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Abstract

We describe a reconstruction method of three dimen-
sional marker trajectories from several cameras in the
applicative framework of sportive gesture analysis.
The principle is to apply a tracking algorithm on ex-
tracted markers from each sequence of images, then
to fuse data to reconstruct three dimensional space
movements of an athlete. The measurement-to-track
association algorithm is based on the formalism of
Dempster-Shafer’s Theory of Evidence in the frame
of the extended open-world, a powerful tool to rep-
resent uncertainty. Finally, the fusion enables to ob-
tain a system which becomes efficient in its capacity
to detect either the appearance or the disappearance
of markers.

1 Introduction

Movement dynamical analysis is essential to realize
a gestural analysis. It proves to be important at the
time of studies on human movements. The analysis
of sportive gestures aims at improving performances
of athletes and to teach an ”ideal” sportive practice
in the point of view of the mechanical science. Kine-
matic analyses rely either on points on the skeleton or
on the joint centers. These points are not apparent,
it is thus necessary to materialize them to track the
movements. For this kind of applications, markers
are often put on the skin or on a suit and positions
are captured via sensors.

∗∗Corresponding author. Email: david.helbert@univ-
poitiers.fr

The tracking system can be divided into the three
following modules: the object detection, the tracking
filter and the measurement-to-track data association.
Our work consists in associating a measurement of
markers with a set of tracks on each sensor without a
priori knowledge and in reconstructing their trajecto-
ries in the three dimensional (3D) space. Some proba-
bilistic methods do exist [Hall and Llinas(2001)] ; the
most famous one are the nearest-neighbour method,
the maximum of likelihood method, the probabilis-
tic data association filter and the multiple hypothesis
filter. Most of the time, only the imprecision is re-
ally processed and the notion of reliability bound to
information sources is often omitted. The Dempster-
Shafer theory of Evidence offers a privileged math-
ematical frame for the measurement-to-track asso-
ciation with conflict and ambiguity resolution. It
avoids problems met by the classic association meth-
ods and it enables to initialize a new trajectory,
as well as to handle object appearances and disap-
pearances [Royère et al.(2000), Gruyer et al.(2000),
Mourllion et al.(2005), Lemeret et al.(2008)]. In
[Rombaut(1998)], M. Rombaut has suggested a
measurement-to-track data association algorithm in
the mathematical frame of the theory of Evidence
to process both qualitative and quantitative informa-
tion. D. Gruyer has resumed this method and he has
developed a new measurement-to-track data associa-
tion algorithm [Gruyer et al.(2002)].

Markers cannot sometimes be detected; this phe-
nomenon is very common in this type of application:
it can be due to an eclipse of a marker by a sports-
man limb or to an extraction error. The global sys-
tem of 3D track reconstruction thus consists in the
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Figure 1: The global principle of 3D gesture recon-
struction.

marker tracking for each sensor in the framework of
Dempster-Shafer theory of Evidence, the 3D recon-
struction by stereoscopic approach and the fusion of
3D tracks (cf. figure 1).

The organization of the paper is as follow. In sec-
tion 2, the basis of the Dempster-Shafer theory of
Evidence and an evidential method of measurement-
to-track data association are explained. In section
3, we present a new marker tracking algorithm and
we illustrate the efficiency. In section 4 we propose
a 3D marker reconstruction and fusion to correct 3D
trajectories. Finally, in section 5 we draw the con-
clusions and give future work to be done.

2 Evidential Association in Ex-
tended Open-World

The theory of Evidence, also called the belief func-
tion theory, is based on the A. Dempster’s works
[Dempster(1967)] and it has been resumed by G.
Shafer under a more accomplished mathematical for-
malism [Shafer(1976)].

2.1 Definitions

The principle of the theory of Evidence is to ma-
nipulate beliefs on a finite set of possible hypotheses
Θ = {H1, H2, ...,Hn} named frame of discernment.
This set is composed of n hypotheses which must be
exhaustive and exclusive and it is referred to its pow-
erset, a reference set, denoted by 2Θ = {A/A ⊆ Θ}.

