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Abstract

Let us denote by π(x) the number of primes 6 x, by li(x) the logarithmic integral of x, by
θ(x) =

P
p6x log p the Chebichev function and let us set A(x) = li(θ(x))−π(x). Revisiting a result

of Ramanujan, we prove that the assertion “A(x) > 0 for x > 11” is equivalent to the Riemann
Hypothesis.
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1 Introduction
Let us denote by π(x) the number of primes 6 x and by li(x) the logarithmic integral of x (see,

below, §2.2). It has been observed that, for small x, π(x) < li(x) holds, but Littlewood (cf. [7] or [5,
chap. 5]) has proved that, for x tending to infinity, the difference π(x)− li(x) oscillates infinitely many
often between positive and negative values.

Let us set θ(x) =
∑
p6x log p, the Chebichev function, and

(1.1) A(x) = li(θ(x))− π(x).

What is the behavior of A(x) ? In [11, (220), (222), (227) and (228)], under the Riemann Hypothesis,
Ramanujan proved that

(1.2) A(x) =
2
√
x+

∑
ρ x

ρ/ρ2

log2(x)
+O

( √
x

log3(x)

)
where ρ runs over the non-trivial zeros of the Riemann ζ function. Moreover, in [11, (226)], Ramanujan
writes under the Riemann Hypothesis∣∣∣∣∣∑

ρ

xρ

ρ2

∣∣∣∣∣ 6 ∑
ρ

∣∣∣∣xρρ2

∣∣∣∣ =
√
x
∑
ρ

1
ρ(1− ρ)

=
√
x
∑
ρ

(
1
ρ

+
1

1− ρ

)
= 2

√
x
∑
ρ

1
ρ

=
√
x(2 + γ0 − log(4π)) = 0.046...

√
x(1.3)

where γ0 is the Euler constant and concludes

(1.4) under the Riemann Hypothesis ∃ x0 such that, for x > x0, A(x) is positive.

The aim of this paper is to make these results effective and, in particular, to show that Ramanujan’s
result (1.4) is true for x0 = 11.

∗Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.
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Let us set λ =
∑
ρ

1
|ρ|2 . Under the Riemann Hypothesis, we have (see below (2.26))

(1.5) λ =
∑
ρ

1
|ρ|2

=
∑
ρ

1
ρ(1− ρ)

= 0.0461914179322420 . . .

We shall prove

Theorem 1.1 Under the Riemann Hypothesis, we have

(1.6) lim sup
x→∞

A(x) log2(x)√
x

6 2 + λ = 2.046 . . . ,

(1.7) lim inf
x→∞

A(x) log2(x)√
x

> 2− λ = 1.953 . . . ,

(1.8) A(x) is positive for x > 11,

(1.9) A(x) > (2− λ)
√
x

log2(x)
for x > 37,

and

(1.10) A(x) 6M
√
x

log2(x)
for x > 2,

where M = A(3643)(log2 3643)/
√

3643 = 5.0643569138 . . .

Corollary 1.1 Each of the five assertions (1.6)–(1.10) is equivalent to the Riemann Hypothesis.

Proof : In 1984, Robin (cf. [10, Lemma 2 and (8)] has shown that, if the Riemann Hypothesis does
not hold, there exists b > 1/2 such that

A(x) = Ω±(xb), i.e. lim sup
x→∞

A(x)
xb

> 0 and lim inf
x→∞

A(x)
xb

< 0

and the five assertions of the theorem are no longer satisfied. �

1.1 Notation
π(x) =

∑
p6x

1 is the prime counting function.

Π(x) =
∑
pk6x

1
k

=
κ∑
k=1

π(x1/k)
k

with κ =
⌊

log x
log 2

⌋
.

θ(x) =
∑
p6x

log p and ψ(x) =
∑
pm6x

log p =
κ∑
k=1

θ(x1/k) are the Chebichev functions.

Λ(x) =

{
log p if x = pk

0 if not
is the von Mangoldt function.

ψ̃(x) = ψ(x)− 1
2

Λ(x) and Π̃(x) = Π(x)− Λ(x)
2 log x

.

li(x) denotes the logarithmic integral of x (cf. below §2.2).
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L1(t) = li(t)− t

log t
, L2(t) = li(t)− t

log t
− t

log2 t
, F1(t) =

L1(t)
t/ log2 t

, F2(t) =
L2(t)
t/ log3 t

(t > 1).

F̃1(t) and F̃2(t) are defined below in (3.16).

γ0 = 0.57721566 . . . is the Euler constant. λ is defined in (1.5), cf. also (2.26).∑
ρ

f(ρ) = lim
T→∞

∑
|=(ρ)|6T

f(ρ) where f : C→ C is a complex function and ρ runs over the non-trivial

zeros of the Riemann ζ function.

1.2 Plan of the article
In §2, we shall recall some definitions and prove some results that we shall use in the sequel, first, in

§2.2, about the logarithmic integral, and, further, in §2.3, about the Riemann ζ function and explicit
formulas of the theory of numbers.

In §3, the proof of Theorem 1.1 is given. First, we write A(x) = A1(x) +A2(x) with

A1(x) = li(ψ(x))−Π(x) and A2(x) = li(θ(x))− li(ψ(x)) + Π(x)− π(x).

