim, the
metanetwork concept generalizes the regional species-pool of classic community ecology by adding
to this representation of biodiversity the potential trophic and non-trophic interactions between
species (Dunne 2006: Kéfi et al. 2016) at a regional scale. Thus, in the same way local assemblages
are conceptualized as subsets of a regional species pool, local ecological networks are realizations of
a subset of the regional metanetwork. This opens new perspectives in understanding the processes
that shape the distribution of biodiversity in space and time. For instance, mapping, describing
and comparing ecological networks along environmental or disturbance gradients are the first steps
of a fascinating era to understand the organization of life on Earth (Pellissier et al. 2017) and its ef-
fects on ecosystem functioning and associated services (Brose & Hillebrand 2016). The realization,
the frequency and the intensity of interactions within networks across space and time are driven
by the compositional turnover of species or groups of species, changes in their abundances, their
plasticity or behavioral variations, and finally by the environmental constraints on biotic interac-
tions. Any of these variations may have direct or indirect consequences on ecosystem functioning
(Barnes et al. 2014). Such knowledge would thus help not only to improve our understanding of
multi-trophic assemblages and their influence on ecosystem functioning but also to help build a
more robust predictive ecology at the interface between trophic ecology, community ecology and
ecosystem ecology (Thompson et al. 2012).
There is thus a strong need to develop a framework to understand the structure and composition
of ecological networks across spatial and temporal scales and along environmental gradients (Pel-
lissier et al. 2017). To date, such a framework remains hampered by several issues.
First, no appropriate diversity measure is available to describe the diversity of ecological networks,
and partition it into α, β and γ components, that would account for both species abundances and
the probabilistic nature of interactions, and that would relate to existing frameworks in biogeog-
raphy or community ecology (Pellissier et al. 2017). Recent years have seen a prolific development
of frameworks to measure diversity at both the taxonomic (Jost 2007; Ellison 2010; Chao & Chiu
2016) and phylogenetic or trait levels (Chao et al. 2014a; Tucker et al. 2016). These indices need
to satisfy five mathematical properties (see Jost 2010): (1) α and β should be mathematically
independent; (2) α, β and γ should be effective numbers (this enables to interpret a given measure
of diversity in terms of the diversity of an evenly distributed community and therefore guarantees
the comparability of diversity measures); (3) overall α should represent an average of local diversity
measures; (4) γ should be completely determined by α and β; (5) α cannot be larger than γ. A
sixth additional practical property of β-diversity, invariance under shattering (Reeve et al. 2014)
assumes that each community represents a portion of the geographical space. This assumption
implies that if a community is split into two and the abundances of the two resulting communities
are equal, then the β-diversity of the overall metacommunity should not change. The framework
recently proposed by Reeve et al. (2014) satisfies each of these fundamental properties (only when
similarities between species are not considered) while Jost’s framework satisfies the first five prop-
erties, and the sixth only for some particular cases. These indices are based on Hill numbers (Hill
1973), which are derived from Rényi’s entropy (Rényi 1961) and have enabled a generalization
of the well-established diversity measures such as the Shannon entropy or the Simpson diversity
index. An additional and interesting feature of Hill numbers is the introduction of a viewpoint
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parameter linked to the weight given to dominant vs. rare species onto assembly rules (Chalman-
drier et al. 2015). While this framework could potentially be very useful for ecological networks, it
is not yet applicable. So far, the few network-specific metrics are built on graph theory, with the
aim to summarize the structure of a network through a single quantity (Poisot et al. 2012, 2016;
Pellissier et al. 2017) – but none of them satisfy the six requirements listed above, nor are they
able to manipulate species abundances or the probability of a given interaction occurring.
Second, diversity metrics depend on the way individuals are aggregated into larger groups (e.g.,
species, guilds, functional groups). In trophic networks, species can be aggregated based on their
equivalent roles. Indeed, species richness or taxonomic turnover do not reveal much on how assem-
blages are truly structured in terms of resource exploitation, niche partitioning and co-existence
mechanisms (Thompson et al. 2012), whereas functional or trophic groups enable to encapsulate
more of the underlying ecological processes. In this respect, insights from graph theory (Luczkovich
et al. 2003) and random models of networks (Group model, Allesina & Pascual 2009 or stochastic
block model, Newman & Leicht 2007) have helped to mathematically formalize equivalence rela-
tionships between species using the topology of the ecological network alone. However, aggregating
species in trophic or functional groups is often challenging (e.g., choosing an optimal number of
groups) and there is no way of knowing whether a given grouping will provide a better understand-
ing of the diversity pattern than others. To address this issue, we believe it is necessary to describe
and analyze patterns at different levels of species aggregation, as is now done in community phy-
logenetic analyses (Chalmandrier et al. 2015; Graham et al. 2018). In fact, analyses of ecological
networks diversity (α, β, γ) should be carried out along a profile of species aggregation levels,
ranging from characterizing all species (their abundances, the abundance of their links and their
probability of interactions, hereafter named the microscopic scale), to various species aggregation
levels (hereafter coined the mesoscopic scale) until the macroscopic scale, represented by the single
value of connectance (the probability of interaction between any two species). This multi-scale ap-
proach should provide novel insights to understand the processes that shape ecological networks.
To overcome these limitations, we introduce a novel framework that allows measuring α, β, and
γ diversities of ecological networks and combines Hill numbers (Hill 1973, Jost 2006, Chao &
Chiu 2016) with different species aggregation levels. First, we build on the existing mathematical
frameworks to derive new indices for ecological network diversity, which we partition into α, β,
and γ components. We then demonstrate that existing network diversity indices (Bersier et al.
2002; Poisot et al. 2012, 2016) are particular cases of the proposed unified framework. We further
extend our framework so it can be used across multiple levels of species aggregation. We then
apply this framework to an intercontinental dataset of stream water trophic networks (Thompson
& Townsend 2003) and show that the drivers of the dissimlarity of ecological networks vary with
the level of species aggregation. We finally provide an implementation of the framework with our
R package NetDiv, guidelines for the interpretation of the results, and recommendations for the
analyses of networks across space and time.

Diversity for a single network
For the sake of simplicity, we first introduce the formalism behind our new indices with a single
trophic network. We then generalize the framework to the case of a metanetwork, and provide the
details and mathematical proofs in the Supporting Information.