The basic probability assignment (bpa) m : 2Θ →
[0, 1] represents the distribution of a mass unit among
2Θ elements:

m (�) = 0 and
∑
A⊆Θ

m (A) = 1, (1)

where � is the empty set and m(A) is the measure
of belief that supports A.

The belief function Bel(A), associated with the
bpa m(.), is a function that assigns a value in [0, 1] to
every nonempty subset A of Θ. The degree of belief
in A is defined by :

Bel(A) =
∑

B/B⊆A

m(B). (2)

P. Smets has also developed the belief transferable
model which is an extension of the mass functions
[Smets(1990)]. This approach disregards the proba-
bilistic interpretation of the knowledge and it is based
on two levels of information perception:

• the credal level where beliefs are entertained and
quantified by belief functions,

• the pignistic level which is dedicated to the de-
cision.

In the frame of this model, the definition of the pig-
nistic probability, BetP : 2Θ → [0, 1], is based on
the Laplace’s principle of insufficient reason: in the
absence of any reason for privileging a particular hy-
pothesis, we suppose that all hypotheses are equi-
probable.

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m (B) ∀A ∈ Θ, (3)

where |B| represents the cardinal of subset B of Θ.
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The combination proposed by A. Demspter in
consists in obtaining an unique mass distribution
by combining multiple measures of belief through
their bpas defined on the same frame of discernment
[Dempster(1967)] . The combination of two bpas
m1(.) and m2(.), noted m1,2(.), is given by the or-
thogonal sum formula, a conjunctive and associative
operation.

2.2 The Extended Open-World

When G. Shafer has formalized the theory of Ev-
idence in [Shafer(1976)], it took place within the
framework of the closed-world supposing that all hy-
potheses are exhaustive and exclusive (eq. 1). Ac-
cording to P. Smets [Smets(1990)], the empty set �
can be considered as a possible solution and can rep-
resent all the unknown hypotheses. This world, called
open-world, does not correspond to the definition of
Shafer which stipulates that the mass on the empty
set has to be null. From this point of view, the frame
of discernment consists of all known hypotheses but
not all possible hypotheses. Furthermore, these hy-
potheses are exclusive but not necessarily exhaustive.
In that case, we combine masses using a conjunctive
operator.

To distinguish the real conflict and the appearance
of a new hypothesis, an exhaustive study of the prob-
lem has to be realized or sources have to provide
reliable information. These two solutions are diffi-
cult to obtain with complex systems. C. Royère has
also proposed in [Royère et al.(2000)] a new frame
of discernment: the extended open-world. An hy-
pothesis singleton is introduced within the frame of
discernment including all hypotheses which are not
modelled. This hypothesis, noted ∗, is exclusive with
regard to the other hypotheses of the frame of dis-
cernment which becomes exhaustive. The empty set
� then represents the class of the conflict due to one
or several non-reliable sources.

No source is associated with the hypothesis ∗. If
this one appears during the fusion, the complemen-
tary of the hypothesis can be introduced:

H̄i = {H1, H2, ..,Hi−1, Hi+1, ..,Hn} . (4)

In an application of object tracking, the reference

set can be limited by putting the following constraint:
“a detected object can be put in relation only with one
and a known object” [Gruyer et al.(2002)]. The mass
distribution is calculated to manipulate relations be-
tween an ith perceived object Xi and known objects
Yj :

• the mass mi,j(Yj) is associated with the propo-
sition “the perceived object Xi is in relation with
the known object Yj”,

• the mass mi,j(Ȳj) is associated with the propo-
sition “the perceived object Xi is not in relation
with the known object Yj”,

• the mass mi,j(Θ) is associated with the total ig-
norance,

• the mass mi,j(∗) is associated with the proposi-
tion “the perceived object Xi is in relation with
nothing known”.

For example, a perceived object X1 can be associ-
ated with two known objects Y1 and Y2. In figure 2,
we illustrate the following frame of discernment:

Θ = {Y1,Y2, ∗} . (5)

Figure 2: The extended open-world.

