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ON FANO SCHEMES OF COMPLETE INTERSECTIONS

C. CILIBERTO, M. ZAIDENBERG

Abstract. We provide enumerative formulas for the degrees of varieties
parameterizing hypersurfaces and complete intersections which contain pro-
jective subspaces and conics. Besides, we find all cases where the Fano
scheme of the general complete intersection is irregular of dimension at least
2, and for the Fano surfaces we deduce formulas for their holomorphic Euler
characteristic.
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Introduction

The study of hypersurfaces in projective space, or more generally, of complete
intersection, and specifically of varieties contained in them, is a classical subject
in algebraic geometry. The present paper is devoted to this subject, and in
particular to some enumerative aspects of it.

Recall that the Fano scheme Fk(X) of a projective variety X ⊂ Pr is the
Hilbert scheme of k-planes (that is, linear subspaces of dimension k) contained
in X; see [1] or [23, 14.7.13]. For a hypersurface X ⊂ Pr of degree d the integer

δ(d, r, k) = (k + 1)(r − k)−
(
d+ k

k

)
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is called the expected dimension of Fk(X). Let Σ(d, r) be the projective space
of dimension

(
d+r
r

)
−1 which parameterizes the hypersurfaces of degree d ≥ 3 in

Pr. If either δ(d, r, k) < 0 or 2k ≥ r then Fk(X) = ∅ for a general X ∈ Σ(d, r).
Otherwise Fk(X) has dimension δ for a general X ∈ Σ(d, r) ([10, 17, 32, 41]).
Setting

γ(d, r, k) = −δ(d, r, k) > 0

the general hypersurface of degree d ≥ 3 in Pr contains no k-plane. Let Σ(d, r, k)
be the subvariety of Σ(d, r) of points corresponding to hypersurfaces which
carry k-planes. Then Σ(d, r, k) is a nonempty, irreducible, proper subvariety
of codimension γ(d, r, k) in Σ(d, r) (see [39]), and its general point corresponds
to a hypersurface of degree d which carries a unique k-plane (see [4]). The
degree of this subvariety of the projective space Σ(d, r) was computed in [35].
In Section 1 we reproduce this computation. This degree deg(Σ(d, r, k)) is the
total number of k-planes in the members of the general linear system L of
degree d hypersurfaces, provided dim(L) = γ(d, r, k). It can be interpreted also
as the top Chern number of a vector bundle. Having in mind the further usage,
we explore three different techniques for computing it:

• the Schubert calculus;
• a trick due to Debarre-Manivel;
• the Bott residue formula and the localization in the equivariant Chow

rings.

In Section 2 we extend these computations to the Fano schemes of complete
intersections in Pr.

In Sections 3-5 we turn to the opposite case γ(d, r, k) < 0, that is, the ex-
pected dimension of the Fano scheme is positive. In Section 3 we compute
certain Chern classes related to the Fano scheme. In Section 4 we apply these
computations in the case where the Fano scheme is a surface, and provide several
concrete examples. The main result of Section 5 describes all the cases where
the Fano scheme of the general complete intersection has dimension ≥ 2 and a
positive irregularity. This happens only for the general cubic threefolds in P4

(k = 1), the general cubic fivefolds in P6 (k = 2), and the general intersections
of two quadrics in P2k+3, k ≥ 1; see Theorem 5.1.

In the final Section 6 we turn to the conics in degree d hypersurfaces in Pr.
Let

ε(d, r) = 2d+ 2− 3r .

Let Σc(d, r) be the subvariety of Σ(d, r) consisting of the degree d hypersurfaces
which contain conics. We show that Σc(d, r) is irreducible of codimension ε(d, r)
in Σ(d, r), provided ε(d, r) ≥ 0. Then we prove that the general hypersurface in
Σc(d, r) contains a unique (smooth) conic if ε(d, r) > 0. Our main results in this
section are formulas (38)-(39) which express the degree of Σc(d, r) via Bott’s
residue formula. Notice that there exists already a formula for deg(Σc(d, r)) in
the case r = 3, d ≥ 5, that is, for the surfaces in P3, see [34, Prop. 7.1]. It
expresses this degree as a polynomial in d.

Let us finish with a few comments on the case ε(d, r) < 0. It is known (see
[26]) that for 2d ≤ r + 1, given a general hypersurface X ⊂ Pr of degree d
and any point x ∈ X, there is a family of dimension e(r + 1 − d) − 2 ≥ ed
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of degree e rational curves containing x. In particular, X carries a 2(r − d)-
dimensional family of smooth conics through an arbitrary point. Moreover (see
[7]), for 3d ≤ 2r − 1 the Hilbert scheme of smooth rational curves of degree e
on a general X is irreducible of the expected dimension e(r− d+ 1) + r− 4. In
particular, the Hilbert scheme of smooth conics in X is irreducible of dimension
3r−2d−2 = −ε(d, r). Analogs of the latter statements hold as well for general
complete intersections (see [7]). See also [6, 9] for enumerative formulas counting
conics in complete intersections.
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1. Hypersurfaces containing linear subspaces

The results of this section are known, see [35], except maybe for formula
(4). Our aim is rather didactic, we introduce here the techniques that will be
explored in the subsequent sections.

Recall that the Fano scheme Fk(X) of a projective variety X ⊂ Pr is the
Hilbert scheme of linear subspaces of dimension k contained in X; see [1] or
[23, 14.7.13]. For a hypersurface X ⊂ Pr of degree d the integer

δ(d, r, k) = (k + 1)(r − k)−
(
d+ k

k

)
is called the expected dimension of Fk(X). Let Σ(d, r) be the projective space
of dimension

(
d+r
r

)
−1 which parameterizes the hypersurfaces of degree d ≥ 3 in

Pr. If either δ(d, r, k) < 0 or 2k ≥ r then Fk(X) = ∅ for a general X ∈ Σ(d, r).
Otherwise Fk(X) has dimension δ for a general X ∈ Σ(d, r) ([10, 17, 32, 41]).
We assume in the sequel that

(1) γ(d, r, k) := −δ(d, r, k) > 0 .

Then the general hypersurface of degree d ≥ 3 in Pr contains no linear subspace
of dimension k. Let Σ(d, r, k) be the subvariety of Σ(d, r) of points correspond-
ing to hypersurfaces which do contain a linear subspace of dimension k. The
following statement, proven first in [35, Thm. (1)-(2)] in a slightly weaker form,
is a particular case of Theorem 1.1 in [4]; see Proposition 2.1 below.

Proposition 1.1. Assume γ(d, r, k) > 0. Then Σ(d, r, k) is a nonempty, irre-
ducible and rational subvariety of codimension γ(d, r, k) in Σ(d, r). The general
point of Σ(d, r, k) corresponds to a hypersurface which contains a unique linear
subspace of dimension k and has singular locus of dimension max{−1, 2k − r}
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along its unique k-dimensional linear subspace (in particular, it is smooth pro-
vided 2k < r).

For instance, take d = 3, r = 5, and k = 2. Then Σ(3, 5) parameterizes the
cubic fourfolds in P5, and Σ(3, 5, 2) parameterizes those cubic fourfolds which
contain a plane. Since γ(3, 5, 2) = 1, we conclude that Σ(3, 5, 2) is a divisor
in Σ(3, 5), and the general point of Σ(3, 5, 2) corresponds to a smooth cubic
fourfold which contains a unique plane.

Our aim is to compute the degree of Σ(d, r, k) in the projective space Σ(d, r)
in the case γ(d, r, k) > 0.

1.1. On the Grassmannian G(k, r) of k–subspaces of Pr, consider the dual S∗
of the tautological vector bundle S of rank k + 1. Let Π ∈ G(k, r) correspond
to a k-subspace of Pr. Then the fiber of S∗ over Π is H0(Π,OΠ(1)). It is known
([21, Sect. 5.6.2], [23]) that

c(S∗) = 1 +
k+1∑
i=1

σ(1i),

where (1i) stays for the vector (1, . . . , 1) of length i, and σ(1i) is the (Poincaré
dual of the) class of the Schubert cycle Σ(1i). This cycle has codimension i in
G(k, r), therefore, Σ(1i) ∈ Ai(G(k, r)) in the Chow ring A∗(G(k, r)).

The splitting principle (see [21, Sect. 5.4]) says that any relation among
Chern classes which holds for all split vector bundles holds as well for any
vector bundle. So, we can write formally

S∗ = L0 ⊕ . . .⊕ Lk ,
the Lis being (virtual) line bundles. In terms of the Chern roots xi = c1(Li)
one can express

c(S∗) = 1 + c1(S∗) + . . .+ ck+1(S∗) = (1 + x0) · · · (1 + xk) .

Hence σ(1i) is the i–th elementary symmetric polynomial in x0, . . . , xk, i.e.,

σ(1) = x0 + . . .+ xk, σ(12) =
∑

06i<j6k

xixj, . . . , σ(1k+1) = x0 . . . xk.

Consider further the vector bundle Symd(S∗) on G(k, r) of rank(
d+ k

k

)
> (k + 1)(r − k) = dim(G(k, r)).

To compute the Chern class of Symd(S∗) one writes

Symd(S∗) =
⊕

v0+...+vk=d

Lv0
0 · · ·L

vk
k .

Since c1(Lv0
0 · · ·L

vk
k ) = v0x0 + . . .+ vkxk one obtains

(2) c(Symd(S∗)) =
∏

v0+...+vk=d

(1 + v0x0 + . . .+ vkxk) .

The following lemma is standard, see, e.g., [35, Thm. (3)]. For the reader’s
convenience we include the proof. As usual, the integral of the top degree
cohomology class stands for its value on the fundamental cycle. The integral of
the dual of a zero cycle α coincides with the degree of α.
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Lemma 1.2. Suppose (1) holds. Then one has

deg(Σ(d, r, k)) =

∫
G(k,r)

c(k+1)(r−k)(Symd(S∗)).

Proof. Let p : V (k, r)→ G(k, r) be the tautological Pk-bundle over the Grass-
mannian G(k, r). Consider the composition

ϕ : V (k, r)
φ
↪→ Pr ×G(k, r)

π−→ Pr ,
where φ is the natural embedding and π stands for the projection to the first
factor. Letting T = OPr(−1) and Sd = Symd(T ∗) one obtains

S∗ = R0p∗ϕ
∗(T ∗) and Symd(S∗) = R0p∗ϕ

∗(Sd) .
Any F ∈ H0(Pr,OPr(d)) defines a section σF of Symd(S∗) such that σF (Π) =
F |Π ∈ H0(Π,OΠ(d)). Consider the hypersurface XF of degree d on Pr with
equation F = 0. The support of XF contains a linear subspace Π ∈ G(k, r)
if and only if σF (Π) = 0, i.e., the subspaces Π ∈ G(k, r) lying in Supp(XF )
correspond to the zeros of σF in G(k, r), which have a natural scheme structure.

