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Abstract— In this paper we present our work on shape
optimization for soft robotics where the shape is optimized for
a given soft robot usage. To obtain a parametric optimization
with a reduced number of parameters, we rely on an approach
where the designer progressively refines the parameter space
and the fitness function until a satisfactory design is obtained.
In our approach, we automatically generate FEM simulations
of the soft robot and its environment to evaluate a fitness
function while checking the consistency of the solution. Finally,
we have coupled our framework to an evolutionary optimization
algorithm, and demonstrated its use for optimizing the design
of a deformable leg of a locomotive robot.

I. INTRODUCTION

Designing a soft robot is a challenging task. Compared
to rigid robotics, a first difficulty is that the kinematics of
soft robots is not intuitive or well-understood, complicating
the design process. A second difficulty with soft robotics is
that softness can be achieved with various soft materials like
silicone [1], [2] micro-structured materials [3] or specifically
designed geometrical arrangement of rigid parts as with
tensegrity structures [4], allowing a wide range of variations
in design. Combined with the recent developments of 3D
printing, new possibilities of manufacturing materials have
appeared, allowing the fabrication of deformable objects
exhibiting complex deformation kinematics by controlling
the in-fill [5], [6].

In addition to the material itself, actuation systems are very
diverse with approaches including cables [7], pneumatics [8],
[9], shape memory alloys [10] or chemical reaction [11].
Any subtle change in the geometry, the choice of material as
well as the actuators’ or sensors’ positions may impact the
deformation behavior and thus the overall robot’s kinematics.
In addition, soft robotics is a recent field of research where
researchers are still actively exploring robot designs and their
usages but there is a lack of established know-how to design
soft robots. Thus, there is dire need of assistance tools to
help designers.

Some tools, like SOFA [12] and its SoftRobots plug-
ins, allow modelling, simulation and control of soft robots
[13]. The framework contains FEM based simulation of
deformable material, deformable inverse kinematics, contact
modelling and model order reduction. It has been used
to model and control a large variety of soft robots. This
framework allows the designers to simulate the physical
behavior of the robots before their actual fabrication. It is
far from straightforward for a designer to understand how
to adapt the shape of the robot to satisfy some targeted
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capabilities, resulting in a trial-and-error approach to develop
and test alternative designs.

In the present paper we introduce our work on a shape op-
timization toolkit in SOFA and the results of our experiments
done by numerical simulation as well as their comparison to
a physical bench test.

II. RELATED WORK

From a mathematical point of view, shape optimization
consists in minimizing a function φ defined on the space
of subsets of a bounded domain of R2 or R3 (i.e. the
shapes) with values in R (i.e. the fitness of the shape). Shape
optimization is an active field of research with multiple
applications: mechanical design [14], shape modelling, 3D
printing [6] or robotics [15], [16]. With the development
of 3D printing, shape optimization has been applied to
the creation of in-filled structures [5] or surface patterns
[6] which exhibit custom mechanical behavior. In work
[17] optimization techniques were used to design complete
mechanisms that can be built. In [18], the authors provide
co-design tools to help design cable-driven kinematic chains
and trees for animatronics.

Methods based on partial differential equations, like level
set methods (see for example [19]), are commonly used
to morph a shape in an externally generated velocity field.
These methods can perform shape optimization if the veloc-
ity field is obtained, for example, from the shape derivative
of the fitness function (see [20]). But sometimes, there is
no access to derivatives and optimization is based on the
evaluation of the fitness function φ itself. Other optimization
methods, like evolutionary strategies, can be used in such
a case. The calculation of derivatives is replaced by the
evaluation of not only one but a population of a few shapes
[21].

