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Abstract

Picking is the process of retrieving products from inventory. It
is mostly done manually by dedicated employees called pickers and is
considered the most expensive of warehouse operations. To reduce the
picking cost, customer orders can be grouped into batches that are
then collected by traveling the shortest possible distance.

This work presents an exponential linear programming formulation
to tackle the joint order batching and picker routing problem. Vari-
ables, or columns, are related to the picking routes in the warehouse.
Computing such routes is generally an intractable routing problem and
relates to the well known traveling salesman problem (TSP). Nonethe-
less, the rectangular warehouse's layouts can be used to e�ciently solve
the corresponding TSP and take into account in the development of
an e�cient subroutine, called oracle. We therefore investigate whether
such an oracle allows for an e�ective exponential formulation.

Experimented on a publicly available benchmark, the algorithm
proves to be very e�ective. It improves many of the best known solu-
tions and provides very strong lower bounds. Finally, this approach is
applied to another industrial case to demonstrate its interest for this
�eld of application.

Keywords: order batching, picker routing, column generation.

1 Introduction

Order picking is often considered the most important warehousing process
since it estimatedly accounts for the majority of the total operational ware-
house costs (Tompkins et al., 2010). Pickers follow routes in the warehouse
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pushing a trolley. They collect items to form customer orders. To save time,
several orders might be batched, i.e., put together to be collected in one single
route. This is possible as long as they respect capacity constraints, namely
they �t in a trolley. A key decision is therefore how to group customer's
orders to minimize the total walked distance.

Once the batch is computed, the problem of identifying the shortest
route in the warehouse to visit all the locations required by a given batch
is called the picker routing problem (PRP). It has been widely studied in
regular rectangular warehouses (Ratli� & Rosenthal, 1983; Hall, 1993; Pe-
tersen, 1997; de Koster & Van der Poort, 1998; Vaughan, 1999; Roodbergen
& de Koster, 2001a,b; Pansart et al., 2018) and to the best of our knowledge,
it can not be solved in polynomial time. However, the quality of the picking
routes strongly depends on the batching decisions that are made prior to
the routing decisions. It is quite clear that both sets of decisions should be
taken jointly to ensure an e�cient picking policy: this problem is known as
the joint order batching and picker routing problem (JOBPRP, Valle et al.
(2017)).

In this work we propose an exponential linear programming (LP) formu-
lation of the JOBPRP, where variables (or columns) are related to single
picking routes in the warehouse. More precisely, a column refers to a route
involving a set of picking operations and satisfying the side constraints re-
quired at the trolley's level, such as the capacity or the possibility to mix
orders. Computing such a picking route is an intractable routing problem
in general and, depending on the warehouse layout, can closely relate to the
traveling salesman problem (TSP). The rationale of our approach is however
to consider that the PRP alone is easy enough in practice, due to nowadays
warehouses structure, to be solved exactly. This assumption is a cornerstone
of the proposed algorithm and is supported by the existing literature on the
PRP as well as the previous work and industrial experience of the authors
(Bué et al., 2018; Pansart et al., 2018; Cambazard & Catusse, 2018). In the
HappyChic industrial case presented in Section 4.2, the graph that repre-
sents the warehouse is acyclic and therefore computing picking routes boils
down to an easy path problem. This is a common situation when the tra�c
in the warehouse is unidirectional for safety reasons. Most often, warehouses
have a regular rectangular structure made of aisles and cross-aisles with a
bidirectional tra�c. This layout is used in the benchmark proposed by Valle
et al. (2017) and coming from the Foodmart database. In such a layout,
Ratli� & Rosenthal (1983) and Roodbergen & de Koster (2001b) have shown
that dynamic programming algorithms can take advantage of the rectangu-
lar structure to e�ciently solve the corresponding TSP when the warehouse
has two or three cross-aisles. Moreover this approach has been shown in
Cambazard & Catusse (2018) to scale to rectangular warehouses with up to
eight cross-aisles, which is beyond most real-life warehouse's sizes.

Based on these previous works, our approach assumes that an e�cient
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oracle is available to provide optimal picking routes in the warehouse. We
show that such an oracle allows for a very e�cient exponential LP formula-
tion of the JOBPRP. The pricing problem can be seen as a prize-collecting
TSP with a capacity constraint, and the pricing algorithm heavily relies on
the picking oracle to generate cutting planes. A number of improvements
are proposed to speed up the pricing. A feasible solution is obtained by solv-
ing a mixed integer program (MIP) with the known columns once the LP
relaxation has been computed. The reported lower and upper bounds pro-
vide an optimality guarantee and considerably improve the existing results
of Valle et al. (2017). Finally, the proposed methodology is applied on two
distinct industrial benchmarks, Foodmart and HappyChic, that have slightly
di�erent warehouse structures. This contributes in asserting the interest and
generality of this approach.

The remainder of the paper is organised as follows. Section 2 states the
JOBPRP by slightly generalizing the speci�cations proposed in Valle et al.
(2017). A literature review is then given in Section 3. Section 4 presents the
approach on the two industrial cases, namely Foodmart (Section 4.1) and
HappyChic (Section 4.2). The main focus is on Foodmart since it allows a
comparison to previous academic work. The presentation on the HappyChic
case highlights the di�erences to Foodmart without going into details since
the same methodology is applied. Numerical results are reported in Section 5
while Section 6 concludes the paper.

2 Problem speci�cations and industrial applications

The warehouse layout is modeled as a directed graph G = (V,A) where V
contains two types of vertices, locations and intersections as well as two
depots: V = VL ∪ VI ∪ {s} ∪ {t}. Each location in the location set VL
contains one or more products to be picked, whereas the intersections in VI
are used to encode the warehouse structure and allow the picker to change
direction. Additionally, s denotes the depot where picking routes start and
t is the depot where routes end and items are dropped o�. s and t can
be located at the same spot. Moreover dij denotes the distance associated
with each arc (i, j) ∈ A while Dij is the shortest path distance for each pair
(i, j) ∈ (VL ∪ {s} ∪ {t}) × (VL ∪ {s} ∪ {t}). Note that if (i, j) ∈ A, then
dij = Dij .

Figure 1 shows two typical examples of warehouse layouts used as bench-
marks in the present paper. A regular rectangular layout made of three
vertical aisles and three horizontal cross-aisles is shown on Figure 1a. Prod-
ucts are located on both sides of vertical aisles; cross-aisles do not con-
tain any products but enable the order picker to navigate in the warehouse.
Such a layout has been used by numerous authors in the past to de�ne the
PRP (Roodbergen & de Koster, 2001a). It is the setup of the Foodmart
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benchmark. Figure 1b shows an acyclic layout where pickers are not allowed
to backtrack. It is another typical industrial setup where the �ow is con-
strained in a single direction and an aisle must be entered and exited on the
same side. It is the setup of the HappyChic benchmark.

(a) Foodmart benchmark (b) HappyChic benchmark

Figure 1: Examples of two warehouse layouts with the corresponding directed
graph encoding the possible moves of the picker, to pick products at the
locations in grey.

The set of products is denoted by P. A product may have several di-
mensions such as weight and volume and we refer to the set of dimensions
as W. A product p ∈ P is characterized by its location vp ∈ VL and its size
V w
p in each dimension w ∈ W.
The pickers need to prepare a set of orders that is referred to as O

(|O| = m); an order o ∈ O is de�ned as a set of products with an associated
quantity to pick. We de�ne an order line as a product to pick with the
associated quantity and we denote by L the set of all order lines to be
prepared (|L| = n). As a consequence an order o ∈ O is de�ned as a set
of order lines that will be indicated by Lo ⊆ L. Then, an order line l ∈ Lo
related to an order o is de�ned as a pair (pl, Ql) where pl ∈ P de�nes the
product and Ql is the number of such products to pick.

Note that the size of order o in dimension w is simply computed as
V w
o =

∑
(pl,Ql)∈Lo V

w
pl
Ql. Moreover, an order can be split in at most Bo

boxes.
The picking operations in the warehouse consist in the collection of order
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lines by pickers that push a trolley with B boxes. A box has a capacity V w

in dimension w ∈ W. The quantity Ql of an order line l can be split among
several boxes: a box is therefore �lled with what we call partial order lines.
A partial order line is a pair (l, q) that determines the quantity q of order
line l collected in a speci�c box (q ≤ Ql). A box can only contain partial
order lines from a single order.

A solution is a collection of routes K̄ from s to t in the warehouse layout
G. Each route k is performed by a picker that pushes a trolley and collects
partial order lines into its boxes Bk (|Bk| = B). Each box b ∈ Bk contains a
set of partial order lines L̃kb of a single order. The capacities of the boxes
must be satis�ed in each dimension w ∈ W i.e.

∑
(l,q)∈L̃kb qV

w
pl
≤ V w,∀w ∈

W. Finally, all order lines must be picked. The objective is to minimize∑
k∈K̄ dk where dk is the optimal distance to pick all the partial order lines

of route k.

The speci�cations given above are general enough to encompass the two
industrial cases used as benchmark. They are slightly more general than the
ones used in Valle et al. (2017), in order to address the HappyChic case as
well. The industrial context of each application is summarized below.

Foodmart case. This �rst case originates from online grocery shopping,
where orders may be composed of dozens of items. The datasets
have been designed by Valle et al. (2017) from the publicly available
database (Thia (2008)) composed of anonymised customer purchases
over two years for a chain of supermarkets. We list below the partic-
ularities of this application regarding the general problem description.
First, there is a single dimension for products and boxes (|W| = 1).
The box capacity V 1 expresses the maximum number of items it can
contain. Therefore, each product p has a size V 1

p = 1. In this case,

Bo = dV
1
o
V 1 e denotes the exact number of boxes required by order o.

Second, an order must be picked entirely by a single trolley. Thus, it is
assumed that Bo ≤ B in the benchmark proposed by Valle et al. (2017).

HappyChic case. HappyChic is a French company specialized in men clothes,
that runs a warehouse located in the North of France, dedicated to
clothing products for the brand Jules. This warehouse supplies shop
located all over France. An order o represents the demand of one shop
and thus counts many order lines. As a consequence, an order does
not usually �t into one box, but may be split into several boxes. The
maximum number of boxes Bo to pick an order o is used to guarantee
a good �lling rate of the boxes and consequently reduces the trans-
portation costs. Two dimensions are considered for the box capacity:
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weight and volume. Hence, a box has a maximum weight V 1 and a
maximum volume V 2 and each product p ∈ P has a product weight
V 1
p and a product volume V 2

p .