Let ρ = dim(G(k, r)) = (k + 1)(r − k). By our assumption one has

rk (Symd(S∗))− ρ = γ(r, k, d) > 0 .

Choose a general linear subsystem L = 〈X0, . . . , Xγ〉 in Σ(d, r) = |OPr(d)| of
dimension γ = γ(r, k, d), where Xi = {Fi = 0}. By virtue of Proposition 1.1, L
meets Σ(d, r, k) ⊂ Σ(d, r) transversally in deg(Σ(d, r, k)) simple points, and to
any such point X ∈ Σ(d, r, k)∩L corresponds a unique k-dimensional subspace
Π ∈ G(k, r) such that Π ⊂ X.

Consider now the sections σi := σFi
, i = 0, . . . , γ, of Symd(S∗). The inter-

section of L with Σ(d, r, k) is exactly the scheme of points Π ∈ G(k, r) where
there is a linear combination of σ0, . . . , σγ vanishing on Π. This is the zero
dimensional scheme of points of G(k, r) where the sections σ0, . . . , σγ are lin-
early dependent. This zero dimensional scheme represents the top Chern class
cρ(Symd(S∗)) (see [21, Thm. 5.3]). Its degree (which is equal to deg(Σ(d, r, k)))
is the required Chern number

∫
G(k,r)

c(k+1)(r−k)(Symd(S∗)). �

Let us explain now three methods for computing deg(Σ(d, r, k)).

1.1. Schubert calculus. In order to compute c(r−k)(k+1)(Symd(S∗)), one com-
putes the polynomial in x0, . . . , xk appearing in (2) and extracts the homo-
geneous component τ(d,r,k) of degree (k + 1)(r − k). The latter homogeneous
polynomial in x0, . . . , xk is symmetric, hence it can be expressed via a polyno-
mial in the elementary symmetric functions σ(1i), i = 0, . . . , k + 1:

(3) τ(d,r,k) =
∑

j1+2j2+...+(k+1)jk+1=(k+1)(r−k)

φd,r(j1, j2, . . . , jk+1)σj1(1)σ
j2
(12) · · · σ

jk+1

(1k+1)

with suitable coefficients φd,r(j1, j2, . . . , jk+1). In this way the top Chern number

τ(d,r,k) = c(k+1)(r−k)

(
Symd(S∗)

)
in Lemma 1.2 is expressed in terms of the Chern numbers

σj1(1)σ
j2
(12) · · ·σ

jk+1

(1k+1)
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appearing in (3). By computing the intersection products among Schubert
classes and plugging these in (3) one obtains the desired degree

deg(Σ(d, r, k)) = τ(d,r,k).

1.2. Debarre–Manivel’s trick. This trick (applied for a similar purpose by
van der Waerden [49]) allows to avoid passing to the elementary symmetric
polynomials, which requires to compute the coefficients in (3). Let us recall the
basics on the Chow ring of the Grassmannian G(k, r) following [36].

A partition λ of length k + 1 is a (non-strictly) decreasing sequence of non-
negative integers (λ0, . . . , λk). To such a partition λ there corresponds a homo-
geneous symmetric Schur polynomial sλ ∈ Z[x0, . . . , xk] of degree |λ| = λ0+. . .+
λk. These polynomials form a base of the Z-module Λk+1 of symmetric polyno-
mials in x0, . . . , xk. One wrights λ ⊂ (k+1)×(r−k) if r−k ≥ λ0 ≥ . . . ≥ λk ≥ 0.
This inclusion means that the corresponding Ferrers diagram of λ is inscribed
in the rectangular matrix of size (k+ 1)× (r− k) occupying λi−1 first places of
the ith line for i = 1, . . . , k+ 1. To any λ ⊂ (k+ 1)× (r− k) there correspond:

• a Schubert variety Σλ ⊂ G(k, r) of codimention |λ|;
• the corresponding Schubert cycle [Σλ] in the Chow group A∗(G(k, r));
• the corresponding dual Schubert class σλ of degree |λ| in the Chow ring
A∗(G(k, r)).

The nonzero Schubert classes form a base of the free Z-module A∗(G(k, r))
([36, Cor. 3.2.4]). There is a unique partition λmax = (r − k, . . . , r − k) ⊂
(k+ 1)× (r−k) of maximal weight |λmax| = (k+ 1)(r−k). Its Ferrers diagram
coincides with the whole rectangle (k + 1)× (r − k). The corresponding Schur
polynomial is sλmax = (x0 · · ·xk)r−k. The corresponding Schubert cycle is a
reduced point, and the corresponding Schubert class σλmax generates the Z-
module A(k+1)(r−k)(G(k, r)) ' Z.

Let as before x0, . . . , xk ∈ A1(G(k, r)) be the Chern roots of the vector bun-
dle S∗ over G(k, r). A homogeneous symmetric polynomial τ ∈ Z[x0, . . . , xk]
of degree (k + 1)(r − k) admits a unique decomposition as an integral linear
combination of Schur polynomials sλ of the same degree. The corresponding
Schubert classes σλ vanish except for σλmax . If τ corresponds to an effective
zero cycle on G(k, r), then the degree of this cycle equals the coefficient of
sλmax = (x0 · · ·xk)r−k in the decomposition of τ as a linear combination of
Schur polynomials. Multiplying τ by the Vandermonde polynomial

V = V (x0, . . . , xk) =
∏

06i<j6k

(xi − xj) ,

this coefficient becomes the coefficient of the monomial xr0x
r−1
1 · · ·xr−kk in the

product τ · V , see the proofs of [17, Thm. 4.3] and [36, Thm. 3.5.18].
Let P (x0, . . . , xk) be a polynomial, and let xi00 · · ·x

ik
k be a monomial, which

we identify with the lattice vector i = (i0, . . . , ik) ∈ Zk+1. We write ψi(P )
for the coefficient of xi00 · · · x

ik
k in P =

∑
i ψi(P )xi00 · · ·x

ik
k . Summarizing the

preceding discussion and taking into account Lemma 1.2 one arrives at the
following conclusion.

Proposition 1.3. ([35, pp. 311-312]) One has

deg(Σ(d, r, k)) = ψ(r,r−1,...,r−k)(V · τ(d,r,k)) ,
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that is, the degree deg(Σ(d, r, k)) equals the coefficient of xr0x
r−1
1 · · ·xr−kk in the

product τ · V , where τ = τ(d,r,k)(x0, . . . , xk) is as in (3).

See also the table in [35, p. 312] of the values of deg(Σ(d, r, k)) for several
different values of (d, r, k), and an explicit formula in [35, Cor. on p. 312] which
expresses deg(Σ(d, 3, 1)) as a polynomial in d of degree 8.

1.3. Bott’s residue formula. Bott’s residue formula [11, Thms. 1, 2] says, in
particular, that one can compute the degree of a zero–dimensional cycle class
on a smooth projective variety X in terms of local contributions given by the
fixed point loci of a torus action on X. Here we follow the treatment in [27]
based on [12], [20], and [38] and adapted to our setting.

We consider the diagonal action of T = (C∗)r+1 on Pr given in coordinates
by

(t0, . . . , tr) · (x0 : . . . : xr) = (t0x0 : . . . : trxr).

This induces an action of T on G(k, r), with
(
r+1
k+1

)
isolated fixed points corre-

sponding to the coordinate k–subspaces in Pr, which are indexed by the subsets
I of order k + 1 of the set {0, . . . , r}. We let Ik+1 denote the set of all these
subsets, and ΠI ∈ G(k, r) denote the subspace which corresponds to I ∈ Ik+1.
Bott’s residue formula, applied in our setting, has the form

deg(Σ(d, r, k)) =

∫
G(k,r)

c(r−k)(k+1)(Symd(S∗)) =
∑

I∈Ik+1

cI
eI
,

where cI results from the local contribution of c(r−k)(k+1)(Symd(S∗)) at ΠI , and
eI is determined by the torus action on the tangent space to G(k, r) at ΠI .

As for the computation of eI , this goes exactly as in [27, p. 116], namely

eI = (−1)(k+1)(r−k)
∏
i∈I

∏
j 6∈I

(ti − tj).

Also the computation of cI is similar to the one made in [27, p. 116]. Recalling
(2), for a given I ∈ Ik+1, consider the polynomial∏

v0+...+vk=d

(1 +
∑
i∈I

viti)

and extract from this its homogeneous component τ I(d,r,k) of degree (k+1)(r−k).
Then

cI = τ I(d,r,k)(−ti)i∈I = (−1)(r−k)(k+1)τ I(d,r,k)(ti)i∈I .

In conclusion we have

(4) deg(Σ(d, r, k)) =
∑

I∈Ik+1

τ I(d,r,k)(ti)i∈I∏
i∈I
∏

j 6∈I(ti − tj)
.

As in [27, p. 111], we notice that the right hand side of this formula is, a
priori, a rational function in the variables t0, . . . , tk. As a matter of fact, it is a
constant and a positive integer.
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2. Fano schemes of complete intersections

In this section we extend the considerations of Section 1 to complete inter-
sections in projective space. We consider the case in which a general complete
intersection X of type d := (d1, . . . , dm) in Pr, where

∏m
i=1 di > 2, does not

contain any linear subspace of dimension k. Like in the case of hypersurfaces,
the latter happens if and only if either 2k > r −m = dim(X), or

γ(d, r, k) :=
m∑
j=1

(
dj + k

k

)
− (k + 1)(r − k) > 0 ,

see [10, 17, 32, 39, 40, 41].
Let Σ(d, r) be the parameter space for complete intersections of type d in Pr.

This is a tower of projective bundles over a projective space, hence a smooth
variety. Consider the subvariety Σ(d, r, k) of Σ(d, r) parameterizing complete
intersections which contain a linear subspace of dimension k. One has ([4, Thm.
1.1]):

Proposition 2.1. Assume γ(d, r, k) > 0. Then Σ(d, r, k) is a nonempty, irre-
ducible and rational subvariety of codimension γ(d, r, k) in Σ(d, r). The gen-
eral point of Σ(d, r, k) corresponds to a complete intersection which contains
a unique linear subspace of dimension k and has singular locus of dimension
max{−1, 2k + m − 1 − r} along its unique k-dimensional linear subspace (in
particular, it is smooth provided r ≥ 2k +m).

