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Introduction

The deformation theory offers a way to study non-commutative algebras A by examining associated Poisson algebras S. The idea is to get (more or less explicitly) invariants attached to S by the use of differential calculus on the commutative algebra S, and then to deduce from them some invariants attached to A. Invariants of interest in various domains are of homological nature. In particular, a natural question is the following (there is the same in cohomology).

(Q) Is the Hochschild homology HH • (A) of A isomorphic to the Poisson homology HP • (S) of S? A positive answer was given by Kontsevich [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF] in cohomology when S is the algebra of the C ∞ functions on R n endowed with any Poisson bracket π extended to the space of formal series S[[ ]], and A is the space S[[ ]] whose usual commutative product is replaced by the Kontsevich star product ⋆ π (see e.g. [START_REF] Cattaneo | Déformation, quantification, théorie de Lie[END_REF] for further developments). The question (Q) was initiated by Brylinski [START_REF] Brylinski | A differential complex for Poisson manifolds[END_REF] when the algebra A is filtered such that gr(A) is assumed to be commutative and smooth. Then gr(A) is naturally a Poisson algebra S, and 1 there is the Brylinski spectral sequence E 2 = HP • (S) =⇒ HH • (A).

(1.1)

In this context, we can replace the question (Q) by the following one. (Q') Does the Brylinski spectral sequence degenerate at E 2 ? As shown by Kassel [START_REF] Kassel | L'homologie cyclique des algèbres enveloppantes[END_REF], this is the case if S is any polynomial algebra whose generators have all degree 1, so that the Poisson bracket of S is of degree ≤ 1 and A is a Sridharan enveloping algebra. Actually, Kassel proved more precisely that the symmetrization defines an isomorphism from the Poisson complex of S to the Koszul complex of A. The latter result was generalized (in a weaker form) in [START_REF] Halbout | Deformations of orbifolds with noncommutative linear Poisson structures[END_REF] to the crossed products of enveloping algebras.

Van den Bergh showed that the question (Q') has a positive answer if A is a generic Sklyanin algebra in three generators [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF]. In this case, the Poisson bracket of S (which is quadratic) is derived from a "Poisson potential" φ such that (IS) the origin is an isolated singularity of the polynomial φ.

In the paper of Van den Bergh, the property (IS) appears as essential in the computation of HP • (S), and it is the same for the other examples (quadratic, cubic, or more generally quasi-homogeneous) considered further [START_REF] Marconnet | Homologies of cubic Artin-Schelter regular algebras[END_REF][START_REF] Pichereau | Poisson (co)homology and isolated singularities[END_REF][START_REF] Pelap | Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin's case[END_REF]. In this paper, we present an example of quadratic algebra, called B in the text, for which the previous programme is performed without the property (IS). In other words, in our example of quadratic algebra B, the Poisson bracket of S (which is non-diagonalizable quadratic) is derived from a potential φ having non-isolated singularities. Nevertheless, HP • (S) is explicitly computed (Section 5 below). Next we prove that any Poisson cycle can be lifted to a Koszul cycle (since B is Koszul, it is more convenient to use Koszul complex, instead of Hochschild complex, in order to compute HH • (B)). Finally we get the computation of HH • (B) as stated in the following. Let S be the polynomial C-algebra in x, y, z, endowed with the Poisson bracket derived from the potential φ = -x 2 z. Then the Hochschild homology of B is isomorphic by a specific canonical morphism (an edge morphism in the Brylinski spectral sequence) to the Poisson homology of S and is given by

HH 0 (B) ≃ xC[y] ⊕ C[y, z]; HH 1 (B) ≃ C[φ] xz 0 -x 2 ⊕ C[z] z 2 0 -xz ⊕ n∈N * 0≤k≤n C 0 ky k-1 z n-k (n-k)y k z n-1-k ⊕ n∈N C y n n xy n-1 0 ⊕ n∈N 1≤k≤n+1 C (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k ; HH 2 (B) ≃ C[φ] x y z ⊕ (xC[φ] ⊕ zC[z]) 0 1 0 ⊕ n∈N 0≤k≤n C (k+1)x (2(n-k)+1) y -2(k+1) z y k z n-k ; HH 3 (B) ≃ C[φ]; HH p (B) ≃ 0 if p ≥ 4.
Since B is 3-Calabi-Yau, the Hochschild cohomology is then immediate: HH • (B) = HH 3-• (B). Remark that the duality HP • (S) = HP 3-• (S) holds since the Poisson bracket derives from a potential.

Our example of Koszul algebra B belongs to a large class of Koszul 3-Calabi-Yau algebras still denoted by B. These algebras B can be viewed as 3-Calabi-Yau completions of algebras A of global dimension 2 (consequently they are quasi-isomorphic to Ginzburg algebras [START_REF] Ginzburg | Calabi-Yau algebras[END_REF]). Calabi-Yau completions were defined and studied by Keller in [START_REF] Keller | Deformed Calabi-Yau completions (With an appendix by Michel Van den Bergh)[END_REF] (with an appendix by Van den Bergh). In particular we refer to Section 6.8 of [START_REF] Keller | Deformed Calabi-Yau completions (With an appendix by Michel Van den Bergh)[END_REF]. The Calabi-Yau property of our algebras B is then immediate from Theorem 4.8 in [START_REF] Keller | Deformed Calabi-Yau completions (With an appendix by Michel Van den Bergh)[END_REF]. Let us explain how we define these algebras B (see Section 2 below for details). For any non-degenerate quadratic relation f = i,j f ij x i x j in n ≥ 2 non-commutative variables x i , the algebra A defined by the single relation f is Koszul and AS-Gorenstein of global dimension 2 [START_REF] Dubois-Violette | Multilinear forms and graded algebras[END_REF], and A is Calabi-Yau if and only if f is symplectic [START_REF] Berger | Gerasimov's theorem and N -Koszul algebras[END_REF]. Add an extra generator z to the x i 's and consider the quadratic algebra B defined by the potential w = f z (see e.g. [START_REF] Ginzburg | Calabi-Yau algebras[END_REF][START_REF] Bocklandt | Graded Calabi-Yau algebras of dimension 3[END_REF][START_REF] Berger | Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras[END_REF] for algebras defined by potentials). The properties of B that we shall obtain in Section 2 work out over any field and are stated in the following.

Theorem 1.2 Let f = i,j f ij x i x j be any non-degenerate quadratic relation over a field k in non-commutative variables x 1 , . . . , x n (n ≥ 2) and let z be an extra generator. Let A be the k-algebra defined by the generators x 1 , . . . , x n and the single relation f . Let B be the k-algebra defined by the generators x 1 , . . . , x n , z and the potential w = f z. The following hold 1) B is a skew polynomial ring over A in the generator z and defined by an automorphism of A.

2) z is normal in B, that is Bz = zB.

3) If f is alternating, then z is central in B. The converse holds if the characteristic of k is = 2. 4) B is Koszul and 3-Calabi-Yau. Moreover, B is a domain. [START_REF] Berger | Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras[END_REF] The Hilbert series h B (t) of the graded algebra B is h B (t) = (1 -(n + 1)t + (n + 1)t 2 -t 3 ) -1 .

5) The Gelfand-Kirillov dimension GK.dim(B) of B is finite if and only if n = 2, and in this case GK.dim(B) = 3. 6) B is left (or right) noetherian if and only if n = 2.

