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Estimates of 1i(f(x)) — 7(x) and the Riemann Hypothesis
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Abstract

Let us denote by m(z) the number of primes < z, by li(z) the logarithmic integral of x, by
0(z) = >_ <, logp the Chebichev function and let us set A(z) = 1i(0(z)) —7(z). Revisiting a result
of Ramanujan, we prove that the assertion “A(z) > 0 for x > 11”7 is equivalent to the Riemann
Hypothesis.

Keywords : Chebichev function, Riemann Hypothesis, Explicit formula.
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1 Introduction

Let us denote by 7(z) the number of primes < x and by li(z) the logarithmic integral of = (see,
below, §2.2). It has been observed that, for small z, 7(z) < li(z) holds, but Littlewood (cf. [7] or [5,
chap. 5]) has proved that, for x tending to infinity, the difference 7(x) —li(x) oscillates infinitely many
often between positive and negative values.

Let us set 0(x) = > . logp, the Chebichev function, and

p<T
(1.1) Az) =1i(0(x)) — w(x).

What is the behavior of A(z)? In [11, (220), (222), (227) and (228)], under the Riemann Hypothesis,
Ramanujan proved that

(1.2) A(x)

2z 43 ar/p? NG
B log2 (z) +0 (log3(:r)>

where p runs over the non-trivial zeros of the Riemann ¢ function. Moreover, in [11, (226)], Ramanujan
writes under the Riemann Hypothesis

z? 1 1 1
L <X Y =V ()

(1.3) = 2/z)y % = V(2 + 70 — log(4m)) = 0.046.../z

P
2
p

where 7 is the Euler constant and concludes
(1.4) under the Riemann Hypothesis 3z such that, for z > zy, A(z) is positive.

The aim of this paper is to make these results effective and, in particular, to show that Ramanujan’s
result (1.4) is true for xg = 11.

*Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.



Let us set A =3", # Under the Riemann Hypothesis, we have (see below (2.26))

1 1
1.5 A=Y 5= =0.0461914179322420 ...
(9 ZP: [[? ZP: p(L=p)

We shall prove

Theorem 1.1 Under the Riemann Hypothesis, we have

2

(1.6) 1igrcrisip‘4(x)\%g@ <2+A=2.046...,
2

(1.7) lminf A8 @) o oy gss

(1.8) A(x) is positive for x> 11,

(1.9) Alx) = (2= 1)) \éi for x> 37,

log™(x)

and

(1.10) Alx) < M \éi forxz =2,
log®(x)

where M = A(3643)(log? 3643)/1/3643 = 5.0643569138 . ..

Corollary 1.1 FEach of the five assertions (1.6)—(1.10) is equivalent to the Riemann Hypothesis.

Proof : In 1984, Robin (cf. [10, Lemma 2 and (8)] has shown that, if the Riemann Hypothesis does
not hold, there exists b > 1/2 such that

A A
A(z) =Qx(2%), e limsup (ZC) > 0 and liminf (bx) <0
T —00 x T—00 €T
and the five assertions of the theorem are no longer satisfied. 0

1.1 Notation
m(x) = Z 1 is the prime counting function.

p<zT
1 " ow(zt Ry log ©
H(x)—kZE—Z A with k = g2 |
pk<Lx k=1

O(x) = Z logp and ¢(z)= Z logp = ZG(xl/k) are the Chebichev functions.
p k=1

p<zT mLr
logp ifx=p" . )
Ax) = . is the von Mangoldt function.
0 if not
~ 1 ~ A(x)
- ~ZA Tl(z) = I(z) — :
D) = (o)~ 5A) and i) =) - 532

li(z) denotes the logarithmic integral of = (cf. below §2.2).



t , t t Ly (t) Lo(t)
— —— Ly(t) = li(t) — — — ——, Fy(t) = Fy(t
g’ 2(t) =1i(?) gt log®t 1(2)

Ly(t) = li(t - Fy(t) =
1(0) ®) t/log®t 2 t/log” t

(t > 1).

Fi(t) and Fy(t) are defined below in (3.16).
Yo = 0.57721566.. .. is the Euler constant. A is defined in (1.5), cf. also (2.26).

T—o0
[S(p) LT

zeros of the Riemann ¢ function.

Z f(p) = lim Z f(p) where f : C — C is a complex function and p runs over the non-trivial
P

1.2 Plan of the article

In §2, we shall recall some definitions and prove some results that we shall use in the sequel, first, in
§2.2, about the logarithmic integral, and, further, in §2.3, about the Riemann ( function and explicit
formulas of the theory of numbers.