To ease the pickers' task and for safety reasons, a walking direction

policy is imposed in the warehouse. Aisles are ordered following a
clockwise direction and pickers must visit them in this same order.
Moreover, visiting an aisle follows a backtracking policy : when a picker
gets into the aisle, he/she walks until the position of the furthest prod-
uct to pick, then he/she crosses the aisle and walks back until the be-
ginning of the aisle, possibly picking other products on the way. Thus,
the associated warehouse layout graph G is acyclic (see Figure 1b).

Pickers push a trolley with up to B = 6 boxes, that can be used
to prepare di�erent orders. Moreover, boxes associated to the same
order can be assigned to di�erent trolleys. A route is thus a batch
of up to B = 6 boxes possibly associated with di�erent orders. When
a picking route is completed, the picker drops o� the boxes on a
conveyor belt located in the middle of the picking zone, that brings
the boxes to the delivery zone. As a result, the picking zone contains
multiple depots (one for each aisle in the warehouse). Then in this
case, s and t represent �ctive depots, with a �xed distance with all
actual depots.

3 Literature review

Warehouse management includes several optimization problems such as con-
ceiving picking routes, batching orders, storage assignment, layout design
and zoning (see, for example de Koster et al. (2007)). To optimize produc-
tivity into a warehouse di�erent decisions may be taken. These decisions can
be associated with di�erent time horizons. Strategic decisions determine the
layout of the warehouse and the positioning of each zone (receiving, storage,
picking and delivery) with respect to the others. The decisions that involve
the storage and picking policy can be viewed as strategic decisions as well.
Tactical decisions can involve determining the location of products based on
their forecast demand in the storage and picking zone. Finally, at the oper-
ational level batches of orders and order picking routes need to be e�ciently
computed (de Koster et al., 2007; Marchet et al., 2015).

Based on the available technology of the warehouse, picking operation
can be classi�ed in �ve classes (Marchet et al., 2015):

Picker-to-parts where pickers move around the warehouse to pick items;

Parts-to-picker where automated devices bring loads to pickers that are
in charge of picking the right quantity required by the order under
consideration;
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Pick-to-box where pickers are assigned to di�erent zones and boxes con-
taining customer orders move by means of a conveyor through di�erent
zones in order to be �lled;

Pick-and-sort where orders are batched and pickers collect items of a cer-
tain product to satisfy orders in the whole batch � then a conveyor
brings all the items to the sorting area where orders are formed;

Completely automated picking where humans do not intervene.

The majority of warehouses implement picking systems where the hu-
man presence is necessary for operations (de Koster et al., 2007). Recent
studies (Ecommerce-Europe, 2017; Marchet et al., 2015) show the cost of
automation is too high to be pro�table in short or mid term horizons.
Thus the travel time to pick products that constitute orders, which is the
largest component of labour in classical warehouses (Bartholdi & Hackman,
2017), can represent up to 60-70% of the whole operating cost of the ware-
house (Chen et al., 2015). For these reasons and since this paper deals with
human picking operations, we concentrate our review on papers related to
picker-to-parts systems.

The picker routing problem (PRP) can be seen as the problem of picking
a list of products located in the warehouses, minimizing the traveled distance
or time. More formally, the picking zone of the warehouse is composed of
v vertical aisles and h horizontal cross-aisles. The horizontal cross-aisles
usually do not store products and are used by pickers to move from one
vertical aisle to another. We note the set of products to be picked as V̄L ⊂ VL.
Thus, the relevant set of location for the order picking problem is V̄L ∪ VI .
The PRP answers the question: given the set V̄L, what is the shortest (with
respect to distance or time) route to pick all the products in V̄L? This
problem is a particular case of the classical travelling salesman problem (TSP,
Dantzig et al. (1954), Orman & Williams (2006)) in which the picker is the
salesman. The TSP is known to be NP-hard in the general case (Karp, 1972).
The PRP can also be seen as a Steiner TSP (Fleischmann, 1985; Cornuéjols
et al., 1985). The Steiner TSP distinguishes between locations that can be
visited (here the intersections, VI) and locations that must be visited (here
V̄L).

Due to the particular structure of the warehouse layout graph, e�cient
exact approaches can be obtained using the dynamic programming paradigm.
The �rst attempt has been proposed in Ratli� & Rosenthal (1983) for the
case of a single block (i.e., 2 cross-aisles) in 1983. Recently, Cambazard &
Catusse (2018) developed a dynamic programming approach which can solve
any rectilinear TSP and can therefore solve the PRP for any rectangular
warehouse with h cross-aisles. However its complexity is exponential in h.
The reader interested in exact algorithms for the PRP is referred to the
recent survey by Pansart et al. (2018).
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The PRP is solved when the set of products to be picked, called the
batch, has already been determined ( i.e. the batch is an input of the
PRP). The batch constitution rules can di�er based on the picking policy
of the warehouse. A batch can correspond to a single order or be the
union of di�erent orders. In the latter case, the picker picks items of sev-
eral orders at once, thus reducing the total walking distance. How orders are
batched together is an optimization problem in itself, called the order batch-
ing problem (OBP). The OBP answers the question: how to batch orders
together such that the travelled distance or time to collect all the products
is minimized? The OBP is known to be NP-hard in the strong sense in the
general case and polynomially solvable if batches contain at most two orders
(Gademann & Van de Velde, 2005).

Constructive heuristics to batch orders can be classi�ed in three classes
(de Koster et al., 1999). The �rst considers simple sequential strategies, such
as the First-Come First-Served batching heuristic, where orders are sorted
based on their arrival at the warehouse and batches are created accordingly
respecting capacity constraints (Gibson & Sharp, 1992). A second class
consists of seed algorithms which �rst identify a seed order, then associate
the remaining orders with a seed order to construct a batch. The third
class of batching algorithms make use of the saving paradigm and is inspired
from the Clarke and Wright heuristic (Clarke & Wright, 1964): initially each
order constitutes a batch, then the savings in distance or time of merging
two batches is calculated. The merge leading to the largest distance or time
reduction is implemented.

The di�erent batching strategies can be evaluated by �xing a routing
algorithm that calculates the total travelled distance or time (de Koster
et al., 1999). This is usually performed with the so-called S-shape algorithm
or the Largest-gap strategy (de Koster et al., 1999; Henn et al., 2010), or
a combination of these two algorithms (Roodbergen & de Koster, 2001a;
Menéndez et al., 2017). The main di�erence between the two strategies is
that in the former the picker that enters one aisle goes across the entire aisle,
while in the latter it gets in and out from the same side of the aisle.

Recently, trajectory-based and population-based approaches relying on
local search procedures have been developed for the OBP. As an example,
Henn et al. (2010) propose an iterated local search as well as a ant colony
algorithm, while Menéndez et al. (2017) use a variable neighbourhood search.
The interested reader is referred to the survey by Cergibozan & Tasan (2016).

As the reader may notice, the PRP and OBP are strongly linked, since
the OBP needs to be solved to provide an input for the PRP while the PRP
is solved to evaluate the e�ciency of procedures developed for the OBP. As
a consequence the scienti�c community started considering the integrated
problem where the OBP and the PRP are simultaneously considered and
solved. The problem that arises is the joint order batching and picker rout-
ing problem (JOBPRP). Won & Olafsson (2005) consider the JOBPRP se-
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quentially by �rst batching orders and second by solving a TSP for each
batch. Kulak et al. (2012) propose a tabu search heuristic in which the
initial batches are created with a clustering method and the routing is cal-
culated using TSP-based heuristics such as savings and nearest neighbour
heuristics for routes construction and Or-opt and 2-opt heuristics for routes
improvement. New solutions are created by relocating and swapping orders
among batches. Cheng et al. (2015) use a particle swarm optimization ap-
proach to batch orders and an ant colony optimization algorithm to optimize
the order picking. To the best of our knowledge, the only exact approach for
the JOBPRP so far has been proposed by Valle et al. (2017). They develop
a branch-and-cut algorithm, and the initial solution is computed using a
saving heuristic.

Whenever due dates are associated with each order, the sequence on
which orders are processed have an impact on the total tardiness of the
operations. As a consequence, scholars started considering the integrated
problem that simultaneously consider order batching, order sequencing and
picker routing. The interested reader is referred to the recent survey on these
problems by Cano et al. (2018).

4 Proposed approach

We propose an exponential LP formulation of the JOBPRP where variables
or columns represent picking routes in the warehouse. A column refers to a
route involving a set of picking operations and satisfying the side constraints
required at the trolley's level. The exact de�nition of a column strongly
depends on whether an order can be split in several trolleys or not. Thus
details of the proposed methodology are presented separately for the two
problems encountered by Foodmart (Valle et al., 2017) (Section 4.1) and
HappyChic (Section 4.2). However the same heuristic framework is applied
in both cases.

Let us introduce some notations. The exponential LP formulation with
integer variables is denoted (M). The set of all feasible picking routes
(columns) is denoted K. The linear relaxation of (M) is the so-called master
problem and denoted (LM).

Since the set K of the columns de�ning (M) and (LM) is of exponential
size, we de�ne programs (M(K′)) and (LM(K′)) obtained from (M) and
(LM) on a subset of columns K′ ⊂ K. (LM(K′)) will be called the restricted
master problem.

In order to tackle the exponential number of variables, we develop a
column generation procedure to add negative reduced cost columns into the
restricted master problem.

The proposed algorithm is a heuristic that provides performance guaran-
tee with upper and lower bounds on the optimal value of the master prob-
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lem. At each iteration of the column generation, a lower bound on the
master problem is computed, namely the Lagrangian bound. Once the mas-
ter problem has been solved to optimality (or after a time limit), an integer
solution is obtained by solving the integer version of the restricted master
problem, containing all the columns generated during the procedure. This
step provides a feasible solution and thus an upper bound on the optimal
value.

