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Toward Shape Optimization of Soft Robots

Thomas Morzadec!, Damien Marchal?, Christian Duriez

Abstract—In this paper we present our work on shape
optimization for soft robotics where the shape is optimized for
a given soft robot usage. To obtain a parametric optimization
with a reduced number of parameters, we rely on an approach
where the designer progressively refines the parameter space
and the fitness function until a satisfactory design is obtained.
In our approach, we automatically generate FEM simulations
of the soft robot and its environment to evaluate a fitness
function while checking the consistency of the solution. Finally,
we have coupled our framework to an evolutionary optimization
algorithm, and demonstrated its use for optimizing the design
of a deformable leg of a locomotive robot.

I. INTRODUCTION

Designing a soft robot is a challenging task. Compared
to rigid robotics a first difficulty is that the kinematics
of soft robots is not a fixed part of the design process.
A second difficulty with soft robotics is that softness can
be achieved with various soft materials like silicone [1],
[2] micro-structured materials [3] or specifically designed
geometrical arrangement of rigid parts as with tensegrity
structures [4] allowing a wide range of variations in design.
Combined with the recent developments of 3D printing,
new possibilities of manufacturing materials appear allowing
the fabrication of deformable objects exhibiting complex
deformation kinematics by controlling the in-filling [5], [6].

In addition to the material itself, actuation systems are very
diverse with approaches including cables [7], pneumatics [8],
[9], shape memory alloys [10] or chemical reaction [11].
Any subtle change in the geometry, the choice of material
as well as the actuators’ or sensors’ position may impact the
deformation behavior and thus the overall robot’s kinematics.
In addition, as soft robotics is a recent field of research where
researchers are still actively exploring robot designs and their
usages but where there is a lack of established know-how
to design soft robots. This is why there is dire needs for
assistance tools to help designers.

Some tools, like SOFA [12] and its SoftRobots plugins
allows modelling, simulation and control of soft robots
[13]. The framework contains FEM based simulation of
deformable material, deformable inverse kinematics, contact
modelling and model order reduction. It has been used
to model and control a large variety of soft robots. This
framework allows the designers to simulate the physical
behavior of the robots before their actual fabrication. But
it is far from straightforward for a designer to understand
how to adapt the shape of the robot to satisfy some targeted
capabilities resulting in a lot of trial-and-error approach
testing alternative design.
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In the present paper we introduce our work on shape opti-
mization toolkit in SOFA and the results of our experiments
done by numerical simulation as well as their comparison to
a real physical test bench.

II. RELATED WORK

From a mathematical point of view, shape optimization
consists in minimizing a function ¢ defined on the space
of subsets of a bounded domain of R? or R® (i.e. the
shapes) with values in R (i.e. the fitness of the shape). Shape
optimization is an active field of research with multiple
applications: mechanical design [14], shape modelling, 3D
printing [6] or robotics [15], [16]. With the development
of 3D printing, shape optimization has been applied to the
creation of in-filling structures [5] or surface pattern [6]
exhibiting custom mechanical behavior. In the work [17]
optimization techniques have been used to design complete
mechanisms that can be built. In [18], the authors are
providing co-design tools to help designing cable-driven
kinematic chains and trees for animatronics.

Methods based on partial differential equations, like level
set methods (see for example [19]), are commonly used to
move a shape in an externally generated velocity field. These
methods can perform shape optimization if the velocity field
is obtained, for example, from the shape deritative of the
fitness function (see [20]). But sometimes, there is no access
to derivatives and optimization is based on the evaluation
of the fitness function ¢ itself. Other optimization methods,
like evolutionary strategies, can be used in such a case. The
calculation of derivatives is replaced by the evaluation of not
only one but a population of a few shapes [21].