When n = 2, the graded C-algebras B are classified in three types (Section 4 below): the polynomial algebra in x, y and z (classical type), the algebra of Theorem 1.1 (Jordan type), a family of quantum spaces in x, y, z (quantum type). The second type is the one of interest for us, since it is well-known that the question (Q) has a positive answer in the first or third type (if the quantum parameter q is not a root of unity). Hochschild homology in the quantum type can be deduced from Wambst's result ( [START_REF] Wambst | Complexes de Koszul quantiques[END_REF], Théorème 6.1). When n = 2, the C-algebras B are AS-regular of global dimension 3, and it is important to notice that their invariants j (in terminology of [START_REF] Artin | Graded algebras of global dimension 3[END_REF]) are infinite, unlike Sklyanin algebras. The first type and the third type can be considered as limits of Sklyanin algebras by vanishing the parameter c used in [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF], but such a process is not possible for the second type which stands really apart. Recently, Smith has given a detailed study of a remarkable algebra having seven generators and defined in terms of octonions [START_REF] Smith | A 3-Calabi-Yau algebra with G 2 symmetry constructed from the octonions[END_REF]. To avoid confusion with our notation, let us call C the Smith algebra. Actually, C does not belong to the class of algebras B defined in Theorem 1.2, since in characteristic zero C has no normal element except the elements of k ( [START_REF] Smith | A 3-Calabi-Yau algebra with G 2 symmetry constructed from the octonions[END_REF], Proposition 11.2). However C has many properties in common with our algebras B: C is Koszul and 3-Calabi-Yau, C is defined by an explicit potential, C is a skew polynomial ring over an algebra A in the last generator (but C is defined by a derivation of A, not an automorphism), and the single relation of A is symplectic in the first six generators. Suárez-Alvarez has obtained similar properties for a class of algebras containing C and defined from any oriented Steiner triple system [START_REF] Suárez-Alvarez | 3-Calabi-Yau algebras from Steiner triple systems[END_REF]. It would be satisfactory to enlarge naturally the class of algebras B in order to include the Suárez-Alvarez algebras, and one would expect that for any AS-regular algebra there is a skew polynomial ring in one variable over it which is Calabi-Yau. Acknowledgements. We would like to thank the referee for valuable suggestions and comments.

A family of 3-Calabi-Yau algebras

A down-to-earth approach of non-commutative projective algebraic geometry consists in studying graded algebras defined by generators (assumed to be of degree 1) satisfying some homogeneous non-commutative polynomial relations. Following this naïve approach, the first class to study is certainly the class of non-commutative quadrics, i.e., the class of noncommutative graded algebras defined by a single quadratic relation. It is a bit surprising that this class can be used as a toy model (see [START_REF] Berger | Gerasimov's theorem and N -Koszul algebras[END_REF]) in order to introduce to several duality theories (Koszul duality, AS-Gorenstein duality and Calabi-Yau duality) playing a basic role in more sophisticated approaches. Throughout the paper, the algebras of this class will be denoted by A, sometimes A(f ) or A(M ) if we want to specify the naïve non-commutative quadric which is just a quadratic relation f of matrix M in the non-commutative generators. Our first goal will be to show that such an algebra A is the quotient of a quadratic graded algebra B defined by a potential depending on f . The study of the algebras B = B(f ) = B(M ) is the main purpose of this paper. Let us fix the notation. For n ≥ 1, k x 1 , . . . , x n denotes the graded free associative algebra over a field k, generated by x 1 , . . . , x n assumed to be of degree 1. Let us give a non-zero element f = 1≤i,j≤n f ij x i x j homogeneous of degree 2 in this algebra, or equivalently a non-zero n × n matrix M = (f ij ) 1≤i,j≤n with entries in k. Then A = A(f ) = A(M ) denotes the quadratic graded algebra defined as the quotient of k x 1 , . . . , x n by the two-sided ideal generated by f . Let us recall the properties of A (see [START_REF] Berger | Gerasimov's theorem and N -Koszul algebras[END_REF][START_REF] Zhang | Non-noetherian regular rings of dimension 2[END_REF] for the proofs and for the definitions of Koszul, AS-Gorenstein or Calabi-Yau algebras).

Proposition 2.1 Let

A = A(f ) = A(M ) be as above. 1) The quadratic algebra A is Koszul. 2) The global dimension of A is equal to 2, except if f is symmetric of rank 1 (in this case, the global dimension is infinite). 3) A is AS-Gorenstein if and only if f is non-degenerate (i.e., M is invertible). 4) A is 2-Calabi-Yau if
and only if f is non-degenerate and skew-symmetric. Set F = k x 1 , . . . , x n , z where z is an extra generator of degree 1. We refer to [START_REF] Ginzburg | Calabi-Yau algebras[END_REF][START_REF] Bocklandt | Graded Calabi-Yau algebras of dimension 3[END_REF][START_REF] Berger | Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras[END_REF]] for more details on the definitions and basic properties concerning on algebras defined by a potential. The elements of F cyc = F/[F, F ] are called potentials. The k-vector space F cyc is sometimes identified to the space of the cyclic sums c(a) when a runs over F . Let us define our potential as being the class w in F cyc of w ∈ F where

5) If the global dimension of A is equal to 2, the Hilbert series of the graded algebra A is given by h

A (t) = (1 -nt + t 2 ) -1 .

Otherwise, one has

h A (t) = (1 -nt + t 2 -t 3 + t 4 -• • • ) -1 . 6) The Gelfand-Kirillov dimension GK.dim(A) of A is equal to 0 if n = 1, to ∞ if n >
w = f z = 1≤i,j≤n f ij x i x j z,
or as being the cyclic sum

c(w) = 1≤i,j≤n f ij (x i x j z + zx i x j + x j zx i ).
Let us denote by B = B(f ) = B(M ) the algebra defined by this potential. This is the quotient of the free algebra F by the cyclic partial derivatives

∂ x1 (w), . . . , ∂ xn (w), ∂ z (w), where ∂ xi (w) = 1≤j≤n (f ij x j z + f ji zx j ), 1 ≤ i ≤ n, (2.1) 
∂ z (w) = f. (2.2)
So B is a quadratic graded algebra. The obvious morphism of graded algebras from A to the quotient of B by z is clearly an isomorphism. In all the following, we abbreviate this isomorphism by A ∼ = B/(z). The following lemma allows us to consider A as a quadratic subalgebra of B.

Lemma 2.2 The morphism of graded algebras

A → B induced by the composite k x 1 , . . . , x n can -→ F can -→ B is injective.
Proof. It suffices to observe that the ideal which defines the algebra B is homogeneous with respect to the grading by deg z .

Denote by V A and R A (respectively V B and R B ) the space of generators and the space of relations of A (resp. B). One has

V A = kx 1 ⊕ . . . ⊕ kx n , R A = kf , V B = V A ⊕ kz and R B = ( 1≤i≤n k∂ xi (w)) ⊕ R A . Lemma 2.3 1) We have dim(R B ) ≥ rk(M ) + 1. 2) In particular, if f is non-degenerate, then dim R B = n + 1 and ∂ x1 (w), . . . , ∂ xn (w) are k-linearly independent in F . 3) If f is non-degenerate, then Az = zA and the element z is normal in the algebra B, that is, Bz = zB.
Proof. Write down the relations ∂ xi (w) = 0, 1 ≤ i ≤ n, as the linear system (in the space B)

M    x 1 z . . . x n z    = -t M    zx 1 . . . zx n    (2.3)
with unknowns x 1 z, . . . , x n z viewed in B. Reducing this system to a triangular form provides p = rk(M ) equalities in B beginning by p distincts pivots x i z, so that these equalities viewed as elements of R B are linearly independent. From this the inequality in 1) follows. This shows as well that if M is invertible, the elements x 1 z, . . . , x n z belong to zA, proving that Az ⊆ zA and Bz ⊆ zB. The opposite inclusions are obtained similarly by reading the linear system (2.3) from the right to the left.

It is also easy to deduce the inequality in 1) from the following relation

dim(R B(M) ) = rk M t M + 1, (2.4) 
which is immediate from the following

   ∂ x1 (w) . . . ∂ xn (w)    = M t M    x 1 z . . . zx n    (2.5)
where the latter column is formed by the 2n elements x 1 z, . . . , x n z, zx 1 , . . . zx n . Note that as a consequence of (2.4), we have equality in 1) if M is symmetric or antisymmetric (not necessarily invertible), and that for n = 2 and f = x 2 1 + x 1 x 2 , the inequality is strict.

Example 2.4 Assume that f is symplectic, i.e., non-degenerate and alternating. It follows that n = 2p is even and we can choose generators x 1 , . . . , x p , y 1 , . . . , y p such that f = 1≤i≤p (x i y i -y i x i ). Then ∂ xi (w) = y i z -zy i and ∂ yi (w) = zx i -x i z for 1 ≤ i ≤ p. In this case, z is central in B and one has

c(w) = 1≤i≤p Ant(x i , y i , z) (2.6)
where Ant(a, b, c) denotes the antisymmetrizer of a, b, c.