The hypothesis ∗ means that X1 is not locally as-
sociated with any known object. We can so build the
following reference set:

2Θ =
{
�, ∗,Y1,Y2,Y1 ∪Y2, Ȳ2, Ȳ1,Θ

}
(6)

We can remark that Ȳ2 = Y1 ∪ ∗ and Ȳ1 = Y2 ∪ ∗.
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In case we have two hypotheses Y1 and Y2, we
can calculate two distributions of the masses m1,1(.)
and m1,2(.) which represent the relation between a
perceived object X1 and two known objects Y1 and
Y2. The combination is noted as m1,12 = m1,1∧m1,2.

The property of the operator associativity enables
to combine the third source. The mass m1,12(∗) is
then affected in m1,12(∗ ∪ Y3). In the case of n
sources, we can generalize the final mass distribution
by using the properties of operator associativity and
commutativity to represent the relation between the
perceived objects Xi and the known objects Yj . The
frame of discernment is thus:

Θ = {Y1,Y2, ..,Yn, ∗} . (7)

The general form of mass distributions resulting in
the combination is written as:

mi,.(Yj) = mi,j(Yj)

n∏
k=1,k 6=j

(1−mi,k(Yk)),(8)

mi,.(Ȳj) = mi,j(Ȳj)

n∏
k=1,k 6=j

mi,k(Θ), (9)

mi,.(

q⋃
j=p

Yj ∪ ∗) =

q∏
k=p

mi,k(Θ)

n∏
k=1,k 6=[p,..,q]

mi,k(Ȳk),(10)

mi,.(∗) =

n∏
j=1

mi,j(Ȳj), (11)

mi,.(Θ) =

n∏
j=1

mi,j(Θ). (12)

The product of masses on the hypotheses Ȳj corre-
sponds to the non-modelled hypotheses. In the open-
world, these hypotheses are allocated to the empty
set � whereas in the extended open-world, the mass
on hypothesis ∗ includes the non-modelled hypothe-
ses. The mass associated with the empty set � thus
corresponds to impossible cases and it is used during
the decision-taking.

2.3 Generation of a mass distribution

2.3.1 Classical Models

Mass distributions allow to take into account all
imperfections such as the incompletude, the im-
precision or the uncertainty. These mass distribu-
tions have been developed to satisfy three proper-
ties: separability of the hypotheses evaluation, coher-
ence with the Bayesian approach and coherence with
the probability association of sources. L.M. Zouhal
et al. developed in [Zouhal and Denœux(1998)] a
generalization of the theory of beliefs of fuzzy sets
to resolve classification problems. They used a
set of rules which enables the construction of ini-
tial mass structures adapted to this problem. In
[Rombaut and Berge-Cherfaoui(1997)], M. Rombaut
has suggested a mass distribution which is inspired
by the Denœux ’s works [Denœux(1995)] constructed
with help of a distance function di,j between the per-
ceived objects Xi and the known objects Yj . The
usually used distances are the Euclidian distance or
Mahalanobis distance. In case of information is fuzzy
numbers, the proposed distance di,j is based on the
complement in ’1’ of a concordance degree.

2.3.2 A Mass Distribution Depending on Un-
certainty

In our application, the extracted marker can be com-
posed of some pixels. During a fuzzy modelling, the
perceived objects Xi are much more precised than the
predicted objects Yj what implies that the support
of Yj can be much bigger than the one of Xi. The
possibilist or the Jacquard similarity measurement
are not thus adapted to our application. Indeed, the
first one can weaken the confidence on the perception
which agrees the prediction, whereas the second one
gives too much weight to the predicted objects and
it discriminates the measurement. The idea is thus
to build a mass distribution which takes into account
only the prediction error and the hypothesis that a
perceived object is maybe not associated and non-
associated with a known object at the same time.
The data association processing has to determine the
optimal relation between the observation and the pre-
diction to assign the measurement to an appropriate
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existing track or to initialize a new track.
If the distance between objects is small or if the

prediction error is high, the validation region can
then overlap and several observations can be in this
region. A perceived object can thus be a candidate
with several tracks what generates conflict (cf. figure
3).

Figure 3: Three perceived objects are candidate with
a predicted one.