In §3.1, under the Riemann Hypothesis, an estimate ofA1(x) is given, by applying the explicit formulas.
In §3.2, it is shown that A2(x) depends on the quantity B(y) = π(y) − θ(y)/ log y which is carefully
studied.

In §3.3 (resp. §3.4), an effective lower (resp. upper) estimate for A(x) is given when x > 108.
In §3.5, for x < 108, estimates of A(x) are given by numerical computation.
Finally, Theorem 1.1 is proved in two steps, depending on the cases x 6 108 or x > 108.

The computations, both algebraic and numerical, have been carried out with Maple. On the website
[13], one can find the code and a Maple sheet with the results.

We often implicitly use the following result : for u and v positive, the function

(1.11) t 7→ logu t
tv

is increasing for 1 6 t 6 eu/v and decreasing for t > eu/v.

Moreover

(1.12) max
t>1

logu t
tv

=
( u
e v

)u
.

2 Preliminary results

2.1 Effective estimates
Without any Hypothesis, Platt and Trudgian [9] have shown by computation that

(2.1) θ(x) < x for 0 < x ≤ 1.39 · 1017

so improving on results of Schoenfeld [12] and Dusart [3]. Under the Riemann Hypothesis, for x > 599,
we shall use the upper bounds (cf. [12, (6.3)])

(2.2) |ψ(x)− x| 6 1
8π
√
x log2 x and |θ(x)− x| 6 1

8π
√
x log2 x.
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2.2 The logarithmic integral
For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) =
∫ x

0

− dt

log t
= lim
ε→0+

(∫ 1−ε

0

+
∫ x

1+ε

dt

log t

)
=
∫ x

2

dt

log t
+ li(2).

We have the following values :

(2.3) x 1 1.45136 . . . 2 3.8464 . . . 8.3 599
li(x) −∞ 0 1.145163 . . . 2.8552 . . . 5.39671 . . . 117.49 . . .

From the definition of li(x), it follows that

(2.4)
d

dx
li(x) =

1
log x

and
d2

dx2
li(x) = − 1

x log2 x
.

We also have

li(x) = γ0 + log(log(x)) +
∞∑
n=1

(log x)n

n · n!

(where γ0 = 0.577 . . . is the Euler constant) which implies

(2.5) li(x) = log(log(x)) + γ0 + o(1), x→ 1+.

Let N be a positive integer. For t > 1, we have (cf. [13])

(2.6)
∫

dt

logN t
=

1
(N − 1)!

(
li(t)−

N−1∑
k=1

(k − 1)!
t

logk t

)

and, for x→∞,

(2.7) li(x) =
N∑
k=1

(k − 1)!x
(log x)k

+O
(

x

(log x)N+1

)
.

Lemma 2.1 For t > 1, we have

(2.8) L2(t) = li(t)− t

log t
− t

log2 t
= F2(t)

(
t

log3 t

)
< 4.05

t

log3 t
.

For t > t0 > 381, we have

(2.9) L2(t) < F2(t0)
t

log3 t
.

For t > 29, we have

(2.10) L2(t) > 2
t

log3 t
.

Proof : let us set (cf. the Maple sheet [13])

f1(t) = (3− log t) li(t) + t− 2t
log t

− t

log2 t
=
t2F ′2(t)
log2(t)

,

f2(t) =
t

log t
+

t

log2 t
+ 2

t

log3 t
− li(t) = tf ′1(t)
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and
f3(t) = f ′2(t) = − 6

log4(t)
.

Since f ′2(t) = f3(t) is negative, f2(t) decreases and vanishes for

t2 = 28.19524 . . .

It follows that f ′1(t) = f2(t)/t is positive for 1 < t < t2 and negative for t > t2 so that f1(t) has a
maximum for t = t2,

f1(t2) = 4.54378 . . .

and f1 vanishes (and so does F ′2) in two points

t3 = 3.384879 . . . t4 = 380.1544 . . .

From (2.5), we get limt→1+ F2(t) = 0 and the variation of F2 is given in the following array :

(2.11)

t 1 3.38 . . . 10.39 . . . 380.15 . . . ∞
0 4.040415 . . .

F2(t) = L2(t)
t/ log3 t

↘ ↗ 0 ↗ ↘
−1.369496 . . . 2

The proof of (2.8) and (2.9) follows from Array 2.11 and also the proof of (2.10), after deducing from
f2(t2) = 0 that F2(t2) = 2 holds. �

In the same way, it is possible to study the variation of the function

F1(t) =
L1(t)

(t/ log2 t)
=

li(t)− t
log t

(t/ log2 t)
,

The details can be found on [13]. We have

(2.12)

t 1 1.85 . . . 3.8464 . . . 94.6 . . . ∞
0 1.784 . . .

F1(t) = L1(t)
(

log2 t
t

)
↘ ↗ 0 ↗ ↘

−0.448 . . . 1

Since L1(10.3973 . . .) = 1, Array (2.12) yields

(2.13) t > 10.4 =⇒ L1(t) = li(t)− t

log t
>

t

log2 t
.

The derivative of li(t)/t is t/ log t−li(t)
t2 = − F1(t)

t log2 t
which, from Array 2.12, is positive for 1 < t < 3.8464

and negative for t > 3.8465. Therefore, we have

(2.14) t > 1 =⇒ li(t) 6
li(3.8464 . . .)