In §3, the proof of Theorem 1.1 is given. First, we write A(z) = A;(z) + Az(x) with

Ar(z) =li(y(x)) —I(z) and As(x) =1i(0(x)) — li(v(x)) + I(z) — 7 ().

In §3.1, under the Riemann Hypothesis, an estimate of A; () is given, by applying the explicit formulas.
In §3.2, it is shown that As(z) depends on the quantity B(y) = 7(y) — 6(y)/logy which is carefully
studied.

In §3.3 (resp. §3.4), an effective lower (resp. upper) estimate for A(x) is given when x > 108.

In §3.5, for x < 10%, estimates of A(x) are given by numerical computation.

Finally, Theorem 1.1 is proved in two steps, depending on the cases < 108 or = > 108.

The computations, both algebraic and numerical, have been carried out with Maple. On the website
[13], one can find the code and a Maple sheet with the results.

We often implicitly use the following result : for u and v positive, the function

log" ¢
(1.11) t— Ofv is increasing for 1 < t < eV and decreasing for ¢ > e*/?.
Moreover
log" t u
(1.12) max -8 ¥ — (i) .
t>1 Y ev

2 Preliminary results

2.1 Effective estimates
Without any Hypothesis, Platt and Trudgian [9] have shown by computation that

(2.1) 0(z) < x for 0 < x < 1.39- 107

so improving on results of Schoenfeld [12] and Dusart [3]. Under the Riemann Hypothesis, for z > 599,
we shall use the upper bounds (cf. [12, (6.3)])

1 1
(2.2) [(x) — x| < 8—\/§10g2 x and |0(z) —z| < 8—\/:Elog2 x.
m m



2.2 The logarithmic integral
For x real > 1, we define li(z) as (cf. [1, p. 228|)

1—¢ x dt
li(x) = li
i) 1ogt 5H0+ (/ /+E logt> 9 logt +

We have the following values :

(2)-

z 1 1.45136... 2 3.8464 . .. 8.3

(2.3) li(z) | —o0 0 1.145163... 2.8552... 5.39671...

599

117.49. ..

From the definition of li(z), it follows that

d 1 d? 1
2.4 —1 d —1 =— .
( ) dx 1( ) log x A dx? l(x) x log2 T

We also have

li(x) = 70 + log(log(w)) + Z M

n=1

(where 79 = 0.577 ... is the Euler constant) which implies
(2.5) li(z) = log(log(z)) 4+ vo + o(1), r— 1t

Let N be a positive integer. For ¢ > 1, we have (cf. [13])

dt 1 =
(2.6) /logNt - (N — ( z:l - log t>

and, for x — oo,

N
ke :
(2.7) li(z) = kZ:1 (log x)* +0 <(10g x)N—H) '

t t
2.8 Lo(t) =1i(t) — —— — —— = Fy(t < 4.05
(28) 2(t) =) logt  log?t 2() <log3t> log®t
Fort >ty > 381, we have
t
(2.9) Lo(t) < Fa(to) —5-
log™ ¢
For t > 29, we have
(2.10) Lo(t) > 2—"
’ ? log®t
Proof : let us set (cf. the Maple sheet [13])
2t t t2F(t)

fi(t) = (3 —logt)li(t) +t —

logt log?t log2(t)

t t t ,

t) = + + 2 —1li(t) =tfi(t
f2() logt 10g2t log3t 1() fl()




and
6

logh(t)’

Since f4(t) = f3(t) is negative, f2(t) decreases and vanishes for

f3(t) = fo(t) =

ty =28.19524 . ..

It follows that fi(t) = f2(t)/t is positive for 1 < t < ¢, and negative for ¢ > t5 so that fi(¢) has a
maximum for ¢ = ¢y,
fi(ta) = 4.54378 . ..

and f1 vanishes (and so does F3) in two points
ts = 3.384879... ty = 380.1544 . ..
From (2.5), we get lim;_,+ F»(t) = 0 and the variation of F; is given in the following array :

t 1 3.38... 10.39... 380.15. .. 00
4.040415. ..

L
B(t) =728 |\ O N
—1.369496 . .. 2

(2.11)

The proof of (2.8) and (2.9) follows from Array 2.11 and also the proof of (2.10), after deducing from
fg(tg) = 0 that Fg(fg) = 2 holds. O

In the same way, it is possible to study the variation of the function

Lty ) - o

B0 = Gog?0 = gt

The details can be found on [13]. We have

t 1 1.85... 3.8464 . .. 946... 00
0 1.784 ...