A probabilistic model of interaction networks

We propose a generic model of ecological networks that considers both species abundances and the
probabilities of interaction between species. It is an extension of the probabilistic network model
(Poisot et al. 2016) with the additional property that it accounts for species abundances.
We consider a given region that contains individuals belonging to n different species with relative
abundances p = (p1, ..., pn). pq represents the probability of picking an individual of species q.
We also assume that the probability of interaction between two individuals of species q and l
follows a Bernoulli law of parameter πql. This allows to account for the potential variability on the
realization of an interaction event at the individual level (Gonzalez-Varo & Traveset 2016; Albert
et al. 2010). We also assume that all interactions occur independently. We represent this regional
model using a weighted network G, with pq the relative abundance of the node Vq, and πql the
weight of the link (Vq, Vl) (Π is the adjacency matrix of G, see Table 1). The probability of picking
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a link that connects two individuals of species q and l is thus:

Lql = Pr(i→ j, i ∈ q, j ∈ l) (1)

Lql = πqlpqpl (2)

where
πql = Pr(i→ j | i ∈ q, j ∈ l) (3)

If this model represents the most complete case of a single network (abundances on nodes and
weights on links), simpler cases can easily be derived by omitting the weights on links (i.e. for
binary networks, πql is either 0 or 1) or the abundances of nodes (i.e. assuming evenly distributed
species abundances).

Navigating across species aggregation levels

We initially described the probabilistic network model at a species level. However, species can have
similar positions, roles (e.g., Eltonian niche, Elton 1927) or functions (Lindeman 1942; Lavorel &
Garnier 2002; Luck et al. 2012), leading to inflated or deflated estimates with respect to functional
diversity. It is thus crucial to represent and analyze the diversity of ecological networks at different
aggregation levels, by grouping species into larger and more relevant entities. Here we propose to
use mathematical methods that group nodes using the topology of the ecological network without
any prior knowledge (see Supporting Information for a brief review of these methods).
Assuming that we have established Q groups (C1, ..., CQ) from the previous network (Q ≤ n),
we can represent the network at a coarser resolution (Fig. 1, mesoscopic scale), called the image
network (Luczkovich et al. 2003; Allesina & Pascual 2009). The new set of nodes is Ṽ = (Ṽ1, ..., ṼQ)
and each node is assigned a weight p̃q that corresponds to the abundance of the group q.

p̃q =
∑
k∈Cq

pk (4)

Similarly, each link of the image network is assigned a weight π̃ql that corresponds to the probability
of interaction between individuals from classes Cq and Cl.

π̃ql =

∑
k∈Cq,k′∈Cl πkk′pkpk′∑
k∈Cq pk

∑
k′∈Cl pk′

(5)

The link abundances between individuals of classes q and l, L̃ql thus equates to:

L̃ql =
∑

k∈Cq,k′∈Cl

πkk′pkpk′ (6)

We thus define the scale of the image network considered as:

s =
Q

n
(7)

If s = 1, the network is considered at a microscopic scale (the image network corresponds to the
original one). If s = 1

n , the network is considered at a macroscopic scale. In this case, the image
network is then made of a single node (with abundance 1, the sum of species relative abundances)
and a single link. The weight of this link represents the probability that any two nodes of the
original networks are connected and is, consequently, the connectance of the original network.

C =
∑

16q,l6n

πqlpqpl (8)

If 1
n < s < 1, the network is considered at a mesoscopic scale.

5



Measuring diversity at different species aggregation levels

For a community vector p = (p1, ..., pQ), the Hill number of order η is defined as:

Dη(p) =

(
Q∑
i=1

pηi

) 1
1−η

, η > 0, η 6= 1 (9)

This number ranges between 1 and Q (Table 1), and translates into an effective number of groups
(which can be species or group of species i.e., we define diversity indices on the image network while
keeping the notations of the original one for the sake of simplicity). A Hill measure of ∆ hence
means that the system holds a diversity equivalent to a system made of ∆ equally distributed
groups. η is considered as a viewpoint parameter that modulates the weight given to group
abundances. When η = 0, all groups equally contribute to the index and D0 is the richness
of groups. For η = 1, Eq. 8 is not defined but it converges towards the exponential of the Shannon
entropy :

D1(p) = lim
η→1

Dη(p) = exp

(
Q∑
i=1

−pilog pi

)
(10)

We propose to extend the use of Hill numbers to compute the diversity in link abundances and
the diversity in link probabilities between groups. More precisely, we measure the entropy of the
random variable associated to the experience: "A link is drawn uniformly in the network, what is
the label of this link (the label is defined by the identity of the two groups that are connected by
the link)". Assuming that L is the matrix of link abundances, the diversity in link abundances is:

Dη(L) =

 ∑
1≤q,l≤Q

(
Lql
C

)η 1
1−η

(11)

where C =
∑

16q,l6Q Lql.
Similarly, assuming that Π is the adjacency matrix of the image graph, the diversity in link
probabilities is defined as:

Dη(Π) =

 ∑
1≤q,l≤Q

(
πql
π++

)η 1
1−η

(12)

where π++ =
∑

16q,l6Q πql.
Dη(Π) is unrelated to Dη(p) (sensu Chao & Chiu 2016), since the value of one of this measure
does not constrain the value of the other. When η = 0, it measures the number of links of the
image network. When η → 1, it converges towards the exponential of the Shannon entropy of the
probability of links (Bersier et al. 2002)
Both group abundances and the interaction probabilities determine the range of values of Dη(L)
which are therefore related. These last two indices translate into an effective numbers of links,
either weighted (Dη(L)) or not (Dη(Π)) by the group abundances. Note that (Dη(Π)) could be
used in studies where groups have different relative abundances, but these are not important in
the analysis.

Diversity for a metanetwork
Measuring α-, β- and γ-diversity at different species aggregation levels

Mirroring the single network case, we propose to analyze the diversity of the metanetwork and its
local realizations through different species aggregation levels. Importantly, we assume that any
grouping is defined on the metanetwork. We thus define α-, β- and γ-diversity measures on the
set of local networks and on the metanetwork at different species aggregation levels. We measure
the diversity of group abundances, link abundances and link probabilities using Hill numbers. We
extend the framework presented in Chao & Chiu 2016 since it satisfies the first five properties
listed in the introduction and elegantly link the variance and decomposition perspective on β-
diversity (see Chao & Chiu 2016 for details). For the sake of simplicity, we present the case η → 1
(and therefore omit the exponent in the indices). The general case is presented in Supporting
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Information, together with our framework as an extension of Jost’s and Reeve’s framework and
the mathematical links between the existing network diversity indices and the proposed unified
framework. The proposed indices can be applied in several subcases (Fig. 2).
We use the same probabilistic network model as presented before. The metanetwork is thus a
weighted network, divided in K local networks (see Table 1 for notations and total margins).