In robotics, evolutionary approaches aim at the emergence
of complex mechanical behavior in embodied behavioral
agents. The approach is named Embodied Evolution [22].
In particular, the performance of the mechanical design of
the ”embodied agent” (the robot) in interaction with its
environment is optimized. It is also referred as Morpho-
logical Evolution. This approach has been applied to soft
robotics in [23], where the shape and the distribution of
artificial muscles are optimized to make locomotion emerge.
A population of individuals is set and evolves, according to
their evaluation using a voxel-based mechanical simulation.
The shape is encoded with Compositional Pattern Producing
Networks (CPPN) and the evaluation is made with the
software Voxelyze [24]. In [16], the same authors added
interaction between the robot and its environment. On the
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other hand, the evaluation of shapes or mechanical objects
can also be based on a physical bench test without the
need of a model [25]. This has the main advantage of
avoiding the pitfalls of simulations. Since the fabrication of
large population of candidate robots is still a time-consuming
process, authors proposed to automate the fabrication and
testing as in [26].

These methods seek the optimization algorithm or the
evolutionary process to provide new design ideas. The search
space is quite big (in particular when evaluation is made
by simulation) and the designer may not impose precise
constraints on it. The situation could be the opposite: the
designer could have the global idea of the soft robot to be
designed. In such a case, the optimization is still useful to
adapt the robot’s body shape to specific constraints or to
optimize some behaviors.

The contribution of this work is to provide one solution for
this situation with an approach in which the designer is able
to define the space of shapes and explore it with a reduced
number of parameters.

III. SHAPE OPTIMIZATION

The starting point of our approach is that, given a soft
robot design within its operational environment we want
to explore alternative designs as well as optimize some of
its properties. We use a black-box optimization technique
that does not require the objective function to be continuous
or differentiable. In practice, the optimization relies on the
evaluation of this fitness function. This evaluation is done
in several steps: the shape is generated out of a set of
parameters, then we automatically create a mesh, launch a
simulation in SOFA, and finally make an evaluation based
on the simulated physics.

A. Shape Modelling

To model the shapes we use procedural modelling based
on implicit functions similar to ones we can find in [27].
This approach enables the easy generation of families of
complex shapes from a reduced set of parameters. Readers
unfamiliar with modelling with function fields may consult
[28]. It contains an overview of the possible shapes defined as
field functions, the combining operators to implement Con-
strcuctive Solid Geometry operations and how to implement
geometric deformations and transformations. In addition to
field functions, it is useful to incorporate shapes defined by
other approaches such as voxel grids or parametric surfaces
and curves. This is possible by computing an approximation:

• from a vectorized representation (parametric curve or
surface, triangle mesh) ones can get a 2D and 3D grid
representation through rasterization.

• from a 2D or 3D grid one can compute a distance grid
with the fast marching algorithm.

• from a 2D or 3D distance grid as input, an interpolating
scheme can be used to get a field function.

To evaluate a shape we use the Finite Element Method
to simulate the mechanical behavior of the robot. The FEM
implemented in SOFA expects tetrahedral meshes. We use

the CGAL library to convert the implicit function describing
the shape to a tetrahedral mesh, pointing out the sharp edges
and corners to CGAL, to be sure that they are preserved.

Once this is done a SOFA scene is made which also
contains the modelling of the other soft robot’s components
like the actuators, the sensors as well as its environment.

B. Optimization

The choice of the fitness function is crucial. Describing
the main objective will probably not be too difficult for
the designer (for example: optimize energy transmission,
optimize stiffness or compliance, reduce weight). But it
may appear that optimizing a unique objective leads to
undesirable side behaviors or to numerical scenes which are
more and more eccentric and less and less reliable. Con-
sequently, we need to define some constraints that penalize
these undesirable behaviors. The penalization of constraints
will be added to the fitness function. The optimization of a
fitness function with penalties included in the fitness function
is not a multi-level optimization. Multi-level optimization
needs specific algorithms. Optimizing a fitness function with
penalties works in practice, at least in our example, because
we don’t try to minimize penalties, but to have them below
a given threshold.

Remark: The reliability of a simulation not only depends
on the shape, but also on some numerical parameters, such as
the size of the mesh or the time step value. These parameters
cannot be automatically adapted to every case without a sig-
nificant cost on the performance, as it would require several
evaluations of the same individual. These parameters are thus
fixed. We also have an option to test two or three different
mesh resolutions for the same case, to obtain an idea of the
influence of these parameters. Moreover, some heuristics can
detect when a simulated individual is obviously not reliable
(inversion of elements, buckling, undesirable self-collision).
In such cases, we can again use a penalization.