Columns of negative reduced cost or a proof that no such column exists is
obtained by solving the so-called pricing problem, denoted (Pr(K′)). It is a
mixed integer linear programming (MIP) model given for each application. It
encompasses the constraints related to a single trolley to the exception of the
routing part. The exact route distance is not initially modeled in (Pr(K′)).
It is increasingly approximated into (Pr(K′)) with the use of cutting planes
computed with the oracle for the picker routing problem. Two key elements
are then used to solve the pricing problem e�ciently:

Tour constraints are iteratively added as cutting planes to (Pr(K′)). These
constraints are based on the known picking routes K′. They allow to
iteratively improve the estimation of the distance associated with the
column that (Pr(K′)) should provide.

A relaxation of the routing part added to (Pr(K′)). To strengthen the
formulation of (Pr(K′)), a set of constraints that model the routing
are added to the formulation of (Pr(K′)). However to not increase
the di�culty of solving (Pr(K′)), the variables involved in these new
constraints are kept real.

The outline of the proposed column generation procedure is presented in
Algorithm 1.

Note that the pricing problem (Pr(K′)) is solved twice, on lines 6 and 9
of Algorithm 1. The routing relaxation is added to the model at the second
call, when the �rst call has failed. The addition of the routing relaxation
helps to derive a lower bound of the pricing problem, which in turn might
help to improve the Lagrangian bound.

This approach with the pricing problem di�ers from what is usually done
to solve routing problems with branch-and-price paradigms. In that case the
pricing problem consists in solving an elementary shortest path problem with
resources constraints (ESPPRC), the solution of which corresponds to the
route (the column) to add into the restricted master problem (Feillet, 2010).
This kind of pricing algorithms rely on the representation of partial paths
(that represent partial solutions) by labels that are extended during the ex-
ploration of the graph on which the shortest path with resources constraints
is computed. The extension of a label means including a new customer visit
into the partial solution. The cost of the new label can be calculated in O(1)
and is the sum of the cost of the extended label plus the cost of the arc
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Algorithm 1 Column generation heuristic.

1: K′ ← a set of initial columns (picking routes)
2: LB ← 0
3: Initialize stabilization (arti�cial variables, initial target, penalization

function)
4: while (LM) is not solved to optimality and time limit is not reached
do

5: Solve (LM(K′))
6: Solve (Pr(K′))
7: LagB ← compute Lagrangian bound
8: if (Pr(K′)) has not found a negative reduced cost column then
9: Solve (Pr(K′)) with routing relaxation
10: LagB ← update Lagrangian bound
11: end if

12: LB ← max {LB;LagB}
13: Compute Krich, a rich column set from the columns found by (Pr(K′))

14: K′ ← K′ ∪ Krich
15: if lower bound of (Pr(K′)) ≥ 0 and all arti�cial variables are zero

then

16: (LM) has been solved to optimality by (LM(K′))
17: else

18: Update stabilization (target, penalization function)
19: end if

20: end while

21: UB ← value obtained by solving (M(K′))
22: Post-optimization of the best solution
23: UB ← value after post-optimization

linking the last customer in the partial path and the new added customer.
In our case, adding an order to a picking route consists in adding a set of
picking locations to the partial picking route. As a consequence, the cost up-
date cannot be made in constant time and labelling-based approaches would
not easily extend to this more general case.

The performances of the proposed column generation algorithm are strength-
ened using the following key elements:

A rich column set Krich is added into the restricted master problem at
each iteration of the column generation (line 13 of Algorithm 1). For
each column generated by the pricing problem, two di�erent strategies
are considered to �ll Krich: (i) the column is completed with a set
of columns that constitute a feasible solution of (M), and (ii) similar
columns with fewer order lines are generated and also added into the
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master problem. Each column generated when solving the pricing thus
gives rise to a number of additional columns enriching the pool of the
master.

The aim of the rich column set is to speed up the solving of the master
problem (LM) and to improve the quality of the bounds.

A stabilization technique is introduced into the column generation in or-
der to reduce the stability issues usually encountered at the beginning
of column generation procedure. It is performed in lines 3 and 18 of Al-
gorithm 1. Among the di�erent methods for stabilizing dual variables
(see for example Briant et al. (2008)), the one chosen in this paper
consists in adding bounded arti�cial variables whose cost corresponds
to a target that is regularly updated.

The master problem, the pricing problem and the features of the al-
gorithm are presented in details in Sections 4.1 and 4.2 for Foodmart and
HappyChic cases respectively.

4.1 Case of Foodmart

4.1.1 Master problem

The formulation is presented here for the case studied by Valle et al. (2017)
and speci�ed in Section 2, where an order must be entirely collected in a
single trolley. Let us denote by K the set of all subsets of orders in O that
satisfy the trolley's capacity: K = {S ⊆ O |

∑
o∈S Bo ≤ B}. An element

k ∈ K can be represented as a column ek = (ek1, . . . , e
k
o , . . . , e

k
m) where each

eko ∈ {0, 1} indicates whether all products of order o are included or not in
the element k. In the following, a column k can be written as a subset of
orders {i ∈ O|eki = 1} for sake of simplicity. We denote by dk the distance of
an optimal route to collect all the products of the subset of orders k. With
an abuse of terminology we will call K the set of all feasible routes and an
element k ∈ K a route. In this case we refer to an optimal route of length
dk needed to collect all products in k.

The formulation is based on variables ρk ∈ {0, 1} expressing whether a
route k is chosen. An exponential integer formulation (M) can be written
as follows:

(M)


min

∑
k∈K

dkρk

s.t.
∑
k∈K

ekoρk ≥ 1 ∀o ∈ O (1)

ρk ∈ {0, 1} ∀k ∈ K (2)

Constraints (1) make sure that each order is collected and the objective is
to minimize the total distance required to collect all orders. We focus on the
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linear relaxation (LM) of this formulation. Moreover, since K is exponential
in size, the formulation is de�ned in practice on a subset of known routes
K′ ⊂ K and the restricted master problem (LM(K′)) is:

(LM(K′))


min

∑
k∈K′

dkρk

s.t.
∑
k∈K′

ekoρk ≥ 1 ∀o ∈ O (3) (βo)

ρk ≥ 0 ∀k ∈ K′ (4)

Note that it is not necessary to enforce ρk ≤ 1 since it is satis�ed in all
optimal solutions (assuming dk > 0, ∀k ∈ K, which is always veri�ed in
practice).

The optimal value of such an exponential formulation can be computed
by a technique known as column generation. The simplex algorithm does not
need all variables to be explicitly included in the model, but only requires an
algorithm, referred to as the pricing algorithm, to provide at each iteration
a negative reduced cost variable or to prove that none exists. Let us denote
by βo the value of the dual variable related to Constraint (3). By de�nition,
the reduced cost rk of a route k is de�ned as:

rk = dk −
∑
o∈O

βoe
k
o

The pricing step must identify a feasible route k (satisfying the capacity
constraint) so that rk is negative; or it must prove that no such route exists
to terminate the simplex algorithm.

4.1.2 Pricing problem

The PRP consists in computing the optimal distance dk of a route k to col-
lect a given set of orders. As explained before, it is considered a hard problem
in itself for rectangular warehouses but can be addressed e�ciently using dy-
namic programming. Recall that we assume that an oracle to compute dk
is available. In practice we use the algorithm proposed by Cambazard &
Catusse (2018) for the rectilinear TSP and experimented in Pansart et al.
(2018) for the PRP.

The pricing step is solved by a cutting plane algorithm based on the fol-
lowing model:
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(Pr(K′))



min d−
∑
o∈O

βoeo

s.t.
∑
o∈O

Boeo ≤ B (5)

dk

(∑
o∈k

eo − |k|+ 1

)
≤ d ∀k ∈ K′ (6)

eo ∈ {0, 1} ∀o ∈ O (7)
d ≥ 0 (8)

Variable eo indicates whether order o is selected and Constraint (5) en-
forces the maximum number of boxes in a trolley. Variable d encodes a lower
bound of the distance of a route. It is strengthened by the dynamic gener-
ation of Constraints (6) that are called the tour constraints. Typically, any
selection of orders that is a superset of a known set of orders k must require
a distance longer than dk so that d ≥ dk. Constraints (6) simply states this
relation for all sets of orders K′ known in the restricted master problem and
generated during the pricing algorithm.

Note that when route k visits a pair of orders i and j, i.e. k = {i, j},
Constraints (6) writes as follow:

d{i,j}(ei + ej − 1) ≤ d ∀k ∈ {K′|k = {i, j}}

In this speci�c case, the constraint can be improved using the geometric fact
that d{i,j} ≤ d{i}+ d{j}. We use instead the following constraint for pairs of
orders:

d{i}ei + (d{i,j} − d{i})ej ≤ d ∀k ∈ {K′|k = {i, j}} (6 bis)

In the following, the optimal value of (Pr(K′)) is denoted φ∗(β,K) so
that φ∗(β,K) = min

k∈K
(dk −

∑
o∈O

βoe
k
o).

Notice �rst that for any set K′ of known routes, the optimal value
φ∗(β,K′) of (Pr(K′)) gives a lower bound of the best possible reduced cost
φ∗(β,K) so that

φ∗(β,K′) ≤ φ∗(β,K)

The pricing algorithm works by iteratively solving (Pr(K′)), re-evaluating
the exact distance and adding the corresponding tour constraint. Its princi-
ples are given in Algorithm 2.

A limit of this approach is that the number of tour constraints generated
by (Pr(K′)) can grow considerably. To reduce this number of iterations in
practice, we �rst limit the number of iterations in the pricing algorithm. If
the pricing algorithm has not proved that no negative reduced cost route
exists after the given number of iterations, it is solved again (line 9 of Al-
gorithm 1) adding a relaxation of the routing, explained hereafter, into the
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Algorithm 2 Pricing algorithm.

1: Solve (Pr(K′)) to get φ∗(β,K′) and a corresponding optimal solution e∗.
Solution e∗ de�nes a route denoted k∗.

2: if φ∗(β,K′) ≥ 0 then
3: Exit: no route with a negative reduced cost can exist because

φ∗(β,K′) ≤ φ∗(β,K)
4: else

5: Evaluate dk∗ with the picking oracle i.e. compute an optimal route to
collect all products of the orders o such that e∗o = 1.