α-diversity
For each local network, the α diversity is computed using Hill numbers (for η → 1, it converges
towards Shannon entropy). The overall α-diversity of groups across local networks is:

AP = exp

(
Q∑
q=1

K∑
k=1

− Pqk
P++

log

(
Pqk
P++

)
− log(K)

)
(13)

where P++ =
∑

16k6K

∑
16q6Q Pqk.

This is the mean equivalent number of groups across local networks. Similarly, the overall α-
diversities in link abundances and link probabilities are equal to:

AL = exp

 Q∑
q,l=1

K∑
k=1

− Lqlk
L+++

log

(
Lqlk
L+++

)
− log(K)

 (14)

where L+++ =
∑

16k6K

∑
16q,l6Q Lqlk.

AΠ = exp

 Q∑
q,l=1

K∑
k=1

− πqlk
π+++

log

(
πqlk
π+++

)
− log(K)

 (15)

where Π+++ =
∑

16k6K

∑
16q,l6Q πqlk.

γ-diversity
The γ-diversity of group abundances is defined as:

GP = exp

(
Q∑
q=1

− Pq+
P++

log

(
Pq+
P++

))
(16)

where Pq+ =
∑

16k6K Pqk.
This corresponds to the equivalent number of groups in the metanetwork. The γ-diversity of the
link abundances is defined as:

GL = exp

 Q∑
q,l=1

− Lql+
L+++

log

(
Lql+
L+++

) (17)

where Lql+ =
∑

16k6K Lqlk.
This corresponds to the equivalent number of links in the metanetwork. The γ-diversity in link
probabilities is defined as:

GΠ = exp

 Q∑
q,l=1

− πql+
π+++

log

(
πql+
π+++

) (18)

where Πql+ =
∑

16k6K πqlk.
This corresponds to the equivalent number of links in a network that contains the same probabil-
ities of links as in the metanetwork but where the relative abundances of groups are arbitrarily
considered evenly distributed.

β-diversity and dissimilarity measures
The overall β-diversity can be calculated in group abundances, link abundances and link probabil-
ities. The β-diversity in groups abundance is equal to:

BP =
GP
AP

(19)
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This is the effective number of equally large and completely distinct communities of groups. It
represents how many completely distinct communities of groups are present in the set of networks.
The β-diversity in link abundances is equal to:

BL =
GL
AL

(20)

This is the effective number of equally large and completely distinct networks i.e., the number of
networks made of distinct links across the considered region. The β-diversity in link probabilities
is equal to:

BΠ =
GΠ

AΠ
(21)

This translates to an effective number of equally large and completely distinct networks where
group abundances would have arbitrarily been considered equal.

Overlap measures can be built from β-diversity to obtain dissimilarity measures (Jost 2007; Jost
2010; Chao & Chiu 2016). A class of parameterized Sorensen’s based dissimilarity measures can be
defined as non-linear transformation of β-diversity. When η=1, it equals to the Horn dissimilarity
index (the general case is presented in Supporting Information).

δP =
log(GP )− log(AP )

logK
(22)

δL =
log(GL)− log(AL)

logK
(23)

δΠ =
log(GΠ)− log(AΠ)

logK
(24)

These measures quantify the effective average proportion of shared groups/links/probability of
links across networks and range between 0 and 1.
The framework is implemented in a R package NetDiv, available at https://gricad-gitlab.
univ-grenoble-alpes.fr/ohlmannm/NetDiv.

Application to a case study: when the aggregation level re-
verses the assessment of the drivers of network dissimilarity
Here, we re-analysed a dataset used in Thompson & Townsend 2003. Using groups built a priori
using three trophic levels, the authors concluded that stream water networks surrounded by pine
or tussock grassland in New Zealand differ in their structure at a mesoscopic level. They attributed
this change of structure to differences of energy supply in the two systems. We proposed to extend
this analysis to the entire dataset (ten stream water trophic networks sampled in the United States
of America (USA hereafter) and New Zealand surrounded either by pines or not (Table 1)) using
our quantitative dissimilarity framework together with trophic groups built using the topology
of the metanetwork (Allesina & Pascual 2009; Gauzens et al. 2015). We hypothesized that at
a species level, geographic location should have a major impact on network dissimilarity due to
the different biogeographical histories of the two continents (e.g., dispersal limitation that leads
to small species overlap, different life history traits due to different environmental constraints),
whereas at a trophic group level, vegetation should have much more impact due to energy supply
provided by the riparian vegetation (e.g., vegetation types select for certain groups of species and
network structure, which is not discernible at a species level).
The dataset consists of ten stream water trophic networks sampled in the USA and New Zealand
(Thompson & Townsend 2003, https://www.nceas.ucsb.edu/interactionweb/resources.html#
predator_prey , Fig. S1). The riparian vegetation of the American networks is a native species
of pine, Pinus Strobus. Two of the New Zealand networks are surrounded by planted pines, Pinus
radiata (Table 2). All other networks in New Zealand are surrounded by bush and tussock. The
networks contain species of algae, invertebrates and fishes. We kept only the largest connected
component of the metanetwork (Fig. S2). It contains 532 species and has a connectance value of
0.01.
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To work at the mesoscale, we first determined the most relevant trophic groups using the stochas-
tic block model implemented in the R package ’mixer’ (Daudin et al. 2008). The optimal number
of groups, 14, was identified using an information criterion (for simplicity we only used the op-
timal number of groups, but could have navigated through a wider range of aggregation levels).
Therefore, the scale used to analyze the mesoscopic network dissimilarity is 14/532. We thereafter
computed the dissimilarity matrices of link and group abundances at the microscopic and meso-
scopic scale (using pairwise δηL at two different aggregation levels) and the dissimilarity matrix of
groups (using pairwise δηP at two different aggregation levels) along a profile of weights attributed
to abundant groups or links by varying the values of η. We then assessed the influence of the
riparian vegetation (presence/absence of pine trees) and the location (USA or New Zealand) on
the four dissimilarity matrices per value of η using ANOSIM (Clarke 1993) for both covariates
(location and riparian vegetation) along the range of η values. (Fig. 3).
These analyses revealed that at a microscopic scale, the pairwise dissimilarities of both group and
link abundances (δηP and δηL) are best explained by the geographic location. At the mesoscopic
scale however the riparian vegetation is the variable that best explains both the dissimilarity of
group and link abundances for medium to high values of η (η > 0.35 for the groups dissimilarity
and η > 0.15 for the links dissimilarity).
Since New Zealand and the USA have drastically different biogeographical histories, they have very
few species in common (New Zealand and USA streams share, for example, almost no invertebrate
species, Thompson & Townsend 2003). Consequently, the location is indeed expected to be a more
powerful explanatory variable of the species dissimilarity (i.e., δηP at a microscpic scale). Moreover,
given that species turnover is partially responsible for the links turnover (i.e δηL at a microscpic
scale), the latter is also expected to be predominantly explained by the location. Studying δηP and
δηL at a mesoscopic scale allows to look beyond species turnover, and accounts for the role of the
riparian vegetation in diversity, both for the group abundances and the link abundances. Impor-
tantly, riparian vegetation best explains group and link dissimilarities for medium to high values
of η. So, the abundances of the largest trophic groups and the links between these groups are
shaped by the riparian vegetation whereas their presence (i.e., while omitting their abundances) is
explained by the location.