To understand the choice of the optimization algorithm,
let’s focus now on the properties of the problem. We want to
minimize a fitness function that can be multimodal, i.e. with
many local optimum. It could be ill-conditionned, in partic-
ular if parameters are numerous and if penalty constraints
are used. Its evaluation can be sometimes very sensitive to
the parameters. Finally, the problem is not separable, i.e. the
n-dimension function cannot be optimized in a sequence of
n independent 1-D optimization processes.

For all these reasons, it appears that the evolutionary
strategy called CMA-ES (covariance matrix adaptation evo-
lution strategy) is particularly suited for this kind of complex
optimization problem.

IV. EVALUATION ON THE DESIGN OF A SOFT LEG

The legs of the robot are soft legs made of silicone,
animated by servo motors. When running, the motor cycles,
resulting in compressing and releasing the deformable part of
the leg. This release of energy is a very nice property because
it helps the leg to support the weight of the robot body when
the leg is in extension and results in a more constant torque



on the motors during the gait. In practice, we want to design
the legs so that they match the capacities of the motors while
optimizing the energy accumulation-release property.

Consequently, we have applied our design optimization
method to find the shape of the deformable part of the leg.
In the following we present the different steps of the method
applied on this example. Then, we set up a physical test
bench to validate the numerical results.

Fig. 1. The Sofia soft robot

A. Procedural modelling of the leg

We modelled the Sofia’s leg as the extrusion of a 2D
profile. The extrusion thickness is fixed. This 2D profile is
the difference of two 2D shapes, each defined by splines
(one for the external profile of the leg, the other for the inside
border of the hole). Each spline is discretized on a grid and
then we get the discretized signed distance function from it
via a fast marching algorithm. We thus get two (2D) signed
distance functions d1, d2. The 2D-difference is defined by
the the function f = max(d1,−d2). Finally, the extrusion of
thickness e is obtained by the function max(|z− e

2 | −
e
2 , f).

In our case, the motor rotates in both directions. Con-
sequently, we impose axial symmetry between the left and
right sides (see Figure 2). The splines’ control points are
procedurally generated allowing the user to decide how many
control points to use. In practice, the top and the bottom
part of the external spline are fixed, so three pairs of control
points are fixed (two for the top, one for the bottom). We
tried two configurations: three free pairs for the hole and
one for the external spline (four total pairs), or five for the
hole and four for the external spline. The pairs of control
points are uniformly distributed between two extremities.
These extremities are fixed for the external spline but free
for the hole.

Fig. 2. From left to right. The 2D parametrization. The 2D difference
of the two 2D shapes. The resulting extruded shape. The resulting meshed
version of the leg.

B. Optimization with design constraints

The optimization is conducted on FEM simulations. We
suppose that the shape is attached at its top part. A virtual
motor wheel is attached to the bottom of the leg. Note that
to perform equivalent tests in simulation and with the exper-
imental set up (see section IV-C), we imposed that the motor
rotates slowly. In practice, this leads to underestimation of
the damping. At each time step, the relative power and torque
provided by the virtual motor are evaluated. The simulation
provides the forces applied by the virtual wheel to the leg
and the velocities of the attachment points: the torque is the
sum of the vector products between the forces and the vectors
between the attachment points and the center of the wheel,
and the power is the sum of the scalar products between the
forces and the velocities of the attachment points. We record
the maximal torque, and we integrate the power, separating
the positive from the negative part. The ”positive” part is the
energy provided by the motor to store the potential energy of
deformation inside the leg. The ”negative” part is the energy
released by the leg.

The objective is: given a torque threshold Tthr, we want to
design a shape such that first, the maximal torque required
from the motor does not exceed the torque threshold and
second, the amount of released energy is maximized.

1) Fitness function: Let E denotes the amount of released
energy and E0 be its order of magnitude for a reference shape
(we chose E0 = 0.10J because E = 0.40J for the initial
shape). Let Tthr be the maximum permissible torque, and let
Tmax be the maximum torque provided by the virtual motor.

