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Let us denote by π(x) the number of primes

x, by li(x) the logarithmic integral of x, by θ(x) = P p x log p the Chebichev function and let us set A(x) = li(θ(x))-π(x). Revisiting a result of Ramanujan, we prove that the assertion "A(x) > 0 for x 11" is equivalent to the Riemann Hypothesis.

Introduction

Let us denote by π(x) the number of primes x and by li(x) the logarithmic integral of x (see, below, §2.2). It has been observed that, for small x, π(x) < li(x) holds, but Littlewood (cf. [START_REF] Littlewood | Sur la distribution des nombres premiers[END_REF] or [5, chap. 5]) has proved that, for x tending to infinity, the difference π(x) -li(x) oscillates infinitely many often between positive and negative values.

Let us set θ(x) = p x log p, the Chebichev function, and

(1.1) A(x) = li(θ(x)) -π(x).

What is the behavior of A(x) ? In [11, (220), ( 222), ( 227) and (228)], under the Riemann Hypothesis, Ramanujan proved that

(1.2) A(x) = 2 √ x + ρ x ρ /ρ 2 log 2 (x) + O √ x log 3 (x)
where ρ runs over the non-trivial zeros of the Riemann ζ function. Moreover, in [11, (226)], Ramanujan writes under the Riemann Hypothesis

ρ x ρ ρ 2 ρ x ρ ρ 2 = √ x ρ 1 ρ(1 -ρ) = √ x ρ 1 ρ + 1 1 -ρ = 2 √ x ρ 1 ρ = √ x(2 + γ 0 -log(4π)) = 0.046... √ x (1.3)
where γ 0 is the Euler constant and concludes (1.4) under the Riemann Hypothesis ∃ x 0 such that, for x x 0 , A(x) is positive.

The aim of this paper is to make these results effective and, in particular, to show that Ramanujan's result (1.4) is true for x 0 = 11. 1.1 Notation

π(x) = p x
1 is the prime counting function. 

Π(x) = p k x 1 k = κ k=1 π(x 1/k ) k with κ = log x log 2 . θ(x) =
Λ(x) = log p if x = p k 0 if not is the von Mangoldt function. ψ(x) = ψ(x) - 1 2 Λ(x) and Π(x) = Π(x) - Λ(x) 2 log x . li(x) denotes the logarithmic integral of x (cf. below §2.2). L 1 (t) = li(t) - t log t , L 2 (t) = li(t) - t log t - t log 2 t , F 1 (t) = L 1 (t) t/ log 2 t , F 2 (t) = L 2 (t) t/ log 3 t (t > 1)
.

F 1 (t) and F 2 (t) are defined below in (3.16).

γ 0 = 0.57721566 . . . is the Euler constant. λ is defined in (1.5), cf. also (2.26).

ρ f (ρ) = lim T →∞ | (ρ)| T f (ρ)
where f : C → C is a complex function and ρ runs over the non-trivial zeros of the Riemann ζ function.

Plan of the article

In §2, we shall recall some definitions and prove some results that we shall use in the sequel, first, in §2.2, about the logarithmic integral, and, further, in §2.3, about the Riemann ζ function and explicit formulas of the theory of numbers.

In §3, the proof of Theorem 1.1 is given. First, we write

A(x) = A 1 (x) + A 2 (x) with A 1 (x) = li(ψ(x)) -Π(x) and A 2 (x) = li(θ(x)) -li(ψ(x)) + Π(x) -π(x).
In §3.1, under the Riemann Hypothesis, an estimate of A 1 (x) is given, by applying the explicit formulas. In §3.2, it is shown that A 2 (x) depends on the quantity B(y) = π(y) -θ(y)/ log y which is carefully studied. In §3.3 (resp. §3.4), an effective lower (resp. upper) estimate for A(x) is given when x 10 8 . In §3.5, for x < 10 8 , estimates of A(x) are given by numerical computation. Finally, Theorem 1.1 is proved in two steps, depending on the cases x 10 8 or x > 10 8 .

The computations, both algebraic and numerical, have been carried out with Maple. On the website [13], one can find the code and a Maple sheet with the results.

We often implicitly use the following result : for u and v positive, the function (1.11) t → log u t t v is increasing for 1 t e u/v and decreasing for t > e u/v .

Moreover

(1.12) max t 1

log u t t v = u e v u .
2 Preliminary results

Effective estimates

Without any Hypothesis, Platt and Trudgian [START_REF] Platt | On the first sign change of θ(x) -x[END_REF] have shown by computation that (2.1) θ(x) < x for 0 < x ≤ 1.39 • 10 17 so improving on results of Schoenfeld [START_REF] Schoenfeld | Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II[END_REF] and Dusart [START_REF] Dusart | Estimates of some functions over primes without R. H[END_REF]. Under the Riemann Hypothesis, for x 599, we shall use the upper bounds (cf. [12, (6.3)])

(2.2) |ψ(x) -x| 1 8π √ x log 2 x and |θ(x) -x| 1 8π √ x log 2 x.