Discussion
Diversity indices aim to describe and quantify the structure of ecological communities across space
and time. There is currently a paradigm shift in the representation of a community, from a species
assemblage to an interaction network (Pellissier et al. 2017, Thompson et al. 2012, Tylianakis &
Morris 2017). While deciding which species belong to a community is made easier using a network
representation of biodiversity (since a community is no more than a connected network), measuring
and partitioning the diversity of these interaction networks is much more complex (Pellissier et al.
2017, Poisot et al. 2016). Diversity indices using Hill numbers provide a robust framework when
ignoring interactions, as it gradually takes into account species abundances and satisfies theoretical
properties. To be generic enough and to embrace the complexity of natural systems, these indices
should take into account species abundances and the probabilistic nature of biotic interactions,
while unifying the existing diversity frameworks. Moreover, they should be able to measure di-
versity at different species aggregation levels, so as to not inflate diversity indices or overestimate
link turnover. In this paper, we defined diversity indices that address each of these requirements.
The proposed framework is a generalization of the Hill numbers framework to measure α-, β- and
γ-diversity in link abundances and link probabilities. By doing so, we have extended the existing
indices of network diversity (e.g., Poisot et al. 2012), while benefiting from key properties of Hill
numbers. In other words, using this single framework on a single dataset would enable one to not
only investigate traditional relationships between species richness and energy as well as understand
the compositional turnover across space, but also explore further by deciphering how variations
in species abundance, probability of interactions and environmental gradients influence ecological
networks.
The proposed framework is based on a probabilistic model of networks where parameters are species
abundances and probabilities of interaction between species or groups of species. Consequently,
it represents interactions as a random event rather than a deterministic event, thus assuming a
plasticity of interactions at an individual level. While this constitutes an appealing representation
from a theoretical standpoint, empirical datasets of interaction networks are often binary and lack
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abundance estimates. Binary networks constitute particular cases of our framework, that then
connect with existing frameworks (Poisot et al. 2012). Our framework can also be applied to any
weighted network (i.e., network containing interaction strength) even if the weights do not strictly
represent a probability of interaction. The viewpoint parameter η can then be used to modulate
the weight given to interaction strength when assessing network diversity. The proposed diversity
indices are based on Hill numbers that satisfy properties regarding group abundances but also link
abundances. This is a fundamental condition to describe adequately network diversity over space
and time and to build a robust spatial network ecology.
Additionally, our framework allows to compute diversity indices at different species aggregation
levels (Fig. 4). In this paper, we have focused on methods that aggregate species based on the
topology of the metanetwork (regular equivalence and stochastic block modelling). These methods
aim to form trophic groups (Gauzens et al. 2015) and, in the general case, reduce the complexity
of the network (i.e., the number of nodes) while preserving the overall structure. Grouping species
using ecological knowledge and computing diversity indices is possible using the developed frame-
work. In this latter case, however, there is no guarantee that the structure of the image network
will reflect the structure of the original network (Allesina & Pascual 2009; Gauzens et al. 2015;
Leger et al. 2015).
Whatever the clustering method used, the image network can be viewed as a map at a coarser reso-
lution than the original species network. A map which, depending on the method used, summarizes
more or less faithfully the structure of the original network. Importantly, it changes the assessment
of link turnover. Indeed, what appears as link turnover at a species level could disappear at a group
level, provided that the species considered belong to the same group. In other words, network di-
versity patterns depend on the aggregation level we choose to study the network. This introduces
a new notion of scale in the analysis of ecological networks and adds to the spatial and temporal
scale used to describe network biogeographic patterns (Fig. 4). Studies aiming to describe network
biogeography have so far mostly described macroscopic (i.e., connectance, Thompson & Townsend
2003) or microscopic (link turnover at a species level, Poisot et al. 2012, 2016; Carstensen et al.
2014; CaraDonna et al. 2017) scale patterns and occasionally mesoscopic scale using a priori groups
based on the trophic level concept (Thompson & Townsend 2003). Statistical methods, such as
the stochastic block model and regular equivalence, allow to select an optimal number of groups
to cluster the nodes of a network, thus defining an appropriate scale to study network diversity
when no ecological knowledge is available for the species described in the network. As shown by
the case study, network diversity can be shaped by different ecological processes depending on the
aggregation level considered, in the same way that species diversity is shaped by different processes
depending on the spatial and aggregation level considered (Münkemüller et al. 2014). This encour-
ages to study network diversity at micro-, macroscopic scale and along a profile of mesoscopic scales
(i.e., by changing gradually the number of groups of the image network) to study the processes
that govern network structure across space. Indeed, given that some empirical evidence suggests
that network structure might be random at a species level (CaraDonna et al. 2017), one purpose
of aggregating species into equivalent groups is to investigate beyond the stochastic plasticity of
biotic interactions. For example, the simulation (Supp. Info) suggests a stochastic plasticity at
a species level but not at a group level since the image network is fixed at a given point of the
ecological gradient. We hypothesize that, in the real world, there is an aggregation level below
which stochastic processes drive the patterns of network diversity, and above which deterministic
processes (i.e., ecological processes) are the main drivers. This hypothesis mirrors the use of the
concept of emergent groups of organisms to assess the contribution of niche and neutral theory to
community assembly (Hérault 2007).
Moreover, since ecological networks are now built using a wide spectrum of organisms, especially
microorganisms with the advent of Next Generation Sequencing (Bohan et al. 2017) where the no-
tion of species is hard to handle, using indices that allow to understand network diversity through
different species aggregation levels will allow overcoming issues in the definition of the biological
entity.
We thus believe that this unified framework should now pave the way for a better understanding
of the spatial and temporal structure of biodiversity while considering biotic interactions. Indeed,
it reconciles two perspectives on ecological networks analysis while building the associated indices.
On the one hand, the study of how ecological processes shape an isolated network (Fig. 4a) and
how meaningful groups can be derived from the topology of an ecological network (Fig. 4b), and
on the other hand how networks vary across space and time (Fig. 4c). Importantly, it allows