We continue the study of the algebra B = B(f ). Throughout the rest of this section, we assume that f is non-degenerate. Lemma 2.3 shows that Az = zA is a sub-A-bimodule of B. Let T A (Az) denote the tensor algebra of the A-bimodule Az (on tensor algebras of bimodules, see e.g. [START_REF] Klimyk | Quantum groups and their representations, Texts and Monographs in Physics[END_REF] 

λ i,α,β α∂ xi (w)β + ( α,β∈M µ α,β αf β )z, (2.9) 
by keeping the same notation for the coefficients. Denote by S the first sum. In order to conclude, it is sufficient to prove that S = 0. We have

S =
1≤i,j≤n,α,β∈M

(λ i,α,β f ij αx j zβ + λ i,α,β f ji αzx j β), (2.10) 
where deg α + deg β = ℓ -1 and deg denotes the total degree in x 1 , . . . , x n .

From S = (aα,β∈M µ α,β αf β )z, we are going to deduce that the coefficients λ i,α,β vanish inductively. Choose β with the maximal degree ℓ-1, so that α = 1. Since deg(x j β) > deg(β ′ ) for any α ′ , β ′ appearing in a term α ′ x k zβ ′ such that deg α ′ + deg β ′ = ℓ -1, the coefficient of zx j β vanishes, hence 1≤i≤n λ i,1,β f ji = 0 for j = 1, . . . , n. As M is invertible, this implies that λ i,1,β = 0 for i = 1, . . . , n. Thus we can remove all the elements λ i,1,β when deg β = ℓ -1. Next, choose β of degree ℓ -2 and α of degree 1. By the same argument, the coefficient of αzx j β vanishes, hence 1≤i≤n λ i,α,β f ji = 0 for j = 1, . . . , n, and we conclude again that all the elements λ i,α,β vanish when deg β = ℓ -2. Continuing the process, we arrive to S = 0. One proves similarly that the right A-module zA is free generated by z. Lemma 2.5 has the following consequence: for any a ∈ A, there exists a unique element σ(a) ∈ A (resp. σ ′ (a) ∈ A) such that za = σ(a)z (resp. az = zσ ′ (a)). Clearly, σ and σ ′ are automorphisms of the k-algebra A, inverse to each other. Now we are going to describe B as a skew polynomial algebra with coefficients in A. It suffices to do it for T A (Az) = p≥0 (Az) ⊗Ap . Proceeding by induction on p, we prove easily the following.

Lemma 2.6

The left (or right) A-module (Az) ⊗Ap is free generated by

z ⊗Ap = z ⊗ A • • •⊗ A z (p times) for any p ≥ 1.
Consequently, any element of T A (Az) is uniquely written as a finitely supported sum p≥0 a p z p where a i ∈ A and where we set z p = z ⊗Ap . The product in T A (Az) is determined by the product in A and by the relations z p a = σ p (a)z p , for any a ∈ A and p ≥ 1. We have obtained the following proposition (on skew polynomial rings, see e.g. [START_REF] Brown | Advanced Courses in Mathematics CRM Barcelona[END_REF] p. 8-9). Proposition 2.7 For any non-degenerate f , the k-algebra B = B(f ) is isomorphic to the skew polynomial k-algebra A[z; σ] defined over the k-algebra A by z and the k-automorphism σ of A.

The isomorphism B ∼ = A[z; σ] is an isomorphism of graded algebras, knowing that A is graded and z has degree 1. For any non-zero element a = p≥0 a p z p in B, its degree deg z (a) in z is the highest p such that a p = 0. One has deg z (az) = deg z (za) = deg z (a) + 1, so that z is not a zero-divisor in B. Moreover it is easy to deduce the Hilbert series of B from the Hilbert series of A:

h

B (t) = h A (t) 1 -t . (2.11)
Using Proposition 2.1, we get

h B (t) = (1 -(n + 1)t + (n + 1)t 2 -t 3 ) -1 if n ≥ 2, (2.12 
)

h B (t) = (1 -2t + 2t 2 -2t 3 + • • • ) -1 if n = 1. (2.13) Proposition 2.8 Assume that f is non-degenerate. The quadratic algebra B = B(f ) is Koszul. The global dimension of B is equal to 3 if n ≥ 2, to ∞ if n = 1. Moreover B is a domain if and only if n ≥ 2.
Proof. The global dimension of the graded algebra B is immediately derived from the expression (2.12) or (2.13) of its Hilbert series. According to a standard result on Koszul algebras [START_REF] Backelin | Koszul algebras, Veronese subrings and rings with linear resolutions[END_REF], the Koszulity of B comes from the Koszulity of A = B/(z) because the element z of degree 1 in B is normal and is not a zero-divisor (see also Example 1, p. 33 in [START_REF] Polishchuk | Quadratic algebras[END_REF]). The last statement is clear from B ∼ = A[z; σ] and from 8) in Proposition 2.1.

Assume that f is non-degenerate as before, with n ≥ 2. The Hilbert series (2.12) of the Koszul algebra B shows that

dim((R B ⊗ V B ) ∩ (V B ⊗ R B )) = 1. Since c(w) is an element of (R B ⊗ V B ) ∩ (V B ⊗ R B ) by the non-commutative Euler relation (2.8), one has (R B ⊗ V B ) ∩ (V B ⊗ R B ) = k c(w).
Therefore the bimodule Koszul complex of B is the following complex

K w 0 -→ B ⊗ k c(w) ⊗ B d3 -→ B ⊗ R B ⊗ B d2 -→ B ⊗ V B ⊗ B d1 -→ B ⊗ B (2.14)
and K w µ -→ B is the Koszul resolution of B where µ : B ⊗ B → B is the multiplication. To simplify notation, set x n+1 = z and r i = ∂ xi (w) for i = 1, . . . , n+ 1. Beside the cyclic partial derivative ∂ xi defined on F cyc , there is the "ordinary" partial derivative ∂ ∂xi : F → F ⊗ F (see [START_REF] Van Den Bergh | Introduction to superpotentials[END_REF]) defined on any monomial a by

∂a ∂x i = a=uxiv u ⊗ v,
which will be written as

∂a ∂x i = 1,2 ∂a ∂x i 1 ⊗ ∂a ∂x i 2 .
Then the differential of the Koszul complex K w is given by

d 1 (1 ⊗ x i ⊗ 1) = x i ⊗ 1 -1 ⊗ x i , (2.15) 
d 2 (1 ⊗ r i ⊗ 1) = 1≤j≤n+1 1,2 ∂r i ∂x j 1 ⊗ x j ⊗ ∂r i
∂x j 2 (2.16)

d 3 (1 ⊗ c(w) ⊗ 1) = 1≤j≤n+1 x j ⊗ r j ⊗ 1 -1 ⊗ r j ⊗ x j .
(2.17)

The following theorem is an immediate consequence of Keller's theorem (Theorem 4.8 in [START_REF] Keller | Deformed Calabi-Yau completions (With an appendix by Michel Van den Bergh)[END_REF]), since the algebra B(f ) is a 3-Calabi-Yau completion in sense of Keller (see 6.8 in [START_REF] Keller | Deformed Calabi-Yau completions (With an appendix by Michel Van den Bergh)[END_REF]). The reader could be interested in a proof not using Keller's completions, so we present below such a proof based on elementary homological algebra.

Theorem 2.9 For any non-degenerate f and for any n ≥ 2, the algebra

B = B(f ) is 3-Calabi-Yau.
In other words, the potential w = f z is 3-Calabi-Yau.