In robotics, evolutionary approaches aims at the emergence
of complex mechanical behavior in embodied behavioral
agents. The approach is named Embodied Evolution [22].
In particular, the performance of the mechanical design of
the “embodied agent” (the robot) in interaction with its
environment is optimized. It is also referred as Morpho-
logical Evolution. This approach has been applied to soft
robotics in [23], where the shape and the distribution of
artificial muscle are optimized to make locomotion emerge.
A population of individuals is set and evolves, according
to their evaluation thanks to a voxel based mechanical
simulation. The shape is encoded with Compositional Pattern
Producing Networks (CPPN) and the evaluation is made
with the software Voxelyze [24]. In [16], the same authors
added interaction between the robot and its environment.
But the evaluation of shapes or mechanical objects can also
be based on a physical test bench without the need of a
model [25]. It has the main advantage to avoid the pitfalls
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of the simulations. Since the fabrication of large population
of candidate robots is still a time consuming process, authors
proposed to automate the fabrication and testing as in [26].

These methods seek the optimization algorithm or the
evolutionary process to provide new design ideas. The search
space is quite big (in particular when evaluation is made
by simulation) and the designer will not impose precise
constraints on it. The situation could be the opposite: the
designer could have the global idea of the soft robot to be
designed. In such a case, the optimization is still useful to
adapt the body’s shape of the robot to specific constraints or
to optimize some behaviors.

[ToEdit: The contribution of this work is to provide one
solution] for this situation with an approach in which the
designer is able to define the space of shapes and explore it
with a reduce number of parameters.

III. SHAPE OPTIMIZATION

The starting point of our approach is that, given a soft
robot design within its operational environment we want to
explore alternative designs as well as optimizing some of
its properties. We use a black-box optimization technique
that does not require the objective function to be continuous
or differentiable. In practice, the optimization relies on the
evaluation of this fitness function. This evaluation is done
in several steps: the shape is generated out of a set of
parameters; then we automatically create a mesh, launch a
simulation into SOFA and finally make an evaluation based
on the simulated physics.

A. Shape Modelling

To model the shapes we use a procedural modelling based
on implicit functions similar to ones we can find in [27].
This approach allows to easily generate families of complex
shapes from a reduced set of parameters. Reader unfamiliar
with modelling with function fields may consult [28]. It
contains an overview of the possible shapes defined as field
functions, the combining operators to implement Constr-
cuctive Solid Geometry operations and how to implement
geometric deformations and transformations. In addition to
field functions, it is useful to incorporate shapes defined
by other approaches as voxel grids or parametric surfaces
& curves. This is possible thank to the computation of an
approximation:

o from a vectorized representation (parametric curve or
surface, triangle mesh) ones can get a 2D and 3D grid
representation through rasterization.

e from a 2D or 3D grid one can compute a distance grid
with the fast marching algorithm.

e froma 2D or 3D distance grid as input, an interpolating
scheme can be used to get a field function.

To evaluate a shape we use the Finite Element Method to
simulate the mechanical behavior of the robots. The FEM
implemented in SOFA expects tetrahedral meshes. We use
the CGAL library to convert the implicit function describing
the shape to tetrahedral mesh, [ToEdit: pointing out the

sharp edges and corners to CGAL, to be sure that there are
preserved].

Once this is done a SOFA scene is made which also
contains the modelling of the other soft robot’s components
like the actuators, the sensors as well as its environment.

B. Optimization

The choice of the fitness function is crucial. Describing
the main objective will probably be not too difficult for
the designer (for example: optimize energy transmission,
optimize stiffness or compliance, reduce weight). But it
may appear that optimizing a unique objective leads to
undesirable side behaviors or to numerical scenes which are
more and more eccentric and less and less reliable. Con-
sequently, we need to define some constraints that penalize
these undesirables. The penalization of constraints will be
added to the fitness function. The optimization of a fitness
function with penalties ([ToEdit: that are added up to the
fitness function]) is not a multi-level optimization. Multi-
level optimization needs specific algorithms. Optimizing a
fitness function with penalties works in practice, at least in
our example, because we don’t try to minimize penalties.

Remark: The reliability of a simulation does not only
depend on the shape, but also on some numerical parameters,
as the size of the mesh, or the time step value. These
parameters cannot be automatically adapted to every case
without a significant cost on the performance, as it would
require several evaluations of the same individual. These
parameters are then fixed. We also have an option to test
two or three different mesh resolutions for the same case, to
obtain an idea of the influence of these parameters. Moreover,
some heuristics can detect when a simulated individual
is obviously not reliable (inversion of elements, buckling,
undesirable self-collision..). In such cases, we can again use
a penalization.