We have a first fitness function φ1 = − E
E0

and a second
expression with the constraint φ2 = max(Tmax−Tthr

Tthr
, 0).

Minimizing φ2 and φ1 corresponds respectively to Tmax ≤
Tthr and E being maximized. In this formula, E

E0
is

the term to optimize, and the second term is a penalty:
max(Tmax−Tthr

Tthr
, 0) = 0 means Tmax ≤ Tthr. We multiply

this term by k, so that the penalty is greater than 1 if
Tmax > (1.0 + 1.0/k)Tthr. Since diminishing the penalty
is much more important than maximizing E/E0, in practice
we use the fitness function:

φ = φ1 + (kφ2)2. (1)

Remark: φ1 and φ2 are built to be dimension free with the
value of φ1 expected to be between 1 and 10 at convergence,
and the values of φ2 expected to be zero. In practice, we
used k = 10 so that the penalty function becomes significant
when the maximal torque exceeds the threshold by more
than 10%. Thus it is not ensured that the result will strictly
respect the threshold. To ensure it, or reduce the margin, the
penalty value should be increased but this may prevent the
convergence of the optimization.

2) Other penalties: Undesirable side effects may appear
while maximizing E. Therefore, we had to refine the fitness
function to penalize them. First, to be realistic, we need
to take into account self-collisions. However, they are un-
desirable since they could cause wear to the real leg. We
thus add a penalty term in the fitness function penalizing



self-collision. At each time step, the normal self-collision
forces are added together for that step, and the maximum of
these sums is recorded. The self-collisions are thus penalized
similarly to the maximal torque, but the threshold is zero. The
corresponding penalty function is then added to the function
φ. Secondly, it may happen that, when compressed, the leg
buckles and leaves the xy-plane. This is penalized too, by
comparing the maximal distance of the points in the mesh
to the xy-plane, to a threshold, around 20% of the thickness
of the leg. Similarly, the corresponding penalty function is
added to the function φ.

Finally, as mentioned in Section III, we wanted to identify
a ”reliability criterion” for the simulation. In practice, we
used the total integral of the relative power during the whole
rotation. This value should be close to zero as the damping is
underestimated (see above) and the integration scheme (semi-
implicit Euler) should only lead to small energy loss. But,
in practice, if for some reason the scene is not reliable and
cannot be correctly simulated, this value is far from zero. In
such case, penalization allows the algorithm to reject these
shapes from the optimization.

At that point, we can define the fitness function. Let F
be the set of our admissible shapes. We defined above a
fitness function φ : F → R. The space F is parametrized
by the y-coordinates of the pairs of control points, and their
distance to the y-axis, for the external and internal splines. In
order to resize the parameters, we actually impose bounds to
the distances, and the y-coordinates are relatively uniformly
distributed between two ends. These ends are fixed for the
external spline, but free for the internal one. Thereby, we get
a function [0, 1]n → F, where n is related to the number of
control points, and consequently a function Φ : [0, 1]n → R,
that can be minimized by the CMA-ES algorithm. For this,
we have to choose CMA-ES parameters like population size
and searching radius, that will not be discussed here.

C. The physical bench test

In order to validate our numerical results, we set up a
bench test. Since the motion in the numerical simulation
is very slow, in order to underestimate the damping, we
first made a quasi-static experiment, evaluating the torque in
many positions, to estimate the maximal torque, and check
that it is consistent with the numerical evaluation. Readers
should note that because of this difference, numerical and
physical experiments do not have the same behavior in
the video. We used a system of two pulleys with a belt
to multiply the maximal torque delivered by the motor.
However, it appears that the bench test was not strong enough
to actuate the shapes whose maximal torques were supposed
to be at least 0.20N.m. The maximal torque is reached
during the compression phase of the shape. Unfortunately,
we could not reproduce exactly the numerical experiment,
because we could not run the motor at a slow constant speed.
Consequently, we did not evaluate the energy transfer.