Next we would like to make sense of, and to compute, the degree of Σ(d, r, k)
inside Σ(d, r) when γ(d, r, k) > 0. To do this we consider the general complete
intersection X of type (d1, . . . , dm−1), and the complete linear system

Σ(dm, X) = |OX(dm)|.

We assume that the Fano scheme Fk(X) of linear subspaces of dimension k
contained in X is non–empty. This implies that

(5) dim(Fk(X)) = (k+1)(r−k)−
m−1∑
j=1

(
dj + k

k

)
=

(
dm + k

k

)
−γ(d, r, k) > 0

(see [10, 32, 41]). Moreover, assume

(6) dim(Σ(dm, X)) > γ(d, r, k) > 0.

Notice that (5) and (6) do hold if γ(d, r, k) is sufficiently small, e.g., if γ(d, r, k) =
1.

Let now Σ(dm, X, k) be the set of points in Σ(dm, X) corresponding to com-
plete intersections of type d = (d1, . . . , dm) contained in X and containing a
subspace of dimension k. As an immediate consequence of Proposition 2.1, we
have

Corollary 2.2. Assume γ(d, r, k) > 0 and (5) holds. Let X be a general com-
plete intersection of type (d1, . . . , dm−1) verifying (6). Then Σ(dm, X, k) is irre-
ducible of codimension γ(d, r, k) in Σ(dm, X). The general point of Σ(dm, X, k)
corresponds to a complete intersection of type d = (d1, . . . , dm) which contains
a unique subspace of dimension k.
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Next we would like to compute the degree of Σ(dm, X, k) inside the projective
space Σ(dm, X).

Consider the vector bundle Symdm(S∗) on G(k, r) and set

ρ :=

(
dm + k

k

)
− γ(d, r, k) = dim(Fk(X)).

Similarly as in Lemma 1.2, one sees that

(7) deg(Σ(dm, X, k)) =

∫
G(k,r)

cρ(Symdm(S∗)) · [Fk(X)] ,

where [Fk(X)] stands for the dual class of Fk(X) in the Chow ring A∗(G(k, r)).

2.1. Schubert calculus. The Chern class cρ(Symdm(S∗)) is the homogeneous
component θ of degree ρ of the polynomial∏

v0+...+vk=dm

(1 + v0x0 + . . .+ vkxk).

As usual, θ can be written as a polynomial in the elementary symmetric func-
tions of the Chern roots x0, . . . , xk, which can be identified with the σ(1i)s.
Eventually, one has a formula of the form

cρ(Symdm(S∗)) =
∑

j1+2j2+...+(k+1)jk+1=ρ

φdm,r(j1, j2, . . . , jk+1)σj1(1)σ
j2
(12) · · ·σ

jk+1

(1k+1)
.

In conclusion one has

deg(Σ(dm, X, k)) =

=

∫
G(k,r)

[Fk(X)] ·
∑

j1+2j2+...+(k+1)jk+1=ρ

φdm,r(j1, . . . , jk+1)σj1(1) · · ·σ
jk+1

(1k+1)
.(8)

2.2. Debarre–Manivel’s trick. Formula (8) is rather unpractical, since both,
the computation of the coefficients and of the intersection products appearing
in it are rather complicated, in general. A better result can be gotten using
again Debarre–Manivel’s idea as in §1.2. Taking into account (7) one sees that
deg(Σ(dm, X, k)) equals the coefficient of the monomial xr0x

r−1
1 · · ·xr−kk in the

product of the following polynomials in x0, . . . , xk:
(i) the product Qk,d =

∏m−1
i=1 Qk,di of the polynomials

Qk,di =
∏

v0+...+vk=di

(v0x0 + · · ·+ vkxk);

(ii) the polynomial θ;
(iii) the Vandermonde polynomial V (x0, . . . , xk).

Notice ([23, 14.7], [36, 3.5.5]) that Qk,d in (i) corresponds to the class [Fk(X)]
of degree (k + 1)(r − k) − ρ in the Chow ring A∗(G(k, r)), whereas θ in (ii)
corresponds to the class of cρ(Symdm(S∗)) of degree ρ. In conclusion,

deg(Σ(dm, X, k)) = ψ(r,r−1,...,r−k)(Q · θ · V ).

The Bott residue formula does not seem to be applicable in this case.
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3. Numerical invariants of Fano schemes

In this section we consider the complete intersections whose Fano schemes
have positive expected dimension

(9) δ(d, r, k) := −γ(d, r, k) = (k + 1)(r − k)−
m∑
j=1

(
dj + k

k

)
> 0

where d = (d1, . . . , dm). We may and we will assume di ≥ 2, i = 1, . . . ,m. If
also r ≥ 2k+m+ 1 then, for a general complete intersection X of type d in Pr,
the Fano variety Fk(X) of linear subspaces of dimension k contained in X is a
smooth, irreducible variety of dimension δ(d, r, k) (see [10, 16, 17, 32, 40, 41]).
We will compute some numerical invariants of Fk(X). If δ(d, r, k) = 1 then
Fk(X) is a smooth curve; its genus was computed in [28]. In the next section
we treat the case where Fk(X) is a surface, that is, δ(d, r, k) = 2; our aim is to
compute the Chern numbers of this surface. Actually, we deduce formulas for
c1(Fk(X)) and c2(Fk(X)) for the general case δ(d, r, k) > 0. To simplify the
notation, we set in the sequel F = Fk(X), G = G(k, r), δ = δ(d, r, k), and we
let h be the hyperplane section class of G in the Plücker embedding.

Recall the following fact (cf. Proposition 1.3).

Proposition 3.1. ([17, Thm. 4.3]) In the notation and assumptions as before,
one has

deg(F ) = ψ(r,r−1,...,r−k)(Qk,d · eδ · V ) where e(x) := x0 + · · ·+ xk ,

that is, the degree of the Fano scheme F under the Plücker embedding equals the
coefficient of the monomial xr0x

r−1
1 · · · xr−kk of the product of Qk,d ·eδ ·V where V

stands for the Vandermonde polynomial (see Subsection 2.2 for the notation).

Remark 3.2. An alternative expression for deg(F ) based on the Bott residue
formula can be found in [27, Thm. 1.1] and [28, Thm. 2]; cf. also [23, Ex.
14.7.13] and [36, Sect. 3.5].

The next lemma is known in the case of the Fano scheme of lines on a general
hypersurface, that is, for k = m = 1, see [1], [31, Ex. V.4.7].

Lemma 3.3. In the notation and assumptions as before, one has

(10) c1(TF ) =
(
r + 1−

m∑
i=1

(
di + k

k + 1

))
h|F

and

(11) KF ∼ OF
( m∑
i=1

(
di + k

k + 1

)
− (r + 1)

)
where OF (1) corresponds to the Plücker embedding. In particular, F is a smooth
Fano variety provided

∑m
i=1

(
di+k
k+1

)
≤ r.

Proof. From the exact sequence

0→ TF → TG|F → NF |G → 0

one obtains
c(TG|F ) = c(TF ) · c(NF |G) .
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Expanding one gets

(12) c1(TF ) = c1(TG|F )− c1(NF |G)

and, for the further usage,

(13) c2(TF ) = c2(TG|F )− c2(NF |G)− c1(TG|F ) · c1(NF |G) + c1(NF |G)2.

Notice ([21, Thm. 3.5]) that TG = S∗ ⊗ Q, where, as usual, S → G is the
tautological vector bundle of rank k+1 and Q → G is the tautological quotient
bundle. Furthermore ([28, Lemma 3]), F is the zero scheme of a section of the
vector bundle ⊕mi=1Symdi(S∗) on G. It follows that

(14) NF |G ' ⊕mi=1Symdi(S∗)|F .

By [28, Lemma 2] one has

(15) c1(TG) = (r + 1)h.

Taking into account (14), [28, Lemma 1] (see also Lemma 3.6 below), and the
fact that c1(S∗) = h (see [21, Sect. 4.1]), one gets

(16) c1(NF |G) =
m∑
i=1

c1(Symdi(S∗)|F ) =
( m∑
i=1

(
di + k

k + 1

))
h|F .

Plugging (15) and (16) in (12) we find (10) and then (11). �

Corollary 3.4. One has

(17) Kδ
F =

( m∑
i=1

(
di + k

k + 1

)
− (r + 1)

)δ
deg(F ),

where deg(F ) is computed in Proposition 3.1.

Next we proceed to compute c2(TF ). Recalling (13), we need to compute
c2(NF |G) and c2(TG). This requires some preliminaries. First of all, we need
the following auxiliary combinatorial formula.

Lemma 3.5. For any integers n,m, k where n ≥ m ≥ 1 and k ≥ 0 one has

n∑
i=1

(
i− 1

m− 1

)(
n− i+ k

k

)
=

(
n+ k

m+ k

)
.

Proof. 1 The choice of m+ k integers i1, . . . , im+k among {1, . . . , n+ k}, where
1 ≤ i1 < . . . < im < . . . < im+k ≤ n + k, can be done in two steps. At
the first step one fixes the choice of im = i, where, clearly, i ∈ {1, . . . , n}. It
remains to choose i1, . . . , im−1 among {1, . . . , i− 1} and im+1, . . . , im+k among
{i+ 1, . . . , n+ k}. �

Lemma 3.6. Let E be a vector bundle of rank k + 1. Then

(18) c2(Symn(E)) = αc1(E)2 + βc2(E) and c1(Symn(E)) = γc1(E)

1The authors are grateful to Roland Basher for communicating this beautiful, elementary
argument.
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where 2

α =
1

2

(
n+ k

k + 1

)2

− 1

2

(
n+ k

k + 1

)
−
(
n+ k

k + 2

)
,

β =

(
n+ k + 1

k + 2

)
, and γ =

(
n+ k

k + 1

)
.

(19)

Proof. We use the splitting principle. Write E as a formal direct sum of line
bundles E = L0 ⊕ . . .⊕ Lk, with c1(Li) = xi, for 0 6 i 6 k. From the equality

c(E) = (1 + x0) · · · (1 + xk)

one deduces

(20) c1(E) = x0 + · · ·+ xk and c2(E) =
∑

06i<j6k

xixj.

