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Dynamically Closed-Loop Controlled Soft Robotic Arm using a
Reduced Order Finite Element Model with State Observer

Robert K. Katzschmann∗, Maxime Thieffry∗, Olivier Goury, Alexandre Kruszewski,
Thierry-Marie Guerra, Christian Duriez, Daniela Rus

Abstract— This paper presents a computationally efficient
method to model and simulate soft robots. Finite element
methods enable us to simulate and control soft robots, but
require us to work with a large dimensional system. This limits
their use in real-time simulation and makes those methods less
suitable for control design tools. Using model order reduction,
it is possible to create a reduced order system for building
controllers and observers. Model reduction errors are taken
into account in the design of the low-order feedback, and it
is then applied to the large dimensional, unreduced model.
The control architecture is based on a linearized model of
the robot and enables the control of the robot around this
equilibrium point. To show the performance of this control
method, pose-to-pose and trajectory tracking experiments are
conducted on a pneumatically actuated soft arm. The soft arm
has 12 independent interior cavities that can be pressurized
and cause the arm to move in three dimensions. The arm is
made of a rubber material and is casted through a lost-wax
fabrication technique.

I. INTRODUCTION

Soft robots are difficult to model and simulate. We provide
a data-driven solution for modeling soft robots and connect
the model to an efficient simulation engine using model order
reduction. This approach provides an efficient and realistic
method to develop controllers for soft robots in simulation.
We validate the approach on a physical prototype.

Soft robots take their inspiration from nature. Natural
organisms interact with the external world through the elas-
ticity of their bodies while they can perform tasks in a
dynamic manner. This is why researchers design soft robots
with elastic bodies [1], for example soft robotic fish [2], soft
grippers [3], soft worms [4], and soft octopuses [5].

We are motivated by the hope to create soft-bodied robots
that can perform similarly well in terms of agility in motion
and compliance during interactions. To enable these motions
and interactions, we need suitable soft robotic prototypes and
appropriate models to control these robots dynamically. Both
the creation of fast actuated soft robots as well as tractable
dynamic modeling are challenging. Nevertheless, a soft robot
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Fig. 1. Robotic arm studied: Real soft arm prototype (left), simulated
model of the soft arm shown as a finite element mesh (center), and the
pneumatically actuated interior cavities of the arm (right).

has to robustly manage the intelligence embedded in its
complex structure in order to generate desirable behaviors.

Control strategies suitable for dynamically moving soft
robots have been challenging to develop. One difficulty in
particular is to make good use of a mathematical formulation
for the soft robotic model. This requires us to find a way of
taking into account the infinite dimensions of the robot’s state
space [6] without exploding in dimensionality and rendering
the model unsuitable for control.

To avoid the computation of a complex and hard to
exploit model, solutions have been proposed using open-
loop data-driven approaches [7], or a combination of learning
and model-based control [8]. Yet, only a few modelling
techniques for soft robots have been used to design dynamic
controllers. Dynamic control methods taking into account
contacts between the soft body and its environment have
been proposed in [9], [10]. The control method is based
on a Piece-wise Constant Curvature model combined with
an augmented rigid body model. The experimental results
are shown on a two-dimensional [9] and a three-dimensional
soft robotic arm [10]. While computationally efficient, the
approach is specific to robots with symmetric geometries.

The use of simulation shortens the development time of
a robotic system. Simulation enables researchers to quickly
test out and iterate on different designs, actuation meth-
ods and control approaches. Finite element methods (FEM)
are one way to achieve this goal. A simulation software
based on SOFA [11] proposes to model soft robots using
FEM [12]. The software requires the discretization of the



robot’s geometry into a finite element mesh, based on which
the continuum mechanics and soft material theories are then
solved. Boundary conditions are defined using constraints for
both contacts and the robot’s actuators.