The logarithmic integral

For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) = x 0 - dt log t = lim ε→0 + 1-ε 0 + x 1+ε dt log t = x 2 dt log t + li(2).
We have the following values :

(2. We also have

li(x) = γ 0 + log(log(x)) + ∞ n=1 (log x) n n • n!
(where γ 0 = 0.577 . . . is the Euler constant) which implies

(2.5) li(x) = log(log(x)) + γ 0 + o(1), x → 1 + .
Let N be a positive integer. For t > 1, we have (cf.

[13]) The proof of (2.8) and (2.9) follows from Array 2.11 and also the proof of (2.10), after deducing from

(2.6) dt log N t = 1 (N -1)! li(t) - N -1 k=1 (k -1)! t log k t and, for x → ∞, (2.7) li(x) = N k=1 (k -1)! x (log x) k + O x (log x) N +1 . Lemma 2.
f 2 (t 2 ) = 0 that F 2 (t 2 ) = 2 holds.
In the same way, it is possible to study the variation of the function

F 1 (t) = L 1 (t) (t/ log 2 t) = li(t) -t log t (t/ log 2 t) ,
The details can be found on [13]. We have (2.12)

t 1 1.85 . . . 3.8464 . . . 94.6 . . . ∞ 0 1.784 . . . F 1 (t) = L 1 (t) log 2 t t 0 -0.448 . . . 1 
Since L 1 (10.3973 . . .) = 1, Array (2.12) yields

(2.13) t > 10.4 =⇒ L 1 (t) = li(t) - t log t > t log 2 t .
The derivative of li(t)/t is t/ log t-li(t)

t 2
= -F1(t) t log 2 t which, from Array 2.12, is positive for 1 < t < 3.8464 and negative for t > 3.8465. Therefore, we have

(2.14) t > 1 =⇒ li(t) li(3.8464 . . .) 3.8464 . . . t = 0.7423 . . . t < 3t 4 .
Lemma 2.2 Let a and x be two real numbers satisfying exp(1) a < a 3 x. Let κ 1 and κ 2 be two integers such that

2 κ 1 < κ 2 = log x log a .
Then we have

(2.15) κ2 k=κ1+1 1 k L 1 (x 1/k ) 1.785 4.05 κ 3 1 x 1/κ1 log 3 x -L 2 (a) . Proof : Let us set T = κ2 k=κ1+1 1 k L 1 (x 1/k ).
It follows from Array 2.12 that, for t > 1, L 1 (t) = tF 1 (t)/ log 2 t 1.785 t log 2 t holds and therefore,

T 1.785 log 2 x κ2 k=κ1+1 kx 1/k .
Now, as x exp(1) > 1, the function t → tx 1/t is positive and decreasing for 0 < t log x so that

T 1.785 log 2 x κ2 κ1 tx 1/t dt 1.785 log 2 x log x log a κ1
tx 1/t dt = 1.785

x 1/κ 1 a du log 3 u
by the change of variable u = x 1/t . Finally, by (2.6) and (2.8), we get

T 1.785 L 2 (x 1/κ1 ) -L 2 (a)
1.785 4.05

x 1/κ1 log 3 (x 1/κ1 ) -L 2 (a)
which ends the proof of Lemma 2.2.

Lemma 2.3 Let a 2.11 and x a 3 be real numbers and κ 2 = log x log a . Then we have

(2.16) κ2 k=2 1 k x 1/(2k) 5 4 x 1/4 . Proof : Let us set T = κ2 k=2 1 k x 1/(2k) .
Since x a 3 > 1, the function t → x 1/(2t) /t is positive and decreasing for t > 0 so that

T = 1 2 x 1/4 + κ2 k=3 1 k x 1/(2k) 1 2 x 1/4 + log x log a 2 x 1/(2t) t dt = 1 2 x 1/4 + x 1/4
√ a du log u by the change of variable u = x 1/(2t) . Finally, by (2.6) and (2.14), we get

T 1 2 x 1/4 + li(x 1/4 ) -li( √ a) 5 4 x 1/4 -li( √ a) and (2.16) follows since √ a √ 2.11 > 1.452 so that, from Array (2.3), li( √ a) > 0 holds.
Lemma 2.4 Under the Riemann Hypothesis, for x 599, one has

(2.17) θ(x) -x log x - 9 log 2 x 10000 li(θ(x)) -li(x) θ(x) -x log x (2.18) ψ(x) -x log x - 9 log 2 x 10000 li(ψ(x)) -li(x) ψ(x) -x log x , and 
(2.19) ψ(x) -θ(x) log x - 9 log 2 x 10000 li(ψ(x)) -li(θ(x)) ψ(x) -θ(x) log x + 9 log 2 x 10000 .
Proof : Let us suppose that x 599 holds. From (2.2) and (1.11), we get