Since

Symn(E) =
∑

v0+···+vk=n

Lv0
0 · · ·L

vk
k

one has

c(Symn(E)) =
∏

v0+···+vk=n

(1 + v0x0 + · · ·+ vkxk) =
∏
|v|=n

(1 + 〈v,x〉) ,

where x = (x0, . . . , xk), v = (v0, · · · , vk), and |v| = v0 + · · ·+ vk. Therefore,

(21) c1(Symn(E)) =
∑
|v|=n

〈v,x〉

and

(22) c2(Symn(E)) =
1

2

∑
|v|=|w|=n,v 6=w

〈v,x〉〈w,x〉 .

The right hand sides of (21) and (22) are symmetric homogeneous polynomials
in x0, . . . , xk of degree 1 and 2, respectively. Using (20) one deduces

c1(Symn(E)) =
∑
|v|=n

〈v,x〉 = γ(x0 + · · ·+ xk) = γc1(E)

and

c2(Symn(E)) =
1

2

∑
|v|=|w|=n,v 6=w

〈v,x〉〈w,x〉

= α(x0 + · · ·+ xk)
2 + β

∑
06i<j6k

xixj = αc1(E)2 + βc2(E),

cf. (18). In order to compute α, β and γ, we let in these relations x0 = 1, x1 =
. . . = xk = 0, so that the coefficient of β vanishes and the coefficients of α and
γ become 1. Similarly, for x0 = x1 = 1, x2 = . . . = xk = 0 the coefficient of β

2See also [28, Lemma 1] for γ.
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in the decomposition of c2(Symn(E)) is 1 and the coefficient of α is 4. So, one
gets

α =
1

2

∑
|v|=|w|=n,v 6=w

v0w0, β + 4α =
1

2

∑
|v|=|w|=n,v 6=w

(v0 + v1)(w0 + w1),

γ =
∑
|v|=n

v0 .
(23)

For k = 1, (23) yields

α =
1

2

( n∑
i,j=1

ij −
n∑
i=1

i2
)

=
1

2

(( n∑
i=1

i

)2

−
n∑
i=1

i2
)

=
1

2

(
n2(n+ 1)2

4
− n(n+ 1)(2n+ 1)

6

)
=

(3n+ 2)

4

(
n+ 1

3

)
,

and

β + 4α =
1

2

∑
v0+v1=w0+w1=n

n2 − 1

2

∑
v0+v1=n

n2

=
1

2
n2(n+ 1)2 − 1

2
n2(n+ 1) =

1

2
n3(n+ 1) .

Plugging in the value of α gives

β =
1

2
n3(n+ 1)− 4α =

1

2
n3(n+ 1)− (3n+ 2)

(
n+ 1

3

)
=

(
n+ 2

3

)
.

Similarly, if k = 2 one has

α =
1

2

n∑
i,j=1

ij(n− i+ 1)(n− j + 1)−
n∑
i=1

i2(n− i+ 1) =
5

3
(n+ 1)

(
n+ 3

5

)

and

β =
1

2

(
n∑

i,j=1

i(i+ 1)j(j + 1)−
n∑
i=1

i2(i+ 1)

)
− 4α =

(
n+ 3

4

)
.

In the general case, applying Lemma 3.5 with a suitable choice of parameters
we find

γ =
n∑
i=1

i

(
n− i+ k − 1

k − 1

)
=

(
n+ k

k + 1

)
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and

α =
1

2

n∑
i,j=1

ij

(
n− i+ k − 1

k − 1

)(
n− j + k − 1

k − 1

)
− 1

2

n∑
i=1

i2
(
n− i+ k − 1

k − 1

)

=
1

2

( n∑
i=1

i

(
n− i+ k − 1

k − 1

))2

−
n∑
i=1

(
i+ 1

2

)(
n− i+ k − 1

k − 1

)
+

+
1

2

n∑
i=1

i

(
n− i+ k − 1

k − 1

)
=

1

2

(
n+ k

k + 1

)2

−
(
n+ k + 1

k + 2

)
+

1

2

(
n+ k

k + 1

)
=

1

2

(
n+ k

k + 1

)2

− 1

2

(
n+ k

k + 1

)
−

−
(
n+ k

k + 2

)
,

where at the last step one uses the standard identity

(24)

(
N + 1

k + 1

)
=

(
N

k + 1

)
+

(
N

k

)
.

Applying Lemma 3.5 and the identity

i2(i+ 1) = 2

(
i+ 1

2

)
+ 6

(
i+ 1

3

)
,

for k ≥ 3 we find:

β + 4α =
1

2

n∑
i,j=1

i(i+ 1)j(j + 1)

(
n− i+ k − 2

k − 2

)(
n− j + k − 2

k − 2

)

− 1

2

n∑
i=1

i2(i+ 1)

(
n− i+ k − 2

k − 2

)
= 2
( n∑
i=1

(
i+ 1

2

)(
n− i+ k − 2

k − 2

))2

−
n∑
i=1

(
i+ 1

2

)(
n− i+ k − 2

k − 2

)
− 3

n∑
i=1

(
i+ 1

3

)(
n− i+ k − 2

k − 2

)
= 2

(
n+ k

k + 1

)2

−
(
n+ k

k + 1

)
− 3

(
n+ k

k + 2

)
.

Using the formula for α and (24) we deduce

β =

(
n+ k

k + 1

)
+

(
n+ k

k + 2

)
=

(
n+ k + 1

k + 2

)
.

�

Remark 3.7. The proof shows that for k = 1, 2, (19) can be simplified as
follows:

(25) (α, β) =


(

3n+2
4

(
n+1

3

)
,
(
n+2

3

))
, k = 1 ,(

5(n+1)
3

(
n+3

5

)
,
(
n+3

4

))
, k = 2 .

One can readily check that the expressions for α in these formulas agree with
the one in (19).
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Lemma 3.8. One has

c1(Q) = c1(S∗) = h and

c2(Q) = c1(S∗)2 − c2(S∗) = h2 − c2(S∗).

Proof. One has c(Q) · c(S) = 1. By expanding and taking into account that
ci(S) = (−1)ici(S∗) for all positive integers i and c1(S∗) = h ([21, Sect. 4.1]),
the assertion follows. �

Lemma 3.9. One has

(26) c2(TG) =
((r + 1

2

)
+ k
)
h2 + (r − 2k − 1) c2(S∗) .

Proof. We use again the splitting principle. Write

S∗ = L0 ⊕ · · · ⊕ Lk, Q = M1 ⊕ · · · ⊕Mr−k

with c1(Li) = xi, c1(Mj) = yj, for 0 6 i 6 k and 1 6 j 6 r − k. Since
TG = Q⊗ S∗, see [21, Thm. 3.5], one obtains

c(TG) = c(Q⊗ S∗) =
k∏
i=0

r−k∏
j=1

(1 + xi + yj),

whence

c2(TG) =
1

2

∑
λ,µ=0,...,k
σ,ρ=1,...,r−k
(λ,σ)6=(µ,ρ)

(xλ + yσ)(xµ + yρ) .

By expanding, we see that in c2(TG) appear the following summands:

• ξ =
∑k

i=0 x
2
i and η =

∑r−k
i=1 y

2
j , the former appearing

(
r−k

2

)
times, the latter(

k+1
2

)
times;

• c2(S∗) =
∑

06i<j6k xixj, c2(Q) =
∑

16i<j6r−k yiyj, the former appearing (r −
k)2 times, the latter (k + 1)2 times;

• c1(Q)c1(S∗) =
∑k

i=0

∑r−k
j=1 xiyj appearing (k + 1)(r − k)− 1 times.

Using Lemma 3.8 one obtains

ξ =
k∑
i=0

x2
i = (x0 + . . .+xk)

2−2
∑

06i<j6k

xixj = c1(S∗)2−2c2(S∗) = h2−2c2(S∗),

and similarly

η = c1(Q)2 − 2c2(Q) = h2 − 2(h2 − c2(S∗)) = 2c2(S∗)− h2.
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Collecting these formulas and taking into account Lemma (3.8) one arrives at:

c2(TG) =

(
r − k

2

)
ξ +

(
k + 1

2

)
η + (r − k)2c2(S∗) + (k + 1)2c2(Q)

+ ((k + 1)(r − k)− 1) c1(Q)c1(S∗)

=

[(
r − k

2

)
−
(
k + 1

2

)] (
h2 − 2c2(S∗)

)
+ (r − k)2c2(S∗)

+ (k + 1)2
(
h2 − c2(S∗)

)
+ ((k + 1)(r − k)− 1)h2

=

[(
r − k

2

)
−
(
k + 1

2

)
+ (k + 1)2 + (k + 1)(r − k)− 1

]
h2

+

[
2

(
k + 1

2

)
− 2

(
r − k

2

)
+ (r − k)2 − (k + 1)2

]
c2(S∗)

=
((r + 1

2

)
+ k
)
h2 +

(
r − 2k − 1

)
c2(S∗) .

�

Now we can deduce the following formulas.

Lemma 3.10. Let αi, βi, and γi be obtained from α, β, and γ in (19) by
replacing n by di, i = 1, . . . ,m. Then one has

(27) c2(F ) = c2(TF ) =
(
Ah2 +Bc2(S∗)

)
· [F ]

where [F ] is the class of F in the Chow ring A∗(G), and 3

A =

(
r + 1

2

)
+ k −

m∑
i=0

αi −
∑

1≤i<j≤m

γiγj

− (r + 1) ·
m∑
i=1

(
di + k

k + 1

)
+
( m∑
i=1

(
di + k

k + 1

))2

,

(28)

and

(29) B = r − 2k − 1−
m∑
i=1

βi .

Proof. Using (15) and (16) we deduce

(30) c1(TG)|F · c1(NF |G) =
(

(r + 1)
m∑
i=1

(
di + k

k + 1

))
h2 · [F ]

and

(31) c1(NF |G)2 =
( m∑
i=1

(
di + k

k + 1

))2

h2 · [F ] .

3The sum
∑

1≤i<j≤m γiγj disappears if m = 1.
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Furthermore, the Whitney formula and Lemma 3.6 yield

c2(NF |G) =
m∑
i=1

c2

(
Symdi(S∗)|F

)
+

∑
1≤i<j≤m

c1

(
Symdi(S∗)|F

)
· c1

(
Symdj(S∗)|F

)
=
( m∑
i=1

(
αic1(S∗)2 + βic2(S∗)

)
+

∑
1≤i<j≤m

γiγjc1(S∗)2
)
· [F ]

=
( m∑
i=1

αi +
∑

1≤i<j≤m

γiγj

)
h2 · [F ] +

( m∑
i=1

βi

)
c2(S∗) · [F ] .