The use of numerical methods often leads to large dimen-
sional systems, as the precision of the model is linked to the
number of nodes of the mesh. To tackle this problem, model
order reduction is used to obtain a system of acceptable di-
mensions. Reduced order modelling for soft robots has been
studied in [13] and [14] and a reduced-order controller based
on FEM has been proposed in [15]. So far, the method has
only been tested on a soft foam beam actuated with only two
tendon cables applying only point forces. Multiple pressure
loads or other actuation types had not been considered yet.
In this paper we propose to adapt and validate the modeling
and control methods to a pneumatically pressurized soft arm,
dynamically actuating a total of 12 individually actuated
cavities. In summary, this work contributes:
• Adaptation of a dynamic controller and observer based

on a reduced-order model of a non-linear FEM model.
• Validation of the FEM-based closed-loop control ap-

proach on a three-dimensional soft robotic arm through
pose-to-pose and trajectory tracking experiments.

II. MODEL

In this section, we first describe the geometric model of
the soft robot studied in this paper. This is followed by
a description of the FEM-based dynamic model and the
model-order reduction approach. This part is done using
a unified software framework dedicated to modeling and
control of soft robots [12]. This software uses non-linear
continuum mechanics to build a model of a soft robot. For
our control application, this model is then linearized around
an equilibrium. Finally, we describe how this modeling
method is applied to the soft robot.

A. Geometry

The soft robot used in this study is a concatenation
of cylindrical soft actuator segments. Each segment has
inflatable cavities shaped as a series of thin ribs. This three
dimensional design is an extension of a previously presented
planar design in form of a soft fish tail [2], [16] and
in form of soft finger [17], [18]. The planar design was
characterized and compared to other cavity shapes in a design
study [19]. The arm shown in here is also a 3D extension
of a soft planar robotic arm used for autonomous object
manipulation [20] and dynamic planar motions [9]. The
design of this arm improves over previous three-dimensional
designs [21] through its circular arranged set of actuated ribs.

Specifically, the arm is composed of three segments with
four inflatable cavities in each segment. Each cavity has a
ribbed interior geometry that allows for more bending and
less radial inflation when compared to a purely cylindrical
cavity design. Each ribbed cavity consists of 16 ribs con-
nected by a thin connecting channel between those 16 ribs.
Each rib is 3.1 mm high and between each rib is a gap of

Fig. 2. Geometric model of the soft arm. From left to right: the shape
of a single ribbed cavity; circular arrangement of four cavities; soft arm
segment with embedded cavities; concatenation of three actuated segments
plus passive base.

3 mm. The thickness between each rib and the outer surface
of a segment is only 2mm.

The independent pneumatic actuation of the arm’s seg-
ments is achieved through an array of 12 proportional valves.
A motion tracking system provides real-time measurements
of four marked points placed around the perimeter of the
arm at the intersecting planes between each segment.

B. FEM Model with Dynamics

For the complex geometry of a deformable robot, it is
challenging to adequately describe and model its continu-
ously deforming structure without using a large state space.
We discretize the structure into a mesh of finite elements
and derive our model describing the structural compliance,
damping, and dynamics based on Newton’s second law:

M(q)v̇ = P(q)−F(q, v) +HT (q)z(t) (1)

where q ∈ Rn represents all degrees of freedom of the model.
Since our solution is based on the finite element method, the
degrees of freedom of the system are the nodes of the mesh
and each node can move in the three directions of Cartesian
space. The dimension n of q is equal to 3 × N , where N
is the number of nodes of the mesh. M(q) : Rn → Rn×n

is the mass matrix, v = q̇ is the velocity vector, F(q, v)
represents the internal forces and P(q) gathers all the known
external forces. As we consider as external forces only the
gravitational field, P(q) is constant and P(q) = P . HT (q)z
is the actuators contribution: HT (q) contains the direction of
the actuators’ forces and z is their amplitude.