The locus of points belonging to a confidence inter-
val describes an ellipse (resp. ellipsoid) in the case of
a Gaussian distribution with two (resp. three) ran-
dom variables. The aim is to look for the relation
between a predicted object and a perceived one be-
longing to the validation region. The computation
of masses is based on the Rombaut’s approach and
it is made according to the position of perceived ob-
jects and the uncertainty ellipses. We define k1σ and
k2σ uncertainty ellipses, k1 < k2, and we suggest the
following mass distribution:

• case 1: the perceived object is inside of k1σ el-
lipse (object X3 in figure 3), it is in relation with
the predicted object;

• case 2: the perceived object is outside of k2σ
ellipse (object X1 in figure 3), it is not in relation
with the predicted object;

• case 3: the perceived object is between k1σ el-
lipse and k2σ ellipse (object X2 in figure 3). We
do not know if there is a relation between both
objects.

To simplify writings, we note Xi the coordinates
of the ith perceived object Xi, Yj the coordinates of
the jth predicted object Yj and ΣXiYj

the nonempty
prediction error matrix.

We note di,j,kΣ the cartesian distance between the
position of a predicted object and the uncertainty
ellipse in the direction of the perceived object and di,j
the cartesian distance between the perceived object
and the predicted one.

We propose to define the mass distribution, re-
sulted in the association between a perceived object
Xi and a predicted one Yj as following:

mi,j(Yj) =

{
α0

2

(
1 + sin

(
π(1+2di,j)
2di,j,k1Σ

))
if case 1,

0 if cases 2, 3,
(13)

mi,j(Ȳj) =


0 if case 1,

α0

2

(
sin
(
π
2

di,j−∆d
2

∆d
2

)
− 1
)

if case 2,

1 if case 3,

(14)

mi,j(Θ) =

{
1−mi,j(Yj) if case 1,
1−mi,j(Ȳj) if cases 2, 3,

(15)

where α0 ∈ [0, 1] quantifies the sensor reliability, k1 <
k2 and ∆d = di,j,k2Σ − di,j,k1Σ.

Figure 4 illustrates the distribution of these masses
according to the reliability factor and the distance
between the perceived object and the predicted one.
If the perceived object is inside of the first uncertainty
ellipse and it tends toward the predicted object, the
mass mi,j(Yj) tends toward the reliability factor. In
the same way, if Xi is outside the second ellipse, the
mass mi,j(Ȳj) is equal to the reliability factor and
mi,j(Yj) is null. Furthermore, if the reliability factor
is lower than 0.5, the mass on the hypothesis Θ, “we
do not know”, is superior to the other masses.

3 Multi-object Tracking

The tracking filter has two main roles: estimating the
state of an entity from data provided by sensors and
tracking an entity.

Predictions and estimations of object states are
calculated with help of an adaptative Kalman filter.
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Figure 4: A mass distribution in function of the dis-
tance between a perceived object and a predicted one
and the sensor reliability factor α0.

The proposed object tracking method consists of five
stages (cf. figure 5): prediction of object states, mass
distribution, mass combination, decision and estima-
tion of object states.

Figure 5: The principle of object tracking.

3.1 Illustration of Object Pursuits

We synthetically generate two tracks (cf. figure 6(a)).
At time k, data measurements are associated with
tracks. Figure 6(b) represents the temporal evolution
of the mass distribution in the set Θ1,1 and figure
6(c) in the set Θ1,2. The dynamic behaviour of mass
distributions is illustrated with help of three cases:

• object disappearance and reappearance: when
the observation X1 is missing (30 < k < 33),
the mass distribution in the set Θ1,1 cannot be
calculated. The prediction Yi at the following
horizons is therefore calculated so that to possi-
bly re-associate the track with the reappearing
object X1. If this prediction is in relation with
the observation, the mass m1,1(Y1) becomes no
null.

• crossing of trajectories: at time k = 16, the
perceived object X2 cannot be candidate with
the association of the track Y1. The masses
m1,2(Y2) or m1,2(Θ1,2) are thus no null.

• appearance of a third observation: at time k =
23, a new object X3 appears in the scene, the
masses m1,3(Ȳ3) and m2,3(Ȳ3) are naturally
equal to α0.

(a) Perceived objects in function of the
instants k.