Proof. It suffices to prove that the complex K w is self-dual with respect to the functor (

• ) ∨ = Hom B-B ( • , B ⊗ B) ([5], Lemma 3.7).
Denote by E * the dual space of a k-linear space E. It is easy to compute the complex K ∨ w :

B ⊗ B d * 1 -→ B ⊗ V * B ⊗ B d * 2 -→ B ⊗ R * B ⊗ B d * 3 -→ B ⊗ kc(w) * ⊗ B -→ 0 (2.18)
where the differential is given on the dual basis by

d * 1 (1 ⊗ 1) = 1≤j≤n+1 x j ⊗ x * j ⊗ 1 -1 ⊗ x * j ⊗ x j , (2.19) 
d * 2 (1 ⊗ x * i ⊗ 1) = 1≤j≤n+1 1,2 ∂r j ∂x i 2 ⊗ r * j ⊗ ∂r j ∂x i 1 (2.20) d * 3 (1 ⊗ r * i ⊗ 1) = x i ⊗ c(w) * ⊗ 1 -1 ⊗ c(w) * ⊗ x i . (2.21)
Consider the diagram (in which we have omitted the symbols ⊗)

B(kc(w))B d3 -→ BR B B d2 -→ BV B B d1 -→ BkB f 3 ↓ f 2 ↓ f 1 ↓ f 0 ↓ (2.22) BkB d * 1 -→ BV * B B d * 2 -→ BR * B B d * 3 -→ B(kc(w) * )B
where the B-bimodule isomorphisms f i are given by

f 0 (1) = c(w) * , f 1 (x i ) = r * i , f 2 (r i ) = x * i , f 3 (c(w)) = 1. (2.23)
The diagram (2.22) is commutative. In fact, it is immediate to check that the left square and the right square are commutative. Moreover the commutativity of the central square is a straightforward consequence of the following non-commutative Hessian formula [START_REF] Van Den Bergh | Introduction to superpotentials[END_REF] 

τ ∂ 2 w ∂x i ∂x j = ∂ 2 w ∂x j ∂x i (2.24)
where we set

∂ 2 ∂xi∂xj = ∂ ∂xi • ∂ xj and where τ : F ⊗ F → F ⊗ F is the flip. Thus f : K w → K ∨ w is a complex isomorphism, so that K w is self-dual.
We complete the properties of B = B(f ) by the following.

Proposition 2.10 Assume that f is non-degenerate and n ≥ 2. 

1) B is AS-Gorenstein. 2) If f is alternating, then z is central in B. The converse holds if the characteristic of k is = 2. 3) The Gelfand-Kirillov dimension GK.dim(B)
(f ij + f ji )x j z = 0 for i = 1, . . . , n.
But the A-module Az is free, hence x 1 z, . . . x n z are linearly independent in B, and we conclude that f ij + f ji = 0 for any i and j.

3

) For n = 2, we have h B (t) = (1 -t) -3 , hence GK.dim(B) = 3. If n > 2, the polynomial 1 -(n + 1)t + (n + 1)t 2 -t 3 has a real root between 0 and 1, hence GK.dim(B) = ∞ .
4) If n = 2, the algebras A are noetherian [START_REF] Zhang | Non-noetherian regular rings of dimension 2[END_REF]. Thus B ∼ = A[z; σ] is noetherian by a standard result [START_REF] Brown | Advanced Courses in Mathematics CRM Barcelona[END_REF]. If n > 2, then GK.dim(B) = ∞, so we conclude that B is not (left or right) noetherian by using a theorem due to Stephenson and Zhang [START_REF] Stephenson | Growth of graded noetherian rings[END_REF]. Let us note that the equivalence in 4) can be deduced from the analogous equivalence for A (see 7) in Proposition 2.1) and from a general result ([20], Corollary 2.3).

Classification of the algebras B

The aim of this section is to classify the algebras B = B(M ) up to isomorphims of graded algebras. Denote by A(V, R) the quadratic graded algebra defined by a space of generators V and a space of relations R (subspace of V ⊗ V ). We write A(V, R) ∼ = A(V ′ , R ′ ) if there exists an isomorphism of graded algebras from A(V, R) to A(V ′ , R ′ ). It is equivalent to say that there exists a linear isomorphism ϕ :

V → V ′ such that (ϕ ⊗ ϕ)(R) = R ′ (
this property is the definition of isomorphisms between two quadratic graded algebras given in [START_REF] Manin | Quantum groups and non-commutative geometry[END_REF][START_REF] Berger | Homogeneous algebras[END_REF]). When M ∈ M n (k), we begin to classify up to isomorphism the graded algebras A(M ) defined at the beginning of Section 2. Using the same notation, let A(M ) be the quadratic algebra defined as the quotient of k x 1 , . . . , x n by the two-sided ideal generated by f , where f = 1≤i,j≤n f ij x i x j and M = (f ij ) 1≤i,j≤n . It is clear that for any matrices M 1 and M 2 , the equality A(M 1 ) = A(M 2 ) holds if and only if there exists a non-zero scalar ν such that M 1 = νM 2 . We have

f = x 1 . . . x n M    x 1 . . . x n    . (3.1)
The isomorphism class of A(M ) is the class of the algebras A(N ) which can be defined by M with respect to another basis (

x ′ 1 , . . . , x ′ n ). It means that A(N ) is the quotient k x 1 , . . . , x n /(f ′ )
where

f ′ = x ′ 1 . . . x ′ n M    x ′ 1 . . . x ′ n    , (3.2) 
in which f ′ has to be written in the variables x 1 , . . . ,

x n . Considering P ∈ GL n (k) such that    x ′ 1 . . . x ′ n    = P    x 1 . . . x n    ,
we obtain

f ′ = x 1 . . . x n t P M P    x 1 . . . x n    . (3.3)
Thus the matrices N are the matrices of the form N = ν t P M P for any non-zero scalar ν and any P ∈ GL n (k). Two matrices M and N in M n (k) are said to be congruent if there exists P ∈ GL n (k) such that N = t P M P . Note that we can choose ν = 1 in N = ν t P M P if any element of k is a square in k, but if ν is not a square in k, ν is not congruent to 1 (for n = 1). We have obtained the following result (when k = C, see [START_REF] Berger | Gerasimov's theorem and N -Koszul algebras[END_REF], end of Section 5). Now we are interested in the classification of the graded algebras B up to isomorphism. We shall prove that this classification is the same as for the algebras A. Keeping the algebra A(M ) as above, we define the quadratic algebra B(M ) by the potential w = f z as at the beginning of Section 2. The isomorphism class of B(M ) is the class of the algebras B(N ) which can be defined by M with respect to another basis (x ′ 1 , . . . , x ′ n , z ′ ). To be more precise, let Λ ∈ GL n+1 (k) be such that

     x ′ 1 . . . x ′ n z ′      = Λ      x 1 . . . x n z      . (3.4) 
Note that z can occur in x ′ 1 , . . . , x ′ n and that x 1 , . . . , x n can occur in z ′ . Write f ′ given by (3.2) and w ′ = f ′ z ′ in the variables x 1 , . . . , x n , z. Consider the quadratic algebra

Λ • B(M ) := k x 1 , . . . , x n , z /(∂ x ′ 1 (w ′ ), . . . , ∂ x ′ n (w ′ ), f ′
). Then we have to find the algebras B(N ) which are equal to Λ•B(M ) for some Λ ∈ GL n+1 (k). Clearly the isomorphism class of B(0) = k x 1 , . . . , x n , z is the singleton {B(0)}. Proposition 3.2 If N = ν t P M P for some non-zero scalar ν and P ∈ GL n (k), then

B(N ) = Λ • B(M ), where Λ = P 0 0 ν .
Proof. Let (x ′ 1 , . . . , x ′ n , z ′ ) be as in (3.4) with Λ = P 0 0 ν . According to (2.5), we have

   ∂ x ′ 1 (w ′ ) . . . ∂ x ′ n (w ′ )    = M t M    x ′ 1 z ′ . . . z ′ x ′ n    . (3.5)
Consequently, from

   x ′ 1 . . . x ′ n    = P    x 1 . . . x n   
and z ′ = νz, we obtain

t P    ∂ x ′ 1 (w ′ ) . . . ∂ x ′ n (w ′ )    = N t N    x 1 z . . . zx n    , (3.6) 
and

f ′ = x 1 . . . x n t P M P    x 1 . . . x n    . (3.7) 
Thus the spaces of relations of Λ • B(M ) and B(N ) are equal.

For any Λ ∈ GL n+1 (k), write Λ = Λ c ℓ λ where Λ ∈ M n (k). In order to illustrate the proof of Theorem 3.4 below when Λ is not invertible, the next proposition provides some explicit examples.