6: if dk∗ −
∑
o∈O

βoe
∗
o < 0 then

7: A negative reduced cost route has been found: exit by returning k∗

8: else

9: add k∗ to K′
10: return to line 1
11: end if

12: end if

formulation of (Pr(K′)). In that case, solving (Pr(K′)) becomes more time
consuming, so only one iteration is performed and a computation time limit
is set.

Adding a relaxation of the routing The formulation of (Pr(K′)) given
in the previous section relies on known routes to estimate the distance
d. It is possible to strengthen (Pr(K′)) by adding constraints that model
a relaxation of the TSP. The usual LP formulation for TSP by Dantzig
et al. (1954) is based on sub-tour elimination and relies on an exponential
number of constraints. We chose a relaxation recently proposed in Pansart
et al. (2018) that takes advantage of the warehouse structure. The TSP is
modeled as a Steiner TSP (Fleischmann, 1985) in the graph representing
the warehouse, the LP model is a compact typical �ow model (Orman &
Williams, 2006; Letchford et al., 2013) enriched with a number of inequalities
described in Pansart et al. (2018) and partly used by Valle et al. (2017). This
TSP formulation is added to (Pr(K′)) but the variables are kept fractional
to avoid solving the TSP exactly which is often too expensive. In practice,
the bound obtained for d considerably improves to the expense of the time
needed to solve (Pr(K′)).

4.1.3 Rich column set

In order to speed up the solving of the master problem (LM) and to improve
the quality of the bounds, it is bene�cial to add a set of columns into the
restricted master problem (LM(K′)) at each iteration of the column gen-
eration heuristic (line 13 and 14 of Algorithm 1). Indeed, several simplex
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pivots can then be performed while solving the restricted master problem if
the routes are interesting, i.e., have or may have a negative reduced cost.

We thus add to K′ a rich set of columns Krich, besides the routes gener-
ated by the pricing algorithm (Pr(K′)). For each column found by (Pr(K′)),
a set of promising routes is generated and added to Krich. Two di�erent
and already mentioned strategies are considered and detailed afterwards.

Feasible primal solution Given a route k∗ found by the pricing algorithm
(Pr(K′)), this strategy aims at generating a set Krich1(k∗) of routes to cover
all the orders with e�cient routes, i.e. such that {k∗}∪Krich1(k∗) constitutes
a feasible integer solution for the master problem.

Additional routes are greedily generated one by one from the remaining
unpicked orders. Once a route is generated, only the remaining unpicked
orders are considered to generate the next route. When all orders have
been included, the set of generated routes de�nes a feasible primal solution.
A route is generated by �lling the trolley with available orders ranked by
the potential decrease in the reduced cost that the inclusion would produce.
The order leading to the maximum decrease of reduced cost is chosen �rst.

To precisely evaluate the reduced cost of a route the exact distance must
be computed with the oracle. Doing it for every remaining order would
be very costly. Thus a fast approximation of the distance is used to select
the few promising orders for which an exact evaluation is performed: the
distance increase when adding an order o to a set of orders S is estimated
by:

score(o,S) = max
l∈Lo

min
oi∈S,lj∈Loi

Dpl,plj

Note �nally that routes in K′ can also be considered to complete route k∗
in order to provide an integer feasible solution. Instead of greedily generate
routes, the ones in K′ can be used as a starting point. The procedure to
generate a feasible primal solution is presented in Algorithm 3.

Generate sub-tours Given a route k∗ provided by the pricing algorithm
(Pr(K′)), this strategy aims at generating a set Krich2(k∗) of sub-tours of
k∗, by removing one or more orders from k∗.

First, all sub-tours k′ of k∗ that use no more than 75% of the capacity
of the trolley are generated.

Then, from route k∗, a set of routes is generated by iteratively removing
one order. The key idea here is to sort the orders to be removed according
to the complexity of picking them up. This complexity is estimated by
averaging the reduced costs of the known routes that contain the order.
This favors the generation of negative reduced cost routes. This procedure
is presented in Algorithm 4.
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Algorithm 3 Generate a feasible primal solution.

Require: k∗ a route found by (Pr(K′)) and K′ the set of all known routes
1: Krich1(k∗)← ∅
2: O′ ← O\k∗, the set of unpicked orders (k∗ also represents a set of orders)

3: Kinit ← select routes from K′
4: while O′ is not empty do
5: Remove fromKinit the routes kinit not compatible with O′ (kinit 6⊂ O′)

6: k′ ← route in Kinit with lowest reduced cost (or k′ ← ∅ if Kinit = ∅)
7: while an order in O′ can be added into k′ do
8: o← order in O′ that can be added into k′ with lowest score(o, k′)
9: k ← k′ ∪ {o}
10: O′ ← O′ \ {o}
11: end while

12: Krich1(k∗)← Krich1(k∗) ∪ {k′}
13: end while

14: return Krich1(k∗)

Algorithm 4 Generate successive sub-tours

Require: k∗ a route found by (Pr(K′)) and K′ the set of all known routes
1: k′ ← k∗, the initial route
2: Krich2(k∗)←, the set of routes generated from k∗

3: Ok∗ = {o ∈ O|ek∗o = 1}, the set of orders picked in route k∗

4: Sort Ok∗ by increasing value of γo, the average reduced cost of routes in
K′ containing o

5: for each order o ∈ Ok∗ do
6: k′ ← k′ \ {o}
7: Krich2 ← Krich2 ∪ {k′}
8: end for

9: return Krich2(k∗)
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4.1.4 Stabilization

Column generation is well-known to su�er from stability issues at the be-
ginning of the process: the dual values typically jump from one extreme to
another until enough columns are known. Several methods exist to tackle
this problem (see for example Briant et al. (2008)).

To reduce this phenomenon, we initially provide for each dual variable βo
a target to, which is an estimation of the optimal value of βo in (LM), and
a gap width δo. If the dual value is greater than to + δo, a linear penalty so
is applied. The target to, the gap width δo and the penalty so are updated
along the column generation procedure.

To prove the optimality of the restricted master problem, the dual vari-
ables need to be unconstrained at the end of the resolution, i.e. δo = +∞.
To translate this in (LM(K′)), we add non-negative arti�cial variables vo for
each o ∈ O. The stabilized restricted master problem (SLM(K′)) is thus
written as follows:

(SLM(K′))



min
∑
k∈K′

dkρk +
∑
o∈O

(to + δo)vo

s.t.
∑
k∈K′

ekoρk + vo ≥ 1 ∀o ∈ O (9) (βo)

vo ≤ so ∀o ∈ O (10) (εo)
ρk ≥ 0 ∀k ∈ K′ (11)
vo ≥ 0 ∀o ∈ O (12)

Note that Constraints (10) enforce the penalty if βo > to+δo, as the dual
constraint associated to vo is βo ≤ to + δo + εo, with εo ≥ 0.

For each order o, let d(o) be the optimal distance to pick all the items
of order o. After some experiments, initial values are de�ned as (line 3 in
Algorithm 1): 

tinito = 0.7× d(o)Bo
B

δinito = 0.2× to
sinito = 1

At each iteration of the column generation, after solving the stabilized
restricted master problem (SLM(K′)), solving the pricing problem (Pr(K′))
and computing the Lagrangian lower bound described in Section 4.1.5, the
target to and the gap width δo are updated (line 18 of Algorithm 1) as follows.

If the lower bound LB is improved by the Lagrangian lower bound, the
target to is reinitialized to the current value of the dual variable βo, and
the gap width δo is divided by 2. If the lower bound LB is not improved,
the target to is kept unchanged, and the gap width δo is multiplied by 1.1
if the current value of vo is positive, and by 0.8 otherwise. Moreover, if the
pricing algorithm proves that there are noroutes with negative reduce cost,
but some arti�cial variables vo are positive, the optimality of the restricted
master problem is not proved. In this case, all gap widths are increased
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by 2.5, with the same target value. Then the column generation procedure
executes again with a new iteration.

In all cases, the gap width δo is kept greater or equal to 0.1 × δinito

where δinito is the initial value of δo, and the cost so is updated by the
formula so = δinito /δo. This update of the target and the gap are detailed in
Algorithm 5.

Algorithm 5 Update stabilization (for an order o).

1: if the lower bound LB is improved by the Lagrangian lower bound then
2: to ← βo (current value of the dual variable)
3: δo ← max{0.5× δo; 0.1× δinito }
4: else

5: if vo > 0 then
6: δo ← 1.1× δo
7: else

8: δo ← max{0.8× δo; 0.1× δinito }
9: end if

10: end if

11: if the pricing algorithm proves that no routes with negative reduce cost
exist, and some arti�cial variables vo are positive then

12: the optimality of the restricted master problem is not proven

13: δo ← 2.5× δo
14: end if

15: so ← δinito
δo

4.1.5 Computation of a lower bound

A typical lower bound based on Lagrangian relaxation is traditionally com-
puted at each iteration of the column generation procedure. Let us de�ne
Kmax as an upper bound on the maximum number of routes in an optimal
solution. Consider the redundant constraint

∑
k∈K ρk ≤ Kmax in the unre-

stricted and integer problem (M) and relax Constraints (1) in a Lagrangian
manner with lagrangian multipliers βo ≥ 0. Denote also by z∗M the optimal
value of (M). The Lagrangian bound of z∗M , denoted Θ(β) is de�ned as
follow:

Θ(β) =
∑
o∈O

βo+min

{∑
k∈K

(dk −
∑
o∈O

βoe
k
o)ρk |

∑
k∈K

ρk ≤ Kmax, ρk ∈ {0, 1},∀k ∈ K

}

Let us de�ne the lagrangian multipliers βo as the optimal dual values
of Constraints (3) of problem (LM(K′)) (or Constraints (9) of problem
(SLM(K′)) if the master problem is stabilized). Remember that φ∗(β,K) =
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min
k∈K

(dk−
∑
o∈O

βoe
k
o) and the optimal value of (Pr(K′)) is φ∗(β,K′) ≤ φ∗(β,K).