(2.20) ψ(x) x θ(x) x 1 x x - √ x log 2 x 8π = 1 - log 2 x 8π √ x 1 - (log 599) 2 8π √ 599 > 0.9335.
Further, for h > 1 -x, Taylor's formula and (2.4) yield

(2.21) li(x + h) = li(x) + h log x - h 2 2 ξ log 2 ξ , with ξ min(x, x + h). Let us set h = θ(x) -x ; we have h + x = θ(x) θ(599) > 1.
From (2.20), we get ξ bx with b = 0.9335 and

ξ log 2 ξ bx log 2 (bx) = bx log 2 (x) 1 + log b log x 2 bx log 2 (x) 1 + log b log(599) 2 0.9135 x log 2 x. From (2.2), it follows that 0 h 2 2 ξ log 2 ξ x log 4 x 128 π 2 ξ log 2 ξ log 2 x 0.9135 × 128 π 2 = 0.000866 . . . log 2 x < 9 log 2 x 10000
which, with (2.21), proves (2.17). In the same way, setting h = ψ(x) -x yields (2.18), and (2.19) follows by substracting (2.17) from (2.18).

The Riemann ζ function

We shall use the two explicit formulas

(2.22) ψ(x) = ψ(x) - 1 2 Λ(x) = x - ρ x ρ ρ -log(2π) - 1 2 log 1 - 1 x 2 , x > 1 and (2.23) Π(x) = Π(x) - Λ(x) 2 log x = li(x) - ρ li(x ρ ) -log 2 + ∞ x dt t(t 2 -1) log t , x > 1,
which can be found in many books in analytic number theory, for instance [5, chap. 4]. To Formula (2.23), we prefer the form described in [6, p. 361 and 362, with R = 0] :

(2.24) Π(x) = Π(x) - Λ(x) 2 log x = li(x) - ρ ∞ 0 x ρ-t ρ -t dt -log 2 + ∞ x dt t(t 2 -1) log t , x > 1.
We also have (cf. [4, p. 67] or [2, p. 272])

(2.25)

ρ 1 ρ = 1 + γ 0 2 - 1 2 log π -log 2 = 0.02309570896612103 . . .

and

(2.26)

ρ 1 ρ(1 -ρ) = ρ 1 ρ + 1 1 -ρ = 2 + γ 0 -log(4π) = 0.04619141793224206 . . . 3 Proof of Theorem 1.1 3.1 Study of A 1 (x) = li(ψ(x)) -Π(x)
Under the Riemann Hypothesis, we write γ = ρ i.e. ρ = 1 2 + iγ.

Lemma 3.1 Under the Riemann Hypothesis, we have

ρ 1 |γ| 3 1 300
.

Proof : It is possible to get better estimates for the sum ρ 1 |γ| 3 , but, for our purpose, the above upper bound will be enough. By observing that

|ρ| 2 = ρ(1 -ρ) = 1 4 + γ 2
and that the first zero of ζ(s) is 1/2 + 14.134725 . . . i (cf. [4, p. 96] or the extended tables of [START_REF] Odlyzko | Table of zeros of the Riemann zeta function[END_REF]), we get

ρ 1 γ 2 = ρ 1 + 1/(4γ 2 ) 1/4 + γ 2 ρ 1 + 1/(4 × 14.134 2 ) 1/4 + γ 2 800 799 ρ 1 ρ(1 -ρ) .
Further, from (2.26), we get

ρ 1 |γ| 3 1 14.134 ρ 1 γ 2 800 799 × 14.134 ρ 1 ρ(1 -ρ) = 0.00327 . . .
which completes the proof of Lemma 3.1.

Lemma 3.2 For x > 1, under the Riemann Hypothesis, we have

ρ ∞ 0 x ρ-t ρ -t dt = ρ x ρ ρ log x + ρ x ρ ρ 2 log 2 x + K(x) with (3.1) |K(x)| 2 300 √ x log 3 x .
Proof : By partial integration, one has

∞ 0 x ρ-t ρ -t dt = x ρ ρ log x + x ρ ρ 2 log 2 x + 2 log 2 x ∞ 0 x ρ-t (ρ -t) 3 dt and ∞ 0 x ρ-t (ρ -t) 3 dt 1 | ρ| 3 ∞ 0 x 1/2-t dt = 1 | ρ| 3 √ x log x so that we get |K(x)| = ρ 2 log 2 x ∞ 0 x ρ-t (ρ -t) 3 dt 2 √ x log 3 x ρ 1 | ρ| 3
and (3.1) follows from Lemma 3.1. Proposition 3.1 Under the Riemann Hypothesis, for x 599, we have

A 1 (x) = li(ψ(x)) -Π(x) = ρ x ρ ρ 2 log 2 x + J(x) with (3.2) -0.0009 log 2 x - 2 300 √ x log 3 x J(x) 2 300 √ x log 3 x + log 2.
Proof : Let us write

li(ψ(x)) = li(x) + ψ(x) -x log x + J 1 (x) = li(x) + ψ(x) -x + Λ(x)/2 log x + J 1 (x)
with, from (2.18), for x 599,