To model the deformations of soft robots, we are using de-
formable models able to deal with elastic behavior for large
displacements: the robot goes back to its initial shape when
the actuation vanishes and the parameters of the materials
are given by the Young’s modulus and the Poisson’s ratio of
Hooke’s law. This law makes the assumption of linearity in
material response due to a load. To model the deformation
of soft robots, the FEM integrates over the mesh of the robot
the constitutive law of its material. Lagrange multipliers are
used to define boundary conditions to model the actuation
contribution or the contacts with the environment.



Let q0 ∈ Rn be a stable equilibrium that could be obtained
using an inverse problem. This configuration q0 is induced
by P and z(t) = z0, that is q0 is solution to

0 = P − F(q0, 0) +HT (q0)z0 (2)

Adding Equation (2) to the right-hand side of Equation (1):

M(q)v̇ = P − F(q, v) +HT (q)z(t)− P + F(q0, 0)−HT (q0)z0

⇔
M(q)v̇ = F(q0, 0)−F(q, v) +HT (q)z(t)−HT (q0)z0

(3)
We can approximate the internal forces F with a first order

Taylor expansion around this equilibrium point:

F(q, v) ≈F(q0, 0) +
∂F(q, 0)

∂q

∣∣∣∣
q=q0

(q − q0) +
∂F(q0, v)

∂v

∣∣∣∣
v=0

v (4)

where ∂F(q,v)
∂q = K(q, v) is the compliance matrix, and

∂F(q,v)
∂v = D(q, v) is the damping matrix. Using Rayleigh’s

definition of damping, the matrix D(q, v) can be defined as:

D(q, v) = αM(q) + βK(q, v) (5)

where α and β are respectively the mass and stiffness
coefficient of damping. By definition, mass, compliance and
damping matrices are positive definite. With these notations,
equation (3) becomes:

M(q)v̇ ≈ −K(q0, 0)(q−q0)−D(q0, 0)v+HT (q)z(t)−HT (q0)z0
(6)

Let d be the displacement vector defined by:

d = q − q0 (7)

The equation of motion around an equilibrium point q0 is
thus given by the following relation:

M(q)v̇ ≈ −K(q0, 0)d−D(q0, 0)v+HT (q)z(t)−HT (q0)z0

(8)
Around an equilibrium point q0, let us consider M =
M(q0, 0), D = D(q0, 0), K = K(q0, 0) and H(q0) =
H(q) = H. Defining the new input vector u(t) as u(t) =
z(t)− z0, system (8) can be linearized to:


ẋ =

−M−1D −M−1K

I 0


︸ ︷︷ ︸

A

x+

M−1HT

0


︸ ︷︷ ︸

B

u

y = Cx

(9)

where x =
(
vT dT

)T
, x ∈ R2n and system matrices

are large-scale sparse matrices, i.e. A ∈ R2n×2n, B ∈
R2n×m, C ∈ Rp×2n, where m is the number of actuators
and p the number of outputs.

C. Model Order Reduction

The accuracy of the FEM is highly influenced by the
number of mesh nodes, leading to models with a very
large number of degrees of freedom. The high number of
dimensions renders this approach unsuitable for the synthesis
of model-based control laws. Systems with thousands of

decision variables can not be tackled with current control
design tools. That is why model reduction is used to obtain
a system of reduced dimension. This simplified system can
then be used to design both a controller and an observer.
Projection-based model order reduction consists of finding
two projectors V ∈ R2n×2n and W ∈ R2n×2n to decompose
the large-scale vector x into a reduced order state xr ∈ Rr

and a neglected state xr̄ ∈ R2n−r.
V = (Vr Vr̄) ∈ R2n×2n and W = (Wr Wr̄) ∈ R2n×2n

are used to compute a reduced order state xr ∈ Rr and a
neglected state xr̄ ∈ R2n−r. Their relationships are defined
as:

x =

(
Vr Vr̄

)xr
xr̄

 (10)

and
xr = WT

r x

xr̄ = WT
r̄ x

(11)

.
Projectors are orthogonal to each other, it holds WT

r Vr =
I and WT

r Vr̄ = 0. Thus, the system’s dynamics defined in
(9) combined with the projectors defined in (10) and (11)
can be described as:

ẋr = WT
r AVrxr +WT

r Bu+WT
r AVr̄xr̄

ẋr̄ = WT
r̄ AVr̄xr̄ +WT

r̄ Bu+WT
r̄ AVrxr

y = CVrxr + CVr̄xr̄

(12)

Different results exist in the literature for linear model
reduction, like balanced truncation or iterative tangential
interpolation, but the only method suitable for non-linear
systems is the Proper Orthogonal Decomposition(POD) [22].