Bt =L (257) | N A Y
—0.448. .. 1

(2.12)

Since L1(10.3973...) =1, Array (2.12) yields

t t
2.13 t>104 = Li(t)=1l{t)—— > —5.
(2.13) (0 =0~ >
The derivative of li(t)/t is Y logttz_li(t) =- til)g;)t which, from Array 2.12, is positive for 1 < t < 3.8464

and negative for ¢t > 3.8465. Therefore, we have

1i(3.8464 .. .) 3t

. i(t) < =0.7423... t < =
(2.14) t>1 = li() < —po et = 07423 < T

Lemma 2.2 Let a and x be two real numbers satisfying exp(1) < a < a®

integers such that
log xJ

log a

< z. Let k1 and ko be two

2<51<H2:L

Then we have

K2

1 1/k Kiat/m
(2.15) > SLi(z'/F) <1785 <4.05 5 Lg(a)>.
Pl log” x




Proof : Let us set
K2

1
T= ) %Ll(xl/k).

k=k1+1

It follows from Array 2.12 that, for t > 1, Ly (t) = tFy(t)/log* t < 1. 785157 holds and therefore,

Ko

_ LT85 Skl

log T,

Now, as > exp(1) > 1, the function ¢ — tz'/* is positive and decreasing for 0 < t < logz so that

1/kq1

1.785 [*2 1.785 1ogs o d
T< =5 / ta/tdt < / ta/tdt = 1.785/ =
log”® x log”z J, a log” u

by the change of variable u = z'/*. Finally, by (2.6) and (2.8), we get

1/#@1
T <1.785 (Lg(xl/m) _ LQ(a)) < 1.785 (4.05logf(M - Lg(a))

which ends the proof of Lemma 2.2.

Lemma 2.3 Let a > 2.11 and = > a® be real numbers and ko = Uggﬂ Then we have
(2.16) i 11 ¢ 5 1
. - <3 .

Proof : Let us set
21/ (k)

T =

K2
k=2
Since z > a® > 1, the function ¢ — xl/(%)/t is positive and decreasing for ¢ > 0 so that

log = 2174
- 1 214 L Z L 1/ /4 /bga xl/t(%) dt = %xl/‘l +/ ljguu
2 Vva

by the change of variable u = z'/(?Y). Finally, by (2.6) and (2.14), we get

1
T < 5:&/4 + li(zY*) —1li(v/a) < gxl/‘* —li(va)
and (2.16) follows since v/a > v/2.11 > 1.452 so that, from Array (2.3), li(v/a) > 0 holds.

Lemma 2.4 Under the Riemann Hypothesis, for x > 599, one has

O(x) —x 9log’x

2.17) logz 10000 S 1) ~li(z) < log x

(2.18) w(l‘z;x = - gllggoox < li(w()) — li(e) < ‘”(lf);x i

and

(2.19) U@) =) 9108 @ ) pip(a) < YL 0) | loea

logz 10000



Proof : Let us suppose that x > 599 holds. From (2.2) and (1.11), we get

1 log? log? 1 2
(2.20) vla) 0w S L, valesre  logir oy (1085997 ) gy
T T T 8 8T 8mv/599

Further, for h > 1 — z, Taylor’s formula and (2.4) yield

h h?

(2.21) li(x 4+ h) = li(z) + gz 2e108%¢’

with & > min(z, x + h). Let us set h = 6(x) — x; we have h +z = 0(x) > 0(599) > 1. From (2.20), we
get € > bx with b = 0.9335 and

1 2
€logZ¢ > bxlog?(bz) = brlog?(z) (1 + ogb)

log x
2 log b ’ 2
> bxlog®(x) (1 + 10g(599)> > 0.9135 zlog” x.
From (2.2), it follows that
h? zloghx log? x 9log”® x

= 0.000866 . ..log% z <

0< < <
2¢log?¢  12872¢log?e  0.9135 x 12872 10000

which, with (2.21), proves (2.17). In the same way, setting h = ¢(x) — x yields (2.18), and (2.19)
follows by substracting (2.17) from (2.18). O

2.3 The Riemann ( function

We shall use the two explicit formulas

(2.22) (z) = p(x) — %A(x) =z-— Zfipp — log(2nm) — %log (1 - xlz) , x> 1
and
(2.23) I(z) = [(z) — QAIE)?x =li(x) — Zli(mp) —log2+ /OO t(ﬁfdﬁ’ x>1,

which can be found in many books in analytic number theory, for instance [5, chap. 4|. To Formula
(2.23), we prefer the form described in [6, p. 361 and 362, with R = 0] :