(3.3) -0.0009 log 2 x J 1 (x) 0.
Therefore, from (2.22) and (2.24), we have

A 1 (x) = li(x) + 1 log x - ρ x ρ ρ -log(2π) - 1 2 log 1 - 1 x 2 + 1 2 Λ(x) + J 1 (x) -li(x) - ρ ∞ 0 x ρ-t ρ -t dt + ∞ x dt t(t 2 -1) log t -log 2 + Λ(x) 2 log x = ρ ∞ 0 x ρ-t ρ -t dt - 1 log x ρ x ρ ρ + J 1 (x) + J 2 (x) + J 3 (x) with J 2 (x) = log 2 - log(2π) log x and J 3 (x) = - log(1 -1/x 2 ) 2 log x - ∞ x dt t(t 2 -1) log t .
Further, from Lemma 3.2, one gets

(3.4) A 1 (x) = ρ x ρ ρ 2 log 2 x + J(x) with (3.5) J(x) = K(x) + J 1 (x) + J 2 (x) + J 3 (x)
and K(x) is as in Lemma 3.2. It remains to bound J 2 (x) + J 3 (x). We have

J 3 (x) = ∞ x 1 t(t 2 -1) 1 log x - 1 log t dt
which, for x 599, implies

0 J 3 (x) 1 log x ∞ x dt t(t 2 -1) = log(1 + 1/(x 2 -1)) 2 log x 1 2(x 2 -1) log x < log(2π) log x
and 0 < J 2 (x) + J 3 (x) < log 2. Therefore, (3.2) results from (3.1), (3.3), (3.4) and (3.5).

Study of

A 2 (x) = li(θ(x)) -li(ψ(x)) + Π(x) -π(x)
For y 2, let us set

B(y) = π(y) - θ(y) log y = p y 1 - log p log y .
Note that B(y) is nonnegative. If q < q are two consecutive primes, B(y) is increasing and continuous on [q, q ) and lim y→q , y<q B(y) = π(q) -θ(q) log q = π(q ) -1 -θ(q ) -log q log q = π(q ) -θ(q ) log q = B(q ) so that B(y) is continuous and increasing for y 2. In the two following lemmas, we give estimates of B(y). From the definition of ψ(x) and Π(x) , this implies

Lemma
(3.14) A 2 (x) = li(θ(x)) -li(ψ(x)) + Π(x) -π(x) = κ k=2 1 k B(x 1/k ) + U (x
A 2 (x) = κ k=2 π(x 1/k ) k - θ(x 1/k ) log x + U (x)
which, via the definition of B, proves (3.14).

It is convenient to introduce the notation

(3.16) F 2 (t) = 4.05 if 1 < t 381 F 2 (t) if t > 381 and F 1 (t) = 1.785 if 1 < t 95 F 1 (t) if t > 95
so that, from Arrays (2.11) and (2.12), for t > 1, F 2 (t) and F 1 (t) are nonincreasing and we have

(3.17) L 2 (t) = F 2 (t) t log 3 t F 2 (t) t log 3 t and L 1 (t) = F 1 (t)) t log 2 t F 1 (t)) t log 2 t .
Lemma 3.4 Let us set a = 10.4. For x > 10 8 , we set κ = log x log 2 , κ 2 = log x log a and let κ 1 be an integer satisfying 3 κ 1 < κ 2 . Then, under the Riemann Hypothesis, we have

κ k=2 B(x 1/k ) k 2 √ x log 2 x + 4 √ x log 3 x F 2 ( √ x) + κ1 k=3 kx 1/k log 2 x F 1 (x 1/k ) + 7.23 κ 3 1 x 1/κ1 log 3 x + 2.35 + 0.94 √ x log 5 x .
Proof : For 2 k κ 2 we have x 1/k x 1/κ2 x (log a)/ log x = a, and, under the Riemann Hypothesis, it follows from (3.13) that

B(x 1/k ) L 1 (x 1/k ) + ε(x 1/k ) x 1/(2k) 4π which implies that κ k=2 B(x 1/k ) k T 1 + T 2 + T 3 + T 4 + T 5
with

T 1 = 1 2 L 1 ( √ x), T 2 = κ1 k=3 L 1 (x 1/k ) k , T 3 = κ2 k=κ1+1 L 1 (x 1/k ) k , T 4 = κ k=κ2+1 B(x 1/k ) k , T 5 = κ2 k=2 ε(x 1/k ) x 1/(2k) 4kπ .
From the definition of L 1 , L 2 , F 1 , F 2 and from (3.17), one has

T 1 = 1 2 L 2 ( √ x) + √ x log 2 √ x = 2 √ x log 2 x + 4 √ x log 3 x F 2 √ x) 2 √ x log 2 x + 4 √ x log 3 x F 2 ( √ x)
and