Thus, we have

ξ(β,K′) =
∑
o∈O

βo + Kmax ·φ∗(β,K′) ≤
∑
o∈O

βo + Kmax ·φ∗(β,K) ≤ Θ(β)

The quantity ξ(β,K′) therefore provides a lower bound of z∗M at any iteration
of the column generation procedure and can be returned as an optimality
guarantee if the procedure fails to terminate within the time limit. Notice
that, if the column generation procedure terminates by solving (LM) to
optimality, i.e. φ∗(β,K′) = 0 and vo = 0 for all o ∈ O, then ξ(β,K′) = z∗LM
the optimal value of (LM).

An obvious value for Kmax is |O|, i.e. the number of orders. In order to
strengthen the value of Kmax, observe that, in an optimal solution:

• all routes (except perhaps one) have a load of at least 1+bB/2c, where
B is the capacity of a trolley. Otherwise, two routes can be merged in
a single one. Therefore:

Kmax =

⌊∑
o∈O Bo − 1

1 + bB/2c

⌋
+ 1

• each route has a distance greater or equal to the distance needed to
collect any of its orders alone. In addition, the number of orders picked
in a route is at most the capacity B of the trolley. Hence from any
upper bound UB of z∗M we can thus compute a value of Kmax with
Algorithm 6. The value of UB used is the best one obtained when
generating a rich column set (see the computation of Krich1(k∗) in
Section 4.1.3).

4.1.6 Master problem implementation details

Initial columns in the master problem The master problem is initially
populated with the following columns. For each order o, a route is generated
where only order o is picked. For each pair of orders (o, o′), a route is
generated where only these two orders are picked, if it is possible within the
trolley capacity B. Note that when the number of orders is large (≥ 200),
it is too time-consuming to compute all pairs of orders and add them into
the master problem. Hence a score (already mentioned Section 4.1.3) is
computed for each pair of orders: score(o, o′) = maxl∈Lo minl′∈Lo′ Dpl,pl′ .
Then, only the |O| smallest scoring pairs are considered to be part of the
initial columns of the master problem.
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Algorithm 6 Computation of Kmax based on an upper bound

Require: UB an upper bound of z∗M
d [1.. |O|]← distances to collect each individual order; in increasing order

1: Kmax ← 0, ub← 0, k ← |O|
2: while k ≥ 1 do
3: ub← ub+ d[k]
4: Kmax ← Kmax + 1
5: k ← k −B
6: end while

7: k ← 1
8: while ub+ d[k] < UB do

9: ub← ub+ d[k]
10: Kmax ← Kmax + 1
11: k ← k + 1
12: end while

13: return Kmax

Strengthening the master problem The minimum number of trolleys
required to pick all orders can be found by solving a bin-packing problem.

Enforcing a simple lower bound T =
⌈∑

o∈O Bo

B

⌉
of this number of trolleys

improves the overall linear relaxation. Thus we add the following constraint
in the restricted master problem (LM(K′)):∑

k∈K′
ρk ≥ T (13)

A similar constraint would also be valid for any subset of orders S ⊆ O. We
consider the subsets S that require the same minimum number T of trolleys

and de�ne N =
{
S ⊆ O

∣∣∣⌈∑o∈S Bo

B

⌉
= T

}
. Let us index N by i and note

Si the ith element of N . The constraints added to the master are thus the
following: ∑

k∈K′|k∩Si 6=∅

ρk ≥ T ∀Si∈ N (14)

Note that only the Si that are minimum regarding inclusion can be consid-
ered in Constraints 14.

These new constraints lead to a new calculation of the reduced costs of
the routes. Let µi be the dual variable associated with Si ∈ N . The reduced
cost of a route k is then

rk = dk −
∑
o∈k

βo −
∑

Si∈N|k∩Si 6=∅

µi
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The pricing problem must therefore be updated accordingly. In particular,
binary variables must be introduced to know whether the route intersects
each Si∈ N . We do not give the details here since the methodology remains
the same.

4.1.7 Feasible integer solutions and post-optimization.

Primal heuristics Once (LM) has been solved optimally or the time limit
is reached, an integer solution is obtained by solving (M(K′)), i.e. by forcing
each ρk generated in the course of the algorithm to have a {0, 1} domain.
In other words, a MIP model is solved with the existing columns. The
column set must therefore be rich enough to provide enough opportunities
for covering all the orders with e�cient routes.

Post-optimization A post-optimization procedure using a simple hill-

climbing is applied from the best feasible solution computed by the MIP.
The neighborhood is made of two moves, (1) transferring an order from one
route to another and (2) swapping two orders belonging to distinct routes.
The improvement of the objective function is evaluated with the picking or-
acle i.e., a call to the dynamic programming algorithm. Only feasible moves
are considered and the �rst improving move found is performed. When a
local minimum is found (all possible transfers or swaps are non improving
from the current solution) the algorithm restarts the search from a random
initial feasible solution. It stops after 20 non improving restarts have been
performed or a time limit has been reached.

4.2 Case of HappyChic

Let us now turn our attention to the second industrial case encountered
in the HappyChic company. In this case, an order can be split into several
trolleys. Hence a route can no longer be de�ned by a set of orders. Therefore
the major di�erence in the HappyChic case is that a route is de�ned by a
set of partial order lines. In this section, we mainly focus on the di�erences
induced by this column de�nition. More precisely, a column k ∈ K represents
a route in the warehouse de�ned by:

• the amount of products picked for each order line and denoted by
ak = (ak1, . . . , a

k
l , . . . , a

k
n). Each akl ∈ N gives the amount of product pl

collected for order line l. We recall that an order line l is de�ned as
a pair (pl, Ql) where pl ∈ P de�nes the product and Ql is the number
of items to pick. To easily state the pricing problem we use variable
ekl ∈ {0, 1} to state whether order line l is picked or not by route k
so that ekl = 1 ⇔ akl > 0. In order to ease notations, similarly to
the Foodmart case, we will write l ∈ k to express that ekl = 1, and
|k| =

∑n
l=1 e

k
l represents the number of order lines picked in route k.
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• the number of boxes used and denoted qk = (qk1 , . . . , q
k
o , . . . , q

k
m)

where each qko ∈ N indicates the number of boxes used for order o in
the trolley performing the route k.

The restricted master problem (LM(K′)) is now de�ned as follows:

(LM(K′))



min
∑
k∈K′

dkρk

s.t.
∑
k∈K′

akl ρk ≥ Ql ∀l ∈ L (15) (βl)∑
k∈K′

qkoρk ≤ Bo ∀o ∈ O (16) (γo)

ρk ≥ 0 ∀k ∈ K′ (17)

Constraints (15) state that the Ql items of each order line l are picked
in the warehouse so that all orders are satis�ed. Constraints (16) make sure
that each order o is not assigned to more than Bo boxes.

The reduced cost rk of route k is de�ned as

rk = dk −
∑
l∈L

akl βl −
∑
o∈O

qkoγo

where βl and γo are respectively the dual values of Constraints (15) and (16).

4.2.1 Pricing problem.

The HappyChic case requires to handle an additional decision compared to
the Foodmart case. The exact content of each box must be decided. In other
words, we must decide the number of products of each order line assigned to
each box of the trolley. Let us introduce B= {1, . . . , B} as the set of boxes
in a picking route. The decision variables are now the following:

• el = 1 if order line l is picked, 0 otherwise.

• al is the amount of product pl picked for order line l.

• alb is the amount of product pl put in box b.

• yob = 1 if order o is picked in box b, 0 otherwise.

• qo is the number of boxes used to pick products of order o.

• d is the estimated value (lower bound) of the distance to travel to pick
all the products.
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The pricing problem (Pr(K′)) is thus:

(Pr(K′))



min d−
∑
l∈L

βlal −
∑
o∈O

γoqo

s.t.
∑
b∈B

alb = al ∀l ∈ L (18)∑
l∈Lo

V w
pl
alb ≤ V w

o yob ∀b ∈ B, w ∈ W, o ∈ O (19)

alb ≤ Qlyob ∀o ∈ O,∀l ∈ Lo, ∀b ∈ B (20)∑
b∈B

yob = qo ∀o ∈ O (21)

al ≤ Qlel ∀l ∈ L (22)

dk

(∑
l∈k

el − |k|+ 1

)
≤ d ∀k ∈ K′ (23)∑

o∈O
yob ≤ 1 ∀b ∈ B (24)

qo ≤ Bo ∀o ∈ O (25)
al, alb ∈ N ∀l ∈ L (26)
el, yob ∈ {0, 1} ∀l ∈ L (27)

Constraints (18) ensure the amount of product picked in each box is
equal to the total amount of products picked. Constraints (19) check that
products in each box respect each dimension w ∈ W of the box capacity, V w

o

being the size of order o in dimension w. Constraints (20) link together alb
and yob, by making sure that if order line l from order o is picked in box b,
then order o is picked in box b. Constraints (21) permit to count the number
of boxes used for each order. Constraints (22) link together al the quantity
of product pl picked and el. Constraints (23) are the tour constraints giving
a relaxation on the total distance d to pick the products. If a route k previ-
ously computed (in set K′) contains a subset of the order lines to pick, then
distance d is greater than or equal to dk, the distance to pick order lines in
route k. Constraints (24) ensure that each box contains no more than one
order. Constraints (25) are added to avoid generating infeasible columns
regarding Constraints (16) of the master problem and ensure that the limit
on the number of boxes for each order is respected by the generated route.

Since all boxes are identical, constraints are added to break some of
the symmetries between boxes. These constraints assume there is a natural
ordering of boxes and orders.∑

o′∈O;o′≤o
yo′b +

∑
o′∈O;o′>o

yo′b′ ≤ 1 ∀b, b′ ∈ B, b′ < b, o ∈ O (28)∑
o∈O

yob ≤
∑
o∈O

yob′ ∀b, b′ ∈ B, b′ < b (29)

Constraints (28) ensure that the boxes with smallest indices contain or-
ders with smallest indices. Constraints (29) ensure that if a box b is used,
boxes with a smaller index are also used.
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In this industrial case, the graph representing the warehouse is acyclic
(see Figure 1b for an example). Hence, it is possible to give a topological
order of the locations VL. If a route has to visit locations V ′ ⊆ VL, these
locations can be ordered and numbered from 1 to |V ′|. The total distance

to perform the route is thus d = Ds1 +
∑|V ′|−1

i=1 Di(i+1) + D|V ′|t. The picker
routing problem is therefore easy and the oracle computing the distance dk
for a new column k runs in linear time.