Since soft robots can largely deform, we are required to
choose an approach to model order reduction that can in the
future also account for non-linear behaviors. Therefore, POD
is used to perform the model reduction. The POD proposes
to represent the high-dimensional model of the structure
within a subspace of much smaller dimension. An offline
simulation is performed where all the potential movements
of the structure studied are sampled and stored in snapshots.
This step is computationally intensive, since fine simulations
are performed, but it is performed only once to build the
reduced order model. Singular value decomposition (SVD)
and a truncation - depending on the decay rate of the singular
values - condense the snapshot space in a reduced basis.

For applications with dynamic motions, we use simula-
tions to save snapshots of the robot’s acceleration for differ-
ent configurations. Note that different choices of snapshots
can be made to perform the reduction; i.e. velocity or position
could be used instead of acceleration. From our initial
testing, we found that using acceleration was giving us more
accurate results. Different combinations of actuation - that
we consider exhaustively in the desired range of actuation
- are applied to the robot. The reduced order model will
only be accurate for the positions that we took into account
during a snapshot experiment. At each time step, the matrix



S is enriched with the value of the acceleration vector of the
robot. We therefore obtain a snapshot matrix S:

S =

(
v̇t0 v̇t1 . . . v̇tf

)
(13)

Matrices V and W are then obtained performing a singular
value decomposition (SVD) of S:

S = UΣV (14)

Depending on the decay rate of the singular values of Σ,
a low-order approximation can be computed by

Tr =

(
U1 . . . Ur

)
Tr̄ =

(
Ur+1 . . . Un

) (15)

Finally, the projectors V and W are defined as:

Vr = Wr =

Tr 0

0 Tr


Vr̄ = Wr̄ =

Tr̄ 0

0 Tr̄


(16)

For a complete view of this model reduction algorithm,
see Algorithm 1 in [14]. This methodology provides us with
a low dimensional state xr and a reduced order system which
is compatible with the design of an output feedback control
law. In both cases, the aim is to use only xr to control the
whole state dynamics described in (9) while studying the
impact of the neglected state xr̄ on the system.

D. Model Application to the Soft Arm

The modeling and simulation part of this work is done
using the SOFA framework - an open source framework
targeted at the simulation of deformable materials - with the
SoftRobotPlugin [12] and Model Order Reduction1 plugins.
These tools enable real-time simulation and control of soft
robots using the FEM described in the previous subsections.

The mesh of the soft arm described in Section IV-A is
presented in Figures 1 and 3. The mesh consists of 45116
tetrahedra and 11810 nodes. The state vector of the dynamic
model has a length of 11810 × 6 = 70860. The model
implemented in SOFA is non-linear, but in order to design
the dynamic controller, the model of the arm is linearized
around its resting position. Using the model reduction al-
gorithm presented above, the large-scale dynamic model (9)
is transformed to a lower order model (12) with xr ∈ R10,
that means we consider the five first singular values of the
snapshots. These singular values decrease rapidly and the
first five represent 71.4% of the singular values of Σ.

1https://project.inria.fr/modelorderreduction/, see [14]

Fig. 3. Exemplary deformation state of the soft arm in simulation.