T 2 = κ1 k=3 L 1 (x 1/k ) k = κ1 k=3 kx 1/k log 2 x F 1 (x 1/k ) κ1 k=3 kx 1/k log 2 x F 1 (x 1/k ).
From Array (2.11), L 2 (10.4) is positive, so that, from Lemma 2.2 with a = 10.4, we have

T 3 1.785 4.05 κ 3 1 x 1/κ1 log 3 x -L 2 (10.4) 1.785 × 4.05 κ 3 1 x 1/κ1 log 3 x 7.23 κ 3 1 x 1/κ1 log 3 x .
For k κ 2 + 1 > (log x)/ log a, we have x 

T 5 = κ2 k=2 ε(x 1/k ) x 1/(2k) 4kπ ε( √ x) κ2 k=2 x 1/(2k) 4kπ 5 16π ε( √ x)x 1/4 = 5 16π ε( √ x) √ x log 5 x log 5 x x 1/4 < 5 16π

√

x log 5 x log 5 10 34 10 34/4 = 0.93 . . .

√ x log 5 x ,
which completes the proof of Lemma 3.4.

A lower bound forA(x)

Proposition 3.3 Under the Riemann Hypothesis, for x 9 × 10 6 , we have

(3.18) A(x) √ x log 2 x 2 -λ + 1 log x 7.993 - log 3 x 8πx 1/4 - 18 10000 log 5 x √ x .
Proof : Since B(y) is nonnegative, from (3.14) and (3.15), we get, for x 599

A 2 (x) 1 2 B( √ x) - 9 log 2 x 10000 .
As x 2903 2 , we may apply (3.8) which yields

A 2 (x) 1 2 L 1 ( √ x) - x 1/4 4π - 9 log 2 x 10000 = 1 2 √ x log 2 √ x + L 2 ( √ x) - x 1/4 4π - 9 log 2 x 10000 .
Now, as x > 29 2 , by (2.10), it follows

A 2 (x) 1 2 √ x log 2 √ x + 2 √ x log 3 √ x - x 1/4 4π - 9 log 2 x 10000 = √ x log 2 x 2 + 8 log x - log 2 x 8πx 1/4 - 9 log 4 x 10000 √ x .
From Proposition 3.1, one has :

A 1 (x) - ρ x ρ ρ 2 log 2 x -0.0009 log 2 x - 2 300 √ x log 3 x so that A(x) = A 1 (x) + A 2 (x) satisfies A(x) √ x log 2 x 2 - ρ 1 |ρ 2 | + 8 -2/300 log x - log 2 x 8πx 1/4 - 18 log 4 x 10000 √ x
which, via 1.5, implies (3.18).

Corollary 3.1 Under the Riemann Hypothesis, for x 10 8 , we have

(3.19) A(x) √ x log 2 x
2 -λ + 5.12 log x .

Proof : From (1.11), the functions x → log 3 x x 1/4 and x → log 

An upper bound forA(x)

Proposition 3.4 Under the Riemann Hypothesis, for x 10 8 , we have

(3.20) A(x) √ x log 2 x 2 + λ + Q(κ 1 , x) log x
where κ 1 is an integer satisfying 3 κ 1 < log x log 10.4 and 

(3.21) Q(κ 1 , x) = 4 F 2 ( √ x)+ 2 300 + 3.05 log 3 x √ x + κ1 k=3 k F 1 (x 1/k ) log x x 1/2-1/k + 7.23 κ 3 1 x 1/2-

Numerical computation

Let us denote by p -and p + the primes surrounding the prime p. Proposition 3.5 For x < 1.39 • 10 17 , A(x) is nondecreasing. There exists infinitely many primes p for which A(p) < A(p -) holds.

Proof : Let us consider a prime p satisfying 3 p < 1.39 • 10 17 . From (2.1), one has

A(p) -A(p -) = li(θ(p)) -li(θ(p -)) -1 = -1 + θ(p) θ(p -) dt log t > -1 + θ(p) -θ(p -) log θ(p) = log p log θ(p) -1 > 0.
From Littlewood (cf. [START_REF] Littlewood | Sur la distribution des nombres premiers[END_REF] or [5, chap. 5]), we know that there exists C > 0 and a sequence of values of x going to infinity such that θ(x) x + C √ x log log log x.

Let p be the largest prime x. For x and p large enough, one has (vi) For 37 x < 89 we have

θ(p) = θ(x) x + C √ x log
(3.29) A(x) √ x log 2 x
(2 -λ).

Proof : First, for x 2, we define C(x) and c(x) by

A(x) = √ x log 2 x 2 + λ + C(x) log x and A(x) = √ x log 2 x 2 -λ + c(x) log x so that C(x) = (log x) A(x) log 2 x √ x -2 -λ and c(x) = (log x) A(x) log 2 x √ x -2 + λ .
(i) (3.24) follows from Proposition 3.5 and A(11) = 0.1301 . . .. Note that A(7) = -0.1541 < 0 (cf.