~ A(z) . 0 .p—t & dt
2.24 (z) =II(z) — =1 - dt — log 2 —_— 1.
(2.24) (z) (z) 2 logzx i@) zp:,/o p—t st /x t(t* —1)logt’ i

We also have (cf. [4, p. 67] or [2, p. 272])

1 Yo 1
(2.25) zp: P L+ = 5 logm —log2 = 0.02309570896612103 ...
and
(2.26) > _ > <1 T ) 2 4+ o — log(4m) = 0.04619141793224206
. f— —_— = 0 — = . e
~r(l=p) S \p 1-p



3 Proof of Theorem 1.1
3.1 Study of A(x) =li(y(x)) — ()

Under the Riemann Hypothesis, we write
y=Sp ie. p==+iy.
Lemma 3.1 Under the Riemann Hypothesis, we have

> hF <5
RINY
— 7 = 300

Proof : It is possible to get better estimates for the sum >
upper bound will be enough. By observing that

o |W|3’ but, for our purpose, the above

1
ol =p(l=p) =5+

and that the first zero of ((s) is 1/2 + 14.134725.. .7 (cf. [4, p. 96] or the extended tables of [8]), we
get

1/4+7 < 1/4+’y =799 p p(1—p)’

Further, from (2.26)7 we get

1 1 800 1
< < =0.00327...
Z |7|3 14.134 Z 72 <799 x 14.134 Z p(1—p)

which completes the proof of Lemma 3.1. |

Lemma 3.2 For x > 1, under the Riemann Hypothesis, we have

P~ t TP P
—— + K(z
Z/ plng Zp:p 2 )

2log” x

with

2
1 K < — .
(3.1) K@) < 55570072

Proof : By partial integration, one has

o0 xp—td P zP 2 < gt p
t= + + / g dt
/o p—t plogz ~ p2log’z  log*z Jo (p—1)°
) p—t 1 0 1
/ = 3dt‘ < |3 / xl/zitdt RTSE \/E
o (p—1) [Spl? Jo |Sp|? logz

2 < gt 2\/x 1
) = dt< B
! ’21“/ 7 ‘ T 2P

and (3.1) follows from Lemma 3.1. O

and

so that we get




Proposition 3.1 Under the Riemann Hypothesis, for x > 599, we have
A 1 I N
z) =li(¢yp(x)) — (x) = —_— x
1) = @) ~ L) = 3 2+ )
with
2 2
3.2 —0.00091 - — < log 2.
(3.2) 8 g S30000g7s 08
Proof : Let us write
Y(x) —a V(@) —z+ A@)/2

() = i) + S0

with, from (2.18), for z > 599,
(3.3)

Therefore, from (2.22) and (2.24), we have

+ Jl(x) = 11(5(}) +

—0.0009log? z <

J
log x + (@)

. 1 xf 1 1
Ai(z) = li(z)+ og 7 (— Z i log(2m) — = log ( m2> + 2A(x)> + Ji(z)
Pt o0 dt A(z)
dt ————— —log2
( Z/ Jr/ t(t2 —1)logt o8 Jr210g:13>
o0 gp—t 1
= — — + Ji(z) + Ja(x) + J3(x
Z/ o 1ogm§p @) + () + Js()
with log(2) log(1 — 1/22) d
og(2m og(l—1/x 0 t
J2(w) = log log = o I () 2logx /z t(t2 —1)logt
Further, from Lemma 3.2, one gets
xp
34 A (x) = —— + J(z
(3.4 (0= 3 gy + )
with
(3.5) J(z) = K(x) + Ji(z) + Jo(z) + J3(x)
and K (x) is as in Lemma 3.2.
It remains to bound Jo(z) + J3(x). We have
e 1 1 1
= — dt
Is(x) /T t(t2 —1) (logx logt)
which, for x > 599, implies
oo 2 _
0< Jolx) < 1 / e log(1+1/(z* —1)) < 1 log(27)
logx J, t{t2—1) 2log x 2(z%2 — 1) logx log x

and 0 < Ja(x) + J3(x) < log 2. Therefore, (3.2) results from (3.1), (3.3), (3.4) and (3.5

).



3.2 Study of Ay(x) =1i(0(x)) — li(¢(x)) + H(x) — 7(x)

For y > 2, let us set
0(y) log p
B(y) = - = E 1-— .
(y) =7(y) logy Z ( log y

Note that B(y) is nonnegative. If ¢ < ¢’ are two consecutive primes, B(y) is increasing and continuous
n [¢,q") and

0(q')
log ¢’

0(¢') —logq’

i Bly) = n(q) — 2 —

y—q', y<q' log ¢’

=n(q') — = B(¢)

=m(¢) -1~

so that B(y) is continuous and increasing for y > 2. In the two following lemmas, we give estimates
of B(y).