To understand the choice of the optimization algorithm,
let’s focus now on the properties of the problem. We want to
minimize a fitness function that can be multimodal, i.e. with
many local optimum. It could be ill-conditionned, in partic-
ular if parameters are numerous and if penalty constraints
are used. Its evaluation can be sometimes very sensitive to
the parameters. Finally, the problem is not separable, i.e. the
n-dimension function cannot be optimized in a sequence of
n independent 1-D optimization processes.

For all these reasons, it appears that the evolutionary
strategy called CMA-ES (covariance matrix adaptation evo-
lution strategy) is particularly suited for this kind of complex
optimization problem.

IV. EVALUATION ON THE DESIGN OF A SOFT LEG

The legs of the robot are soft legs made of silicone, ani-
mated by servo motors. When running, the motor is cycling
which results in compressing-releasing the deformable part
of the leg. This release of energy is a very nice property
because it helps the leg to support the weight of the robot
body when the leg is in extension. It allows to have a more
constant torque on the motors during the gait. In practice, we



want to design the legs so that they match the capacities of
the motors while optimizing the energy accumulation-release
property.

Consequently, we have applied our design optimization
method to find the shape of the deformable part of the leg.
In the following we present the different steps of the method
applied on this example. Then, we set up a physical test
bench to validate the numerical results.

Fig. 1.

The Sofia soft robot

A. Leg’s procedural modelling

We modelled the Sofia’s leg as the extrusion of a 2D
profile. The extrusion thickness is fixed. This 2D profile is
the difference of two 2D shapes, each defined by splines
(one for the external profile of the leg, the other for the
inside border of the hole). [ToEdit: Each spline is pixelated
and then we get the discretized distance function from it
thanks to a fast marching algorithm. We thus get two (2D)
relative distance functions dy, ds. The 2D-difference is got
by the the fuction f = max(d;, —ds). Finally, the extrusion
of thickness e is obtained by the function max(

In our case, the motor rotates in both orientations. Con-
sequently, we impose axial symmetry between left and
right side (see Figure 2). The splines’ control points are
procedurally generated allowing to control how many control
points to use. [ToEdit: In practice, the top and the bottom
part of the external spline are frozen, so three pairs of control
points are fixed (two for the top, one for the bottom). We
tried two configurations: 3 free pairs for the hole and 1 for
the external spline (tot. 4), or 5 + 4. The pairs of control
points are uniformly distributed between two extremities.
These extremities are frozen for the external spline but free
for the hole].

i, )

Fig. 2. From left to right. The 2D parametrization. The 2D difference
of the two 2D shapes. The resulting extruded shape. The resulting meshed
version of the leg.
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B. Optimization with design constraints

The optimization is conducted on FEM simulations. We
suppose that the shape is attached at its top part. A virtual
motor wheel is attached to the bottom of the leg. Note
that to perform equivalent tests in simulation and with the
experimental set up (see section IV-C), we imposed that
the motor has a slow circular movement. In practice, this
leads to underestimation of the damping. At each time step,
the relative power and torque provided by the virtual motor
are evaluated. [ToEdit: The simulation provides the forces
applied by the virtual wheel to the leg and the velocities of
the attachment points: the torque is the sum of the vectorial
products between the forces and the vectors between the
attachment points and the center of the wheel, and the
power is the sum of the scalar products between the forces
and the velocities of the attachment points]. We record the
maximal torque, and we integrate the power, separating the
positive from the negative part. The “positive” part is the
energy provided by the motor to store the potential energy of
deformation inside the leg. The “negative” part is the energy
released by the leg.

The objective is: given a torque threshold T};,, we want
to get a shape such that the maximal torque provided by the
motor does not go beyond the torque threshold and secondly
that maximizes the amount of released energy.

1) Fitness function: Let E denotes the amount of released
energy and F) be its order of magnitude for a reference shape
(we chose Fy = 0.10J because ' = 0.40J for the initial
shape). Let T3, be the torque that should not be overtaken,
and let T},,, be the maximal torque provided by the virtual
motor.