[13]).

(ii) If x 10 The function f is decreasing on (1, x 1 = 111.55 . . .] and increasing for x x 1 (cf. [13]). Therefore, for 1 < a < b, the upper bound of f on the interval [a, b) is max(f (a), f (b)). We have A(84.1) = A(83) < f (84.1) while, for 84.11 x < 89, A(x) = A(83) > max(f (84.11), f (89)) f (x) holds.

For 89 p 401 = 409 -, one checks that A(p) > max(f (p), f (p + )) holds which shows that A(x) > f (x) for 89 x < 409 and completes the proof of (3.28).

(vi) From (1.11), the function ϕ(t) = (log 2 t)/ √ t is increasing for 1 t e 4 = 54.598 . . . and decreasing for t e 4 so that, for 1 < a < b, the lower bound of ϕ on the interval [a, b) is min(ϕ(a), ϕ(b)).

Let p be a prime satisfying 11 p 83. From (i), one has A(p) > 0 and, for x ∈ [p, p + ), 

A

Let us set λ = ρ 1 |ρ| 2 . 2 -for x 2 ,Corollary 1 . 1

 122211 Under the Riemann Hypothesis, we have (see below (2.26)) λ = 1.953 . . . , (1.8) A(x) is positive for x 11, (1.9) A(x) (2 -λ) where M = A(3643)(log 2 3643)/ √ 3643 = 5.0643569138 . . . Each of the five assertions (1.6)-(1.10) is equivalent to the Riemann Hypothesis. Proof : In 1984, Robin (cf. [10, Lemma 2 and (8)] has shown that, if the Riemann Hypothesis does not hold, there exists b > 1/2 such that A(x) = Ω ± (x b ), i.e. lim sup x→∞ A(x) x b > 0 and lim inf x→∞ A(x) x b < 0 and the five assertions of the theorem are no longer satisfied.

  1/k ) are the Chebichev functions.

5 x √ x are decreasing for x 10 8

 8 

F 2 ( √ x) = 2

 2 and lim x→∞ F 1 (x 1/3 ) = 1 so that (3.21) yields lim x→∞ Q(3, x) = 8 + 2/300 and the upper bound of (3.23) follows from Proposition 3.4 with κ 1 = 3.

For x 10 8 ,

 8 A(x) > f (x) follows from Corollary 3.1. Let p be a prime satisfying e 6 < 409 p < 10 8 . For p x < p + , one hasA(x) = A(p), c(x) = (log x) A(p) log 2 x √ x -2 + λ , c (x) = A(p)(log 2 x)(6 -log x) -2(2 -λ) √ x 2x 3/2< 0 so that c(x) is decreasing andc(x) c(p) def == lim x→p + , x<p + c(x) = (log p + ) A(p) log 2 p + p + -2 + λ .Therefore, for 409 x < 10 8 one has c(x) min 409 p<10 8 c(p) and, by computation, one gets min 409 p<10 8 c(p) = c(409) = 15.3735 . . . which implies A(x) > f (x).

1 For t > 1, we have

  

	and			f 3 (t) = f 2 (t) = -	6 log 4 (t)	.
	Since f 2 (t) = f 3 (t) is negative, f 2 (t) decreases and vanishes for
					t 2 = 28.19524 . . .
	It follows that f 1 (t) = f 2 (t)/t is positive for 1 < t < t 2 and negative for t > t 2 so that f 1 (t) has a
	maximum for t = t 2 ,								
					f 1 (t 2 ) = 4.54378 . . .
	and f 1 vanishes (and so does F 2 ) in two points				
			t 3 = 3.384879 . . .			t 4 = 380.1544 . . .
	From (2.5), we get lim t→1 + F 2 (t) = 0 and the variation of F 2 is given in the following array :
		t	1		3.38 . . .					10.39 . . .	380.15 . . .	∞
	(2.11)	F 2 (t) = L2(t) t/ log 3 t	0								0	4.040415 . . .
				-1.369496 . . .				2
	(2.8)	L 2 (t) = li(t) -	t log t	-	t log 2 t	= F 2 (t)	t log 3 t	< 4.05	t log 3 t	.
	For t t 0 381, we have								
	(2.9)			L 2 (t) < F 2 (t 0 )	t log 3 t	.
	For t > 29, we have								
	(2.10)				L 2 (t) > 2	t log 3 t	.
	Proof : let us set (cf. the Maple sheet [13])				
		f 1 (t) = (3 -log t) li(t) + t -		2t log t	-	t log 2 t	=	t 2 F 2 (t) log 2 (t)	,
			f 2 (t) =	t log t	+	t log 2 t	+ 2	t log 3 t	-li(t) = tf 1 (t)