(b) Relation with the
perceived object X1

(c) Relation with the
perceived object X2

Figure 6: The mass distribution associated with the
relation between the predicted object Y1 and both
perceived objects.
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3.2 Dynamic Evolution of the Mass
Distribution in the Extended
Open-World

We combine mass distributions in the extended open
world to look for the relation between the perceived
objects and the predicted ones. Figures 7(a) and 7(b)
illustrate the mass distributions which are the result
of the combination.

(a) The relation with the predicted ob-
ject Y1.

(b) The relation with the predicted ob-
ject Y2.

Figure 7: Combination results: association with both
predicted objects.

At the beginning of an acquisition or during a
crossing of two objects, we have a conflict although
the mass m1,.(Y1) is superior to m1,.(Y2). This con-
flicting mass mi,.(�) 6= 1 can be used to normalize
the mass distribution during the decision-taking:

ki =
1

1−mi,.(�)
. (16)

When the perceived object X1 disappears, the mass
on the hypothesis ∗ is close to one; it means that no
perceived object can be associated with the predicted
object Y1. There are masses on the both hypotheses
“X1 is in relation with Y1” and “X2 is not in relation
with Y1”. It is thus necessary to define a method to
take decision.

3.3 Choice of Decision

The combination in the extended open-world gener-
ates masses on the union of hypotheses. We have to
take into account all information to take decision.

When the perceived object X1 appears, the piece
of information restrained in masses on unions of hy-
potheses is primordial, for example, it is necessary
to take into account the mass m1,.(Ȳ2) in the de-
gree of belief on the hypothesis Y1. Consequently, we
maximize the pignistic probability based on the equi-
distribution of hypotheses consisting to distribute the
mass of ignorance on the other singleton hypotheses.

3.4 Propagation of Tracks

3.4.1 Initialisation of a track

Let be a marker appears in the scene and it is not
associated with existing tracks. During the first in-
stants, all perceived markers can stand as candidate
for the association. A combinatorial tree is so con-
structed and each branch corresponds to the associa-
tion between a perceived marker and a predicted one.
These propagation lasts some instants before to take
a decision.

3.4.2 Disappearance of a Track

A marker can disappear because of a marker eclipse
by a sportsman limb or because of an information ex-
traction error. It can be considered as disappeared
if the predicted marker is not associated with a per-
ceived one. Consequently, the final decision stands as
the hypothesis ∗: it is not thus modelled in the frame
of discernment.

A disappeared marker can later reappear, informa-
tion on the track is so propagated during a limited
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number of samples to be associated with new mark-
ers.

3.5 Illustration of Tracking Perfor-
mances

Markers are extracted from images with histogram
analyses and connected component analyses. Their
trackings are illustrated at figure 8.

Moreover, the error between the perception and the
estimation enables to justify the choice of a Kalman
filter. The mean error of the position abscissas is
0.0084 the standard 0.1663 and the mean error of
the position ordinates is 0.0118, the standard 0.2371.
These errors are satifactory to explore results in mod-
els for sportive gesture analysis.

Figure 8: Markers tracking on a sensor.

4 Reconstruction of Three Di-
mensional Markers

4.1 Stereoscopic Reconstruction
Method

The video acquisition system used for the sportive
gesture analysis is composed of five CCD sensors with
a resolution 512(H)×256(V) pixels, 250 frames per
second and 256 grey scales. These cameras are placed
to obtain all sportive gestures of a long-jump athlete.
It is theorically possible to make ten different stereo-
scopic reconstructions with five sensors (C2

ns
, with ns

sensors).

The stereoscopic reconstruction requires to know
the position of both cameras, the focal length and
the transformation between the scene and the image
[Faugeras(1993)]. Certains of these parameters are
bound by the camera. So, camera internal parame-
ters, called intrinsic parameters, depend on the focal
length and the optical center position, whereas the
extrinsic parameters characterize the transformation
between the scene and the camera. To characterize
the camera, we have chosen a simplified model, called
pinhole model. This model consists of an optical cen-
ter, an image center and all light rays propagate along
a line and they linearly project onto the image plane.