Remark 1. The simulation of the full order non-linear
model, given in equation (1), runs at 1.5 frames per sec-
ond (fps) on an Intel Core i7 CPU. The low-order system
simulates at 25 fps. To run the control algorithm introduced
later in equation (19), the simulation platform SOFA is not
needed anymore and the frequency of the feedback control
loop is constraint by the hardware setup.
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Fig. 4. Open-loop arm experiment starting from an actuated and deformed
state going towards a straight, down-hanging arm pose. The graph shows
the x (red), y (blue) and z (yellow) positions of the arm’s end-effector as
it is swinging back and fourth while asymptotically nearing a straight arm
pose.

We validate the proposed model by comparing the open-
loop behaviour of the simulation to the physical prototype.
In the first experiment we release the arm from a deformed
shape and let it converge to its resting pose, hanging straight
down. The results of this first experiment are shown in
Figure 4. Then, a second experiment is done were the robot
starts from its rest shape and converges to a deformed
position; results are shown in Figure 5. Figure 6 shows the
output that presents the maximum absolute error between
the simulated model and the real soft arm during the open-
loop experiment where the robot goes from an actuated state
back to its rest shape. A maximum error of about 3 cm exists
between the simulated results and the real measurements.
This corresponds to a relative error of 9.1% in regards to the
robot’s characteristic length.
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Fig. 5. Open-loop arm experiment, starting from a straight, down-
hanging arm pose going towards a deformed state through an open-loop step
actuation. The graph shows the x (red), y (blue) and z (yellow) positions of
the arm’s end-effector as it is swinging back and fourth while asymptotically
nearing a straight arm pose.
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Fig. 6. Maximum error between measurement outputs of simulation and
physical experiment for the open-loop experiment where the robot returns
from an actuated state back to its straight rest shape.

III. OBSERVER BASED OUTPUT FEEDBACK

In the previous section, we presented an FEM model to
describe the deformation and dynamics for a soft robot and
we described a model order reduction algorithm to address
the high dimension of the FEM model. In this section,
we describe our approach to an observer-based closed-loop
control design that also makes use of the FEM model and
the model order reduction.

A. Observer-based Dynamic Controller

We previously presented a control method for soft robots
based on a reduced model and that took into account the
reduction error [15]. The idea behind the control design in
the work here is to control the dynamics of the reduced
system using a feedback control law and ensure the large-
scale closed loop stability using Lyapunov theory. To use this
control design in practice, where neither x nor xr are avail-
able from sensors, an unknown input observer reconstructs
xr and considers the reduction error as a disturbance. Only
y is directly available from the sensors.

The vector ω gathers the reduction error and is the
unknown input to the observer:

˙̂xr = Arx̂r +Bru+ F (y − ŷr) + Zω

ŷr = Crx̂
(17)

where F is the reduced-order observer gain. Let L ∈ Rm×r

be the feedback matrix of the control law with m being the
number of inputs of the system:

u = −Lx̂r (18)

This reduced order control law with its observer model is
then applied to the large-scale system:{

ẋ = Ax−BLx̂r
y = Cx

(19)

For the soft arm studied in this work, the reduced order
state consists of 10 states, the matrix L is also of dimension
12×10. The computation of this matrix is achieved through a
Linear Matrix Inequalities (LMI) problem, with 120 variables
and with a stability constraint for the large-scale model.

Stability of the closed-loop is studied using the knowledge
of an open-loop Lyapunov function V (x) = xTPx that is
based on the energy of the system, see also [15]. Using
projection defined in Equations (10) and (11), it holds:

V (x) = xTPx =

xr
xr̄


T Vr

Vr̄


T

P

Vr
Vr̄


xr
xr̄

 (20)

The objective of the LMI problem is to optimize the decay-
rate of V (x) with feedback u = −Lx̂r (18). As the Lyapunov
function uses the large-scale vector to tune the performances
via xr, the stability of the whole model (xr and xr̄) is also
guaranteed.

B. Simulation of the Controlled System

The control algorithm is first tested in simulation. Dy-
namic control around static positions and trajectory tracking
experiments are done to show the capabilities of the method-
ology, that is the model order reduction and robust control.