10



testing key ecological hypotheses on the processes shaping the spatial and temporal variation of
ecological networks (case study, Fig. 3), by varying different aspects of the networks (Fig. 4d).
Consequently, it should foster the emergence of spatial network ecology and allow the comparison,
analysis and partitioning of multiple ecological networks, from the local community to the global
metacommunity they are a part of, while considering various definitions of the organisms involved.
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Tables and boxes

Table 1: Notations, name of the different indices and ranges of values. C is the connectance of the
considered network, Q is the number of groups of the considered metanetwork and NL its number
of different links and Ck is the connectance of the local network k.

Object Name Total margin
p Vector of relative group abundances

∑
1≤q≤Q pq = 1

L Matrix of link abundances
∑

1≤q,l≤Q Lql = C

Π Matrix of link probabilities (adjacency matrix of the weighted network)
∑

1≤q,l≤Q πql

P Matrix of group abundances of groups (metanetwork case)
∑Q
q=1

∑K
k=1 Pqk = K

L Tensor of links abundances (metanetwork case)
∑Q
q,l=1

∑K
k=1 Lqlk =

∑K
k=1 Ck

Π Tensor of link probabilities (metanetwork case)
∑Q
q,l=1

∑K
k=1 πqlk

Diversity index Name & interpretation Range

AηP
Overall α-diversity in group abundances

Average diversity in group abundances across local networks 1 ≤ AηP ≤ Q

α-diversity AηL
Overall α-diversity in link abundances

Average diversity in link abundances across local networks 1 ≤ AηP ≤ NL

AηΠ
Overall α-diversity in link probabilities

Average diversity in link probabilities across local network 1 ≤ AηΠ ≤ NL

GηP
γ-diversity in group abundances

Diversity in group abundances of the metanetwork 1 ≤ GηP ≤ Q

γ-diversity GηL
γ-diversity in link abundances

Diversity in link abundances of the metanetwork 1 ≤ GηL ≤ NL

GηΠ
γ-diversity in link probabilities

Diversity in link probabilities of the metanetwork 1 ≤ GηΠ ≤ NL

BηP
β-diversity of group abundances

Effective numbers of distinct communities of groups 1 ≤ BηP ≤ K

β-diversity BηL
β-diversity of link abundances

Effective numbers of distinct networks 1 ≤ BηL ≤ K

BηΠ

β-diversity of link probabilities
Effective numbers of distinct networks

(with abundances rescaled at evenly distributed values)
1 ≤ BηΠ ≤ K

δηP
Dissimilarity of group abundances

Effective average proportion of shared groups 0 ≤ δηP ≤ 1

dissimilarity δηL
Dissimilarity of link abundances

Effective average proportion of shared links 0 ≤ δηL ≤ 1

δηΠ

Dissimilarity of link probabilities
Effective average proportion of shared links

(with abundances rescaled at evenly distributed values)
0 ≤ δηΠ ≤ 1
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Table 2: The set of trophic networks and the covariates (adapted from Thompson & Townsend
2003 )

Location Site Vegetation

Maine (USA) Troy Pinus strobus
Maine (USA) Martins Pinus strobus
North Carolina (USA) Herlzler Pinus strobus
North Carolina (USA) Cooper Pinus strobus
New Zealand Venlaw Pinus radiata
New Zealand Berwick Pinus radiata
New Zealand North col native bush
New Zealand Powder native bush
New Zealand Trib C tussock
New Zealand Sutton tussock
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Figures caption
Figure 1 Navigating through species aggregation levels. From the original weighted network to
image networks at mesoscopic and macroscopic scales, with the formulas giving the group abun-
dances and link probabilities of the image networks.

Figure 2 The metanetwork and the local realized networks in different cases: a. binary net-
work, unweighted links and without node abundances, b.node abundances but absence of links, c.
weights on links but no node abundances and d. weights and links and node abundances. The
different indices to measure α-, β- and γ-diversity are associated to each particular case and pre-
sented more generally in Table 1.

Figure 3 Assessing the drivers of β-diversity in group abundances and link abundances at dif-
ferent species aggregation levels. Relative importance (ANOSIM statistic) of the location vs. the
riparian vegetation regarding the a. microscopic pairwise β-diversity in groups abundances (BηP
at a microscopic scale) b. microscopic pairwise β-diversity in link abundances (BηL at a micro-
scopic scale) c. mesoscopic pairwise β-diversity in group abundances (BηP at a mesoscopic scale)
d. mesoscopic pairwise β-diversity in link abundances (BηL at a mesoscopic scale) across a range of
η values (i.e the viewpoint parameter controlling the weight given to entities (group abundances
or link abundances) in the measure of the β-diversity). nk is the number of nodes of the network
k and Lk its number of links.