3.8464 . . .
t = 0.7423 . . . t <

3t
4
.

Lemma 2.2 Let a and x be two real numbers satisfying exp(1) 6 a < a3 6 x. Let κ1 and κ2 be two
integers such that

2 6 κ1 < κ2 =
⌊

log x
log a

⌋
.

Then we have

(2.15)
κ2∑

k=κ1+1

1
k
L1(x1/k) 6 1.785

(
4.05

κ3
1x

1/κ1

log3 x
− L2(a)

)
.

5



Proof : Let us set

T =
κ2∑

k=κ1+1

1
k
L1(x1/k).

It follows from Array 2.12 that, for t > 1, L1(t) = tF1(t)/ log2 t 6 1.785 t
log2 t

holds and therefore,

T 6
1.785
log2 x

κ2∑
k=κ1+1

kx1/k.

Now, as x > exp(1) > 1, the function t 7→ tx1/t is positive and decreasing for 0 < t 6 log x so that

T 6
1.785
log2 x

∫ κ2

κ1

tx1/tdt 6
1.785
log2 x

∫ log x
log a

κ1

tx1/tdt = 1.785
∫ x1/κ1

a

du

log3 u

by the change of variable u = x1/t. Finally, by (2.6) and (2.8), we get

T 6 1.785
(
L2(x1/κ1)− L2(a)

)
6 1.785

(
4.05

x1/κ1

log3(x1/κ1)
− L2(a)

)
which ends the proof of Lemma 2.2. �

Lemma 2.3 Let a > 2.11 and x > a3 be real numbers and κ2 =
⌊

log x
log a

⌋
. Then we have

(2.16)
κ2∑
k=2

1
k
x1/(2k) 6

5
4
x1/4.

Proof : Let us set

T =
κ2∑
k=2

1
k
x1/(2k).

Since x > a3 > 1, the function t 7→ x1/(2t)/t is positive and decreasing for t > 0 so that

T =
1
2
x1/4 +

κ2∑
k=3

1
k
x1/(2k) 6

1
2
x1/4 +

∫ log x
log a

2

x1/(2t)

t
dt =

1
2
x1/4 +

∫ x1/4

√
a

du

log u

by the change of variable u = x1/(2t). Finally, by (2.6) and (2.14), we get

T 6
1
2
x1/4 + li(x1/4)− li(

√
a) 6

5
4
x1/4 − li(

√
a)

and (2.16) follows since
√
a >
√

2.11 > 1.452 so that, from Array (2.3), li(
√
a) > 0 holds. �

Lemma 2.4 Under the Riemann Hypothesis, for x > 599, one has

(2.17)
θ(x)− x

log x
− 9 log2 x

10000
6 li(θ(x))− li(x) 6

θ(x)− x
log x

(2.18)
ψ(x)− x

log x
− 9 log2 x

10000
6 li(ψ(x))− li(x) 6

ψ(x)− x
log x

,

and

(2.19)
ψ(x)− θ(x)

log x
− 9 log2 x

10000
6 li(ψ(x))− li(θ(x)) 6

ψ(x)− θ(x)
log x

+
9 log2 x

10000
.

6



Proof : Let us suppose that x > 599 holds. From (2.2) and (1.11), we get

(2.20)
ψ(x)
x
>
θ(x)
x
>

1
x

(
x−
√
x log2 x

8π

)
= 1− log2 x

8π
√
x
> 1− (log 599)2

8π
√

599
> 0.9335.

Further, for h > 1− x, Taylor’s formula and (2.4) yield

(2.21) li(x+ h) = li(x) +
h

log x
− h2

2 ξ log2 ξ
,

with ξ > min(x, x+ h). Let us set h = θ(x)− x ; we have h+ x = θ(x) > θ(599) > 1. From (2.20), we
get ξ > bx with b = 0.9335 and

ξ log2 ξ > bx log2(bx) = bx log2(x)
(

1 +
log b
log x

)2

> bx log2(x)
(

1 +
log b

log(599)

)2

> 0.9135 x log2 x.

From (2.2), it follows that

0 6
h2

2 ξ log2 ξ
6

x log4 x

128π2ξ log2 ξ
6

log2 x

0.9135× 128π2
= 0.000866 . . . log2 x <

9 log2 x

10000

which, with (2.21), proves (2.17). In the same way, setting h = ψ(x) − x yields (2.18), and (2.19)
follows by substracting (2.17) from (2.18). �

2.3 The Riemann ζ function
We shall use the two explicit formulas

(2.22) ψ̃(x) = ψ(x)− 1
2

Λ(x) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log
(

1− 1
x2

)
, x > 1

and

(2.23) Π̃(x) = Π(x)− Λ(x)
2 log x

= li(x)−
∑
ρ

li(xρ)− log 2 +
∫ ∞
x

dt

t(t2 − 1) log t
, x > 1,

which can be found in many books in analytic number theory, for instance [5, chap. 4]. To Formula
(2.23), we prefer the form described in [6, p. 361 and 362, with R = 0] :

(2.24) Π̃(x) = Π(x)− Λ(x)
2 log x

= li(x)−
∑
ρ

∫ ∞
0

xρ−t

ρ− t
dt− log 2 +

∫ ∞
x

dt

t(t2 − 1) log t
, x > 1.