  3.3 Let y be a real number satisfying y 0 = 8.3 y 1.39 × 10 17 . We have In the same way than the one used to get(3.11), for y y 2 , we obtain B(y) = B(y 2 ) -L 1 (y 2 ) + L 1 (y) + T (y, y 2 ) L 1 (y) -

											√ y 1 4π = -4.80566 . . . < 0.
																√ y 4π	+ B(y 2 ) -L 1 (y 2 ) +	√ y 2 4π
	and as B(y 2 ) -L 1 (y 2 ) +	√ y 2 4π = 0.00671 . . . > 0, this completes the proof of Lemma 3.3.
	Let us set														
								ε(y) =	0 if y 1.39 × 10 17 1 if y > 1.39 × 10 17 .
	It follows from (3.6) and (3.7) that, under the Riemann Hypothesis, one has
	(3.13)						B(y) L 1 (y) + ε(y)	√ y 4π	for y 8.3.
	(3.6)							B(y) L 1 (y) = li(y) -	y log y
	while, if y y 1 = 599, under the Riemann Hypothesis, we have
	(3.7)									B(y) L 1 (y) +	√ y 4π	.
	Under the Riemann Hypothesis, for y y 2 = 2903, we have
	(3.8)									B(y) L 1 (y) -	√ y 4π	.
	Proof : By Stieljes's integral, one has						
	(3.9)					π(y) =	y 2 -	d[θ(t)] log t	=	θ(y) log y	+	2	y	θ(t) t log 2 t	dt.
	Further, we have													
	(3.10)	B(y) =	2	y	θ(t) t log 2 t	dt =	2	y0	+	y y0	θ(t) t log 2 t	dt = B(y 0 ) +	y y0	θ(t) t log 2 t	dt.
	By (2.1) and (2.6), for y 1.39 × 10 17 , we get		
	y y0	θ(t) t log 2 t	dt			y y0	1 log 2 t	dt = li(y) -	y log y	-li(y 0 ) +	y 0 log y 0
	-0.001379 . . . < 0 (cf. [13].										
	Replacing y 0 by y 1 in (3.10) yields						
	(3.11)	B(y) = B(y 1 ) + = B(y y y y1 θ(t)dt t log 2 t y1 θ(t)-t t log 2 t dt and, from (2.2) ,
	(3.12)					|T (y, y 1 )|		y y1	√ 8πt log 2 t t log 2 t	dt =	√ y -4π √ y 1	.

= L 1 (y) -L 1 (y 0 ), so that (3.10) yields B(y) L 1 (y) + B(y 0 ) -L 1 (y 0 ), which proves (3.6), since B(y 0 ) -L 1 (y 0 ) = 1 ) -L 1 (y 1 ) + L 1 (y) + T (y, y 1 )

with T (y, y 1 ) = From (3.11) and (3.12), it follows that

B(y) L 1 (y) + √ y 4π + B(y 1 ) -L 1 (y 1 ) -√ y 1 4π

which proves (3.7), since B(y 1 ) -L 1 (y 1 ) -Proposition 3.2 Under the Riemann Hypothesis, for x 599, we have

  Since ε(t) is nondecreasing and vanishes for x 10 17 , from Lemma 2.3, one gets

	T 4	1.72	κ k=κ2+1	1 k		1.72	κ κ2	dt t	1.72	log x log 2 log x log a -1	dt t
		= 1.72 log	log x log 2	-log	log(x/a) log a	= 1.72 log	log a log 2	+ log	log x log(x/a)
		1.72 log	log a log 2	+	log x log(x/a)	-1	= 1.72 log	log a log 2	+	log a log(x/a)
		1.72 log	log a log 2	+	log a log(10 8 /a)	= 2.34449 . . .

1/k < a ; since y → B(y) is nondecreasing, we have B(x 1/k ) B(a) = B(10.4) = 1.7166 . . . < 1.72 and

  Proof : We choose κ 1 = 5 and observe that, from (3.16) and(1.11), all the terms of the right hand side of (3.21) are positive and nonincreasing for x 10 8 so that Q(5, x) Q(5, 10 8 ) = 25.2119 . . . (cf.[13]).

	Proof : From Proposition 3.1 and (1.5), for x 599, we have
				A 1 (x) λ	√ log 2 x x	+	2 300	√ log 3 x x	+ 0.7
	while, from Proposition 3.2, we have					
				A 2 (x)	κ k=2	1 k	B(x 1/k ) +	9 log 2 x 10000	.
	Therefore, from Lemma 3.4, we get the upper bound (3.20) for A(x) = A 1 (x) + A 2 (x).
	Corollary 3.2 Under the Riemann Hypothesis, for x 10 8 , we have
	(3.22)			A(x)	√ log 2 x x	2 + λ +	25.22 log x
	Corollary 3.3 Under the Riemann Hypothesis, for x tending to infinity, we have
	(3.23)	√ log 2 x x	2 -λ +	7.993 + o(1) log x			A(x)	√ log 2 x x	2 + λ +	8.007 + o(1) log x	.
	Proof : The lower bound of (3.23) follows from Proposition 3.3. From Array (2.11), from (2.13) and
	from (3.16), one sees in (3.21), that lim x→∞			
										1/κ1 +	0.94 log 2 x	+	9 log 5 x 10000 √ x
	with F 2 and F 1 defined in (3.16).					