Adding a relaxation of the routing A simple linear model encoding
the path of the picker can be added to (Pr(K′)) in order to strengthen the
formulation. It is the linear relaxation of a typical IP model for shortest path
where a binary variable xij indicates whether arc (i, j) is included into the
shortest path or not. The following constraints are thus added to (Pr(K′)):∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ VL ∪ VI (30)∑
(s,i)∈δ+(s)

xsi = 1 (31)∑
(vpl ,j)∈δ+(vpl )

xvplj ≥ el ∀l ∈ L (32)

d =
∑
i,j∈V

Dijxij (33)

xij ≤ 1 ∀(i, j) ∈ A (34)

Constraints (30) ensure the �ow or path conservation for all vertices
except the initial and �nal depots. Constraint (31) ensures that one unit of
�ow is sent from the initial depot. Constraints (32) link xij variables with
el variables: if order line l is picked, then location vpl has to be visited (at
least one unit of �ow goes out from this location). Constraint (33) assigns
to d the exact distance to perform the route. Once the el variables are
�xed, the linear relaxation of (Pr(K′)) provides an integer solution of the
xij variables. As a result this relaxation actually gives an optimal route with
its exact distance so that the tour constraints are not needed anymore. In
other words, Constraint (33) can replace Constraints (23).

Since computing the exact distance of the routing can be done by adding
Constraints (30)-(34), these constraints are always added in the pricing prob-
lem. So contrary to the Foodmart case, no cutting plane is added to solve
the pricing problem.

4.2.2 Rich column set.

Feasible primal solution Each time a column k is found by the pricing
algorithm, the corresponding order lines are excluded from the demand, and
the number of available boxes for the orders are updated according to the
boxes used in column k. A set of routes to collect the remaining order lines

25



is generated using a dynamic programming procedure, based on the one
proposed in Bué et al. (2018) where the constraint on the minimum volume
of boxes is removed. Each route corresponds to a column which is added
into the restricted master problem.

Generate sub-tours The key idea is the same as in the Foodmart case,
but instead of dealing with orders, we deal with the locations visited in a
route.

A column k can be associated to the set of the visited locations Vk =
{v ∈ VL|v is visited in route k}. First, all columns k′ that correspond to
a set of locations Vk′ ⊆ Vk such that |Vk′ | = |Vk| − 1 are generated. This
corresponds to all the columns where all the order lines in one location have
been removed. Then, from a column k, a set of columns is generated by
iteratively removing one location (and its associated order lines), as long
as it permits to decrease the distance of the corresponding route. At each
iteration, the location that provides the best decrease of the distance is
chosen.

4.2.3 Stabilization and lower bound.

Stabilization Stabilization is performed like in the Foodmart case.

Lagrangian bound The Lagrangian bound is de�ned similarly to the
Foodmart case. The only di�erence is the computation of Kmax. Let us
note UB an upper bound of z∗M , dmin and dmax are respectively the mini-
mum and maximum distance to collect an individual order line. Then the
value of Kmax can be de�ned as:

Kmax = 1 +

⌊
UB − dmax

dmin

⌋

4.2.4 Master problem implementation details.

Initial columns in the master problem Initially, the master problem
is populated with the following columns. For each order line l, the items
are assigned to one or more boxes. Note that an order line may require
more than one box. Then a column is generated for each box, where items
picked are from the same order line. Because of the maximum number of
boxes per order, these columns do not provide a feasible solution. Hence, we
have adapted the dynamic programming procedure proposed in Bué et al.
(2018) in order to generate a feasible solution. The adaptation consists in
removing the penalty for the minimum volume of boxes, and adding a high
penalty for boxes if the proposed solution for an order has more boxes than
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the maximum number allowed. The columns corresponding to this solution
are added into the master problem.

Strengthening the master Similarly to the Foodmart case, the lower
bound given by the restricted master problem can be improved by adding
a constraint enforcing a minimum number of trolleys T , which can be com-
puted as follows:

T =


∑
o∈O

(
max
w∈W

V w
o
V w

)
B


In addition, the cuts de�ned in Constraints (14) are added in the same

way for the HappyChic case, with the value of T previously de�ned.

4.2.5 Feasible integer solution.

The primal heuristic is the same as in the Foodmart case. No post-optimization
procedure is applied.

5 Numerical experiments

The experiments were performed on an Intel Xeon E5-2440 v2 @ 1.9 GHz
processor and 32 GB of RAM and each algorithm ran with a memory limit
of 4 GB of RAM on a single thread.

5.1 Benchmark

The benchmark originated from Foodmart is described in details in Valle
et al. (2017) and is publicly available. It comes from a database of anonymized
customer purchases over two years for a chain of supermarkets. Orders are
made by combining the purchases of customers over the �rst ∆ days and
instances are generated with ∆ ∈ {5, 10, 20} leading to instances with larger
orders (more products and number of items) as ∆ increases. The number
of orders m varies from 5 to 30. A trolley is made of 8 boxes, each able to
contain 40 items. A single warehouse layout is used containing 8 aisles and
3 cross-aisles where the warehouse can store a total of 1584 products.

The benchmark originated from HappyChic is described in details in
Bué et al. (2018). It is based on the warehouse activity of HappyChic for 17
working days between January and November 2017. All instances with less
than 2000 items to pick are used to assess the algorithm in the present work.
Overall there is a total of 279 instances. The warehouse layout is presented
in Figure 1b and di�ers from the typical rectangular warehouse as explained
before.
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All instances from the two benchmarks are publicly available1 in the
same text format, matching the problem speci�cation used in this paper. In
particular, the warehouse is abstracted away as a graph to encompass very
general warehouse layouts.

5.2 Comparison with Valle et al. (2017)

In this section, we report a direct comparison, on the Foodmart benchmark,
of the branch and cut algorithm (BC) presented in Valle et al. (2017) and the
Column Generation Heuristic (CGH) proposed in this work. A maximum
of 2 hours is given to CGH. An additional 10% of time (12 minutes in this
case) is given to the primal heuristic and the post-optimization mentioned
in Section 4.1.7. Note that BC was run with a 6 hours time limit on a faster
machine.

Table 1 reports the results. The CPU(s) column denotes the total time
elapsed in seconds. TL means the time limit has been reached. UB and
LB respectively denotes the best upper and lower bounds obtained at the
end of the algorithm. The algorithm terminates either because the linear
relaxation of the master is computed (it is proven that no negative reduced
cost columns exist) or the time limit was reached. GAP(%) is computed as
100(UB−LB)

LB . Note that the GAP(%) reported in the work of Valle et al. (2017)

is computed as 100(UB−LB)
UB

. The columns ITER and NCOL respectively give
the number of iterations performed (number of times the master is solved)
and the total number of columns added to the master. Note that the column
FLB, reported for BC, denotes the lower bound at the root node of their
model showing the quality of the linear relaxation. It is therefore directly
comparable to the LB column of our approach which is the linear relaxation
of the master (or the best Lagrangian bound found when the time limit is
reached).

CGH improves all lower bounds and all upper bounds of the 7 instances
left unsolved to optimality by BC. CHG is very competitive in running times
and runs faster than BC. Note that although CGH is not an exact algorithm
since no branching is performed, the optimality gap provided remains very
small and in 20 cases it is able to prove optimality. On one side, for the 42
instances solved optimally by BC, the gap achieved by CGH is of 0.3 % in
average and 1.9 % in the worst case. On the other side, the lower bounds
of CGH signi�cantly improves the ones of BC for the 7 unsolved instances.
Finally note that CGH is able to get 40 optimal solutions on the 42 instances
solved optimally by BC.

Notice that the superiority of CGH over BC regarding running times
increases with ∆. In particular for ∆ = 20, CGH runs much faster for

1All datasets as well as detailed computational results are available on this page: https:
//pagesperso.g-scop.grenoble-inp.fr/~cambazah/batching/
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BC CGH
∆ m CPU(s) UB LB FLB GAP(%) CPU(s) UB LB GAP(%) ITER NCOL
5 5 3.9 348.6 348.6 346.5 0.0 1.2 348.6 348.6 0.0 1 31

6 2.9 364.8 364.8 364.8 0.0 1.1 364.8 364.8 0.0 1 63
7 8.9 374.8 374.8 372.8 0.0 1.8 374.8 374.8 0.0 1 123
8 95.2 503.8 503.8 462.1 0.0 3.2 503.8 503.8 0.0 7 218
9 151.8 539.6 539.6 479.2 0.0 4.3 539.6 539.6 0.0 2 351
10 111.0 581.4 581.4 497.8 0.0 10.9 581.4 581.4 0.0 14 631
11 97.1 613.5 613.5 509.9 0.0 53.7 613.5 611.6 0.3 24 946
12 256.7 621.4 621.4 527.9 0.0 45.3 621.4 613.4 1.3 28 1 143
13 168.9 623.4 623.4 528.2 0.0 75.9 623.4 623.4 0.0 31 2 266
14 263.8 639.3 639.3 525.5 0.0 116.2 639.3 637.7 0.2 31 3 054
15 348.9 653.4 653.4 522.4 0.0 166.5 653.4 653.4 0.0 19 4 308
20 2 990.9 870.4 870.4 598.4 0.0 1 596.8 870.4 862.1 1.0 58 11 953
25 21 600.0 1 127.4 927.0 640.8 21.6 TL 1 105.9 1 083.9 2.0 87 24 815
30 21 600.0 1 221.9 894.3 647.5 36.6 TL 1 207.7 1 000.5 20.7 95 30 988