We also have (cf. [4, p. 67] or [2, p. 272])

(2.25)
∑
ρ

1
ρ

= 1 +
γ0

2
− 1

2
log π − log 2 = 0.02309570896612103 . . .

and

(2.26)
∑
ρ

1
ρ(1− ρ)

=
∑
ρ

(
1
ρ

+
1

1− ρ

)
= 2 + γ0 − log(4π) = 0.04619141793224206 . . .
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3 Proof of Theorem 1.1

3.1 Study of A1(x) = li(ψ(x))− Π(x)

Under the Riemann Hypothesis, we write

γ = =ρ i.e. ρ =
1
2

+ iγ.

Lemma 3.1 Under the Riemann Hypothesis, we have∑
ρ

1
|γ|3
6

1
300

.

Proof : It is possible to get better estimates for the sum
∑
ρ

1
|γ|3 , but, for our purpose, the above

upper bound will be enough. By observing that

|ρ|2 = ρ(1− ρ) =
1
4

+ γ2

and that the first zero of ζ(s) is 1/2 + 14.134725 . . . i (cf. [4, p. 96] or the extended tables of [8]), we
get ∑

ρ

1
γ2

=
∑
ρ

1 + 1/(4γ2)
1/4 + γ2

6
∑
ρ

1 + 1/(4× 14.1342)
1/4 + γ2

6
800
799

∑
ρ

1
ρ(1− ρ)

.

Further, from (2.26), we get∑
ρ

1
|γ|3
6

1
14.134

∑
ρ

1
γ2
6

800
799× 14.134

∑
ρ

1
ρ(1− ρ)

= 0.00327 . . .

which completes the proof of Lemma 3.1. �

Lemma 3.2 For x > 1, under the Riemann Hypothesis, we have∑
ρ

∫ ∞
0

xρ−t

ρ− t
dt =

∑
ρ

xρ

ρ log x
+
∑
ρ

xρ

ρ2 log2 x
+K(x)

with

(3.1) |K(x)| 6 2
300

√
x

log3 x
.

Proof : By partial integration, one has∫ ∞
0

xρ−t

ρ− t
dt =

xρ

ρ log x
+

xρ

ρ2 log2 x
+

2
log2 x

∫ ∞
0

xρ−t

(ρ− t)3
dt

and ∣∣∣∣∫ ∞
0

xρ−t

(ρ− t)3
dt

∣∣∣∣ 6 1
|=ρ|3

∫ ∞
0

x1/2−tdt =
1
|=ρ|3

√
x

log x

so that we get

|K(x)| =

∣∣∣∣∣∑
ρ

2
log2 x

∫ ∞
0

xρ−t

(ρ− t)3
dt

∣∣∣∣∣ 6 2
√
x

log3 x

∑
ρ

1
|=ρ|3

and (3.1) follows from Lemma 3.1. �
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Proposition 3.1 Under the Riemann Hypothesis, for x > 599, we have

A1(x) = li(ψ(x))−Π(x) =
∑
ρ

xρ

ρ2 log2 x
+ J(x)

with

(3.2) −0.0009 log2 x− 2
300

√
x

log3 x
6 J(x) 6

2
300

√
x

log3 x
+ log 2.

Proof : Let us write

li(ψ(x)) = li(x) +
ψ(x)− x

log x
+ J1(x) = li(x) +

ψ̃(x)− x+ Λ(x)/2
log x

+ J1(x)

with, from (2.18), for x > 599,

(3.3) −0.0009 log2 x 6 J1(x) 6 0.

Therefore, from (2.22) and (2.24), we have

A1(x) = li(x) +
1

log x

(
−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log
(

1− 1
x2

)
+

1
2

Λ(x)

)
+ J1(x)

−

(
li(x)−

∑
ρ

∫ ∞
0

xρ−t

ρ− t
dt+

∫ ∞
x

dt

t(t2 − 1) log t
− log 2 +

Λ(x)
2 log x

)

=
∑
ρ

∫ ∞
0

xρ−t

ρ− t
dt− 1

log x

∑
ρ

xρ

ρ
+ J1(x) + J2(x) + J3(x)

with

J2(x) = log 2− log(2π)
log x

and J3(x) = − log(1− 1/x2)
2 log x

−
∫ ∞
x

dt

t(t2 − 1) log t
.

Further, from Lemma 3.2, one gets

(3.4) A1(x) =
∑
ρ

xρ

ρ2 log2 x
+ J(x)

with

(3.5) J(x) = K(x) + J1(x) + J2(x) + J3(x)

and K(x) is as in Lemma 3.2.
It remains to bound J2(x) + J3(x). We have

J3(x) =
∫ ∞
x

1
t(t2 − 1)

(
1

log x
− 1

log t

)
dt

which, for x > 599, implies

0 6 J3(x) 6
1

log x

∫ ∞
x

dt

t(t2 − 1)
=

log(1 + 1/(x2 − 1))
2 log x

6
1

2(x2 − 1) log x
<

log(2π)
log x

and 0 < J2(x) + J3(x) < log 2. Therefore, (3.2) results from (3.1), (3.3), (3.4) and (3.5). �
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3.2 Study of A2(x) = li(θ(x))− li(ψ(x)) + Π(x)− π(x)

For y > 2, let us set

B(y) = π(y)− θ(y)
log y

=
∑
p6y

(
1− log p

log y

)
.