Lemma 3.3 Let y be a real number satisfying yo = 8.3 <y < 1.39 x 10*7. We have

(3.6) Bly) < Iiy) =1i(y) ~ -

while, if y > y1 = 599, under the Riemann Hypothesis, we have

(3.7) B) < L) + 2.

Under the Riemann Hypothesis, for y > yo = 2903, we have

VY
. B(y) > L — =,
(3-8) (y) > La(y) —
Proof : By Stieljes’s integral, one has
)] _ 6y /y 0(t)
3.9 = = + dt
(3.9) () /7 logt log y o tlog?t
Further, we have
Yoot Yo Yoot Yoot
(3.10) B(y) = Q dt:/ +/ <3 dt:B(yo)+/ Q dt
o tlog™t 2 yo tlog™t yo tlog™t

By (2.1) and (2.6), for y < 1.39 x 1017, we get

Yo0(t) Y y . Yo
dt < dt =1i —— —li(yo) + = Li(y) — L1(%o),
/yoﬂogzt i 1og (1) = o~ i) {(v) — Li(yo)
so that (3.10) yields B(y) < Li(y) + B(yo) — L1(yo), which proves (3.6), since B(yo) — L1(yo) =
—0.001379... < 0 (cf. [13].

Replacing yo by 1 in (3.10) yields

Yoo(t)dt

—5— = B(y1) — Li(y1) + L1(y) + T(y,y1)
, tlog™t

(3.11) Bly) = Bn) + /

with T'(y,y1) fyy fl(?g tdt and, from (2.2) ,

Y Vilog®t . IV

3.12 Ty, )| <
(.12 Tl [ =
From (3.11) and (3.12), it follows that
\/?j \/gl
B <L ~~+B — L -
(y) 1(y) + A (y1) 1(y1) i

10



which proves (3.7), since B(y1) — L1(y1) — %2 = —4.80566. .. < 0.
In the same way than the one used to get (3‘ 1), for y 2 Y2, we obtain

B(y) = B(y2) — L1(y2) + L1(y) + T(y, y2) = La(y) — g + B(y2) — Li(y2) + %

and as B(yz2) — L1(y2) + % =0.00671... > 0, this completes the proof of Lemma 3.3. O

Let us set

0 ify<1.39 x 107
e(y) = .
1 ify>1.39 x 10'".

It follows from (3.6) and (3.7) that, under the Riemann Hypothesis, one has

(3.13) B(y) < Li(y) + 5(y)>4/—f for y > 8.3.

Proposition 3.2 Under the Riemann Hypothesis, for x > 599, we have
(3.14) Az(z) =1i(0(x)) - li(¥(z)) + I(x) — m(z) = > _ - B(="/*) + U(x)

with

| logx
(3.15) K= Log2J and |U(z)| <

Proof : From (2.19), for > 599, we get

0(z) — ¥(x)
log x

9log? x
10000

li(0(x)) — li(y(x)) = + U(z) with |U(z)| <

From the definition of ¢(x) and II(z) , this implies

K (gt /E LU/k
tafo) =3 (T - ) o

= log x

which, via the definition of B, proves (3.14). |
It is convenient to introduce the notation

— 4. if 1<t <381 — 1. if1<t<
(3.16) Fo(t) = 05 ifl< 38 and  Fi(t) = 785 1 < 95
Fy(t) ift > 381 Fi(t) ift>95

so that, from Arrays (2.11) and (2.12), for ¢ > 1, F5(t) and F}(t) are nonincreasing and we have

L <BM—L and  Li(t) = Fi(t)— < Fi(t)—

3.17 Lo(t) = Fo(t < —.
( ) 2(8) 2( )log?’t log” t log?t log?t

Lemma 3.4 Let us set a = 10.4. For x > 108, we set k = Lllgigj, Ko = Hgng and let k1 be an

integer satisfying 3 < k1 < ka. Then, under the Riemann Hypothesis, we have

"\ B(z'/*) 2 4 kat/k ~ 7.23 kjxl/m
yBET) 2V T +Z T Ry ¢ P gy 004 VT

k log x log at og x long log” x

k=2

11



Proof : For 2 < k < k3 we have 2'/F > g1/#2 > glloga)/logz — ; and, under the Riemann Hypothesis,
it follows from (3 13) that