10 5 1.5 371.1 371.1 371.1 0.0 0.9 371.1 371.1 0.0 1 31
6 6.6 377.1 377.1 374.7 0.0 1.2 377.1 377.1 0.0 2 61
7 197.5 549.8 549.8 503.4 0.0 1.8 549.8 549.8 0.0 5 91
8 286.8 584.2 584.2 508.4 0.0 1.4 584.2 584.2 0.0 1 76
9 356.1 637.4 637.4 528.6 0.0 7.2 637.4 637.4 0.0 6 222
10 393.0 661.8 661.8 553.4 0.0 16.2 661.8 661.8 0.0 13 319
11 383.7 699.8 699.8 553.8 0.0 114.8 699.8 692.4 1.1 33 752
12 217.7 707.7 707.7 553.6 0.0 183.0 707.7 703.4 0.6 47 1 189
13 385.4 725.7 725.7 560.2 0.0 124.1 725.7 712.2 1.9 33 2 129
14 483.8 727.8 727.8 562.4 0.0 182.6 731.7 723.8 1.1 42 3 073
15 1 832.6 882.6 882.6 593.1 0.0 189.2 882.6 881.7 0.1 40 3 364
20 11 015.4 992.4 992.4 672.0 0.0 955.8 994.6 976.3 1.9 46 8 820
25 21 600.0 1 213.4 1 011.3 707.8 20.0 2 677.6 1 191.7 1 187.3 0.4 70 15 090
30 21 600.0 1 330.0 963.1 706.3 38.1 TL 1 274.0 1 159.6 9.9 130 32 383

20 5 110.9 573.8 573.8 535.3 0.0 0.7 573.8 573.8 0.0 3 24
6 278.9 656.2 656.2 580.9 0.0 1.2 656.2 656.2 0.0 5 47
7 263.2 689.8 689.8 571.4 0.0 8.0 689.8 689.8 0.0 20 59
8 189.0 697.8 697.8 568.7 0.0 10.5 697.8 697.8 0.0 17 119
9 305.5 727.7 727.7 578.0 0.0 41.2 727.7 726.8 0.1 35 205
10 584.2 920.5 920.5 634.2 0.0 37.9 920.5 905.3 1.7 28 304
11 703.8 980.5 980.5 672.9 0.0 11.7 980.5 980.5 0.0 13 369
12 830.1 1 004.3 1 004.3 666.0 0.0 41.9 1 004.3 999.3 0.5 27 557
13 1 177.8 1 009.1 1 009.1 696.5 0.0 82.7 1 009.1 1 008.1 0.1 24 618
14 1 306.0 1 011.1 1 011.1 679.2 0.0 70.6 1 011.1 1 011.1 0.0 43 795
15 3 793.7 1 028.7 1 028.7 671.5 0.0 87.8 1 028.7 1 025.5 0.3 34 1 191
20 21 600.0 1 335.2 1 124.6 729.0 18.7 619.6 1 333.7 1 332.3 0.1 62 3 011
25 21 600.0 1 694.9 1 166.8 824.5 45.3 3 288.5 1 621.2 1 602.9 1.1 89 6 272
30 21 600.0 1 966.9 1 071.9 853.4 83.5 TL 1 879.2 1 843.1 2.0 112 11 722

Table 1: Comparison with Valle et al. (2017) on the Foodmart benchmark
with a 2 hours time limit.

the instances with few orders and considerably improves the gap for 20, 25
and 30 orders. Parameter ∆ of Valle et al. (2017) somehow relates to the
size/volume of each order and instances for ∆ = 20 tend to have more routes
in their optimal solution. It seems that the ability to compute optimal routes
e�ciently in the warehouse is increasingly critical as ∆ increases.
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5.3 Analysis of the column generation algorithm

In this section, we analyse the robustness and scalability of CGH when
it is run with smaller time limits of 300 seconds, 600 seconds and 1 hour.
Table 2 reports the results over all instances where CGH does not terminate
within 300 seconds (i.e the algorithm is interrupted because the time limit
is reached). The table gives the upper and lower bounds obtained as well as
the corresponding optimality gap.

Time limit 300s Time limit 600s Time limit 3600s
∆ m CPU(s) UB LB GAP(%) CPU(s) UB LB GAP(%) CPU(s) UB LB GAP(%)
5 20 TL 884.8 829.5 6.7 TL 870.4 846.9 2.8 1 504.3 870.4 862.1 1.0

25 TL 1 107.7 915.3 21.0 TL 1 107.7 911.5 21.5 TL 1 105.9 1 064.9 3.9
30 TL 1 208.0 880.2 37.2 TL 1 199.9 880.2 36.3 TL 1 199.9 940.2 27.6

10 20 TL 994.6 962.0 3.4 TL 994.6 974.8 2.0 987.6 994.6 976.3 1.9
25 TL 1 199.7 1 139.6 5.3 TL 1 199.7 1 158.6 3.5 2 780.5 1 189.7 1 187.3 0.2
30 TL 1 280.0 986.7 29.7 TL 1 280.0 995.0 28.6 TL 1 278.0 1 018.1 25.5

20 20 TL 1 345.7 1 303.3 3.3 TL 1 333.7 1 331.9 0.1 660.7 1 333.7 1 332.3 0.1
25 TL 1 629.2 1 522.0 7.0 TL 1 629.2 1 542.4 5.6 3 397.9 1 621.2 1 602.9 1.1
30 TL 1 889.5 1 674.6 12.8 TL 1 888.8 1 721.1 9.7 TL 1 877.5 1 784.7 5.2

Table 2: Results for various time limits.

Although the results improve as the limit limit is increased, the bounds
computed within 300 seconds are already of high quality.

We now analyse the behaviour of the algorithm and the time spent
at each stage. Table 3 reports the time (in seconds) spent when solving
the pricing problem (Pr(K′)) (CPU-PRICING), the master problem (CPU-
MASTER), the �nal MIP when variables are converted to binary variables,
the post-optimization process on the solution provided by the MIP (CPU-
POST) as well as the total time (CPU). We also give the value of the upper
bound obtained after solving the MIP (UB-MIP) along with the �nal upper
bound (UB) that is computed at the end of the post-optimization process.
The column IMPR provides the improvement of the upper bound due to the
post-optimisation process (IMPR(%) = 100(UB−MIP−UB)

UB−MIP ).
It can be seen that the time is mostly used for solving the pricing problem

and the master is always solved instantly. Even the �nal MIP over the known
columns remains easy to solve optimally in less than one minute. The post-
optimization process always requires less than two minutes although the time
limit for the post-optimization is set to 10% of the time limit, i.e. 12 minutes.
Notice that the upper bounds found by the column generation process alone
(UB-MIP) are excellent and the improvement (IMPR(%)) done by the post-
optimization to reach the �nal upper bound (UB) is not really signi�cant.
This improvement however grows with the number of orders.

5.4 Feasible heuristics and interest of optimal routing

Valle et al. (2017) argue that when batching and routing problems are sep-
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∆ m UB UB-MIP IMPR(%)
CPU- CPU- CPU- CPU-

CPU(s)
PRICING MASTER MIP POST

5 5 348.6 348.6 0.0 0.3 0.0 0.0 0.0 1.2
6 364.8 364.8 0.0 0.7 0.0 0.0 0.0 1.1
7 374.8 374.8 0.0 1.2 0.0 0.0 0.0 1.8
8 503.8 503.8 0.0 2.6 0.0 0.0 0.0 3.2
9 539.6 539.6 0.0 3.6 0.0 0.0 0.0 4.3
10 581.4 581.4 0.0 9.9 0.0 0.0 0.0 10.9
11 613.5 613.5 0.0 19.4 0.1 0.1 8.7 53.7
12 621.4 621.4 0.0 22.8 0.9 0.3 9.9 45.3
13 623.4 623.4 0.0 65.0 2.5 2.1 0.0 75.9
14 639.3 639.4 0.0 84.5 3.7 6.0 13.8 116.2
15 653.4 653.4 0.0 151.4 2.8 4.3 0.0 166.5
20 870.4 886.0 1.8 1 508.2 13.8 6.3 26.9 1 596.8
25 1 105.9 1 108.4 0.2 7 144.0 1.6 1.9 43.6 7 246.5
30 1 207.7 1 240.4 2.6 6 755.0 122.7 49.8 48.7 7 304.0

10 5 371.1 371.1 0.0 0.3 0.0 0.0 0.0 0.9
6 377.1 377.1 0.0 0.7 0.0 0.0 0.0 1.2
7 549.8 549.8 0.0 1.2 0.0 0.0 0.0 1.8
8 584.2 584.2 0.0 0.8 0.0 0.0 0.0 1.4
9 637.4 637.4 0.0 3.4 0.0 0.0 0.0 7.2
10 661.8 661.8 0.0 6.2 0.0 0.0 0.0 16.2
11 699.8 705.8 0.9 21.7 0.5 0.1 20.3 114.8
12 707.7 707.7 0.0 49.8 2.0 0.3 16.3 183.0
13 725.7 731.8 0.8 86.3 2.5 1.5 27.6 124.1
14 731.7 731.7 0.0 147.3 3.7 2.6 18.5 182.6
15 882.6 884.5 0.2 113.0 0.0 0.0 51.5 189.2
20 994.6 1 004.9 1.0 851.1 12.2 10.4 42.6 955.8
25 1 191.7 1 203.7 1.0 2 459.5 2.6 1.9 105.5 2 677.6
30 1 274.0 1 274.0 0.0 6 555.6 163.1 32.7 70.3 7 305.8

20 5 573.8 573.8 0.0 0.2 0.0 0.0 0.0 0.7
6 656.2 656.2 0.0 0.6 0.0 0.0 0.0 1.2
7 689.8 689.8 0.0 0.9 0.0 0.0 0.0 8.0
8 697.8 697.8 0.0 2.4 0.0 0.0 0.0 10.5
9 727.7 729.4 0.2 5.4 0.0 0.0 11.8 41.2
10 920.5 924.4 0.4 7.3 0.0 0.0 27.5 37.9
11 980.5 980.5 0.0 8.0 0.0 0.0 0.0 11.7
12 1 004.3 1 004.3 0.0 15.9 0.0 0.0 14.7 41.9
13 1 009.1 1 010.2 0.1 23.8 0.1 0.0 30.5 82.7
14 1 011.1 1 011.1 0.0 39.0 0.4 0.1 0.0 70.6
15 1 028.7 1 028.7 0.0 58.8 0.6 0.3 19.6 87.8
20 1 333.7 1 336.1 0.2 535.9 3.2 1.0 51.5 619.6
25 1 621.2 1 621.2 0.0 3 191.4 4.4 1.2 50.0 3 288.5
30 1 879.2 1 879.2 0.0 7 116.5 1.8 1.7 68.2 7 271.4

Table 3: Detailed results of the column generation algorithm with a 2 hours
time limit. All CPU times are in seconds.

arated, their "proposed method is able to solve the routing problem to opti-

mality very quickly" (see Section 6.5 of Valle et al. (2017)). We believe that
this ability is also a key feature of CGH and we report the results obtained
by the dynamic programming approach on the same experiments presented
in Valle et al. (2017).