Note that B(y) is nonnegative. If q < q′ are two consecutive primes, B(y) is increasing and continuous
on [q, q′) and

lim
y→q′, y<q′

B(y) = π(q)− θ(q)
log q′

= π(q′)− 1− θ(q′)− log q′

log q′
= π(q′)− θ(q′)

log q′
= B(q′)

so that B(y) is continuous and increasing for y > 2. In the two following lemmas, we give estimates
of B(y).

Lemma 3.3 Let y be a real number satisfying y0 = 8.3 6 y 6 1.39× 1017. We have

(3.6) B(y) 6 L1(y) = li(y)− y

log y

while, if y > y1 = 599, under the Riemann Hypothesis, we have

(3.7) B(y) 6 L1(y) +
√
y

4π
.

Under the Riemann Hypothesis, for y > y2 = 2903, we have

(3.8) B(y) > L1(y)−
√
y

4π
.

Proof : By Stieljes’s integral, one has

(3.9) π(y) =
∫ y

2−

d[θ(t)]
log t

=
θ(y)
log y

+
∫ y

2

θ(t)
t log2 t

dt.

Further, we have

(3.10) B(y) =
∫ y

2

θ(t)
t log2 t

dt =
∫ y0

2

+
∫ y

y0

θ(t)
t log2 t

dt = B(y0) +
∫ y

y0

θ(t)
t log2 t

dt.

By (2.1) and (2.6), for y 6 1.39× 1017, we get∫ y

y0

θ(t)
t log2 t

dt 6
∫ y

y0

1
log2 t

dt = li(y)− y

log y
− li(y0) +

y0
log y0

= L1(y)− L1(y0),

so that (3.10) yields B(y) 6 L1(y) + B(y0) − L1(y0), which proves (3.6), since B(y0) − L1(y0) =
−0.001379 . . . < 0 (cf. [13].

Replacing y0 by y1 in (3.10) yields

(3.11) B(y) = B(y1) +
∫ y

y1

θ(t)dt
t log2 t

= B(y1)− L1(y1) + L1(y) + T (y, y1)

with T (y, y1) =
∫ y
y1

θ(t)−t
t log2 t

dt and, from (2.2) ,

(3.12) |T (y, y1)| 6
∫ y

y1

√
t log2 t

8πt log2 t
dt =

√
y −√y1

4π
.

From (3.11) and (3.12), it follows that

B(y) 6 L1(y) +
√
y

4π
+B(y1)− L1(y1)−

√
y
1

4π

10



which proves (3.7), since B(y1)− L1(y1)−
√
y1

4π = −4.80566 . . . < 0.
In the same way than the one used to get (3.11), for y > y2, we obtain

B(y) = B(y2)− L1(y2) + L1(y) + T (y, y2) > L1(y)−
√
y

4π
+B(y2)− L1(y2) +

√
y
2

4π

and as B(y2)− L1(y2) +
√
y2

4π = 0.00671 . . . > 0, this completes the proof of Lemma 3.3. �

Let us set

ε(y) =

{
0 if y 6 1.39× 1017

1 if y > 1.39× 1017.

It follows from (3.6) and (3.7) that, under the Riemann Hypothesis, one has

(3.13) B(y) 6 L1(y) + ε(y)
√
y

4π
for y > 8.3.

Proposition 3.2 Under the Riemann Hypothesis, for x > 599, we have

(3.14) A2(x) = li(θ(x))− li(ψ(x)) + Π(x)− π(x) =
κ∑
k=2

1
k
B(x1/k) + U(x)

with

(3.15) κ :=
⌊

log x
log 2

⌋
and |U(x)| 6 9 log2 x

10000
.

Proof : From (2.19), for x > 599, we get

li(θ(x))− li(ψ(x)) =
θ(x)− ψ(x)

log x
+ U(x) with |U(x)| 6 9 log2 x

10000
.

From the definition of ψ(x) and Π(x) , this implies

A2(x) =
κ∑
k=2

(
π(x1/k)

k
− θ(x1/k)

log x

)
+ U(x)

which, via the definition of B, proves (3.14). �

It is convenient to introduce the notation

(3.16) F̃2(t) =

{
4.05 if 1 < t 6 381
F2(t) if t > 381

and F̃1(t) =

{
1.785 if 1 < t 6 95
F1(t) if t > 95

so that, from Arrays (2.11) and (2.12), for t > 1, F̃2(t) and F̃1(t) are nonincreasing and we have

(3.17) L2(t) = F2(t)
t

log3 t
6 F̃2(t)

t

log3 t
and L1(t) = F1(t))

t

log2 t
6 F̃1(t))

t

log2 t
.