We have a first fitness function ¢ = —Eﬂo and a second
expression with the constraint ¢o = max(%ﬂ).
r

Minimizing ¢ and ¢; conducts respectively to Ti4, <
Tinr and E maximized. In this formula, EEO is the
term to optimize, and the second term is a penalty:
max(n"”ﬁ—;f“”,O) = 0 means Trar < Tinr. We multiply
this term by k, so that the penalty is greater than 1 if
Tmaz > (1.0 + 1.0/k)Typ,. Since vanishing the penalty is
much more important than maximizing E/Ej, in practice
we use the fitness function:

¢ = ¢1 + (ko2)>. ¢))

[ToEdit: Remark: ¢; and ¢ are built to be dimension
free and the values of ¢; are expected to be a few unities at
convergence, and the values of ¢, to be zero. In practice, we
used £ = 10 so that the penalty function becomes significant
when the maximal torque exceed the threshold more than 10
percent. That is why it is not ensured that the result will
strictly respect the threshold. To ensure it, or reduce the
margin, the penalty value should be increased but it may
prevent the convergence of the optimization].

2) Other penalties: Undesirable side effects may appear
while maximizing E. Therefore, we had to refine the fitness
function to penalize them. First, to be realistic, we need
to take into account the self-collisions. However, they are



undesirable since they could cause erosion to the real leg.
We thus add a penalty term in the fitness function penalizing
self-collision. [ToEdit: At each time step, the normal self-
collision forces are added up together, and the maximum
of these sums (for every time steps) is recorded. The self-
collisions are thus penalized similarly to the maximal torque,
but the threshold is zero. The corresponding penalty function
is then added to the function ¢.] Secondly, it may happen
that, when compressed, the leg buckles and leaves the xy-
plane. It is penalized too, [ToEdit: comparing the maximal
distance of the points in the mesh to the xy-plane, to a
threshold, around 20 percents of the thickness of the leg.
Similarly, the corresponding penalty function is added to the
function ¢.]

Finally, as mentioned in Section III, we wanted to identify
a reliability criteria”. In practice, we used the total integral
of the relative power during the whole rotation. This value
should be close to zero as the damping is underestimated
(see above) and the integration scheme (semi-implicit Euler)
should only lead to small energy loss. But, in practice, if
for some reason the scene is not reliable and cannot be
correctly simulated, this value is far from zero. In such
case, penalization allows to reject these shapes from the
optimization.

At that point, we can define the fitness function. Let T
be the set of our admissible shapes. We defined above a
fitness function ¢ : F — R. The space F is parametrized
by the y-coordinates of the pair of control points, and their
distance to the y-axis, for the external and internal splines. In
order to resize the parameters, we actually impose bounds to
the distances, and the y-coordinates are relatively uniformly
distributed between two ends. These ends are fixed for the
external spline, but free for the internal one. Thereby, we get
a function [0, 1]™ — F, where n is related to the number of
control points, and consequently a function @ : [0,1]™ — R,
that can be minimized by the CMA-ES algorithm. For this,
we have to choose CMA-ES parameters like population size
and searching radius, that will not be discussed here.

C. The physical test bench

In order to validate our numerical results, we set up a test
bench. [ToEdit: Since the motion in the numerical simulation
is very slow, in order to underestimate the damping, we
first made a quasi-static experiment, evaluating the torque
in many positions, to estimate the maximal torque, and
check that it is consistent with the numerical evaluation.
Readers should notice that because of this bias, numerical
and physical experiments do not have the same behavior in
the video.] The results are summarized in Table II (in ¢c/N.m).
We used a system of two pulleys with a belt to multiply
the maximal torque delivered by the motor. However, it
appears that the test bench was not strong enough to actuate
the shapes whose maximal torque were supposed to be at
least 0.20N.m. The maximal torque is reached while the
compression phase of the shape. [ToEdit: Unfortunately,
we could not reproduce exactly the numerical experiment,

because we did not manage to get a slow constant speed.
Consequently, we did not evaluate the energy transfer.]