11/(2k)
B(xl/k) < Ll(xl/k) + E(xl/k)
47
which implies that
] B Z‘l/k
(k ) <ST+T+T5+Ty+Ts
k=2
with y ,
1 EL Ly (zVF) 2 Ly(x'/F)
- inm, mey MO gy WD)
k=3 k=kr1+1
i B( 1/k) 1/(2k)

Z

k=ro+1 k=2
From the definition of Ly, Lo, Fy, F5 and from (3.17), one has

T1=1<L2(\/5)+ Ve )—2f+ Ve Fy\/x) < 2V +4—f?§(\/5:)

2 log? \/z log? log® = log? z log®
and e I I
K1 1 K1 1 K1 1
Lyi(at/7) kx 1k kat/®—~
=) =5 — =2 o hE" <Y =R
=k i log i log

From Array (2.11), L(10.4) is positive, so that, from Lemma 2.2 with ¢ = 10.4, we have

3..1/k1 3,..1/k1 7.93 k3 1/k1
Ty < 1.785 (4.05 Bnro L2(10.4)) < 1.785 x 4.05 L2 sl

log” x log” x = log® x

For k > ko + 1 > (logz)/loga, we have z'/* < a; since y — B(y) is nondecreasing, we have

B(z'/*) < B(a) = B(10.4) = 1.7166 ... < 1.72 and

K logx
1 ®odt Tog2  (t
T, < 1.72 — < 1.72 — < 1.72 —
4 > k ot / Lt
k):KQJrl 2 log a

log log(z/a) loga log x
=1.72(1 —1 —_— =1.72(1 — 1 —
7 <0g<log2> og( loga 72| log log 2 tog log(z/a)
loga log x loga loga
< 1.72(1 8T g} ) =172 (1
72 (o (1og3) + (s —1)) =172 (o (5053) * o
loga loga
< L7211 = 2.34449. ..
! (Og(k%2)'*k%uﬂ%m>) 9

Since £(t) is nondecreasing and vanishes for z < 10'7, from Lemma 2.3, one gets

K2 L1/(2R) K2 1/(2k) g

T = 1/k\NY < < 1/4
5 kz:ze(x Ly 5(‘/5);2 T S Teac VO
1 5 log” 1034
c(vE) VI logz 5 \[L—o.%...if,
167T log® z /4 167 log® 2z 1034/4 log” x
which completes the proof of Lemma 3.4. O
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3.3 A lower bound forA(x)

Proposition 3.3 Under the Riemann Hypothesis, for x > 9 x 10%, we have

NG 1 log® x 18 log’x
3.18 Alz) > 2 A+ —— (7.993— _ .
(3.18) @) 2 s T logw Brz1/1 10000 /2

Proof : Since B(y) is nonnegative, from (3.14) and (3.15), we get, for x > 599

1 9log” x
A > -B — .

As x > 29032, we may apply (3.8) which yields

1 zl/4 9log?z 1 N3 z/4 9log?
As(z) > = (L S == L IR .
2(2) 2 3 ( Vo) = ) 10000 2 (logQ\/E La(Va) - ) 10000

Now, as = > 292, by (2.10), it follows

1 VT 2\/x a4 9log® x VT 8 log® z 9log* x
Ag(x) = 5 - = 2+ — — .
2 logz  8mx'/4  10000y/z

_|_ —
log? /z = log®x 4w

From Proposition 3.1, one has :

10000 log?z

2
—0.0009log® 2 — VT

A > — —
1 (.’,C) 300 logd T

xp
:: 2

p p?log”x
so that A(xz) = A1 (z) + As(x) satisfies

VT 1 8-2/300 log*z  18log*x
Alz) > 2-y — — -
(z) 2 2 T logz | Bral/t 10000V

which, via 1.5, implies (3.18). |

Corollary 3.1 Under the Riemann Hypothesis, for x > 102, we have

(3.19) Az) > VT (2— A+ 5'12) .

- log? log

Proof : From (1.11), the functions z kﬁjf and x +— % are decreasing for z > 10® and therefore,
we have

log® x 18 log® z log® 10® 18 log® 108
7.993 — — > 7.993 — — =5.12422. ..
8rzl/A 10000 \/z 8V105+ 10000 1o®
(cf. [13]). 0

3.4 An upper bound forA(z)

Proposition 3.4 Under the Riemann Hypothesis, for x > 108, we have
(3.20) Alr) < V2 (2 A+ Q(’“’x))
log” z log =

where k1 is an integer satisfying 3 < k1 < L101§g1§_4J and

~ 2 3.05log’r <N EkF(z'/%)logz  723kP 094  9log’x
3.21 = 4F =
(321) QUm,2) = 4R(Va)+ g5+ = +kZ:3 A g1 7 100005

with Fy and Fy defined in (3.16).