1) Pose-to-Pose Control in Simulation: A first test is per-
formed where the objective is to drive the simulated soft arm
from a deformed shape to its rest position. The comparison
of the position of the end-effector for this experiment in open
and closed-loop is shown in Figure 7.
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Fig. 7. Simulation of closed-loop control, showing the motion of the end-
effector going from an actuated state to the straight resting pose. Red, blue
and yellow lines show position of the end-effector along x, y and z axis.
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Fig. 8. Simulation of closed-loop control, showing the motion of the end-
effector going from the straight resting pose to an actuated state. Red, blue
and yellow lines show position along x, y and z axis.

A second set of experiments is conducted where the
arm starts from its rest shape position and converges to a
deformed position; results are shown in Figure 8.

As one metric for evaluation of the results, we use the
integral time absolute error (ITAE) criterion defined as:

ITAE =

∫ T

0

t|e(t)|dt (21)

This criterion is used to measure the overshoots and oscilla-
tions of the system’s response. To compare the controller
performances, the value of the ITAE in closed-loop are
compared with the one of the open-loop. In addition, the
3% settling time is given for the same experiments in open
and closed loop; results are shown in Table I. Results show
a maximum gain of 67.53% in ITAE and 58.65% for the
settling time. It also shows that the gains are higher when
the target position is the position where the model of the
robot has been linearized.

TABLE I
CONTROL IN SIMULATION: COMPARISON OF INTEGRAL TIME

ABSOLUTE ERROR (ITAE) AND 3% SETTLING TIME IN OPEN AND

CLOSED-LOOP IN SIMULATION.

to rest position to curled position

ITAE in:

open-loop 691.52 242.19

closed-loop 224.56 209.24

difference in % 67.53 % 13.61 %

3% settling-time in:

open-loop 6.53 s 3.52 s

closed-loop 2.7 s 1.6 s

difference in % 58.65 % 54.55 %

2) Trajectory Tracking in Simulation: We test our
methodology first by conducting trajectory tracking experi-
ments in simulation before later using it on the actual robot.
A circular end-effector trajectory is defined for tracking. The
results are presented in Figure 9. A maximum absolute error

of 1.175 centimeters exists between the reference signal and
the simulated output.
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Fig. 9. Simulation of the closed-loop controlled trajectory tracking,
showing the end-effector position. Zero on both axes is the position when
the arm is in its straight resting pose. The red line is the reference signal
and the blue line is the output of the simulation.

IV. CLOSED-LOOP EXPERIMENTS ON PROTOTYPE

In this section, we validate the control algorithm presented
in the previous section through physical experiments on an
actual prototype. We start by first describing the fabrication
of our soft robotic arm and explaining the experimental setup
of the pneumatic pressure source and the motion capture
system. This is followed by an instantiation of our data-
driven approach to model and simulate the robotic arm and
make us of this for validating our closed-loop control of the
physical prototype.

A. Experimental Setup

The experimental setup consists of a soft multi-segment
arm as well as the actuation and motion capture system.

1) 3D Ribbed Soft Arm: The soft robot presented here
is composed of three segments with four inflatable cavities
per segment. Each segment of the soft arm is 11 cm long
and has a diameter of 4.5 cm. The manufacturing steps are
outlined in Figure 10. The four wax cores are created through
injecting liquefied bleached bees-wax into a rubber mold.
The wax cores are removed from the mold, post-processed
to remove any unnecessary residue, and then assembled into
a 3D printed mold for casting a single arm segment. Silicone
Rubber is mixed, degassed and filled into the mold. The
mold is disassemble and the resulting segment is placed in
an oven to melt out the wax and afterwards cooked under
boiling water remove any wax residue. Silicone tubing is
then glued into one side and silicone rod stock is used to
close up the other end of the arm segment. Two more arm
segments are manufactured in the same manner. Finally, all
silicone tubing is routed so that all three segments can be
properly concatenated and glued together. Finally, all tubing
is labeled and motion capture markers are added.