Fig. 3. The physical bench test. On the right we can see the tested leg
and on the left the motor and the force sensor.

V. RESULTS

We ran several experiments with different maximal torque
thresholds. The results are gathered in the following tables.
For each experiment, we started from the same initial hand-
made shape. This initial shape is defined by 4 free pairs
of control points. However, the number of control points
is constant during the experiment. Thus, in case we want
to optimize the shape with 9 pairs of control points, the
algorithm first adds some pairs, with very little modification
of the shape. The two metrics in our experiments are the
maximal torque and the amount of energy released (in cJ
and cN.m).

A. Simulation results

In Figure 4 we show the results we obtained when varying
the torque threshold and the number of pairs of control
points. Numerical results are presented in Table I.

Fig. 4. Initial shape (labelled 0) for the optimization and different shapes
(labelled 1 to 6) obtained by numerical experiments (see table I)

From the results, we can see that the torque thresholds
are reached. In some (not reported) experiments, it happened
that the torque threshold was surpassed, typically by 10%,
because the penalty function is such that it becomes greater
than 1.0 only when the threshold is surpassed by 10%.
Refining the penalty function could correct this bias. We also
noticed that the quality of the result is independent of the



Torque Threshold Max. Torque Energy Nb of Pairs Shape
initial shape 30 40 4 0
10 9.9 19 9 1
10 10 20 4 2
15 15 32 9 3
15 15 32 4 4
25 25 46 9 5
30 29 53 9 6

TABLE I
THE DIFFERENT TARGETED TORQUE THRESHOLDS AND THE RESULTS

OBTAINED FROM THE ALGORITHM AS WELL AS ENERGY RELEASED FOR

DIFFERENT NUMBERS OF PAIRS OF CONTROL POINTS (UNIT: cN.m , cJ )

complexity of the geometry. Simple geometries, encoded by
4 pairs of free control points, reach the same level as those
encoded by 9.

B. Bench test results

To get insight on the approach, we tested the shape
produced by our algorithm with a physical bench test. As
previously mentioned, we did not reproduce the numerical
experiment with the bench test, since we were not able to run
the motor at a constant slow speed. Instead, we just evaluated
the torque in many positions to check the coherency of the
measures of maximal torques. Each experiment was repeated
a few times, and the extremal measures are reported.

Exp. (cN.m) Min Measure (cN.m) Max Measure (cN.m)
15 12.9 15.9
10 9.4 10.5
5 4.0 5.8

TABLE II
ON THE LEFT ARE THE EXPECTED TORQUES, AND ON THE RIGHT THE

EXTREMAL MEASURES.

VI. DISCUSSION

Two points of the method and the results need to be
discussed.

• The definition of the fitness function obviously has an
important impact on the results. It is important to pe-
nalize all the constraints to avoid unexpected behaviors.
Yet, these constraints are sometimes not obvious at the
beginning of the design process. For instance, in our
case, we ran several optimizations before getting the
final fitness function, in particular because we progres-
sively added new constraints.

• One of the good properties of the FEM models is
that increasing the mesh resolution converges towards
a single solution. However, in the particular case of the
leg studied in this article, it happens that the optimal
solutions are often around forms, which, when they
deform during the imposed motion, are at the limit of
self-collision. Then, a small change in mesh resolution
can create a self-collision when there was none before,
which has a big impact on the fitness function.

VII. CONCLUSION AND FUTURE WORK

In this paper we present our work on soft robot optimiza-
tion. To make this possible we presented how we model
soft robots’ shapes using a procedural approach and how
this integrates with the simulation framework to evaluate the
fitness function of the generated shape.

Several points were raised during the discussion and there
are many ways to improve this rather preliminary work. In
the future, we plan to integrate tools to facilitate the imple-
mentation of formatting functions and to provide a solution to
better deal with self-collision cases. In addition, we would
like to test the method for more difficult design tasks and
therefore further increase the computational requirements.
However, it will also be important to keep in mind that in
a practical case, it will be necessary for the optimization to
be done in reasonable time to actually be used in a design
pipeline.
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