Plugging this in (13) together with the values of the Chern classes from (26),
(30), and (31) gives (27), (28), and (29). �

Remark 3.11. The cycle F on G is the reduced zero scheme of a section of
the vector bundle EF := ⊕mi=1Symdi(S∗) on G of rank

rk(EF ) =

(
d + k

k

)
:=

m∑
i=1

(
di + k

k

)
.

The Poincaré dual [F ] ∈ A(d+k
k )(G) of the class of F in Aδ(G) is the top Chern

class c(d+k
k )(EF ). The latter can be expressed in terms of the Chern roots as

[F ] = Qk,d(x0, . . . , xk) =
m∏
i=1

Qk,di(x0, . . . , xk) ∈ A(d+k
k )(G) ,

see Section 2.2.

4. The case of Fano surfaces

Let us turn to the case where the Fano scheme F = Fk(X) of a general
complete intersection X ⊂ Pr of type d is an irreducible surface, that is, δ = 2
and r ≥ 2k +m. Let us make the following observations.

In the surface case,
∫
F
c2(F ) = e(F ) is the Euler–Poincaré characteristic of

F . By Lemma 3.10 one can compute e(F ) once one knows
∫
G h2 · [F ] and∫

G c2(S∗) · [F ]. As for the former, one can use the Debarre-Manivel formula for
the degree deg(F ) =

∫
G h2 · [F ], see Proposition 3.1; cf. also Remark 3.2.

As for the latter, recall that c2(S∗) = σ(12) is the class of the Schubert cycle
of the Pks in Pr intersecting a fixed Pr−k−1 in a line. Computing

∫
G c2(S∗) · [F ]

geometrically is difficult. However, one can compute it using Debarre–Manivel’s
trick. Indeed, arguing as in the proof of [17, Thm. 4.3], cf. Subsection 1.2, one
can see that

∫
G c2(S∗)·[F ] equals the coefficient of xr0x

r−1
1 · · ·xr−kk in the product

of the three factors:

• Qk,d =
∏m

i=1Qk,di , see Subsection 2.2;
• c2(S∗) =

∑
06i<j6k xixj;

• the Vandermonde polynomial V (x0, . . . , xk) =
∏

i<j(xi − xj).
Notice that for δ = 2 one has

deg

(
Qk,d ·

∑
06i<j6k

xixj

)
=

(
d + k

k

)
+ 2 = (k + 1)(r − k) = dim(G) .
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Putting together (27), (28) and (29) one finds a formula for the Euler char-
acteristic e(F ) =

∫
F
c2(F ). Then, using (17) and the Noether formula

χ(OF ) =
1

12

(
K2
F + e(F )

)
=

1

12

(
c1(F )2 + c2(F )

)
one can compute the holomorphic Euler characteristic χ(OF ), the arithmetic
genus pa(F ) = χ(OF )− 1, and the signature τ(F ) = 4χ(OF )− e(F ).

Example 4.1. Let us apply these recipes to the well known case of the Fano
surface F = F1(X) of lines on the general cubic threefold in P4. Letting r =
4, k = m = 1, d = 3 one gets δ = 2 and

Q1,(3)(x0, x1) = 9x0x1(2x0 + x1)(x0 + 2x1), V (x0, x1) = x0 − x1 .

Therefore,

deg(F ) =

∫
G(1,4)

h2 · [F ] =

∫
G(1,4)

c1(S∗)2 · [F ] = ψ4,3(Q1,(3) · (x0 + x1)2 · V ) = 45

and ∫
G(1,4)

c2(S∗) · [F ] = ψ4,3(Q1,(3) · x0x1 · V ) = 27 .

Applying (25) and (27) one obtains

α = 11, β = 10, A = 6, and B = −9 .

Using the Noether formula and (17) one arrives at the classical values (see [1],
[33])

e(F ) = c2(F ) = 6 deg(F )− 9

∫
G(1,4)

c2(S∗) · [F ] = 6 · 45− 9 · 27 = 27

and

c1(F )2 = K2
F =

((4

2

)
− 5
)2

deg(F ) = 45, χ(OF ) =
1

12
(45 + 27) = 6 .

Example 4.2. More generally, one can consider the Fano surface F = F1(X)
of lines on a general hypersurface X of degree d = 2r−5 in Pr, r ≥ 4. Plugging
in (27)-(29) the values of α and β from (25) one obtains

A =

(
2r − 4

2

)2

+

(
r + 1

2

)
+ 1− 6r − 13

4

(
2r − 4

3

)
− (r + 1)

(
2r − 4

2

)
,

=
1

3
(6r4 − 56r3 + 177r2 − 211r + 78) ,

B = r − 3−
(

2r − 3

3

)
.

Furthermore,

e(F ) = c2(F ) = A deg(F )+B

∫
G(1,r)

c2(S∗)·[F ], c2
1(F ) =

((2r − 4

2

)
−(r+1)

)2

,

and

χ(OF ) =
1

12

(
c2

1(F ) + c2(F )
)
,

where
deg(F ) = ψr,r−1

(
Q1,(d) · (x0 + x1)2(x0 − x1)

)
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and ∫
G(1,r)

c2(S∗) · [F ] = ψr,r−1

(
Q1,(d) · x0x1(x0 − x1)

)
with

Q1,(d) =
∏

v0+v1=d

(v0x0 + v1x1) .

Consider, for instance, the Fano scheme F of lines on a general quintic four-
fold in P5. One has

r = 5, d = 5, k = m = 1, δ = 2 .

One gets

α = 85, β = 35, A = 66, B = −33 ,

and further (cf. [17, Table 1] and [49])

deg(F ) = ψ5,4

(
Q1,(5) · (x0 + x1)2(x0 − x1)

)
= 25 · 245 = 6125

and

c2(S∗) · [F ] = ψ5,4

(
Q1,(5) · x0x1(x0 − x1)

)
= 25 · 115 = 2875 .

Hence

e(F ) = c2(F ) = 25 · 33 · 375 = 309375, c2
1(F ) = 25 · 81 · 245 = 496125 .

Finally,

χ(OF ) =
1

12

(
c2

1(F ) + c2(F )
)

= 25 · 15 · 179 = 67125 .

Example 4.3. Consider further the Fano surface F = F1(X) of lines on the
intersection X of two general quadrics in P5. We have

r = 5, m = 2, d = (2, 2), k = 1, δ = 2 ,

Q1,(2,2)(x0, x1) = 16x2
0x

2
1(x0 + x1)2, and V (x0, x1) = x0 − x1 .

Hence

deg(F ) = ψ5,4(Q1,(2,2) · (x0 + x1)2 · V ) = 32

and ∫
G(1,5)

c2(S∗) · [F ] = ψ5,4(Q1,(2,2) · x0x1 · V ) = 16 .

Furthermore,

α1 = α2 = 2, β1 = β2 = 4, γ1 = γ2 = 3, A = 3, and B = −6 .

Therefore,

e(F ) = 3 deg(F )− 6

∫
G(1,5)

c2(S∗) · [F ] = 3 · 32− 6 · 16 = 0 ,

c1(F )2 =
(

2

(
3

2

)
− 6
)2

deg(F ) = 0, and so, χ(OF ) = 0 .

In fact, F is an abelian surface ([42]).
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Example 4.4. Let now F = F2(X) be the Fano scheme of planes on a general
cubic fivefold X in P6. Thus, one has

r = 6, m = 1, d = 3, k = 2, and δ = 2 .

Letting

Q2,(3) = 27x0x1x2(2x0+x1)(2x0+x2)(x0+2x1)(x0+2x2)(2x1+x2)(x1+2x2)(x0+x1+x2)

and

V (x0, x1, x2) = (x0 − x1)(x0 − x2)(x1 − x2) .

The Wolfram Alpha gives (cf. [17, Table 2])

deg(F ) = ψ6,5,4(Q2,(3) · (x0 + x1 + x2)2 · V ) = 27 · 105 = 2835

and∫
G(2,6)

c2(S∗) · [F ] = ψ6,5,4(Q2,(3) · (x0x1 + x0x2 + x1x2) · V ) = 27 · 63 = 1701 .

Standard calculations yield

α = 40, β = 15, γ = 10, A = 13, and B = −14 .

So, one obtains

e(F ) = 13 deg(F )− 14c2(S∗) · [F ] = 13041 ,

K2
F =

((5

3

)
− 7
)2

deg(F ) = 9 deg(F ) = 9 · 27 · 105 = 25515 ,

and

χ(OF ) =
13041 + 25515

12
= 3213 .

5. Irregular Fano schemes

In this section we study the cases in which the Fano scheme F of a general
complete intersection is irregular, that is, q(F ) = h1(OF ) > 0. As follows from
the next proposition, for the Fano surfaces F this occurs only if F is one of the
surfaces in Examples 4.1 (or, which is the same, in 4.2 for r = 4), 4.3, and 4.4.
In all these cases one has r = 2k +m+ 1.

Theorem 5.1. Let X be a general complete intersection of type d = (d1, . . . , dm)
in Pr. Suppose that the Fano scheme F = Fk(X) of k-planes in X, k ≥ 1, is
irreducible of dimension δ ≥ 2. Then F is irregular if and only if one of the
following holds:

(i) F is the variety of lines on a general cubic threefold in P4 (dim(F ) = 2);
(ii) F is the variety of planes on a general cubic fivefold in P6 (dim(F ) = 2);

(iii) F is the variety of k-planes on the intersection of two general quadrics
in P2k+3, k ∈ N (dim(F ) = k + 1).

Proof. By our assumption, δ ≥ 2. By [17, Thm. 3.4] one has q(F ) = 0 if
r > 2k + m + 2. By [17, Thm. 2.1], F being nonempty implies r > 2k + m.
Therefore, q(F ) > 0 leaves just two possibilities:

r = 2k +m and r = 2k +m+ 1 .



FANO SCHEMES OF COMPLETE INTERSECTIONS 21

We claim that the first possibility is not realized. Indeed, let r = 2k + m. We
may assume that di ≥ 2 for all i = 1, . . . ,m. From (9) one deduces:

(32) (k + 1)(k +m) = (k + 1)(r − k) = δ +
m∑
i=1

(
di + k

k

)
≥ 2 +m

(
k + 2

2

)
.

This implies the inequality

(33) 4 ≤ k(k + 1)(2−m) ,

and so, m = 1, that is, X is a hypersurface in P2k+1. Letting d = d1, (32) reads

δ = (k + 1)2 −
(
d+ k

k

)
≥ 2 .

This inequality holds only when d = 2, that is, X is a smooth quadric of di-
mension 2k. However, in the latter case F = Fk(X) consists of two components
([19, Lemma 1.1]), contrary to our assumption. This proves our claim.