2) Actuation and Motion Capture: The independent pneu-
matic actuation of the arm segments is achieved through an
array of 12 pressure-controlled proportional valves. A motion
tracking system provides real-time measurements of marked
points along the in-extensible back of the soft arm. A rigid



Fig. 10. Manufacturing overview of the 3D soft arm. From Top Left to
Bottom Right: Creation of four wax cores through casting; assembly of
wax cores into 3D printed molds; casting of Silicone Rubber into the mold;
Removal of wax through melting and addition of silicone tubing; Routing
of tubing, gluing, labeling and adding markers.

frame holds all the sub-systems together providing reliable
hardware experiments without the need for re-calibration of
the infrared cameras of the motion capture system.

3) FEM Setup: The simulation of the arm uses a finite
element mesh made of 45116 tetrahedra and 11810 nodes,
leading to a state vector of dimensions 11810× 6 = 70860.
The simulated model is non-linear, but it is linearized around
its resting position in order to design the dynamic controller.

B. Experimental Validation

For the experimental validation, we perform system iden-
tification, pose-to-pose control and trajectory tracking on the
physical prototype.

1) Mechanical Parameter Identification: To build a pre-
cise simulation, elastic and inertial parameters have to be
tuned in simulation. The Young’s modulus of the structure
is directly obtained from silicone’s properties and the mass of
the arm is measured experimentally. The Rayleigh damping
parameters are then tuned experimentally. A comparison
between the simulated model and the real arm is given in
Section II-D.

2) Pose-to-Pose Control: The pose-to-pose control was
first tested in simulation as described in Section III-B.1. Here
we show the results when we executed the controller on the
real robot. A closed loop controlled pose-to-pose motion
starting from an actuated state and going to the straight
resting pose is shown in Figure 11. Compare this to the open-
loop controlled scenario shown in Figure 4. The ITAE and
3% settling time are gathered in Table II to compare the
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Fig. 11. Closed-loop experiment on real prototype, measuring the end-
effector position. Red, blue and yellow lines show the position along the x,
y and z axis.

open-loop against the closed-loop experiment. The results
show an improvement of 57% in the ITAE metric and an
improvement of 49.62% in the 3% settling time metric. The
difference between the simulated and experimental results
are visible; the gains in the experiments are lower than the
gains found in simulation, but it still shows that the controller
clearly improves the performance of the system.

TABLE II
OPEN AND CLOSED-LOOP EXPERIMENTS, COMPARING INTEGRAL TIME

ABSOLUTE ERROR (ITAE) AND 3% SETTLING TIME FOR EACH.

to rest position to curled position

ITAE in:

open-loop 691.52 242.19

closed-loop 297.33 218.95

difference in % 57 % 9.6 %

3% settling time in:

open-loop 6.53 s 3.52 s

closed-loop 3.29 s 2.21 s

difference in % 49.62 % 37.22 %

3) Trajectory Tracking: Finally, a circular trajectory to-
wards one side of the resting arm pose is defined as the
reference input signal for the closed-loop controller. The
results are shown in Figure 12. Again, we observe that the
actual results are different from the outputs of the simulation.
We measure for the closed-loop controlled arm a maximal
absolute error of 2.71 centimeters between the reference tra-
jectory and actual position of the end-effector. In comparison
to the simulated scenario described in Section III-B.2, the
maximal absolute error was at 1.175 centimeters.

V. CONCLUSION

This paper presents both the design of a 3D soft arm
using ribbed cavities and the validation of a FEM-based
control algorithm. The soft arm is made of silicone elastomer
through lost-wax casting. The arms interior cavities are ac-
tuated through an array of pneumatic proportional valves. A
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Fig. 12. Physical Experiment of the closed-loop controlled system showing
the measurement of the end-effector position. The red line is the reference
and the blue line is the real measurement.

motion capture system provides measurement of intermediate
points along the soft arm. The soft system allows us to adapt
and validate the control methodology presented in [15]. We
use a finite element method to build a dynamical model of
the robot. We use model order reduction and solve a Linear
Matrix Inequalities problem to design a dynamic controller
with a state observer.