Lemma 3.4 Let us set a = 10.4. For x > 108, we set κ = b log xlog 2 c, κ2 = b log xlog ac and let κ1 be an
integer satisfying 3 6 κ1 < κ2. Then, under the Riemann Hypothesis, we have

κ∑
k=2

B(x1/k)
k

6
2
√
x

log2 x
+

4
√
x

log3 x
F̃2(
√
x) +

κ1∑
k=3

kx1/k

log2 x
F̃1(x1/k) +

7.23 κ3
1x

1/κ1

log3 x
+ 2.35 + 0.94

√
x

log5 x
.
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Proof : For 2 6 k 6 κ2 we have x1/k > x1/κ2 > x(log a)/ log x = a, and, under the Riemann Hypothesis,
it follows from (3.13) that

B(x1/k) 6 L1(x1/k) + ε(x1/k)
x1/(2k)

4π
which implies that

κ∑
k=2

B(x1/k)
k

6 T1 + T2 + T3 + T4 + T5

with

T1 =
1
2
L1(
√
x), T2 =

κ1∑
k=3

L1(x1/k)
k

, T3 =
κ2∑

k=κ1+1

L1(x1/k)
k

,

T4 =
κ∑

k=κ2+1

B(x1/k)
k

, T5 =
κ2∑
k=2

ε(x1/k)
x1/(2k)

4kπ
.

From the definition of L1, L2, F1, F2 and from (3.17), one has

T1 =
1
2

(
L2(
√
x) +

√
x

log2√x

)
=

2
√
x

log2 x
+ 4

√
x

log3 x
F2

√
x) 6

2
√
x

log2 x
+ 4

√
x

log3 x
F̃2(
√
x)

and

T2 =
κ1∑
k=3

L1(x1/k)
k

=
κ1∑
k=3

kx1/k

log2 x
F1(x1/k) 6

κ1∑
k=3

kx1/k

log2 x
F̃1(x1/k).

From Array (2.11), L2(10.4) is positive, so that, from Lemma 2.2 with a = 10.4, we have

T3 6 1.785
(

4.05
κ3

1x
1/κ1

log3 x
− L2(10.4)

)
6 1.785× 4.05

κ3
1x

1/κ1

log3 x
6

7.23 κ3
1x

1/κ1

log3 x
.

For k > κ2 + 1 > (log x)/ log a, we have x1/k < a ; since y 7→ B(y) is nondecreasing, we have
B(x1/k) 6 B(a) = B(10.4) = 1.7166 . . . < 1.72 and

T4 6 1.72
κ∑

k=κ2+1

1
k
6 1.72

∫ κ

κ2

dt

t
6 1.72

∫ log x
log 2

log x
log a−1

dt

t

= 1.72
(

log
(

log x
log 2

)
− log

(
log(x/a)

log a

))
= 1.72

(
log
(

log a
log 2

)
+ log

(
log x

log(x/a)

))
6 1.72

(
log
(

log a
log 2

)
+
(

log x
log(x/a)

− 1
))

= 1.72
(

log
(

log a
log 2

)
+

log a
log(x/a)

)
6 1.72

(
log
(

log a
log 2

)
+

log a
log(108/a)

)
= 2.34449 . . .

Since ε(t) is nondecreasing and vanishes for x 6 1017, from Lemma 2.3, one gets

T5 =
κ2∑
k=2

ε(x1/k)
x1/(2k)

4kπ
6 ε(
√
x)

κ2∑
k=2

x1/(2k)

4kπ
6

5
16π

ε(
√
x)x1/4

=
5

16π
ε(
√
x)
√
x

log5 x

log5 x

x1/4
<

5
16π

√
x

log5 x

log5 1034

1034/4
= 0.93 . . .

√
x

log5 x
,

which completes the proof of Lemma 3.4. �
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3.3 A lower bound forA(x)

Proposition 3.3 Under the Riemann Hypothesis, for x > 9× 106, we have

(3.18) A(x) >
√
x

log2 x

(
2− λ+

1
log x

(
7.993− log3 x

8πx1/4
− 18

10000
log5 x√

x

))
.

Proof : Since B(y) is nonnegative, from (3.14) and (3.15), we get, for x > 599

A2(x) >
1
2
B(
√
x)− 9 log2 x

10000
.

As x > 29032, we may apply (3.8) which yields

A2(x) >
1
2

(
L1(
√
x)− x1/4

4π

)
− 9 log2 x

10000
=

1
2

( √
x

log2√x
+ L2(

√
x)− x1/4

4π

)
− 9 log2 x

10000
.

Now, as x > 292, by (2.10), it follows

A2(x) >
1
2

( √
x

log2√x
+

2
√
x

log3√x
− x1/4

4π

)
− 9 log2 x

10000
=
√
x

log2 x

(
2 +

8
log x

− log2 x

8πx1/4
− 9 log4 x

10000
√
x

)
.

From Proposition 3.1, one has :

A1(x) > −

∣∣∣∣∣∑
ρ

xρ

ρ2 log2 x

∣∣∣∣∣− 0.0009 log2 x− 2
300

√
x

log3 x

so that A(x) = A1(x) +A2(x) satisfies

A(x) >
√
x

log2 x

(
2−

∑
ρ

1
|ρ2|

+
8− 2/300

log x
− log2 x

8πx1/4
− 18 log4 x

10000
√
x

)
which, via 1.5, implies (3.18). �

Corollary 3.1 Under the Riemann Hypothesis, for x > 108, we have

(3.19) A(x) >
√
x

log2 x

(
2− λ+

5.12
log x

)
.

Proof : From (1.11), the functions x 7→ log3 x
x1/4 and x 7→ log5 x√

x
are decreasing for x > 108 and therefore,

we have

7.993− log3 x

8πx1/4
− 18

10000
log5 x√

x
> 7.993− log3 108

8 4
√

108 π
− 18

10000
log5 108

√
108

= 5.12422 . . .