Proposition 3.3 Let Λ be as in (3.4) with the basis change

x ′ 1 = z, x ′ 2 = x 2 , . . . , x ′ n = x n , z ′ = x 1 . For any matrix M =      0 f 12 . . . f 1n f 21 0 . . . 0 . . . . . . . . . . . . f n1 0 . . . 0      , (3.8 
)

we have Λ • B(M ) = B( t M ).
Proof. Performing the basis change in f ′ given by (3.2) and in

w ′ = f ′ z ′ , we obtain f ′ = 2≤j≤n (f 1j zx j + f j1 x j z) and w ′ = 2≤j≤n (f 1j zx j x 1 + f j1 x j zx 1 ). Therefore the relations of Λ • B(M ) are ∂ x ′ 1 (w ′ ) = ∂ z (w ′ ) = 2≤j≤n (f 1j x j x 1 + f j1 x 1 x j ), ∂ x ′ i (w ′ ) = ∂ xi (w ′ ) = f 1i x 1 z + f i1 zx 1 , 2 ≤ i ≤ n, f ′ = 2≤j≤n (f 1j zx j + f j1 x j z). Since B( t M ) is defined by the potential gz = 2≤j≤n (f 1j x j x 1 z + f j1 x 1 x j z), the relations of B( t M ) are ∂ x1 (gz) = 2≤j≤n (f 1j zx j + f j1 x j z), ∂ xi (gz) = f 1i x 1 z + f i1 zx 1 , 2 ≤ i ≤ n, g = 2≤j≤n (f 1j x j x 1 + f j1 x 1 x j ).
Thus the spaces of relations of Λ • B(M ) and B( t M ) are equal.

Actually, for the matrix Λ of Proposition 3.3, one can show that any matrix M such that there exists N satisfying Λ • B(M ) = B(N ) is of the form (3.8), and then N is a non-zero scalar multiple of t M . For the proof of the classification theorem of the algebras B(M ) (Theorem 3.4 below), one could probably do things intrinsically by using matrices Λ, but following the suggestion of the referee, we prefer a straightforward approach which is structurally simpler.

Theorem 3.4 Let k be a field and n ≥ 1. Let M = (f i,j ) and N = (f ′ i,j ) be in M n (k). Then B(M ) ∼ = B(N ) if and only if M is congruent to a non-zero scalar multiple of N . If any element of k is a square in k, then B(M ) ∼ = B(N ) if and only if M and N are congruent.
Proof. According to Proposition 3.2, it remains to prove the necessity of the condition when no assumption is made on k. Assume that there exists an isomorphism of graded algebras φ : B(M ) → B(N ). As noted just before Proposition 3.2, M = 0 if and only if N = 0, so that we assume that M and N are non-zero. Summing implicitly over repeated indices, we have φ(x i ) = α i,j x j + β i z and φ(z) = γ j x j + δz for some well-determined scalars α i,j , β i , γ j and δ. Denote by φ : B(N ) → B(M ) the map inverse of φ, and let ᾱi,j , βi , γj , δ be the corresponding scalars for the map φ. As φφ = 1 B(M) , we have

α i,j ᾱj,k + β i γk = δ i,k , α i,j βj + β i δ = 0, γ i ᾱi,j + δγ j = 0, γ i βi + δ δ = 1; (3.9)
of course, there are similar equations coming from φ φ = 1 B(N ) . As f i,j x i x j = 0 in B(M ), we have f i,j (α i,k x k + β i z)(α j,l x l + β j z) = 0 in B(N ). Since the algebra B(N ) is graded by deg z , looking at the homogeneous components of degrees zero and two of this equality tells us that in B(N )

f i,j α i,k α j,l x k x l = 0, f i,j β i β j z 2 = 0.
The first of these tells us that there is a scalar λ such that

f i,j α i,k α j,l = λf ′ k,l (3.10)
and the second onesince z 2 = 0 in B(N )that f i,j β i β j = 0.

(3.11)

If the matrix (α i,j ) is invertible, then λ cannot be zero, for we would then have that M = 0 in view of equation (3.10), and that same equation tells us that M and λN are congruent. We may therefore assume that it is not and, by symmetry, that neither is the matrix (ᾱ i,j ). This assumption implies that there exist scalars ζ i , not all zero, such that ζ i α i,j = 0 for all j, and then

ζ j x j = φφ(ζ i x i ) = φ(ζ i α i,j x j + ζ i β i z) = ζ i β i (γ j x j + δz).
It follows that ζ i β i γj = ζ j for all j and that ζ i β i δ = 0; since not of all of the ζ j are zero, this implies that ζ i β i = 0 and therefore δ = 0. By symmetry, we also have δ = 0. As f i,j x j z + f j,i zx j is zero in B(M ) and the homogeneous component of degree zero of its image under φ is (f i,j α j,k γ l + f j,i α j,l γ k )x k x l , this must be a multiple of f ′ k,l x k x l , and we see that there exist scalars µ i such that

f i,j α j,k γ l + f j,i α j,l γ k = µ i f ′ k,l . (3.12) 
If we multiply (3.10) by βk and sum over k, we see that λf ′ k,l βk = f i,j α i,k α j,l βk = 0, because of the second equation in (3.9). If we had λ = 0, so that f ′ k,l βk = 0, we could multiply equation (3.12) by βk , sum over k, andusing that f ′ k,l βk = 0 and γ k βk = 1 we would have that f j,i α j,l = 0; equation (3.10) would then tell us that in fact f ′ = 0, against our hypothesis. Therefore λ = 0. Let ω i,j = α i,j + β i γ j and similarly for ωi,j . Using equations (3.9) and the fact that δ = δ = 0, we immediately see that the matrix (ω i,j ) is invertible with inverse (ω i,j ). Also we have

f i,j ω i,k ω j,l = f i,j α i,k α j,l + f i,j (α i,k β j γ l + α j,l β i γ k ) + f i,j β i β j γ k γ l . (3.13) 
The first term is zero because of (3.10) and the third one vanishes according to (3.11), so that we have

f i,j ω i,k ω j,l = f i,j α i,k β j γ l + f i,j α j,l β i γ k = (f j,i α j,k γ l + f i,j α j,l γ k )β i = µ i β i f ′ l,k ,
in view of equation (3.12). Since the matrix (ω i,j ) is invertible and not all the f i,j are zero, this implies that ν := µ i β i = 0 and we conclude that M and the transpose of νN are congruent. Since any matrix is congruent to its transpose [START_REF] Dokovic | A square matrix is congruent to its transpose[END_REF], it follows that M is congruent to νN itself.

4 Special properties of B(M) when n = 2

Throughout the sequel of this paper, we assume that k = C (actually, it would be sufficient to assume that k is algebraically closed of characteristic zero). An explicit parameter space for the GL(2, C)-orbits of congruent matrices in GL(2, C) is given by Dubois-Violette in [START_REF] Dubois-Violette | Multilinear forms and graded algebras[END_REF] (for the classification of matrices under congruence in general, the reader may consult [START_REF] Corbas | Bilinear forms over an algebraically closed field[END_REF][START_REF] Sergeichuk | Classification problems for systems of forms and linear mappings[END_REF]). According to the previous section, this parameter space forms a "moduli space" for the algebras B(M ) when M runs over GL(2, C). Recall the description in three types of this parameter space as stated in ( [START_REF] Dubois-Violette | Multilinear forms and graded algebras[END_REF], end of Section 2). In each type, we give the potential w and the relations of B(M ). The generators are denoted by x, y and z. The types depend on the rank rk of the symmetric part s(M ) = 1 2 (M + t M ) of M . It turns out that the corresponding algebras A(M ) are exactly the AS-regular algebras of global dimension 2 [START_REF] Artin | Graded algebras of global dimension 3[END_REF]. Therefore the three types classify the AS-regular algebras of global dimension 2 as well, and we have kept the samestandard terminology for the classification of our algebras B(M ). Second type (Jordan type): rk = 1. There is only one orbit, which is the orbit of M = -1 -1 1 0 . One has w = (yx -xy -x 2 )z. The relations of B(M ) are the following:

First type (classical type): rk

zy = yz + 2xz, xz = zx, yx = xy + x 2 .
Third type (quantum type): rk = 2. The orbits are parametrized by the set {q ∈ C \ {0, 1}}/(q ∼ q -1 ). These are the orbits of M = 0 -q -1 1 0 . One has w = (yx -q -1 xy)z. 

quadratic AS-regular algebra of global dimension 3, of type A non-generic (following the classification of Artin and

Schelter [START_REF] Artin | Graded algebras of global dimension 3[END_REF]). For any M in the list of the above classification, (x i y j z k ) i≥0,j≥0,k≥0 is a basis of the vector space B(M ).