Figure 4 Reconciling two perspectives in ecological network analyses. Here, we represent the
key questions, seminal studies and underlying hypotheses usually considered in studies of ecologi-
cal networks, and our specific indices for investigating them. (a) Studying the structure of a local
network. (b) Studying the structure of a network where species have been aggregated in mean-
ingful groups (trophic groups in the case of trophic networks). (c) Studying how networks vary in
space and time. (d) Studying how networks change in space and time at various aggregation levels
(trophic groups in the case of trophic networks). (meso) means the diversity indices are computed
at a mesoscopic scale.
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Supporting Information

1 Proofs

1.1 Proof of Eq. 2
The abundance of the group q is:

pq = Pr(i ∈ q)
The abundance of the link between group q and l is :

Lql = Pr(i→ j, i ∈ q, j ∈ l)

Using Bayes formula, we have :

Lql = Pr(i→ j|i ∈ q, j ∈ l)Pr(i ∈ q)Pr(j ∈ l)

Lql = πqlpqpl

1.2 Proof of Eq. 3
By definition

p̃q = Pr(i ∈ Cq)
Moreover :

Cq =
⋃̇

k∈Cq
Vk

where
⋃̇

denotes the disjoint union. So :

p̃q =
∑
k∈Cq

pk

1.3 Proof of Eq. 4 and 5
By definition :

π̃ql = Pr(i→ j|i ∈ Cq, j ∈ Cl)
Using Bayes’ formula :

π̃ql =
Pr(i→ j, i ∈ Cq, j ∈ Cl)
Pr(i ∈ Cq)Pr(j ∈ Cl)

By definition :
L̃ql = Pr(i→ j, i ∈ Cq, j ∈ Cl)

Using the law of total probabilities :

L̃ql =
∑

k∈Cq,k′∈Cl

Pr(i→ j|i ∈ Vk, j ∈ V ′k)Pr(i ∈ Vk)Pr(j ∈ V ′k)

L̃ql =
∑

k∈Cq,k′∈Cl

πkk′pkp
′
k

Since :
Pr(i ∈ Cq, j ∈ Cl) = (

∑
k∈Ck

pk)(
∑
k′∈C′k

p′k)

It follows:

π̃ql =

∑
k∈Cq,k′∈Cl πkk′pkp

′
k

(
∑
k∈Ck pk)(

∑
k′∈C′k

p′k)
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1.4 Proof of Eq. 7
By definition, :

C = Pr(i→ j)

Moreover :
Lql = Pr(i→ j|i ∈ q, j ∈ l)

By summing over q and l, it follows that

C =
∑
q,l

Lql

C =
∑
q,l

πqlpqpl

This last result is a generalization of the weighted connectance presented in Poisot et al. (2016).

2 Clustering methods
We focus here on two network clustering methods that are particularly appropriate to aggregate
nodes without any a priori : regular equivalence (Luczkovich et al. 2003) and the stochastic block
model (Daudin et al. 2008; Allesina & Pascual 2009; Newman & Leicht 2007). These methods
have already been used to study interaction networks (regular equivalence Gauzens et al. 2015; the
stochastic block model Kéfi et al. 2016). Importantly, in the case of trophic networks, the groups
formed are interpreted in terms of trophic groups (Allesina & Pascual 2009; Gauzens et al. 2015).
We acknowledge that other methods exist (see e.g., Henderson et al. 2012) and could be applied to
trophic networks. In regular equivalence, two nodes belong to the same equivalence class (i.e, same
groups) if they have the same links (with the same weight in the case of weighted networks) to all
other equivalence classes. Regular equivalence can thus be applied to binary or weighted networks.
In contrast, the stochastic block model is a probabilistic perspective. Two nodes belong to the
same group if they share the same probability of being linked to all the other groups. Similar to
regular equivalence, the method is applicable to both binary networks (Daudin et al. 2008) and
weighted networks (Mariadassou et al. 2010). A broader review of the links between clustering
methods based on the topology of a network and the concepts of species’ role in trophic networks
can be found in Cirtwill et al. (2018).

3 General framework
In this section, we present the general way to partition network diversity using the framework
presented in Chao & Chiu (2016) as the frameworks presented in Jost (2007) and Reeve et al.
(2014).

3.1 Chao’s framework
The main text present the diversity indices for η = 1. Here are presented the indices for any eta
value. The interpretations of the indices are the same than these presented in the main document
as the ranges presented in table 1.
For η 6= 1, the α-diversities are :

AηP =
1

K

(
Q∑
q=1

K∑
k=1

(
Pqk
P++

)η) 1
1−η

AηL =
1

K

 Q∑
q,l=1

K∑
k=1

(
Lqlk
L+++

)η 1
1−η

AηΠ =
1

K

 Q∑
q,l=1

K∑
k=1

(
πqlk
π+++

)η 1
1−η
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For η 6= 1, the γ-diversities are :

GηP =
1

K

(
Q∑
q=1

K∑
k=1

(
Pq+
P++

)η) 1
1−η

GηL =
1

K

 Q∑
q,l=1

K∑
k=1

(
Lql+
L+++

)η 1
1−η

GηΠ =
1

K

 Q∑
q,l=1

K∑
k=1

(
πql+
π+++

)η 1
1−η

And the β-diversities are defined as :

BηP =
GηP
AηP

BηL =
GηL
AηL

BηΠ =
GηΠ
AηΠ

Overlap measures between the K local networks can be built using β-diversities giving the following
dissimilarity measures (for η 6= 1) :

δηP =
1− (1/BηP )η−1

1− (1/K)η−1

δηL =
1− (1/BηL)η−1

1− (1/K)η−1

δηΠ =
1− (1/BηΠ)η−1

1− (1/K)η−1

3.2 Jost’s and Reeve’s frameworks
In this section, we present network diversity indices using the frameworks presented in Jost (2007)
and in Reeve et al. (2014). These two frameworks allow to measure diversity while weights (that
are not necessarily evenly distributed) on local networks. Jost’s framework satisfies the invariance
under shattering property for η ∈ 0, 1 (and to all order for equal weights) while Reeve’s framework
satisfies this property whatever η. However, this last framework is not correct for similarity sensitive
case i.e., when phylogenetic or functional information is incorporated to the indices (see Appendix
1 of Chao et al. (2014) for a counter example). However, the framework is correct when no
phylogenetic or functional information is used (as in the presented diversity indices) as shown in
S2.1.2 of Reeve et al. (2014). We encourage the reader to use Reeve’s framework with special care.