In the case r = 2k +m+ 1, (32) and (33) must be replaced, respectively, by

(k + 1)(k +m+ 1) = (k + 1)(r − k) = δ +
m∑
i=1

(
di + k

k

)
≥ δ +m

(
k + 2

2

)
and

(34) 4 ≤ 2δ ≤ (k + 1)[2(k +m+ 1)−m(k + 2)] = (k + 1)[(2−m)k + 2] .

It follows from (34) that either m = 1 and r = 2k+2, or m = 2 and r = 2k+3.
In the hypersurface case (i.e., m = 1) one has

2 ≤ δ = (k + 1)(k + 2)−
(
d+ k

k

)
.

This holds only if either d = 2, or d ≥ 3 and k ∈ {1, 2}.
If d = 2, that is, X is a smooth quadric in P2k+2, then δ =

(
k+2

2

)
, cf. [19,

Lemma 1.1]. However, by [19, Lemma 1.2], in this case F is unirational, hence
q(F ) = 0, contrary to our assumption.

The possibility d ≥ 3 realizes just in the following two cases:

(i) (d, r, k) = (3, 4, 1), that is, F is the Fano surface of lines on a smooth
cubic threefold in P4;

(ii) (d, r, k) = (3, 6, 2), that is, F is the Fano surface of planes on a smooth
cubic fivefold in P6.

If further m = 2 then r = 2k + 3 and

2 ≤ δ = (k + 1)(k + 3)−
(
d1 + k

k

)
−
(
d2 + k

k

)
.

This inequality holds only for d = (2, 2), that is, only in the case where

(iii) F = Fk(X) is the Fano scheme of k-planes in a smooth intersection of
two quadrics in P2k+3.

Notice that F as in (iii) is smooth, irreducible, of dimension δ = k + 1, cf. [42,
Ch. 4] and Remarks 5.2 below.

It remains to check that q(F ) > 0 in (i)-(iii) indeed.
The Fano surface F = F1(X) of lines on a smooth cubic threefold X ⊂ P4 in

(i) was studied by Fano ([22]) who found, in particular, that q(F ) = 5. From
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Example 4.1, we deduce that pg(F ) = 10 (cf. also [5, Thm. 4], [8], [14], [25],
[33], [42, Sect. 4.3], [43], [45], [46]). There is an isomorphism Alb(F ) ' J(X)
where J(X) is the intermediate Jacobian (see [14]). The latter holds as well for
F = F2(X) where X ⊂ P6 is a smooth cubic fivefold as in (ii), see [15]. Thus,
q(F ) > 0 in (i) and (ii).

By a theorem of M. Reid [42, Thm. 4.8] (see also [18, Thm. 2], [48]), the Fano
scheme F = Fk(X) of k-planes on a smooth intersection X of two quadrics in
P2k+3 as in (iii) is isomorphic to the Jacobian J(C) of a hyperelliptic curve
C of genus g(C) = k + 1 (of an elliptic curve if k = 0). Hence, one has
q(F ) = dim(F ) = k + 1 > 0 for k ≥ 0. Notice that there are isomorphisms
F ' J(C) ' J(X) where J(X) is the intermediate Jacobian, see [19]. �

Remarks 5.2. 1. The complete intersections in (i)-(iii) are Fano varieties. The
ones in (i) are the Fano threefolds of index 2 with a very ample generator of the
Picard group. The complete intersections Fano threefolds of index 1 with a very
ample anticanonical divisor are the varieties V 2g−2

3 ⊂ Pg+1 of genera g = 3, 4, 5,
that is, the smooth quartics V 4

3 in P3 (g = 3), the smooth intersections V 6
3

of a quadric and a cubic in P5 (g = 4), and the smooth intersections V 8
3 of

three quadrics in P6 (g = 5), see [29, Ch. IV, Prop. 1.4]. The Fano scheme
of lines F = F1 on a general such Fano threefold V 2g−2

3 is a smooth curve of
a positive genus g(F ) > 0. In fact, g(F ) = 801 for g = 3, g(F ) = 271 for
g = 4, and g(F ) = 129 for g = 5, see [37] and [28, Examples 1-3]. For these
X = V 2g−2

3 , the Abel-Jacobi map J(F ) → J(X) to the intermediate Jacobian
is an epimorphism, and J(X) coincides with the Prym variety of X, see [29]
and [47, Lect. 4, Sect. 1, Ex. 1 and Sect. 3].

2. Notice that the complete intersections whose Fano schemes of lines are
curves of positive genera are not exhausted by the above Fano threefolds V 2g−2

3 .
The same holds, for instance, for a general hypersurface of degree 2r− 4 in Pr,
r ≥ 4, and for general complete intersections of types d = (r − 3, r − 2) and
d = (r − 4, r − 4) in Pr for r ≥ 5 and r ≥ 6, respectively, see [28, Examples
1-3], etc. One can find in [28] a formula for the genus of the curve F .

3. Let X be a smooth intersection of two quadrics in P2k+2. Then the Fano
scheme Fk(X) is reduced and finite of cardinality 22k+2 ([42, Ch. 2]), whereas
Fk−1(X) is a rational Fano variety of dimension 2k and index 1, whose Picard
number is ρ = 2k + 4, see [2], [13], and the references therein.

As for the Picard numbers of the Fano schemes of complete intersections, one
has the following result (cf. also [17]).

Theorem 5.1. ([30, Thm. 03]) Let X be a very general complete intersection
in Pr. Assume δ(d, r, k) ≥ 2. Then ρ(Fk(X)) = 1 except in the following cases:

• X is a quadric in P2k+1, k ≥ 1. Then Fk(X) consists of two isomorphic
smooth disjoint components, and the Picard number of each component
is 1;
• X is a quadric in P2k+3, k ≥ 1. Then ρ(Fk(X)) = 2;
• X is a complete intersection of two quadrics in P 2k+4, k ≥ 1. Then
ρ(Fk(X)) = 2k + 6.

The assumption “very general” of this theorem cannot be replaced by “gen-
eral”; one can find corresponding examples in [30].
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6. Hypersurfaces containing conics

Recall (see [24, Thm. 1.1]) that for the general hypersurface X of degree d
in Pr, the variety R2(X) of smooth conics in X is smooth4 of the expected
dimension µ(d, r) = 3r − 2d− 2 provided µ(d, r) ≥ 0, and is empty otherwise.
In this section we concentrate on the latter case.

6.1. The codimension count and uniqueness. Set

ε(d, r) = 2d+ 2− 3r .

Consider the subvariety Σc(d, r) of Σ(d, r) whose points correspond to hyper-
surfaces containing plane conics. By abuse of language, in the sequel we say
“conic” meaning “plane conic”; thus, a pair of skew lines does not fit in our
terminology. A conic is smooth if it is reduced and irreducible.

Theorem 6.1. Assume d ≥ 2, r ≥ 3, and ε(d, r) ≥ 0. Then the following hold.

(a) Σc(d, r) is irreducible of codimension ε(d, r) in Σ(d, r).
(b) If ε(d, r) > 0 and (d, r) 6= (4, 3) then the hypersurface corresponding to

the general point of Σc(d, r) contains a unique conic, and this conic is
smooth. In the case (d, r) = (4, 3) it contains exactly two distinct conics,
and these conics are smooth and coplanar.

Proof. (a) Let Hc,r be the component of the Hilbert scheme whose points pa-
rameterize conics in Pr. There is an obvious morphism

π : Hc,r → G(2, r)

sending a conic Γ to the plane Π = 〈Γ〉. The fibers of π are projective spaces of
dimension 5, hence Hc,r is a P5-bundle over G(2, r). Therefore Hc,r is a smooth,
irreducible projective variety of dimension 3r − 1.

Consider the incidence relation

I = {(Γ, X) ∈ Hc,r × Σ(d, r) |Γ ⊂ X}
and the natural projections

p : I → Hc,r and q : I → Σ(d, r) .

It is easily seen that q(I) = Σc(d, r) and that, for any Γ ∈ Hc,r, p
−1(Γ) is

a linear subspace of {Γ} × Σ(d, r) of codimension 2d + 1. Indeed, Γ being a
complete intersection, it is projectively normal, hence the restriction map

H0(Pr,OPr(d))→ H0(Γ,OΓ(d)) ' C2d+1

is surjective. It follows that I and Σc(d, r) are irreducible proper schemes.
Moreover, one has

dim(I) = dim(p−1(Γ)) + dim(Hc,r) =

=

(
d+ r

d

)
− 1− (2d+ 2− 3r) = dim(Σ(d, r))− ε(d, r) .

Letting κ(d, r) be the dimension of the general fiber of q : I → Σc(d, r), one
obtains

dim(Σc(d, r)) = dim(I)− κ(d, r) = dim(Σ(d, r))− ε(d, r)− κ(d, r) ,

4and connected provided µ2 ≥ 1 and X is not a smooth cubic surfaces in P3.
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and therefore

codim(Σc(d, r),Σ(d, r)) = ε(d, r) + κ(d, r) .

Next we prove that κ(d, r) = 0, which will accomplish the proof of part (a).
To do this, we imitate the argument in [10, p. 29].

First of all, consider again the surjective morphism q : I → Σc(d, r). Since
I is irreducible, the general element (Γ, X) ∈ I maps to the general element
X ∈ Σc(d, r). Since (Γ, X) ∈ I is general and p : I → Hc,r is surjective, then
Γ is smooth. Hence the general X ∈ Σc(d, r) contains some smooth conic Γ.
Moreover, the general fibre of q could be reducible, but, by Stein factorization,
all components of it are of the same dimension and exchanged by monodromy.
This implies that the general element (Γ, X) of any component of q−1(X) with
X ∈ Σc(d, r) general, is such that Γ is smooth (cf. Claim 6.2 below for an
alternative argument).

By choosing appropriate coordinates, we may assume that if (Γ, X) is the
general element of a component of q−1(X) with X ∈ Σc(d, r) general, then Γ
has equations

x0x1 − x2
2 = x3 = · · · = xr = 0

and X has equation F = 0 with

F = A(x0x1 − x2
2) +B3x3 + · · ·+Brxr +R

where

A =
∑

v0+v1+v2=d−2

αvx
v0
0 x

v1
1 x

v2
2 , Bi =

∑
w0+w1+w2=d−1

βwx
w0
0 xw1

1 xw2
2 , for i = 3, . . . r

and R ∈ I2
Γ. By Bertini’s theorem we may assume that X is smooth. We have

the normal bundles sequence

0→ NΓ|X → NΓ|Pr ' OΓ(2)⊕OΓ(1)⊕r−3 → NX|Pr |Γ ' OΓ(d)→ 0

We want to show that h0(NΓ|X) = 0, which implies that κ(d, r) = 0, as desired.
In order to prove this, we will prove that the map

ϕ : H0(NΓ|Pr)→ H0(NX|Pr |Γ)

is injective. Notice that h0(NΓ|Pr) = 3r − 1 and h0(NX|Pr |Γ) = 2d + 1, and so,

the assumption ε(d, r) ≥ 0 reads h0(NΓ|Pr) ≤ h0(NX|Pr |Γ).