(cf. [13]). �

3.4 An upper bound forA(x)

Proposition 3.4 Under the Riemann Hypothesis, for x > 108, we have

(3.20) A(x) 6
√
x

log2 x

(
2 + λ+

Q(κ1, x)
log x

)
where κ1 is an integer satisfying 3 6 κ1 < b log x

log 10.4c and

(3.21) Q(κ1, x) = 4F̃2(
√
x)+

2
300

+
3.05 log3 x√

x
+

κ1∑
k=3

kF̃1(x1/k) log x
x1/2−1/k

+
7.23 κ3

1

x1/2−1/κ1
+

0.94
log2 x

+
9 log5 x

10000
√
x

with F̃2 and F̃1 defined in (3.16).
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Proof : From Proposition 3.1 and (1.5), for x > 599, we have

A1(x) 6 λ
√
x

log2 x
+

2
300

√
x

log3 x
+ 0.7

while, from Proposition 3.2, we have

A2(x) 6
κ∑
k=2

1
k
B(x1/k) +

9 log2 x

10000
.

Therefore, from Lemma 3.4, we get the upper bound (3.20) for A(x) = A1(x) +A2(x). �

Corollary 3.2 Under the Riemann Hypothesis, for x > 108, we have

(3.22) A(x) 6
√
x

log2 x

(
2 + λ+

25.22
log x

)
Proof : We choose κ1 = 5 and observe that, from (3.16) and (1.11), all the terms of the right hand
side of (3.21) are positive and nonincreasing for x > 108 so that Q(5, x) 6 Q(5, 108) = 25.2119 . . . (cf.
[13]). �

Corollary 3.3 Under the Riemann Hypothesis, for x tending to infinity, we have

(3.23)
√
x

log2 x

(
2− λ+

7.993 + o(1)
log x

)
6 A(x) 6

√
x

log2 x

(
2 + λ+

8.007 + o(1)
log x

)
.

Proof : The lower bound of (3.23) follows from Proposition 3.3. From Array (2.11), from (2.13) and
from (3.16), one sees in (3.21), that limx→∞ F̃2(

√
x) = 2 and limx→∞ F̃1(x1/3) = 1 so that (3.21)

yields limx→∞Q(3, x) = 8 + 2/300 and the upper bound of (3.23) follows from Proposition 3.4 with
κ1 = 3.

�

3.5 Numerical computation
Let us denote by p− and p+ the primes surrounding the prime p.

Proposition 3.5 For x < 1.39 · 1017, A(x) is nondecreasing. There exists infinitely many primes p
for which A(p) < A(p−) holds.

Proof : Let us consider a prime p satisfying 3 6 p < 1.39 · 1017. From (2.1), one has

A(p)−A(p−) = li(θ(p))− li(θ(p−))− 1 = −1 +
∫ θ(p)

θ(p−)

dt

log t
> −1 +

θ(p)− θ(p−)
log θ(p)

=
log p

log θ(p)
− 1 > 0.

From Littlewood (cf.[7] or [5, chap. 5]), we know that there exists C > 0 and a sequence of values of
x going to infinity such that

θ(x) > x+ C
√
x log log log x.

Let p be the largest prime 6 x. For x and p large enough, one has

θ(p) = θ(x) > x+ C
√
x log log log x > p+ log p

and
A(p)−A(p−) <

log p
log θ(p−)

− 1 =
log p

log(θ(p)− log p)
− 1 < 0

which completes the proof of Proposition 3.5. �
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Remark. In [9, p. 8], Platt and Trudgian have proved the existence of u satisfying 727 < u < 728
and θ(eu)− eu > 10152. If P is the largest prime 6 eu, this implies

θ(P ) = θ(eu) > eu + 10152 > P + u > P + logP

and A(P ) < A(P−) +
logP

log(θ(P )− logP )
− 1 < A(P−).

Proposition 3.6 (i) For 11 6 x 6 1.39 · 1017 we have

(3.24) A(x) > 0.

(ii) Under the Riemann Hypothesis, for x > 2 we have

(3.25) A(x) 6
√
x

log x

(
2 + λ+

27.7269 . . .
log x

)
with equality for x = 33647.
(iii) Under the Riemann Hypothesis, for x > 520 878 we have

(3.26) A(x) 6
√
x

log2 x

(
2 + λ+

25.22
log x

)
.

(iv) For 2 6 x 6 10000 we have

(3.27) A(x) 6 5.0643 . . .
√
x

log2 x
.

with equality for x = 3643.
(v) Under the Riemann Hypothesis, for x > 84.11 we have

(3.28) A(x) >
√
x

log2 x

(
2− λ+

5.12
log x

)
.

(vi) For 37 6 x < 89 we have

(3.29) A(x) >
√
x

log2 x
(2− λ).

Proof : First, for x > 2, we define C(x) and c(x) by

A(x) =
√
x

log2 x

(
2 + λ+

C(x)
log x

)
and A(x) =

√
x

log2 x

(
2− λ+

c(x)
log x

)
so that

C(x) = (log x)
(
A(x)

log2 x√
x
− 2− λ

)
and c(x) = (log x)

(
A(x)

log2 x√
x
− 2 + λ

)
.