3.2.1 Notations

The relative abundance of the group q in the local network k is pqk, giving the matrix P of group
abundances (so that

∑
1≤q≤Q,1≤k≤K Pqk = 1). The relative group abundances in the local network

k is P·k and it constitutes a fraction ωpk =
∑

1≤q≤Q Pqk of total group abundances.The normalized
relative group abundances in the local network k is P·k = P·k

ωpk
(so that

∑
1≤q≤Q Pqk = 1). It

follows that pmeta =
∑

1≤k≤K ω
p
kP·k

Similarly, the relative link abundance between groups q and l in the local network k is L?qlk,
giving the matrix of link abundances in the local network k, L?··k and the tensor of order three
L? = (L?qlk) of link abundances (so that

∑
1≤q,l≤Q,1≤k≤K Lqlk = 1). If we note Ck the con-

nectance of the local network k and L··k the normalized link abundances of the network k (so that∑
1≤q,l≤n Lqlk = 1), we have L··k =

L?··k
ωLk

, with ωLk = Ck∑
Cp

(see next subsection for proof). We

have then L?meta =
∑

1≤k≤K ω
L
k L··k (see next subsection for a proof).

3



Moreover, the relative link probability between groups q and l in the local network k is π?qlk,
giving the matrix of link probabilities in the local network k, Π?

··k, and the tensor of order three
Π? = (π?qlk) of link probabilities (so that

∑
1≤q,l≤Q,1≤k≤K π

?
qlk=1). The matrix of link probabilities

in the local network k, Π?
··k, constitutes a fraction ωπk =

∑
1≤q,l≤Q π

?
qlk of total link probabili-

ties. The normalized matrix of link probabilities in the local network k is Π··k =
Π?
··k
ωπk

(so that∑
1≤q,l≤Q Π··k = 1). We have then Π?

meta =
∑

1≤k≤K ω
πΠ··k

3.2.2 Weights on the networks when assessing link diversity

By definition :
ωLk =

∑
1≤q,l≤Q

L?qlk

where L?qlk is an element of the tensor of relative link abundances L. This tensor is normalized so
that

∑
1≤q,l≤Q,1≤k≤K L

?
qlk = 1. By denoting Lqlk the absolute link abundance between group q

and l in the network k and Ck the connectance of the network k, we have (from Eq. 7) :

Ck =
∑
q,l

Lqlk

and ∑
k

Ck =
∑
q,l,k

Lqlk

Since
∑
q,l L

?
qlk∑

q,l,k L
?
qlk

=
∑
q,l Lqlk∑
q,l,k Lqlk

, it follows :

ωLk =
Ck∑
k Ck

3.3 Reeve’s framework
We first define the power mean function of order η of X weighted by u, where X and u are either
a vectors or matrices.
If X and u are vectors and µ a positive real number:

Mµ(u,X) =


(∑

q uqX
µ
q

) 1
µ

if µ 6= 0

exp
(∑

q uqlog(Xq)
)

if µ = 0

If X and u are matrices and µ a positive real number:

Mµ(u,X) =


(∑

q,l uqlX
µ
ql

) 1
µ

if µ 6= 0

exp
(∑

ql uqllog(Xql)
)

if µ = 0

The local α-diversities (groups, link abundances and link probabilities) of the network k are
defined as :

αηP,k = M1−η(P·k,
1

P·k
)

αηL,k = M1−η(L··k,
1

L··k
)

αηΠ,k = M1−η(Π··k,
1

Π··k
)

The overall α-diversities are :
AηP = M1−η(ωp, αηP)

AηL = M1−η(ωL, αηL)

AηΠ = M1−η(ωπ, αηΠ)
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The local β-diversities of the network k are defined as :

βηP,k =
1

M1−η(P·k,pmeta/P·k
)

βηL,k =
1

M1−η(L··k,Lmeta/L··k)

βηΠ,k =
1

M1−η(Π··k,Πmeta/Π··k)

The overall β-diversities are defined as :

BηP = M1−η(ωp, βηP)

BηL = M1−η(ωL, βηL)

BηΠ = M1−η(ωπ, βηΠ)

The local γ-diversities of the network k are defined as :

γηP,k = M1−η(P·k, 1/p
meta)

γηL,k = M1−η(L··k, 1/L
meta)

γηΠ,k = M1−η(Π··k, 1/Π
meta)

The overall γ-diversities are defined as :

GηP = M1−η(ωp, γP)

GηL = M1−η(ωL, γL)

GηΠ = M1−η(ωπ, γΠ)

The range of variation of the overall diversity indices are the same as these presented in table 1
for η = 1 using the Chao’s framework.

3.3.1 Jost’s Framework

The α-diversities for η 6= 1 are defined as :

AηP =

(∑
k

(
ωPk
)η (∑

q Pqk
η
)) 1

1−η(∑
k(ωPk )η

)
For η = 1, it converges towards the same index than the one presented in the previous section (i.e.
A1
P ). It ranges between 1 and the number of groups in the metanetwork.

AηL =

(∑
k

(
ωLk
)η (∑

q,l Lqlk
η
)) 1

1−η(∑
k(ωLk )η

)
For η = 1, it converges towards the same index than the one presented in the previous section (i.e.
A1
L). It ranges between 1 and the number of links in the metanetwork.

AηΠ =

(∑
k

(
ωΠ
k

)η (∑
q,l Πqlk

η
)) 1

1−η(∑
k(ωΠ

k )η
)

For η = 1, it converges towards the same index than the one presented in the previous section (i.e.
A1

Π). It ranges between 1 and the number of links in the metanetwork.
The γ-diversities are defined as :

GηP = M1−η(pmeta, 1/pmeta)
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It ranges between 1 and the number of groups in the metanetwork.

GηL = M1−η(Lmeta, 1/Lmeta)

GηΠ = M1−η(Πmeta, 1/Πmeta)

It ranges between 1 and the number of links in the metanetwork. The β-diversities are defined as

BηP =
GηP
AηP

BηL =
GηL
AηL

BηΠ =
GηΠ
AηΠ

However, for η 6= 1, α-diversity can exceed γ-diversity (Jost 2007). So, these indices must be used
for η = 1 (or with equal weights for any η value). In this case (η = 1), the β diversities have the
following ranges (Jost 2007) :

1 ≤ B1
P ≤M1(ωP,

1

ωP
)

1 ≤ B1
L ≤M1(ωL,

1

ωL
)

1 ≤ B1
Π ≤M1(ωΠ,

1

ωΠ
)

Dissimilaritiy measures can be built form β-diversity as presented in section 2.1 (using only η = 1
for the case of unequal weights).