13



Proof : From Proposition 3.1 and (1.5), for > 599, we have

|z VT
A 0.7
1) < 10 2y " 300 300 log® x *

while, from Proposition 3.2, we have

9 log?z

Ay(2) < .
2(2) 10000

k=2

B(xl/k) +

T =

Therefore, from Lemma 3.4, we get the upper bound (3.20) for A(x) = Ay (z) + Az(x). O

Corollary 3.2 Under the Riemann Hypothesis, for x > 10, we have

(3.22) Ar) < Y (2 FA+ if;j)

Proof : We choose k; = 5 and observe that, from (3.16) and (1.11), all the terms of the right hand
side of (3.21) are positive and nonincreasing for = > 10® so that Q(5,z) < Q(5,10%) = 25.2119... (cf.
[13]). O

Corollary 3.3 Under the Riemann Hypothesis, for x tending to infinity, we have

(3.23) NG (2—)\+7'993+0(1))<A(x)< NG (2+>\+8.007+0(1)>'

log® log = log? z log x

Proof : The lower bound of (3.23) follows from Proposition 3.3. From Array (2.11), from (2.13) and
from (3.16), one sees in (3.21), that lim, .. Fao(v/x) = 2 and lim, . Fi(2'/?) = 1 so that (3.21)
yields lim, ., Q(3,z) = 8 +2/300 and the upper bound of (3.23) follows from Proposition 3.4 with
K1 = 3.

O

3.5 Numerical computation

Let us denote by p~ and pT the primes surrounding the prime p.

Proposition 3.5 For z < 1.39 - 1017, A(z) is nondecreasing. There exists infinitely many primes p
for which A(p) < A(p~) holds.

Proof : Let us consider a prime p satisfying 3 < p < 1.39 - 1017. From (2.1), one has

- a1 g [ At 6p)—6(pT) _ logp
A(p) — A(p™) =10(p)) —li(0(p7)) —1=—-1+ /6(p) gt > -1+ logfp)  _ 1og6(p) 1>0.

From Littlewood (cf.[7] or [5, chap. 5]), we know that there exists C' > 0 and a sequence of values of
x going to infinity such that
0(z) > = + Cy/xlogloglog x.

Let p be the largest prime < z. For x and p large enough, one has

0(p) = 6(z) > = + Cy/xlogloglogx > p + logp

and L 1
- ogp ogp
Ap)—Ap )< ————-1=—>———-1<0
®) =407 < 152007 ' Toa @) - o)
which completes the proof of Proposition 3.5. |
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Remark. In [9, p. 8], Platt and Trudgian have proved the existence of w satisfying 727 < u < 728
and f(e%) — e* > 101°2, If P is the largest prime < e, this implies
O(P) =0(e") > e" + 10" > P+u > P +1log P

log P

and A(P) < A(P™) + G —Tog P)

—1<A(P7).

Proposition 3.6 (i) For 11 < z < 1.39- 1017 we have
(3.24) A(x) > 0.

(i) Under the Riemann Hypothesis, for x > 2 we have

(3.25) Az) < Y& (2 Loy 2209 >

= logx log x

with equality for x = 33647.
(iii) Under the Riemann Hypothesis, for x > 520 878 we have

(3.26) Az) < Ve (2 + A+ 25'22) :

D log? x log x

(iv) For 2 < x < 10000 we have

(3.27) A(z) <5.0643... \/25 .
log” x

with equality for x = 3643.
(v) Under the Riemann Hypothesis, for x > 84.11 we have

12
(3.28) Alr) > YT <2—/\+ i )
log” z log =
(vi) For 37 < x < 89 we have
(3.29) Az) > Y2 (2 ).
log” x

Proof : First, for z > 2, we define C(z) and c(x) by

Alw) = Y2 <2+)\+C($)> and  A(x) = V2 (2_A+C(x)>

B log® x log z log? log

so that

log? x

NG

9 /\) and  c(z) = (log z) <A(x) 1052; —2+ /\> .