In the first time, we compute the geometric model
of each camera with an unique calibration pattern
in using the classical geometric tools in computer vi-
sion. In help of the parameters of the right and left
cameras, we determine the transformation matrix be-
tween the left camera space and the right camera
space. Finally, the epipolar geometry enables us to
characterize relationships between two stereoscopic
images by the standardization knowledge on the one
hand and to reduce the searching zone of the corre-
sponding point on the other hand. The principle of
the epipolar geometry consists in etablishing the ho-
mogeneous of a left (resp. right) image point which is
on a known line in the right (resp. left) image named
epipolar line.

4.2 Principle of the Marker Stereo-
scopic Reconstruction

At time k, a 3D trajectory of a marker is recon-
structed in using the label of its projections at time
k − 1. However, it is necessary to valid the epipolar
constraint. We have to initialize the 3D tracks Al,ri
from lth and rth sensors, noted Sl and Sr, with l 6= r,
from 2D non-associated markers.

This method is easy, but it is necessary to fuse
all reports issued from stereoscopic reconstructions
to correct tracks and to obtain those are perceived
by other sensor couples.
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4.3 Correction and Fusion of Three
Dimensional Reconstructed
Markers

4.3.1 Covariance Intersection Algorithm

It concerns to combine n estimates with the mean
value of a random variable when the correlation
between estimates is unknown. We note the esti-
mated statistical mean of ai , âi and the deviation

ãi
4
= ai − âi. We can also note that correlations

P̃ii = E{ãiãiT } can be unknown but the estimates
are consistant and cross-correlations P̃ij = E{ãiãjT },
{(i, j) ∈ |[1, n]|2, i 6= j}, can so be unknown and they
are not equal to 0.

The objective is to fuse the n consistant estimates
of Ai to build a new consistant estimate C{c, Pcc}
which is linear and no biaised. The CI results in
the geometric interpretation of the Bar-Shalom equa-
tion [Bar-Shalom and Campo(1986)] which consists
in combining linearly the statistical means and in de-
terminating analyticaly the covariance of the result.
The Covariance Intersection algorithm (or CI) is a
data fusion algorithm with a convex combination of
means and covariances [Julier and Uhlmann(1997)].
If Pii are fixed, the covariance ellipse of Pcc always
stays in the intersection of covariance ellipses of Pii
for different choices of Pij [Uhlmann(1996)].

The combination of the n reports Ai {ai, Pii} cre-
ates a new estimates C {c, C} defined by:

P−1
cc =

(
n∑
i=1

ωiP
−1
ii

)
and P−1

cc c =

(
n∑
i=1

ωiP
−1
ii ai

)
,

(17)
where ai is the statistical mean, Pii the correla-
tion of the ith estimates and

∑n
i=1 ωi = 1. In

[Julier and Uhlmann(1997)], it is demonstrated that
the update equation is consistant for all values of Pij
and ω, {(i, j) ∈ |[1, n]|2, i 6= j}.

4.3.2 Principle of Three dimensional Stereo-
scopic Report Correction

Notation : Only the estimated state from the pre-
vious time step and the current measurement are
needed to compute the estimate for the current state.

In what follows, the a(t1|t2) represents the estimate
of a at time t1 given observations up to, and in-
cluding time t2. The main aims are to fuse, at
time k, the n 3D marker reports Ai(k|k) of sta-
tistical mean ai(k|k) and covariance Pii(k|k), noted
Ai(k|k){ai(k|k), Pii(k|k)}, i ∈ |[1, n]|, and so, to cor-
rect their tracks for each stereoscopic reconstruction
and to produce final tracks Ci(k|k){c(k|k), Pcc(k|k)}.

The ith tracked marker Z l,ri has so corresponding

to the fusion of 3D tracked markers Al,ri issued of
stereoscopic reconstructions with sensors Sl and Sr.
The principle thus consists in correcting the predic-
tion report of a marker in fusing it with the partial
estimates of other markers:

• Prediction of the 3D marker, noted Al,ri (k|k−1);

• Partial estimations of the other markers, noted
Ag,d;p
i (k|k), ∀d 6= r and ∀g 6= l, in using the

reconstructed positions of Z l,ri (k|k − 1);

• Fusion of the predictionAl,ri (k|k−1) with partial

estimations Ag,d;p
i (k|k) using CI algorithm; the

result is noted Al,r;∗i (k|k − 1);

• Update of Al,r,∗i (k|k − 1) with the position of

Z l,ri (k|k − 1); the final estimation is naturally

noted Al,ri (k|k).