Proof. According to Proposition 2.10, B(M ) is AS-Gorenstein with a finite Gelfand-Kirillov dimension, hence is AS-regular. Since B(M ) is Calabi-Yau (Theorem 2.9), B(M ) is of type A ([5], Proposition 5.4). Moreover, B(M ) is a skew polynomial ring over A(M ) in z (Proposition 2.7) and it is clear from each relation f listed above that A(M ) is a skew polynomial ring in x, y. Therefore B(M ) is a skew polynomial ring in x, y, z (hence the basis of monomials x i y j z k ), and the invariant j of B(M ) is infinite ([1], Theorem 6.11). Among the AS-regular algebras of type A, the generic ones correspond to a finite invariant j and are called Sklyanin algebras [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF]. Recall that Sklyanin algebras are defined by three generators x, y, z, and three relations αyz +βzy+γx 2 = 0, αzx+βxz +γy 2 = 0, αxy+βyx+ γz 2 = 0, where γ = 0. So the algebras B(M ) of the first or third type can be considered as limits of Sklyanin algebras by vanishing the parameter γ, but such a process is not possible for the second type.

In the classification of their quadratic regular algebras of global dimension 3, Artin and Schelter define the invariant j as the invariant of a certain cubic curve C in P 2 . As we shall see, the equation φ = 0 of C is easily deduced from the potential w of B(M ). More importantly, we shall interpret φ as a Poisson potential whose associated Poisson bracket (defined as usual by ∇φ) is exactly the semi-classical limit of B(M ) viewed as a deformation of C[x, y, z]. Let us begin by the description of the curve C as in [START_REF] Artin | Graded algebras of global dimension 3[END_REF]. To avoid confusion with our notation, let us replace the notation M , w, Q used in [START_REF] Artin | Graded algebras of global dimension 3[END_REF] by M, W, Q. The 3 × 3 matrix M is defined by

  ∂ x (w) ∂ y (w) f   = M   x y z   , (4.1) 
so that we have

M =   t M z M x y x y M 0   .
The element W is defined by W = XM t X, where X = x y z . From (4.1) and the non-commutative Euler relation (2.8), we deduce that

W = c(w), (4.2) 
that is, W is precisely the potential w once identified to its cyclic sum. The matrix Q is defined by It is clear that φ belongs to the Poisson center of {•, •} (because {x, φ} = {y, φ} = {z, φ} = 0), i.e., φ is a Casimir element of the Poisson bracket. In the classical type, {•, •} = 0. For the other types, the next proposition shows that the Casimir element φ lifts to a non-zero element Φ of the center of B(M ). Note that the potential w lifts φ in the free algebra, but w vanishes in B (it is a difference with Sklyanin algebras for which the potential w does not vanish in the algebra). Note that c(w) always vanishes in the algebra according to the non-commutative Euler relation (2.8).

XM = ∂ x (w) ∂ y (w) f t Q. Then (2.
Most calculations in the algebra B(M ) where M is given by (4.3) are based on the following relations

zy = (-a + a b )xz -byz, zx = -1 b xz, yx = -ax 2 -bxy. (4.5)
It is easy to verify that these relations are confluent. Therefore, Bergman's diamond lemma provides the basis (x i y j z k ) i≥0,j≥0,k≥0 of B, as already stated in Proposition 4.1. We are now interested in the comparison between the Hochschild homology of B(M ) and the Poisson homology of (C[x, y, z], {•, •}). In the classical type, the Hochschild homology of C[x, y, z] is well-known and coincides with the Poisson homology for the corresponding {•, •} (which is zero in this case). As proved in the next proposition, it is the same for the quantum type if q is not a root of unity. We are grateful to Wambst for the explicit formulas of Hochschild homology. Proposition 4.5 Let q be a non-zero complex number which is not a root of unity. Let B be the C-algebra defined by the potential w = (yx -q -1 xy)z, i.e. defined by the generators x, y, z, and the following relations 

HH 0 (B) ∼ = Z ⊕ xC[x] ⊕ yC[y] ⊕ zC[z], HH 1 (B) ∼ = ((C[x] ⊕ yzZ) ⊗ x) ⊕ ((C[y] ⊕ xzZ) ⊗ y) ⊕ ((C[z] ⊕ xyZ) ⊗ z), HH 2 (B) ∼ = (xZ ⊗ (y ∧ z)) ⊕ (yZ ⊗ (z ∧ x)) ⊕ (zZ ⊗ (x ∧ y)), HH 3 (B) ∼ = Z ⊗ (x ∧ y ∧ z), HH p (B) = 0 for any p ≥ 4.
Proof. On one hand, setting x 1 = x, x 2 = y, x 3 = z, q 12 = q 23 = q 31 = q and applying Théorème 6.1 in [START_REF] Wambst | Complexes de Koszul quantiques[END_REF], we obtain the result for HH p (B). diagonalizable in sense of Monnier, and the Poisson cohomology is computed in [START_REF] Monnier | Formal Poisson cohomology of quadratic Poisson structures[END_REF]. Moreover, the duality HP • (S) ∼ = HP 3-• (S) holds a priori, because a Poisson bracket deriving from a potential is always unimodular, i.e., its modular class vanishes (see the definition of the modular vector field (and its class) in [START_REF] Weinstein | The modular automorphism group of a Poisson manifold[END_REF], which is called the curl vector field in [START_REF] Dufour | Rotationnels et structures de Poisson quadratiques[END_REF]). The example 2.4 (i) of [START_REF] Monnier | Formal Poisson cohomology of quadratic Poisson structures[END_REF], then gives bases of the Poisson homology vector spaces of S and the fact that they are isomorphic to the Hochschild homology vector spaces of B.

We have seen that the duality HP • (S) ∼ = HP 3-• (S) holds since the Poisson bracket derives from a potential. Since B is 3-Calabi-Yau (Theorem 2.9), one also has the duality

HH • (B) ∼ = HH 3-• (B).

Poisson homology and Hochschild homology for the second type

In this section, the field k is C and n = 2. The aim of this section is to prove Theorem 1.1 of the Introduction, i.e., to determine the Hochschild homology of the algebra B of the second type (Jordan type):

B = C x, y, z /(zy = yz + 2xz, zx = xz, yx = x 2 + xy).
Let us recall the notation: f = x 2 +xy-yx, w = f z, r 1 = ∂ x (w), r 2 = ∂ y (w) and r 3 = ∂ z (w). We have

r 1 = xz + zx + yz -zy, r 2 = zx -xz, r 3 = x 2 + xy -yx.
In order to obtain the Hochschild homology of B, we will first see B as the deformation of a Poisson algebra for which we will determine the Poisson homology. To do this, let us consider the filtration F of B given by the degree of y. In other words, for this filtration, the degree of y is 1 while the degrees of x and z are 0. It is clear from the monomial basis of B (Proposition 4.1) that gr F (B) ≃ C[x, y, z], so the filtered algebra B is almost commutative [START_REF] Kassel | L'homologie cyclique des algèbres enveloppantes[END_REF]. Moreover, gr F (B) is equipped with the Poisson bracket defined by:

{z, y} = 2xz, {z, x} = 0, {y, x} = x 2 , (5.1) 
which is the Poisson structure derived from the Poisson potential φ = -x 2 z. In the sequel, we will denote this Poisson algebra by T = (C[x, y, z], { , }).

From the Koszul resolution K w (2.14), we easily get the following Koszul complex B ⊗ B e K w associated to B (where we have omitted the symbols ⊗):

0 -→ B(Cc(w)) d3 -→ BR B d2 -→ BV B d1 -→ B -→ 0
where c(w) = x 2 z + xzx+ zx 2 + xyz + yzx+ zxy -yxz -xzy -zyx and where the differentials are given, for a ∈ B, by: This complex computes the Hochschild homology HH • (B) of B. Notice that one can naturally identify the spaces of chains of this complex with B or B 3 . Indeed, one can write

d1 (a ⊗ x) = [a, x] = ax -xa, d1 (a ⊗ y) = [a, y], d1 (a ⊗ z) = [a, z],
B(Cc(w)) ≃ B, while BR B ≃ B 3 and BV B ≃ B 3 , (5.2) 
by identifying, for any a 1 , a 2 , a 3 ∈ B, the element

a 1 ⊗ r 1 + a 2 ⊗ r 2 + a 3 ⊗ r 3 ∈ BR B or the element a 1 ⊗ x + a 2 ⊗ y + a 3 ⊗ z ∈ BV B with (a 1 , a 2 , a 3 ) ∈ B 3 .
As in B, we assume that in V B , R B and c(w), y has degree 1 while x and z have degree 0, so that we can consider the total filtration degree in B ⊗ B e K w . In Proposition 5.2 below, we show that d1 , d2 and d3 have degree -1 for the total filtration degree. So B ⊗ B e K w will be a filtered complex (with differentials preserving the degree) for the following shifts on the total filtration degree:

0 -→ B(Cc(w))(3) d3 -→ BR B (2) d2 -→ BV B (1) d1 -→ B -→ 0 (5.3)
whose filtration is still denoted by F . Recall now the definition of the Poisson homology complex of the Poisson algebra T . First, the space of Poisson 1-chains is the T -module of Kähler differentials of T , denoted by Ω 1 (T ) and generated, as an T -module by the three elements dx, dy, dz. Then, for p ∈ N * , the T -module of Kähler p-differentials is the space of Poisson p-chains and is given by Ω p (T ) = p Ω 1 (T ). Of course, one has Ω p (T ) = {0}, as soon as p ≥ 4. Notice that an element F 1 dx+F 2 dy+F 3 dz ∈ Ω 1 (T ) can naturally be identified with the element (F 1 , F 2 , F 3 ) ∈ T 3 . Similarly, an element F 1 dy∧dz+F 2 dz∧dx+F 3 dx∧dy ∈ Ω 2 (T ) is identified with the element (F 1 , F 2 , F 3 ) ∈ T 3 , and an element F dx ∧ dy ∧ dz ∈ Ω 3 (T ) with the element F ∈ T . (Notice that in the following we will write elements in T 3 both as row vectors or as column vectors, depending on the context.)

Next, the Poisson boundary operator, δ p : Ω p (T ) → Ω p-1 (T ), called the Brylinski or Koszul differential, is given, for F 0 , F 1 , . . . , F p ∈ T , by (see [START_REF] Brylinski | A differential complex for Poisson manifolds[END_REF]):

δ p (F 0 dF 1 ∧ • • • ∧ dF p ) = p i=1 (-1) i+1 {F 0 , F i } dF 1 ∧ • • • ∧ dF i ∧ • • • ∧ dF p + 1≤i<j≤p (-1) i+j F 0 d{F i , F j } ∧ dF 1 ∧ • • • ∧ dF i ∧ • • • ∧ dF j ∧ • • • ∧ dF p ,
where the symbol dF i means that we omit the term dF i .

Using the previous identifications, the Poisson homology complex of the Poisson algebra T can be written as:

0 T T 3 T 3 T 0 - - δ3 - δ2 - δ1 -
with the differentials given, for F ∈ T , and F := (F 1 , F 2 , F 3 ) ∈ T 3 , by:

δ 1 ( F ) = ∇φ • (∇ × F ) = Div( F × ∇φ), δ 2 ( F ) = -∇( F • ∇φ) + Div( F )∇φ, (5.4) δ 3 (F ) = -∇F × ∇φ,
where Div( F ) = ∂F1 ∂x + ∂F2 ∂y + ∂F3 ∂z ∈ T , while, for all element G ∈ T , we write ∇G := ( ∂G ∂x , ∂G ∂y , ∂G ∂z ) ∈ T 3 . We also have respectively denoted by •, × and ∇×, the usual inner and cross products in T 3 and the curl operator. Note that ∇φ = (-2xz, 0, -x 2 ).

In proposition 5.2, we show that gr F (B ⊗ B e K w ) is identified to the Poisson homology complex of the Poisson algebra T . The next lemma will be useful. Lemma 5.1 For all k ∈ N, the following identities hold in B:

yx k = x k y + kx k+1 , z k y = yz k + 2kxz k , (5.5) while y k x = k j=0 k! j! x k-j+1 y j , (5.6) 
and

zy k = k ℓ=0 (k -ℓ + 1) k! ℓ! x k-ℓ y ℓ z. (5.7)
Proof. Straightforward by induction on k ∈ N.

Proposition 5.2 Let us consider the filtration F on the algebra B given by the degree in y.

Then the differential of the Koszul complex B ⊗ B e K w has degree -1 for the total filtration degree. Moreover, the graded complex associated to the filtered complex (5.3) is isomorphic to the Poisson homology complex of the Poisson algebra T .

Proof. As we have already seen, gr F (B) ≃ T . As the monomials x i y j z k , with i, j, k ∈ N, form a C-basis of B (Proposition 4.1), the identifications of the spaces of Hochschild chains with B or B 3 and their analogs for the spaces of Poisson chains with T and T 3 show that the spaces of Hochschild and Poisson chains are isomorphic. Now, we have to compare the images of dℓ and of δ ℓ , 1 ≤ ℓ ≤ 3. To do this, we consider the basis (x i y j z k ) i,j,k of C[x, y, z] and of B. In fact, using (5.4), it is easy to compute the elements δ ℓ (x i y j z k e), where e is one of the symbols dx, dy and dz when ℓ = 1, dy ∧ dz, dz ∧ dx and dx ∧ dy when ℓ = 2, or dx ∧ dy ∧ dz, when ℓ = 3. Also, using lemma 5.1, it is straightforward to obtain d1 (x i y j z k ⊗ x), d1 (x i y j z k ⊗ y), d1 (x i y j z k ⊗ z), d2 (x i y j z k ⊗ r 1 ), d2 (x i y j z k ⊗ r 2 ), d2 (x i y j z k ⊗ r 3 ) and d3 (x i y j z k ⊗ c(w)) and to verify that

gr F ( d1 (x i y j z k ⊗ x)) = δ 1 (x i y j z k dx) = jx i+2 y j-1 z k , gr F ( d1 (x i y j z k ⊗ y)) = δ 1 (x i y j z k dy) = (2k -i)x i+1 y j z k , gr F ( d1 (x i y j z k ⊗ z)) = δ 1 (x i y j z k dz) = -2jx i+1 y j-1 z k+1 ,
while:

gr F ( d2 (x i y j z k ⊗ r 1 )) ≃ δ 2 (x i y j z k dy ∧ dz) =   2x i y j z k+1 2jx i+1 y j-1 z k+1 (2k -i + 2)x i+1 y j z k   , gr F ( d2 (x i y j z k ⊗ r 2 )) ≃ δ 2 (x i y j z k dz ∧ dx) =   -2jx i+1 y j-1 z k+1 0 -jx i+2 y j-1 z k   , gr F ( d2 (x i y j z k ⊗ r 3 )) ≃ δ 2 (x i y j z k dx ∧ dy) =   (i + 2 -2k)x i+1 y j z k jx i+2 y j-1 z k 0   ,
and:

gr F ( d3 (x i y j z k ⊗ c(w))) ≃ δ 3 (x i y j z k dx ∧ dy ∧ dz) =   jx i+2 y j-1 z k (2k -i)x i+1 y j z k -2jx i+1 y j-1 z k+1   .
This also shows that the differential dℓ has degree -1 for the total filtration degree.

In order to obtain the Poisson homology of the Poisson algebra T , we need to compute the homology of a certain complex, called Koszul complex associated to the polynomial φ. By definition, this complex is given by 0 → Ω 0 (T ) → Ω 1 (T ) → Ω 2 (T ) → Ω 3 (T ) → 0, where the differential is the map ∧dφ : Ω k (T ) → Ω k+1 (T ). This complex will be denoted by (Ω • (T ), ∧dφ) in the following, while for 0 ≤ p ≤ 3, the p-th homology space of this complex will be denoted by H φ p (T ).