We can interpret a section in H0(NΓ|Pr) as the datum of (f, f3, . . . , fr), where
f ∈ H0(OΓ(2))) is a homogeneous polynomial

f =
∑

0≤i≤j≤2

bijxixj

taken modulo x0x1 − x2
2, and fi ∈ H0(OΓ(1))) is a linear form

fi = ai0x0 + ai1x1 + ai2x2, for i = 3, . . . , r.

Notice that the parameters on which (f, f3, . . . , fr) depends are indeed 3r − 1,
namely the 3(r−2) coefficients aijs plus the 5 coefficients bijs. The map ϕ sends
(f, f3, . . . , fr) to the restriction of Af +B3f3 + · · ·+Brfr to Γ. By identifying
Γ with P1 via the map sending t ∈ P1 to

(35) x0 = 1, x1 = t2, x2 = t, x3 = · · · = xr = 0
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the restriction of Af +B3f3 + · · ·+Brfr to Γ identifies (after the substitution
(35)) with a polynomial P (t) of degree 2d in t. Let us order the 3(r − 2)
coefficients aijs and the 5 coefficients bijs in such a way that the bijs come
before the aijs, and inside each group they are ordered lexicographically. Then
we can consider the matrix Φ of the map ϕ, which is of type (2d+1)× (3r−1).
Indeed, each one of the 2d+ 1 coefficients of the polynomial P (t) of degree 2d
is in turn a polynomial of the bij and aij. Given bij or aij, its coefficients in
those polynomials form the corresponding column of Φ.

Notice that the latter coefficients (that is, the entries of Φ) are linear functions
of the αvs and the βws. Moreover, in each row and in each column of Φ a given
αv and a given βw appear at most once.

The map ϕ is injective if and only if Φ has rank 3r−1 for sufficiently general
values of the αvs and the βws. We will in fact consider the αvs and the βws as
indeterminates and prove that there is a maximal minor of Φ, e.g., the one Φ′

determined by the first 3r − 1 rows, which is a non–zero polynomial in these
variables. This will finish our proof.

Consider, for example, the order of the αvs and the βws in which the former
come before the latter and in each group they are ordered lexicographically.
Let us order the monomials appearing in the expression of Φ′ according to
the following rule: the monomial m1 comes before the monomial m2 if for
the smallest variable appearing in m1 and in m2 with different exponents, the
exponent in m1 is larger than the exponent in m2. The greatest monomial in
this ordering will have coefficient ±1 in Φ′, since in each row, the choice of the
αvs and the βws entering in it is prescribed. This proves that Φ′ 6= 0.

(b) We have to show that, if ε(d, r) > 0 and, except for (d, r) = (4, 3),
the hypersurface X corresponding to the general point of Σc(d, r) contains a
unique conic. To do this we use counts of parameters, which show that the
codimension in Σ(d, r) of the locus of hypersurfaces X containing at least two
distinct conics is strictly larger than ε(d, r). The proof is a bit tedious, since it
requires to consider a number of different possibilities, namely that two conics
on X do not intersect, or they intersect in one, two or in four points (counting
with multiplicity). We will not treat in detail all the cases, but only the former
and the latter, leaving some easy details in the remaining two cases to the
reader, which could profit from similarity with the dimension count we made
at the beginning of this proof.

We start with the following two claims.

Claim 6.1. The subset Σ2l(d, r) of all the X ∈ Σc(d, r) such that X contains
a double line is a proper subvariety of Σc(d, r).

Proof of Claim 6.1. Consider the closed subsetH2l,r ⊂ Hc,r whose general point
corresponds to a double line in Pr. There is a natural P2-fibration H2l,r →
G(2, r). Hence one has dim(H2l,r) = 3r − 4. Consider further the incidence
relation

I2l = {(Γ, X) ∈ H2l,r × Σ(d, r) |Γ ∈ X}
with projections p2l, q2l to the first and the second factors, respectively. The
general fiber F2l of p2l is a linear subspace of Σ(d, r) of codimension 2d+ 1. It
follows that I2l is an irreducible projective variety of dimension

dim(I2l) = dim(Σ(d, r))− (2d+ 3− 3r) .
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Therefore, the image Σ2l(d, r) = q2l(I2l) is an irreducible proper subvariety of
Σ(d, r) of codimension at least

2d+ 3− 3r = ε(r, d) + 1 = codim(Σc(d, r),Σ(d, r)) + 1 ,

see (a). �

We know by (a) that if X ∈ Σc(d, r) is general, then X contains only finitely
many conics (recall that the general fiber of q : I → Σc(d, r) has dimension
κ(d, r) = 0). Our next claim is the following.

Claim 6.2. The conics contained in the general X ∈ Σc(d, r) are all smooth.

Proof of Claim 6.2. The incidence variety I being irreducible, the monodromy
group of the generically finite morphism q : I → Σc(d, r) acts transitively on the
general fiber q−1(X). Its action on I lifts to the universal family of conics over
I. The latter action by homeomorphisms of the general fiber (which consists of
a finite number of conics) preserves the Euler characteristic. We know already
that the general X contains a smooth conic. Due to Claim 6.1, X does not
carry any double line. Since the Euler characteristic (equal 3) of the union of
two crossing lines is different from the one of a smooth conic, all the conics in
X are smooth. �

Suppose now the general X ∈ Σc(d, r) contains more than one conic, and
assume first it contains two conics which do not intersect. We will see this
leads to a contradiction.

Let Hcc,r be the component of the Hilbert scheme whose general point corre-
sponds to a pair of conics in Pr which do not meet. It is easy to see that Hcc,r

is an irreducible projective variety of dimension 6r − 2.
Consider the incidence relation

I = {(Γ, X) ∈ Hcc,r × Σ(d, r) |Γ ⊂ X}
and the natural projections

p : I → Hcc,r and q : I → Σ(d, r) .

Claim 6.3. For any Γ ∈ Hcc,r which corresponds to a pair of disjoint smooth
conics, p−1(Γ) is a linear subspace of {Γ} × Σ(d, r) of codimension 4d+ 2.

Proof of Claim 6.3. By our assumption, r ≥ 3. Then the hypothesis ε(d, r) > 0
implies d ≥ 4. So, we have to prove that the restriction map

ρ : H0(Pr,OPr(d))→ H0(Γ,OΓ(d)) ' C4d+2 ,

where Γ = Γ1 ∪ Γ2 with Γ1,Γ2 disjoint smooth conics, is surjective as soon as
d ≥ 4. Actually we will prove it for d ≥ 3. By projecting generically into P3, it
suffices to prove the assertion if r = 3.

The restriction map

H0(P3,OPr(d))→ H0(Γ1,OΓ1(d)) ' C2d+1

is surjective for all d ≥ 1 because Γ1 is projectively normal. Hence the kernel
of this map, i.e., H0(P3, IΓ1|P3(d)) has codimension 2d + 1 in H0(P3,OP3(d)).
Consider now the restriction map

ρ′ : H0(P3, IΓ1|P3(d))→ H0(Γ2,OΓ2(d)) ' C2d+1.
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We will prove that this map is also surjective. This will imply that its kernel,
i.e., H0(P3, IΓ|P3(d)) has codimension 2d + 1 in H0(P3, IΓ1|P3(d)), hence it has
codimension 4d+ 2 in H0(P3,OPr(d)), which proves that ρ is surjective.

Let Πi = 〈Γi〉 be the plane spanned by Γi, for i = 1, 2. Consider the intersec-
tion scheme D of Γ1 with Π2, so that D is a zero dimensional scheme of length
2, and D is not contained in Γ2. To prove that ρ′ is surjective, notice that it is
composed of the following two restriction maps

ρ1 : H0(P3, IΓ1|P3(d))→ H0(Π2, ID|Π2(d)),

ρ2 : H0(Π2, ID|Π2(d))→ H0(Γ2,OΓ2(d)).

The map ρ1 is surjective, because its cokernel is H1(P3, IΓ1|P3(d− 1)) which is
zero because Γ1 is projectively normal. So, we are left to prove that the map
ρ2 is surjective. The kernel of ρ2 is H0(Π2, ID|Π2(d− 2)), whose dimension is

h0(Π2, ID|Π2(d− 2)) =

(
d

2

)
− 2

as soon as d ≥ 3. Similarly

h0(Π2, ID|Π2(d)) =

(
d+ 2

2

)
− 2

for any d ≥ 1. Hence the dimension of the image of ρ2 is

h0(Π2, ID|Π2(d))− h0(Π2, ID|Π2(d− 2)) =

(
d+ 2

2

)
−
(
d

2

)
= 2d+ 1

which proves that ρ2 is surjective. �

By Claim 6.3, I has a unique component I ′ which dominates Hcc,r, and

dim(I ′) = dim(Hcc,r) + dim(Σ(d, r))− (4d+ 2) =

= dim(Σ(d, r))− (4d− 6r + 4).

Since we are assuming q(I ′) = Σc(d, r), we have

dim(Σ(d, r))− (4d− 6r + 4) = dim(I ′) ≥
≥ dim(q(I ′)) = dim(Σ(d, r))− ε(d, r) = dim(Σ(d, r))− (2d− 3r + 2),

whence ε(d, r) = 2d+ 2− 3r ≤ 0, contrary to the assumption ε(d, r) > 0.
A similar argument works also in the cases where the general X ∈ Σc(d, r)

contains two smooth conics which meet in one or two points, counting with

multiplicity. The corresponding closed subset H(i)
cc,r ⊂ Hcc,r whose general point

corresponds to a pair of smooth conics which meet in i points, where i = 1, 2,
is an irreducible proper scheme of dimension 5r for i = 1 and 4r + 2 for i = 2.