(i) (3.24) follows from Proposition 3.5 and A(11) = 0.1301 . . .. Note that A(7) = −0.1541 < 0 (cf.
[13]).

(ii) If x > 108, (3.25) follows from Corollary 3.2.
If 2 6 x < 409, from (1.12), one has (log2 x)/

√
x 6 16/e2 and, from Proposition 3.5, A(x) 6

A(401) 6 2.52 so that

C(x) = (log x)
(
A(x)

log2 x√
x
− 2− λ

)
6 (log 409)

(
2.52

16
e2
− 2− λ

)
< 20.51
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which proves (3.25).
If 409 6 x < 108, let p be the largest prime 6 x. As 409 > e6 holds, from (1.11), for x ∈ [p, p+),

the function x 7→ (log x)
(
A(p) log2 x√

x
− 2− λ

)
is decreasing, which implies

(3.30) C(x) 6 C(p)

and, by computation,

max
4096x6108

C(x) = max
4096p<108

C(p) = C(33647) = 27.7269 . . .

which completes the proof of (3.25).

(iii) For x > 108, (3.26) follows from Corollary 3.2.
We compute p0 = 520 867 the largest prime < 108 such that C(p0) > 25.22. For p+

0 = 520 889 6
x < 108, we denote by p the largest prime 6 x and, from (3.30), one has C(x) 6 C(p) < 25.22, which
implies (3.26). Then, one calculates

lim
x→p+0 , x<p

+
0

C(x) = (log p+
0 )

A(p0)
log2 p+

0√
p+
0

− 2− λ

 = 25.21964 . . .

As the above value is < 25.22, we have to solve the equation C(t) = 25.22 for p0 6 t < p+
0 and find

t = 520 877.54 . . .

(iv) For t > 1 the function t 7→ (log2 t)/
√
t is maximal for t = e4 = 54.59 . . . where its value is

16/e2 = 2.16 . . . (cf. (1.11) and (1.12)). As A(x) is nondecreasing, for x < 59, we have

A(x)
log2 x√

x
6

16
e2
A(53) =

16
e2

1.155 . . . = 2.501 . . .

For p > 59 and p 6 x < p+, one has

A(x)
log2 x√

x
= A(p)

log2 x√
x
6 A(p)

log2 p
√
p

and we compute the maximum of A(p) log2 p√
p for 59 6 p < 10000 which is equal to 5.064 . . . for p = 3643.

(v) Let us set

f(x) =
√
x

log2 x

(
2− λ+

5.12
log x

)
.

For x > 108, A(x) > f(x) follows from Corollary 3.1.
Let p be a prime satisfying e6 < 409 6 p < 108. For p 6 x < p+, one has A(x) = A(p),

c(x) = (log x)
(
A(p)

log2 x√
x
− 2 + λ

)
, c′(x) =

A(p)(log2 x)(6− log x)− 2(2− λ)
√
x

2x3/2
< 0

so that c(x) is decreasing and

c(x) > c̃(p)
def
== lim

x→p+, x<p+
c(x) = (log p+)

(
A(p)

log2 p+√
p+
− 2 + λ

)
.

Therefore, for 409 6 x < 108 one has c(x) > min4096p<108 c̃(p) and, by computation, one gets

min
4096p<108

c̃(p) = c̃(409) = 15.3735 . . .

which implies A(x) > f(x).
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The function f is decreasing on (1, x1 = 111.55 . . .] and increasing for x > x1 (cf. [13]). Therefore,
for 1 < a < b, the upper bound of f on the interval [a, b) is max(f(a), f(b)). We have A(84.1) =
A(83) < f(84.1) while, for 84.11 6 x < 89, A(x) = A(83) > max(f(84.11), f(89)) > f(x) holds.

For 89 6 p 6 401 = 409−, one checks that A(p) > max(f(p), f(p+)) holds which shows that
A(x) > f(x) for 89 6 x < 409 and completes the proof of (3.28).

(vi) From (1.11), the function ϕ(t) = (log2 t)/
√
t is increasing for 1 6 t 6 e4 = 54.598 . . . and

decreasing for t > e4 so that, for 1 < a < b, the lower bound of ϕ on the interval [a, b) is min(ϕ(a), ϕ(b)).
Let p be a prime satisfying 11 6 p 6 83. From (i), one has A(p) > 0 and, for x ∈ [p, p+),

A(x)
log2 x√

x
= A(p)

log2 x√
x
> A(p) min(ϕ(p), ϕ(p+)).

To prove (3.29), it remains to check that A(p) min(ϕ(p), ϕ(p+)) > 2− λ holds for 37 6 p 6 83. �

3.6 Proof of Theorem 1.1

Proof : The proof of (1.6) follows from Corollary 3.2 while Corollary 3.1 yields (1.7).
The proof of (1.8) results of Proposition 3.6, (i) and (v).
Inequality (1.9) results of Proposition 3.6, (v) and (vi).
If x 6 10000, Inequality (1.10) follows from Proposition 3.6, (iv), while for x > 10000, Proposition

3.6, (ii), implies

A(x) 6
√
x

log2 x

(
2 + λ+

27.7269 . . .
log x

)
6

√
x

log2 x

(
2 + λ+

27.7269 . . .
log 10000

)
= 5.0566 . . .

√
x

log2 x

which ends the proof of Theorem 1.1. �
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