In this work, we showed that our closed-loop control
approach has significant improvements over open-loop actu-
ation, both when performing pose-to-pose control as well as
trajectory tracking of a circle. Nevertheless, the experimental
results presented here leave room for improvements. We are
aware of three possible reasons for the remaining tracking
errors presented in the experiments. First, we have not
provided a full proof that our control approach is valid
for the trajectory tracking experiments. It would require a
complete analysis of the dynamics of the large dimensional
closed-loop system as it is evolving along the trajectory. This
question is the topic of our current research. Second, the
control methodology used in this work is based on a linear
model. For all experiments conducted in this paper, the model
has been linearized at the straight resting shape of the soft
robot. This is a known limitation of this approach and we are
currently investigating the use of a Linear Parameter Varying
(LPV) model to achieve further performance improvements.
Third, our proposed method assumes that the soft robot’s
properties and performance will remain the same with time
since an offline simulation is needed beforehand. In reality,
however, the material properties of the soft robot may exhibit
time-varying properties such as fatigue.

ACKNOWLEDGMENT
NSF 1830901 and 1226883 This research was conducted

at MIT with support from the National Science Foundation
(grant NSF 1830901, NSF 1226883). This research was
in collaboration with researchers from the DEFROST team
at INRIA, with support of ANR (Project ANR-17-ERC2-
0029), the European Union through the European Regional
Development Fund (ERDF), the French Ministry of Higher
Education and Research, the National Center for Scientific
Research (CNRS), and the Hauts-de-France Region. We are
grateful for these supports.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[2] R. K. Katzschmann, J. Delpreto, R. MacCurdy, and D. Rus, “Explo-
ration of underwater life with an acoustically-controlled soft robotic
fish,” Science Robotics, vol. 3, no. 16, 2018.

[3] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 161–185, 2016.

[4] S. Seok, C. D. Onal, K.-J. Cho, R. J. Wood, D. Rus, and S. Kim,
“Meshworm: a peristaltic soft robot with antagonistic nickel titanium
coil actuators,” IEEE/ASME Transactions on mechatronics, vol. 18,
no. 5, pp. 1485–1497, 2013.

[5] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and
P. Dario, “Soft robot arm inspired by the octopus,” Advanced Robotics,
vol. 26, no. 7, pp. 709–727, 2012.

[6] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for
soft robotic manipulators,” IEEE Transactions on Robotics, vol. 24,
no. 4, pp. 773–780, 2008.

[7] T. G. Thuruthel, E. Falotico, M. Manti, and C. Laschi, “Stable
open loop control of soft robotic manipulators,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1292–1298, 2018.

[8] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and
M. D. Killpack, “Learning nonlinear dynamic models of soft robots
for model predictive control with neural networks,” in 2018 IEEE
International Conference on Soft Robotics (RoboSoft), April 2018, pp.
39–45.

[9] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Dy-
namic control of soft robots interacting with the environment,” in 2018
IEEE International Conference on Soft Robotics (RoboSoft), Livorno,
Italy, Mar 2018.

[10] R. K. Katzschmann, C. Della Santina, Y. Toshimitsu, A. Bicchi, and
D. Rus, “Dynamic motion control of multi-segment soft robots using
piecewise constant curvature matched with an augmented rigid body
model,” in 2019 IEEE International Conference on Soft Robotics
(RoboSoft), Seoul, South Korea, Apr 2019.

[11] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,
H. Delingette, and L. Grisoni, “Sofa-an open source framework for
medical simulation,” in MMVR 15-Medicine Meets Virtual Reality,
vol. 125. IOP Press, 2007, pp. 13–18.

[12] E. Coevoet et al., “Software toolkit for modeling, simulation and
control of soft robots,” Advanced Robotics, TaylorFrancis, pp.1-26,
2017.
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