In the CI algorithm, the weights of each track are
computed from the degree of belief on the hypoth-
esis “the reconstructed object is in relation with the
predicted object”.

4.3.3 Fusion of 3D stereoscopic tracks

We use the computation method of mass distribu-
tion in section 2.3.2 to associate measurements with
tracks:

• computation of mass distributions mi,j(Y
l,r) to

associate 3D markers Al,ri (k|k − 1) with those

from reconstructions Z l,ri (k|k − 1),

• mass distribution in the extended open-world.
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Reliability coefficients interviening in the compu-
tation of mass distributions are fixed for each stereo-
scopic reconstruction in empiric way: they corre-
spond to probabilities that a marker from the cali-
bration pattern is projected onto the corresponding
extracted interval in the image.

At time k, the computation of weights ωl,ri associ-
ated with the prediction of the final track Zi(k|k−1)
is given by:

ωl,ri =
mi,i(Y

l,r
i )∑n

g=1

∑n
d=1mi,i(Y

g,d
i )

, (18)

with Θ = {Yl,r
i , Ȳl,r

i }.
The degree of belief can be view as the total belief

allocating at the hypothesis considering available in-
formation. If the mass mi,j(Y

l,r) is null, ωl,ri is then

null. The partial estimation of Al,r;pi (k|k) does not
consequently influence the final estimation of other
markers in relation with Zj(k|k − 1), j 6= i.

We have opted for a convex combination with the
CI algorithm to fuse data, each track is so corrected in
taking account of the marker tracking report of the
other stereoscopic reconstruction. At time k, these
tracks can be fused to obtain only an unique track
for each marker. The CI of the estimates Al,ri (k|k)
enables to obtain the final estimate, noted Zi(k|k)
[Helbert et al.(2004)].

Non fused markers are combined to initialize new
tracks in testing the uncertainty ellipsoid intersec-
tion.

4.3.4 Illustrations of Fusion Performances

We have applied our algorithm to reconstruct marker
trajectories with data coming from five cameras (cf.
figure 9). Figure 10(a) represents an extract of a track
corresponding to the movements of a marker from
three stereoscopic reconstructions and their fusion.

Figure 10(b) illustrates the interest of the redun-
dancy. At the beginning of the tracking, magenta
track is close to the real marker position in the scene
(blue points) contrary to the track resulting in the
fusion (red line). One of sensors provides a position
error in the 2D tracking which affects on the magenta
reconstructions and yellow ones. The error on the

Figure 9: Fusion of stereoscopic reconstructions.

(a) Tracks in the scene (b) The influency of the fu-
sion

Figure 10: Results of the fusion with the CI algo-
rithm. In figure 10(b), the blue points characterize
the real marker position in the scene, the dash tracks
the stereoscopic reconstructions and those in red the
result of the fusion)

fusion reduced by the belief influency of the yellow
track and of the green one.

5 Conclusion and Perspectives

The proposed method enables to reconstruct the 3D
marker trajectories without a priori knowledge such
as the number of markers or their dynamic behaviour.
The Dempster-Shafer theory of Evidence is a particu-
larly interesting tool for information fusion, it is then
easy to handle the marker appearances and the dis-
appearances.

The 3D reconstruction takes into account the
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tracking results in different sequences of images to
reconstruct the 3D marker trajectories. These are
then corrected and fused with the help of the covari-
ance intersection algorithm. This last one has been
chosen to fuse different update reports with differ-
ent measurements, for example position or velocity.
Moreover, the combination is adapted to the fusion
of estimates when the correlation is unknown.

At last, this method privileges the redundancy of
information to correct markers trajectories and to
track markers which are not perceived by certain sen-
sors.

At the present time, we are developing a real time
system of 3D movement reconstruction in collabora-
tion with mechanics. The aim is to propose a new
tool for the 3D animation and the gesture analysis.
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