3.4 Link with existing frameworks
While we originally defined our framework and associated indices for the general case of weighted
networks (weights on links and abundances of nodes), they are obviously applicable to unweighted
networks. In this particular instance, our framework generalizes the metrics developed by Poisot
et al. (2012) to assess the diversity of unweighted networks. In addition to species turnover (βS ,
Sorensen index on species composition), the authors proposed to measure the dissimilarity of links
(βWN , Sorensen index on links) and to partition it in an additive way between a component that
measures the plasticity of interactions (βOS) and a component that measures the links turnover due
to species turnover (βST ). We propose to show that, at a microscopic scale for a binary network,
δ0
P = βS , δ0

L = βWN and δ0
Π = βOS (using Chao’s framework).

Let consider two networks G1 and G2, we note V1, V2 the corresponding sets of nodes and E1

E2 the corresponding set of edges. Let Gmeta be the metanetwork, defined (in the case of binary
networks) as the union of G1 and G2 (i.e. Vmeta = V1 ∪ V2 and Emeta = E1 ∪ E2).
Poisot’s diversity indices (βS and βWN ) consist in Sorensen dissimilarity index on sets of nodes
and links of the two networks. We have :

βS =
| V1 | + | V2 | −2 | V1 ∩ V2 |

| V1 | + | V2 |

where | · | denotes the cardinal function. Moreover :

βWN =
| E1 | + | E2 | −2 | E1 ∩ E2 |

| E1 | + | E2 |

δ0
P consists in Sorensen dissimilarity index on nodes of G1 and G2 (i.e. species composition, Chao
& Chiu 2016), so δ0

P = βS . Similarly, δ0
L consists in Sorensen dissimilarity index on edges of G1

and G2, so δ0
L = βWN .

We now show that δ0
Π = βOS . To do so, we introduce the induced subgraph function ind.sub. Let

G be a network and V a subset of V (G). ind.sub(G,V ) is the network whose nodes are V and
edges are E = E(G) \ (q, l)/(q /∈ V ∨ l /∈ V ). We note V ∩ = V1 ∩ V2, G∩1 = ind.sub(G1, V

∩) and
G∩2 = ind.sub(G2, V

∩). The set of nodes of these graphs are V ∩ and we note E∩1 and E∩2 their
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sets of edges.. In order to estimate the probability of interaction between species q and l in the
network k, π?qlk, we need to observe at least one individual of species q and l in the network k.
Consequently, in order to compute probabilities of interaction, we only consider species that belong
to V ∩. In the case of the two considered networks, the dimension of Π is then | V ∩ | ∗ | V ∩ | ∗2.
Poisot’s measure of plasticity of interactions is :

βOS =
| E∩1 | + | E∩2 | −2 | E∩1 ∩ E∩2 |

| E∩1 | + | E∩2 |

At a microscopic level, δ0
Π consists in the Sorensen dissimilarity index on the edges of G∩1 and G∩2 .

Consequently, δ0
Π = βOS .

4 Simulation study
Here, we simulate the change in the structure of an ecological network along a gradient (Fig. S3a)
and show that the observed network diversity strongly depends on the aggregation level at which
the network is considered. For simplicity, we hypothesized that we have a prior knowledge of the
groups.
We assume that we observe three groups (C1,C2,C3), each containing 100 species, along an envi-
ronmental gradient. We assume no species turnover along the gradient. In other words, at each
location of the gradient, the local species pool is the regional species pool. At a given location t
within the gradient, the matrix of link probabilities Π?

t between the groups is thus given by:

C1 C2 C3( )
0 0 0 C1

c− t 0 0 C2

c+ t 0 0 C3

(1)

At a species level, the network is binary and its edges are drawn in independent Bernoulli laws
of parameters depending on the group of species (the interaction between two species from group
q and l is a random event that occurs with a probability of π?qlt). Two species belonging to the
same group are equivalent in the sense that they have the same link probabilities with all the
other species. However, globally, the species are not equivalent since they do not all have the
same probability of interacting. Moreover, the link probabilities between groups change along the
gradient. This simulation setting may reflect the interactions between a group of rodents (C1) and
two groups of parasites (C2, C3), where we observed a variation in parasitic interactions following
a shift in the rodents’ phenology induced by climate (see Poisot et al. 2017).
We now propose to analyze network diversity at micro-, meso-, and macroscopic scales along the
gradient. The groups are evenly distributed along the gradient since they contain 100 species each
(i.e. pC1

= pC2
= pC3

= 1
3 ). The expected value of the connectance (i.e. macroscopic diversity) at

a location t in the gradient, E(Ct), is then (Eq. 8):

E(Ct) =
c− t

3
+
c+ t

3
=

2c

3
(2)

Therefore, the expected value of connectance is constant along the gradient and consequently, no
pattern can appear at a macroscopic scale along the gradient.
We now propose to evaluate the dissimilarity of probabilities of interactions between each pair of
networks along the gradient at both the microscopic (species-level) and mesoscopic (group level)
scales using δ1

Π.
We used 21 values of t, regularly spaced across a range of -0.05 and 0.05 to represent the envi-
ronmental gradient and set c = 0.1. At each point t of the gradient, we randomly sampled 200
networks. We then computed, on any two locations t1 and t2 in the gradient, the value of δ1

Π
at

a microscopic and mesoscopic scales. We then visualize δ1
Π
at both aggregation level for each pair

of values of t, revealing two different patterns (Fig. S3b and S3c). The simulation highlights that
patterns of network diversity strongly depend on the aggregation level at which the network is con-
sidered. At the macroscopic scale, no spatial structure emerges, since the connectance is constant
along the gradient. At the microscopic scale, the interaction rewiring is too high to distinguish

7



any structure. The dissimilarity values shifted from 0 along the diagonal to high values on the
off-diagonal terms. However, at the mesoscopic scale, we can observe the dissimilarity pattern
since the dissimilarity values slowly increase around the diagonal. As a result, this encourages one
to look beyond species to investigate the spatial and temporal diversity of networks.
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Figure S1: Locations of the ten trophic networks described in Thompson & Townsend (2003). Six
networks were sampled in the USA and four networks in New Zealand

9



Figure S2: The metanetwork built from the 10 stream trophic networks. We only kept the largest
connected component that contains 532 species and has a connectance value of 0.01. The network
was visualized using the GEPHI software (force Atlas 2 algorithm).
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Figure S3: Change of network structure along an ecological gradient (a.) in function of two
species aggregation levels (species and three equivalent groups of species in terms of probability
of interactions with the others groups). We assess and represent the pairwise dissimilarity in link
probabilities (δ1

Π) at both a microscopic (b.) and mesoscopic scales (c.).
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