Letting I(i) ⊂ H(i)
cc,r × Σc(d, r) be the corresponding incidence relation and

arguing as in the proof of Claim 6.3 one can easily show that any fiber of the

projection I ′ → H(i)
cc,r over a point Γ ∈ H(i)

cc,r representing a pair of conics with
exactly i places in common counting with multiplicity, is a linear subspace of
Σ(d, r) of codimension 4d + 1 if i = 1 and 4d if i = 2, where I ′ is the unique
component of I(i) which dominates Σc(d, r). Proceeding as before, this leads in
both cases to the inequality r ≤ 2, which contradicts the assumption r ≥ 3.
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Consider finally the remaining (extremal) case in which the general X ∈
Σc(d, r) contains two conics which are coplanar, i.e., they intersect (counting
with multiplicity) at 4 points.

We denote by F(= H(4)
cc,r) the subvariety of the Hilbert scheme whose general

point corresponds to a pair of coplanar conics in Pr. It is easy to see that F is
an irreducible projective variety of dimension 3r + 4.

Consider the incidence relation

I = I(4) = {(Γ, X) ∈ F × Σ(d, r) |Γ ⊂ X}
and the projections

p : I → F and q : I → Σ(d, r) .

For any Γ ∈ F , p−1(Γ) is a linear subspace of {Γ} × Σ(d, r) of codimension
4d − 2. Indeed, since Γ is a complete intersection, it is projectively normal.
Hence the restriction map

H0(Pr,OPr(d))→ H0(Γ,OΓ(d))

is surjective for all d ≥ 1. On the other hand, Γ is a curve of arithmetic genus 3,
and the dualizing sheaf of Γ is OΓ(1). Hence, h0(Γ,OΓ(d)) = 4d−3+1 = 4d−2,
as soon as d ≥ 2.

Thus, I is irreducible, and

dim(I) = dim(F) + dim(Σ(d, r))− (4d− 2) =

= dim(Σ(d, r))− (4d− 3r − 6).

Since we are assuming q(I) = Σc(d, r), we have

dim(Σ(d, r))− (4d− 3r − 6) = dim(I) ≥
≥ dim(q(I)) = dim(Σ(d, r))− ε(d, r) = dim(Σ(d, r))− (2d+ 2− 3r),

whence d ≤ 4. Since

0 < ε(d, r) = 2d+ 2− 3r ≤ 10− 3r

we see that the only possibility is d = 4, r = 3. In this case a similar argument
proves that the general X ∈ Σc(4, 3) contains exactly two coplanar, smooth
conics. �

6.2. The degree count. Next we compute the degree of Σc(d, r) in Σ(d, r),
provided ε(d, r) > 0.

Let f : C → Hc,r be the universal family over Hc,r, which is endowed with
a map g : C → Pr. We denote by Ed the vector bundle f∗(g

∗(OPr(d)) over
Hc,r. If Γ is a conic, the fiber Ed,Γ of Ed at (the point corresponding to) Γ
is H0(Γ,OΓ(d)). We set E = E1. Notice that Ed is a vector bundle of rank
2d+ 1 > 3r − 1 = dim(Hc,r); in particular, rk(E) = 3.

Lemma 6.4. If ε(d, r) > 0 and (d, r) 6= (4, 3), then

deg(Σc(d, r)) =

∫
Hc,r

c3r−1(Ed) .

Moreover

deg(Σc(4, 3)) =
1

2

∫
Hc,3

c8(E4) .
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Proof. Any homogeneous form F of degree d in r+ 1 variables defines a section
σF of Ed such that σF (Γ) = F |Γ ∈ H0(Γ,OΓ(d)). Consider the effective divisor
XF of degree d on Pr of zeros of F . The support of XF contains Γ if and only
if σF (Γ) = 0. Counting the conics Γ ∈ Hc,r lying in Supp(XF ) is the same as
counting the zeros of σF in Hc,r with their multiplicities.

Let further ρ = dim(Hc,r) = 3r − 1. By our assumption one has

rk (Ed)− ρ = ε(d, r) > 0 .

Choose a general linear subsystem L = 〈X0, . . . , Xε〉 in |OPr(d)| of dimen-
sion ε = ε(d, r), where Xi = {Fi = 0}. By virtue of Theorem 6.1, L meets
Σ(d, r, k) ⊂ Σ(d, r) transversally in deg(Σc(d, r)) simple points.

Consider now the sections σi := σFi
, i = 0, . . . , ε, of Ed and assume (d, r) 6=

(4, 3). By Theorem 6.1, the intersection of L with Σ(d, r, k) is exactly the
scheme of points Γ ∈ Hc,r where there is a linear combination of σ0, . . . , σε
vanishing on Γ. This is the zero dimensional scheme of points of Hc,r where
the sections σ0, . . . , σε are linearly dependent. This zero dimensional scheme
represents the top Chern class cρ(Ed) (see [21, Thm. 5.3]). Its degree is the top
Chern number

∫
Hc,r

c3r−1(Ed).
The case (d, r) = (4, 3) is similar: one has to take into account again Theorem

6.1, which says that the general quartic surface in P3 contains exactly two
smooth conics, and these conics are coplanar. �

To compute c3r−1(Ed) we proceed as follows. For a positive integer d consider
Symd(E). Note that the universal family C over Hc,r is the zero set of a section
ξ of Sym2(E). For any d > 2 one has the exact sequence

0→ Symd−2(E)
·ξ→ Symd(E)→ Ed → 0 .

Hence

(36) c(Ed) = c(Symd(E)) · c(Symd−2(E))−1 .

To compute Chern classes, as usual, we use the splitting principle. We write
formally

E = L1 ⊕ L2 ⊕ L3,

the Lis being (virtual) line bundles. Consider the Chern roots xi = c1(Li) of E .
One has

c(E) = (1 + x1)(1 + x2)(1 + x3) ,

that is,

c1(E) = x1 + x2 + x3, c2(E) = x1x2 + x1x3 + x2x3, c3(E) = x1x2x3.

Furthermore,

Symd(E) =
⊕

v1+v2+v3=d

Lv1
1 L

v2
2 L

v3
3 .

Letting

c1(Lv1
1 L

v2
2 L

v3
3 ) = v1x1 + v2x2 + v3x3 = 〈v,x〉

where x = (x1, x2, x3) and v = (v1, v2, v3) with |v| = v1 + v2 + v3 one obtains

c(Symd(E)) =
∏
|v|=d

(1 + 〈v,x〉
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and, by (36),

(37) c(Ed) =

∏
|v|=d

(1 + 〈v,x〉)

 ·
 ∏
|v|=d−2

(1 + 〈v,x〉)

−1

.

Now, the top Chern class c3r−1(Ed) is the homogeneous component η(x1, x2, x3)
of degree 3r − 1 in the right hand side of (37) written as a formal power series
in x1, x2, x3. This is a symmetric form of degree 3r − 1 in x1, x2, x3. It can be
expressed via the elementary symmetric polynomials in x1, x2, x3, i.e., in terms
of c1(E), c2(E), c3(E).

In order to compute c3r−1(Ed) effectively, we prefere to use the Bott residue
formula. The standard diagonal action of T = (C∗)r+1 on Pr, see 1.3, induces
an action of T on G(2, r) and on Hc,r.

Lemma 6.5. The action of T on Hc,r has exactly r(r2−1) isolated fixed points.

Proof. Let Γ be a fixed point for the T -action on Hc,r. Then Π = 〈Γ〉 is fixed
under the action of T on G(2, r). Hence Π is one of the coordinate planes in
Pr, and these are

(
r+1

3

)
in number. We let x, y, z be the three coordinate axes

in Π. Then the only conics on Π fixed by the T -action are the singular conics
x + y, x + z, y + z, 2x, 2y, 2z. Thus, we get in total 6

(
r+1

3

)
= r(r2 − 1) fixed

points of T in Hc,r. �

We denote by F the set of fixed points for the T -action on Hc,r. Bott’s
residue formula, applied in our setting, has the form

deg(Σc(d, r)) =

∫
Hc,r

c3r−1(Ed) =
∑
Γ∈F

cΓ

eΓ

,

where cΓ
eΓ

is the local contribution of a fixed point Γ ∈ F . Recall that cΓ results

from the local contribution of c3r−1(Ed) at Γ, and eΓ is determined by the torus
action on the tangent space to Hc,r at the point corresponding to Γ, see 1.3.

To compute eΓ we have to compute the characters of the T -action on the
tangent space

TΓ(Hc,r) ' H0(Γ, NΓ|Pr) ' H0(Γ,OΓ(1))⊕(r−2)⊕H0(Γ,OΓ(2)) ' E⊕(r−2)
Γ ⊕E2,Γ .

Let Π = 〈Γ〉. Then Π is a coordinate plane which corresponds to a subset
I = {i, j, k} ⊂ {0, . . . , r} consisting of 3 distinct elements. Let I3 be the set
of all the

(
r+1

3

)
such subsets I. The characters of the T -action on EΓ have

weights −tα with α ∈ I. Let I(2) be the symmetric square of I; it consists of 6
unordered pairs {α, β}, α, β ∈ I. The characters of the T -action on E2,Γ have
weights tα + tβ with {α, β} ∈ I(2) \ {a, b}, where xaxb = 0 is the equation of Γ
in Π. Then

eΓ = (−1)3(r−2)(titjtk)
r−2

∏
{α,β}∈I(2)\{a,b}

(tα + tβ) .

As for cΓ, with the same notation as above we have

cΓ = η(−ti,−tj,−tk) = (−1)3r−1η(ti, tj, tk) where I = {i, j, k}.
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In conclusion we find the formula

(38) deg(Σc(d, r)) = −
∑

I={i,j,k}∈I3

∑
{a,b}∈I(2)

η(ti, tj, tk)

(titjtk)r−2
∏
{α,β}∈I(2)\{a,b}(tα + tβ)

.

Again, the right hand side of this formula is, a priori, a rational function in the
variables t0, . . . , tr. In fact, this is a constant and a positive integer. Letting
ti = 1 for all i = 0, . . . , r we arrive at the following conclusion.

Theorem 6.6. Assuming that ε(d, r) = 2d+ 2− 3r > 0 and (d, r) 6= (4, 3) one
has

(39) deg(Σc(d, r)) = − 5

32

(
r + 1

3

)
η(1, 1, 1) ,

where η is the homogeneous form of degree 3r − 1 in the formal power series
decomposition of the right hand side of (37).

Remark 6.7. In the case of the surfaces in P3, one can find in [34, Prop. 7.1]
a formula for the degree of Σc(d, 3) expressed as a polynomial in d for d ≥ 5.
This formula was deduced by applying Bott’s residue formula. After dividing
by 2, this formula gives also the correct value deg(Σc(4, 3)) = 2508.
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