  Remark. In[9, p. 8], Platt and Trudgian have proved the existence of u satisfying 727 < u < 728 and θ(e u ) -e u > 10 152 . If P is the largest prime e u , this implies θ(P ) = θ(e u ) > e u + 10 152 > P + u P + log P

	and A(P ) < A(P -) +	log P log(θ(P ) -log P )	-1 < A(P -).
	Proposition 3.6 (i) For 11 x 1.39 • 10 17 we have
	(3.24)				A(x) > 0.
	(ii) Under the Riemann Hypothesis, for x 2 we have
	(3.25)		A(x)		√ log x x	2 + λ +	27.7269 . . . log x
	with equality for x = 33647.			
	(iii) Under the Riemann Hypothesis, for x 520 878 we have
	(3.26)		A(x)	√ log 2 x x	2 + λ +	25.22 log x	.
	(iv) For 2 x 10000 we have			
	(3.27)			A(x) 5.0643 . . .	√ log 2 x x	.
	with equality for x = 3643.			
	(v) Under the Riemann Hypothesis, for x 84.11 we have
	(3.28)		A(x)	√ log 2 x x	2 -λ +	5.12 log x	.
							log log x > p + log p
	and	A(p) -A(p -) <	log p log θ(p -)	-1 =	log p log(θ(p) -log p)	-1 < 0
	which completes the proof of Proposition 3.5.	

  If 409 x < 10 8 , let p be the largest prime x. As 409 > e 6 holds, from(1.11), for x ∈ [p, p + ), the function x → (log x) A(p) log 2 x For x 10 8 , (3.26) follows from Corollary 3.2.We compute p 0 = 520 867 the largest prime < 10 8 such that C(p 0 ) 25.22. For p + 0 = 520 889 x < 10 8 , we denote by p the largest prime x and, from (3.30), one has C(x) C(p) < 25.22, which implies (3.26). Then, one calculates As the above value is < 25.22, we have to solve the equation C(t) = 25.22 for p 0 t < p + 0 and find t = 520 877.54 . . . = 54.59 . . . where its value is 16/e 2 = 2.16 . . . (cf.(1.11) and (1.12)). As A(x) is nondecreasing, for x < 59, we have and we compute the maximum of A(p) log 2 p √ p for 59 p < 10000 which is equal to 5.064 . . . for p = 3643.

	which proves (3.25).				
			√	x -2 -λ is decreasing, which implies
	(3.30)						C(x) C(p)
	and, by computation,				
		max 409 x 10 8 C(x) = max 409 p<10 8 C(p) = C(33647) = 27.7269 . . .
	which completes the proof of (3.25).
	(iii) lim x→p + 0 , x<p + 0	C(x) = (log p + 0 )	  A(p 0 )	log 2 p + 0 0 p +	 -2 -λ  = 25.21964 . . .
	A(x) e For p 59 and p x < p + , one has log 2 x √ x 16 16 e 2 A(53) =
			A(x)	log 2 x √ x	= A(p)	log 2 x √ x	A(p)	log 2 p √ p
	If 2	8 , (3.25) follows from Corollary 3.2. x < 409, from (1.12), one has (log 2 x)/ √	x	16/e 2 and, from Proposition 3.5, A(x)
	A(401) 2.52 so that				
		C(x) = (log x) A(x)	log 2 x √ x	-2 -λ	(log 409) 2.52	16 e 2 -2 -λ < 20.51

(iv) For t 1 the function t → (log 2 t)/ √ t is maximal for t = e 4 2 1.155 . . . = 2.501 . . .

  To prove(3.29), it remains to check that A(p) min(ϕ(p), ϕ(p + )) > 2 -λ holds for 37 p 83.3.6 Proof of Theorem 1.1Proof : The proof of (1.6) follows from Corollary 3.2 while Corollary 3.1 yields (1.7).The proof of (1.8) results of Proposition 3.6, (i) and (v). Inequality (1.9) results of Proposition 3.6, (v) and (vi). If x 10000, Inequality (1.10) follows from Proposition 3.6, (iv), while for x > 10000, Proposition 3.6, (ii), implies which ends the proof of Theorem 1.1.

			(x)	log 2 x √ x	= A(p)	log 2 x √ x	A(p) min(ϕ(p), ϕ(p + )).	
	A(x)	√ log 2 x x	2 + λ +	27.7269 . . . log x	√ log 2 x x	2 + λ +	27.7269 . . . log 10000	= 5.0566 . . .	√ log 2 x x
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