Fig. 3. The physical test bench. On the right we can see the tested leg
and on the left the motor and the force sensor.

V. RESULTS

We run several experiments with different maximal torque
thresholds. The results we got are gathered in the following
tables. [ToEdit: For each experiment, we started from the
same initial handmade shape. This initial shape is defined by
4 free pairs of control points. However, the number of control
points is constant during the experiment. Thus, in case we
want to optimize the shape with 9 pairs of control points, the
algorithm first adds some pairs, with very little modification
of the shape]. The two metrics in our experiments are the
maximal torque and the amount of energy released (in cJ
and cN.m).

A. Simulation’s results

In Figure 4 we expose the results we got when varying the
torque threshold and the number of spline’s pairs of control
points. Numerical results are presented in Table I.

lelole
wlolo

Fig. 4. Initial shape (labelled 0) for the optimization and different shapes
(labelled 1 to 6) obtained by numerical experiments (see table I)

From the results, we can see that the torque thresholds
are reached. [ToEdit: In some (not reported) experiments, it
may happen that they are overtaken, typically of 10 percents,
because the penalty function is such that it becomes greater



Torque Threshold | Max. Torque | Energy | Nb of Pairs | Shape
initial shape 30 40 4 0
10 9.9 19 9 1
10 10 20 4 2
15 15 32 9 3
15 15 32 4 4
25 25 46 9 5
30 29 53 9 6
TABLE I

THE DIFFERENT TARGETED TORQUE THRESHOLDS AND THE RESULTS
OBTAINED FROM THE ALGORITHM AS WELL AS ENERGY RELEASED FOR
DIFFERENT NUMBERS OF PAIRS OF CONTROL POINTS (UNIT: cN.m , ¢.J)

than 1.0 only when the threshold is overtaken of 10 percents.
Refining the penalty function could correct this bias]. We also
noticed that the quality of the result is independent of the
complexity of the geometry. Poor geometries, encoded by 4
pairs of free control points reach the same level than those
encoded by 9.

B. Test bench results

To get insight on the approach, we tested the shape pro-
duced by our algorithm with a real test bench. [ToEdit: As
previously mentioned, we did not reproduce the numerical
experiment with the test bench, since we did not manage to
get a constant slow speed. Instead, we just evaluated the
torque in many positions to check the coherency on the
measures of maximal torques. Each experiment was repeated
a few times, and the extremal measures are reported.]

Exp. (cN.m) ‘ Min Measure (cN.m) Max Measure (cN.m)

15 12.9 15.9

10 9.4 10.5

5 4.0 5.8
TABLE I

ON THE LEFT ARE THE EXPECTED TORQUES, AND ON THE RIGHT THE
EXTREMAL MEASURES.

VI. DISCUSSION

Two points of the method and the results need to be
discussed.

o The definition of the fitness function has obviously an
important impact on the results. It is important to pe-
nalize all the constraints to avoid unexpected behaviors.
Yet, these constraints are sometimes not obvious at the
beginning of the design process. For instance, in our
case, we have run several optimizations before getting
the final fitness function, in particular because we have
progressively added new constraints.

e One of the good properties of the FEM models is that
the increase in mesh resolution converges towards a
single solution. However, in the particular case of the
leg studied in this article, it happens that the optimal
solutions are often around forms, which, when they
deform during the imposed motion, are at the limit
of the self-collision. Then, a small change in mesh

resolution can create a self-collision when there was
none before, which has a big impact on the fitness
function.

VII. CONCLUSION AND FUTURE WORK

In this paper we present our work on soft robots optimiza-
tion. To make this possible we presented how we model
soft robots’ shape using a procedural approach and how
it interacts with the simulation framework to evaluate the
fitness function of the generated shape.

Several points were raised during the discussion and there
are many ways to improve this rather preliminary work. In
the future, we plan to integrate tools to facilitate the imple-
mentation of formatting functions and to provide a solution to
better deal with auto-collision cases. In addition, we would
like to test the method for more difficult design tasks and
therefore further increase the computational requirements.
However, it will also be important to keep in mind that in
a practical case, it will be necessary for the optimization to
be done in reasonable time to actually be used in a design
pipeline.
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