C(a) = (log) (Afa)
(i) (3.24) follows from Proposition 3.5 and A(11) = 0.1301.... Note that A(7) = —0.1541 < 0 (cf.
[13]).
(ii) If z > 10%, (3.25) follows from Corollary 3.2.
If 2 < < 409, from (1.12), one has (log®z)/v/x < 16/€? and, from Proposition 3.5, A(x) <
A(401) < 2.52 so that

1og2 T

Jz

C(z) = (log z) (A(m) _o- A) < (log 409) (2.52 g _o- A) <2051

15



which proves (3.25).
If 409 < o < 108, let p be the largest prime < x. As 409 > €5 holds, from (1.11), for € [p,p™),

the function z — (log x) (A(p) 105;”” -2- /\> is decreasing, which implies

(3.30) C(z) <C(p)
and, by computation,

max C(z)= max C(p)=C(33647) =27.7269...
409< <108 409<p<108

which completes the proof of (3.25).

(iii) For = > 108, (3.26) follows from Corollary 3.2.

We compute py = 520867 the largest prime < 108 such that C(po) > 25.22. For par = 520889 <
x < 10%, we denote by p the largest prime < z and, from (3.30), one has C(z) < C(p) < 25.22, which
implies (3.26). Then, one calculates

—2—-X] =25.21964...

. log? pt
lim  C(z) = (logpg) | A(pe)—2L20

+ + /
x—py, t<pg par

As the above value is < 25.22, we have to solve the equation C(t) = 25.22 for pg < t < par and find
t =520877.54...

(iv) For t > 1 the function t +— (log®t)/v/ is maximal for t = e¢* = 54.59... where its value is
16/e? = 2.16... (cf. (1.11) and (1.12)). As A(z) is nondecreasing, for z < 59, we have

log>z _ 16 16
A <A = —1.155...=2.501...
(z) N 2 (53) 2 55 50
For p > 59 and p < = < p*, one has
log? x log? z log” p
Az =A(p A(p
@) = A <A

and we compute the maximum of A(p)% for 59 < p < 10000 which is equal to 5.064 . . . for p = 3643.

(v) Let us set

Ve <2—>\+ 5'12>.

f(x) = 10g2x log:r

For z > 108, A(z) > f(z) follows from Corollary 3.1.
Let p be a prime satisfying e® < 409 < p < 108. For p < o < p™, one has A(z) = A(p),

_ log? z b A(p)(log? z)(6 — log ) — 2(2 — Nz
c(z) = (log x) (A(p) N 2+ /\> , c(x)= 523/ <0
so that c¢(x) is decreasing and
2+
| def . _ n log™p
> = 1 = (I A 24X
c(z) = c(p) o c(z) = (logp™) < (p) ST + >

Therefore, for 409 < z < 10® one has ¢(z) > minggg<,<10s ¢(p) and, by computation, one gets
i ¢(p) = ¢(409) = 15.3735....
40921;2108 clp) = &(409)

which implies A(z) > f(z).
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The function f is decreasing on (1,27 = 111.55...] and increasing for x > x1 (cf. [13]). Therefore,
for 1 < a < b, the upper bound of f on the interval [a,b) is max(f(a), f(b)). We have A(84.1) =
A(83) < f(84.1) while, for 84.11 < x < 89, A(z) = A(83) > max(f(84.11), £(89)) > f(z) holds.

For 89 < p < 401 = 4097, one checks that A(p) > max(f(p), f(p™)) holds which shows that
A(z) > f(x) for 89 < z < 409 and completes the proof of (3.28).

(vi) From (1.11), the function o(t) = (log®t)/\/ is increasing for 1 < t < e* = 54.598... and
decreasing for t > e* so that, for 1 < a < b, the lower bound of ¢ on the interval [a, b) is min(p(a), ¢(b)).
Let p be a prime satisfying 11 < p < 83. From (i), one has A(p) > 0 and, for = € [p,p™),

log” x log? x

A(z) = A(p) NG

To prove (3.29), it remains to check that A(p) min(¢(p), p(p™)) > 2 — X holds for 37 < p<83. O

> A(p) min(p(p), p(p™)).

3.6 Proof of Theorem 1.1

Proof : The proof of (1.6) follows from Corollary 3.2 while Corollary 3.1 yields (1.7).

The proof of (1.8) results of Proposition 3.6, (i) and (v).

Inequality (1.9) results of Proposition 3.6, (v) and (vi).

If < 10000, Inequality (1.10) follows from Proposition 3.6, (iv), while for > 10000, Proposition
3.6, (ii), implies

27.7269. .. 27.7269. ..
A(x)g‘/25<2+)\+ )< Ve (z )\—1—):5.0566... Ve
log” x log x log” x log 10000 log” x
which ends the proof of Theorem 1.1. O
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