Valle et al. (2017) propose to compute feasible solutions (upper bounds)
on very large instances (with up to 5000 orders). In that case, their model
is used to compute the optimal route of a single trolley. Typically, the
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algorithm denoted Valle et al. (ii) is the implementation of the Clarke
and Wright algorithm in the context of picking where the savings are es-
timated using typical picking heuristics (S-Shape, Largerst-gap, Combined)
and where routes are solved optimally in the �nal assignment of orders to
trolleys (see Section 4.2.2 of Valle et al. (2017)). The algorithm denoted
Valle et al. (iii) refers to a version where each saving is calculated exactly
by computing the optimal route. The reader can refer to Section 6.5.2 of
Valle et al. (2017) for more details.

Results are presented in Table 4. The algorithm denoted Clarke-Pdyn is
our implementation of the algorithm Valle et al. (iii) where the savings are
computed exactly by calling the dynamic programming algorithm.

It performs the O(2m + m2) computations of savings (recall that m is
the number of orders). The CPU times of the two approaches are therefore
directly comparable since the exact same number of computations of optimal
routes are made. We also apply CGH algorithm with a time limit of 2 hours
plus an additional 10% of time for the primal heuristic and post-optimization.
Note that in this case we seek for a negative reduced cost column by applying
a local search procedure, before solving the pricing problem.

Valle et al. (ii) Valle et al. (iii) Clarke-Pdyn CGH 7 200 s

m UB CPU(s) UB CPU(s) UB CPU(s) UB UB-MIP LB CPU(s)

50 2 231,2 3,2 2 182,7 61,2 1 866,0 5,1 1 593,3 1 593,3 913,9 TL
100 4 012,1 5,5 3 830,9 226,0 3 270,5 18,4 2 882,5 3 080,9 479,6 TL
200 6 653,7 6,5 6 395,3 689,4 5 972,8 63,5 5 608,8 6 716,3 0,0 TL
500 13 899,5 16,1 13 794,5 4 486,6 14 041,6 401,9 13 237,0 15 972,0 0,0 TL
1000 26 160,7 53,7 - - 26 203,8 1 682,8 25 504,2 30 719,3 0,0 TL
2000 49 740,0 179,0 - - - - 48 173,0 57 763,5 0,0 TL
5000 118 269,7 1 048,0 - - - - 128 811,7 137 165,4 0,0 TL

Table 4: Quality and speed of heuristics taking advantage of optimal routing
for large instances.

The Clarke-Pdyn algorithm does not give the exact same upper bounds
as Valle et al (iii) and probably di�ers slightly from the implementation of
Valle et al (iii) in the ways ties are broken. In any case it is roughly 10
times faster to compute the O(2m + m2) picking routes demonstrating the
e�ciency of dynamic programming for picking as opposed to the MIP model.

Moreover, it can be noticed that CGH is able to run on these large
instances, and even to provide lower bounds for instances with 50 and 100
orders. And when solving these large instances, very good upper bounds
are obtained after applying the post-optimization process as described in
Section 4.1.7. A maximum of 10% of the running time (here 12 minutes) is
used for this post-optimization. Hence, post-optimization is really e�ective
on these large instances. Results for 5000 orders are not really good with
CHG. This is mainly due to the time limit: with a time limit of 6 hours, we
are able to obtain a feasible solution with value of 115 629.25. From these
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results, the improvement of CGH for these large instances seems to represent
an interesting prospect.

A few experiments are also performed in Valle et al. (2017) with more
aisles and cross-aisles (at most 5 cross-aisles) which makes the routing prob-
lem signi�cantly harder for the linear model used requiring up to 90 sec-
onds to compute six optimal routes. Note that the dynamic programming
approach used in the present paper scales to 9 cross-aisles, solving any in-
stances up to 6 cross-aisles (with up to 60 aisles and 240 products) in less
than one second (Pansart et al., 2018).

5.5 Impact of the key features of CGH

We evaluate the e�ect of three features of CGH presented in Section 4: the
addition of a rich set of columns at each iteration, the stabilization, and
the addition of Constraints (14) on the minumum number of trolleys to
strengthen the master problem. Table 5 shows the overall results averaged
by class of instances for Foodmart benchmark with a short time limit of 300
seconds. Each column represents a class of instances for the three values of
∆ (5, 10, 20). CHG is the algorithm with all its features. CGH - no rcs does
not use a rich column set. CGH - no stab does not consider stabilization
of the dual values. CGH - no cuts does not include Constraints (14) in the
master problem. Finally the last case does not consider any of this three
features.

∆ 5 10 20

CGH

UB 647.5 743.1 1 011.7
UB-MIP 659.2 758.9 1 020.4

LB 605.5 713.1 983.8

CGH - no rcs

UB 646.9 744.7 1 010.8
UB-MIP 697.8 827.7 1 062.4

LB 517.8 642.9 923.6

CGH - no stab

UB 646.1 743.8 1 013.5
UB-MIP 657.3 758.7 1 019.9

LB 575.9 682.6 969.3

CGH - no cuts

UB 648.3 745.1 1 014.5
UB-MIP 657.7 765.7 1 024.2

LB 593.0 693.9 959.0

CGH - no rcs no stab no cuts

UB 648.1 745.3 1 013.7
UB-MIP 677.2 785.2 1 033.5

LB 514.1 605.4 883.6

Table 5: Overall results averraged by class of instances of the algorithm
with a 300s time limit with and without three key features: rich column set
(rcs), stabilization (stab), and cuts to strengthen the master (cuts).

We can note that the rich column set strategy is the key to the e�ciency
of CGH. Stabilization turns out to be less essential although it does help to
quickly identify good lower bounds. Constraints (14) are really helpful to
provide better lower bounds.
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5.6 Results of HappyChic

In this section, we report average results for the 279 instances for the Hap-
pyChic case. Each instance is run with a 600 seconds time limit. Detailed
results are reported in the project web page2. Table 6 reports average results.
Each line corresponds to a set of instances with the same number of routes
in the solution. This number of routes is reported in the column NbRoutes.
The column NbInstances reports the number of instances for each set. The
columns for GAP(%) respectively report the average, the minimum and the
maximum gap obtained with the column generation approach over the set
of instances. UB and LB are the upper and lower bounds at the end of the
algorithm. The gap is computed as 100(UB−LB)

LB . Note that for two instances
the algorithm provided no lower bound, hence the gap is in�nite. These two
instances are not included for the average and maximum gaps reported in Ta-
ble 6. The IMPR(%) columns respectively report the average, the minimum
and the maximum deviation in percentage with the results obtained with
the dynamic programming procedure proposed in Bué et al. (2018) (where
only the minimum volume constraint on boxes is removed). Let UBH be the
value of the solution obtained with the dynamic programming procedure; the
improvement is computed as 100(UB−UBH)

UBH . Hence a positive value means
that CGH founds a better solution.

CGH

GAP(%) IMPR(%)
NbRoutes NbInstances avg min max avg min max

1 16 0.0 0.0 0.0 0.0 0.0 0.0
2 27 13.0 0.0 62.8 4.0 0.0 23.5
3 37 35.7 8.2 127.9 4.1 0.0 19.2
4 41 68.6 21.8 276.1 3.2 -0.5 10.4
5 34 85.7 3.8 296.2 2.4 0.0 16.5
6 38 98.1 19.8 297.7 2.4 0.0 11.0
{7; 8} 30 155.4 24.0 1032.3 3.1 0.0 12.0
{9; 10} 25 124.6 20.5 354.4 1.5 0.0 4.9
≥ 11 31 413.5 31.9 4111.9 0.6 -0.5 23.5

Table 6: Global results of the algorithm with a 600s time limit on the Hap-
pyChic benchmark.

CGH provides optimality proof for all instances with one route, and for
some instances with two routes. Some good lower bounds can be found
even for larger instances, e.g. with 5 routes. Moreover, the quality of the
upper bound is very good since it permits to improve the results provided
with the algorithm proposed by Bué et al. (2018). For some instances, the
improvement reaches up to 23.5%. These results over the HappyChic bench-
mark prove the ability of CGH to provide very good upper bounds and some

2https://pagesperso.g-scop.grenoble-inp.fr/~cambazah/batching/
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lower bounds in a reasonable amount of time for industrial instances where
the exact content of each box also has to be decided.

6 Conclusion

We proposed an exponential linear programming formulation of the joint or-
der batching and picker routing problem, where variables (or columns) are
related to single picking routes in the warehouse. The rationale of our ap-
proach is to consider that the picker routing alone, in nowadays warehouses,
is easy enough in practice to be solved exactly. This work therefore builds
upon previous work of the authors (Cambazard & Catusse, 2018; Pansart
et al., 2018; Bué et al., 2018) and existing literature related to e�cient op-
timal solving of the picker routing. The proposed approach is designed to
provide accurate lower and upper bounds without necessarily focusing on the
optimality proof. This design allows for a good scalability while providing
quality guarantees on the solutions found.

It is directly compared on a publicly available benchmark with a recent
branch and cut algorithm (Valle et al., 2017) improving a number of best
known lower and upper bounds within short time limits. The algorithm is
also assessed on another industrial benchmark coming from the HappyChic
company with real-life datasets containing up to 2000 items to pick. In
this latter case, the problem speci�cations are more general than the one
considered in Valle et al. (2017). In particular, orders can be split among
trolleys which requires to deal with quantities (number of items) as opposed
to full orders. This new benchmark is made publicly available along with
the detailed results given by our algorithm3.

We believe that the optimal picker routing could be leveraged further,
in particular to provide a fast and heuristic pricing. It might also lead
to tackle more integrated problems where additional levels of decisions in
the warehouse (e.g. storage location assignment) can be made jointly with
batching and picking.
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