Remark 5.2 Let us recall from [START_REF] Pichereau | Poisson (co)homology and isolated singularities[END_REF] that if ϕ ∈ T is a weight-homogeneous polynomial with an isolated singularity at the origin, then the homology of the Koszul complex associated to ϕ is given by: H ϕ p (T ) = {0}, for p = 0, 1, 2, while

H ϕ 3 (T ) = T { F •∇ϕ| F ∈T 3 }
is the so-called Milnor algebra associated to ϕ and is, in this case, a finite dimensional vector space. In the following lemma, we see that the homology of the Koszul complex associated to φ = -x 2 z (admitting a non-isolated singularity at the origin) does not satisfy the same properties. Lemma 5.3 Let φ = -x 2 z. The homology of the Koszul complex (Ω • (T ), ∧dφ) associated to φ is given by:

H φ 0 (T ) = {0}; H φ 1 (T ) = C[y, z] (2z dx + x dz) ; H φ 2 (T ) = C[y, z] (x dz + 2z dx) ∧ dy ⊕ (xC[y] ⊕ C[y, z]) dz ∧ dx; H φ 3 (T ) = (xC[y] ⊕ C[y, z]) dx ∧ dy ∧ dz.
Proof. The fact that H φ 0 (T ) ≃ {0} is clear. In order to compute H φ 1 (T ), H φ 2 (T ) and H φ 3 (T ), we first point out that there exists an isomorphism of complexes between (Ω • (T ), ∧dφ) and the tensor product of two analogous but simpler complexes:

(Ω • (T ), ∧dφ) ≃ (Ω • (C[y]), 0) ⊗ (Ω • (C[x, z]), ∧dφ).
(5.8)

Moreover, denoting V = C[x, z], the complex (Ω • (V ), ∧dφ) can be written as follows:

Ω 0 (V ) Ω 1 (V ) Ω 2 (V ) 0 - δ 0 V - δ 1 V - where Ω 0 (V ) = V , Ω 1 (V ) = V dx ⊕V dz and Ω 2 (V ) = V dz∧dx, while for every (F, G) ∈ V 2 , δ 0 V (F ) = F (2xz dx + x 2 dz) and δ 1 V (F dx + G dz) = (F x 2 -2xzG) dz ∧ dx.
Then, it is clear that the 0-th cohomology space associated to (Ω • (V ), ∧dφ) is {0} and the 2-nd cohomology space is given by C

[x, z]/(x 2 , 2xz) ≃ (C[z] ⊕ C • x) dz ∧ dx.
In order to compute the first cohomology space associated to (Ω • (V ), ∧dφ), let F dx + G dz be a 1-cochain of (Ω • (V ), ∧dφ). This element is a cocycle if and only if F x 2 -2xzG = 0, i.e., if and only if there exists H ∈ V such that F = 2zH and G = xH. Now, writing H as

H = xK + L, with K ∈ V and L ∈ C[z], one has F dx + G dz = δ 0 V (K) + L (2z dx + x dz). Finally, for every R ∈ C[z], if R (2z dx + x dz) ∈ Im(δ 0
V ), then necessarily R = 0. This allows us to conclude that the first cohomology space associated to the Koszul complex of V can be written as C[z] (2z dx + x dz).

Since we are working over a field, from the isomorphism (5.8) and the Künneth formula, we immediately get H φ 1 (T ), H φ 2 (T ) and H φ 3 (T ).

Remark 5.3

In [START_REF] Pichereau | Poisson (co)homology and isolated singularities[END_REF], for every weight-homogeneous polynomial ϕ ∈ C[x, y, z] admitting an isolated singularity, it is shown that { F ∈ T 3 | ∇ϕ•(∇× F ) = 0} = {∇G+H∇ϕ | G, H ∈ T }, using the fact that the Koszul complex associated to ϕ is exact in degree 2. In the following lemma, this is not true anymore if ϕ is replaced by φ = -x 2 z.

In the following, we will say that an element

F = (F 1 , F 2 , F 3 ) ∈ T 3 is homogeneous of degree d ∈ Z, if F 1 , F 2 ,
and F 3 are three homogeneous polynomials of the same degree d.

(Notice that we use the convention that a polynomial of degree d < 0 is zero).

Lemma 5.4 Let φ = -x 2 z ∈ T = C[x, y, z]. If F ∈ T 3 (homogeneous or not) is such that ∇φ • (∇ × F ) = 0, then there exist polynomials G, H ∈ T , C, P ∈ C[y, z] and f ∈ C[φ], satisfying ∂C ∂y = P + 2z ∂P ∂z (5.9) and F = ∇G + H∇φ + z 0 -x C + 2yz -3xz xy P + f xz 0 -x 2 .
(5.10)

If F is homogeneous of degree n ∈ N, then the polynomials G, H, C, P and f can be taken to be homogeneous of degrees n + 1, n -2, n -1, n -2 and n -2, respectively. In particular, if n ∈ 2 + 3N, then f can be taken to be zero, and if n = 2 + 3k, with k ∈ N, then f can be taken to be f = α(x 2 z) k , with α ∈ C. Conversely, elements F ∈ T 3 of the form (5.10) satisfy the equation ∇φ • (∇ × F ) = 0.

Proof. First of all, the last statement is straightforward. Suppose that F is homogeneous of degree n ∈ N and satisfying ∇φ • (∇ × F ) = 0. We will prove this result by recursion on n ∈ N. As we have to distinguish whether n ∈ 2 + 3N or not, we first have to show the desired result, for n = 0, 1, 2.

• If n = 0, then there exist a, b, c ∈ C, such that F = (a, b, c), and it is clear that F = ∇G, with G = ax + by + cz ∈ T .

• If n = 1, there exist a i , b i , c i ∈ C, for i = 1, 2, 3, such that F = a1x+b1y+c1z a2x+b2y+c2z a3x+b3y+c3z
and the

condition ∇φ • (∇ × F ) = 0 is equivalent to: b 3 = c 2 and a 2 = b 1 .
Using this, it is easy to verify that we can write

F = ∇G + zC 0 -xC , with G = 1 2 a 1 x 2 + 2b 1 xy + (c 1 + a 3 )xz + b 2 y 2 + 2c 2 yz + c 3 z 2 ∈ T and C = 1 2 (c 1 -a 3
). Note also that ∂C ∂y = 0, so that the equation (5.9) is satisfied (here P = 0).

• If n = 2, there exist a ij , b ij , c ij ∈ C, for 1 ≤ i, j ≤ 3, such that F = a11x 2 +a12xy+a13xz+a23yz+a22y 2 +a33z 2 b11x 2 +b12xy+b13xz+b23yz+b22y 2 +b33z 2 c11x 2 +c12xy+c13xz+c23yz+c22y 2 +c33z 2 .
The condition ∇φ • (∇ × F ) = 0 is equivalent to the following identities: 2c 12 -b 13 -a 23 = 0, 2c 22 -b 23 = 0, c 23 -2b 33 = 0, 2b 11 -a 12 = 0 and b 12 -2a 22 = 0. Using this, it is straightforward to verify that

F = ∇G + zC+2yzP -3xzP -xC+xyP + α xz 0 -x 2 , with G = 1 3 a 11 x 3 + 1 2 a 12 x 2 y + 1 3 (a 13 + c 11 )x 2 z + 1 2 (a 23 + b 13 )xyz + a 22 xy 2 + 1 3 (a 33 + c 13 )xz 2 + 1 2 b 23 y 2 z + b 33 yz 2 + 1 3 b 22 y 3 + 1 3 c 33 z 3 , α = 1 3 (a 13 -2c 11 ), C = 1 6 (a 23 -b 13 )y + 1
3 (2a 33 -c 13 )z and P = 1 6 (a 23 -b 13 ). Notice that the equation (5.9) is clearly satisfied in this case.

• Let now m ∈ N, such that m ≥ 3, and suppose the lemma is proved for all n ∈ N such that n < m. Let now F ∈ T 3 be a homogeneous element of degree m, satisfying ∇φ•(∇× F ) = 0.

According to Lemma 5.3, this hypothesis implies that there exist homogeneous elements:

K ∈ T 3 , P, C ∈ C[y, z] and E ∈ C[y] such that ∇ × F = K × ∇φ + x 0 -2z P + 0 1 0 (xE + C),
with the degrees of K, P , E and C respectively equal to m -3, m -2, m -2 and m -1. Computing the divergence of this, we obtain

0 = Div(∇ × F ) = (∇ × K) • ∇φ -P -2z ∂P ∂z + xE ′ + ∂C ∂y ,
where E ′ = dE dy and where we have used that Div( K × ∇φ) = (∇ × K) • ∇φ. This implies that x divides the polynomial -P -2z ∂P ∂z + ∂C ∂y which lies in C[y, z], so that it is zero:

∂C ∂y = P + 2z ∂P ∂z . It remains that (∇ × K) • ∇φ + xE ′ = 0, which gives E ′ ∈ (xT + zT ) ∩ C[y] = {0}
, and E ′ = 0. This fact, together with the hypothesis that E is supposed to be homogeneous of degree m -2, and m ≥ 3, imply E = 0. We have obtained:

∇ × F = K × ∇φ + xP C -2zP
. Now, K is of degree m -3 < m and satisfies (∇ × K) • ∇φ = 0, so that we can apply the recursion hypothesis to obtain the existence of homogeneous elements

G, H ∈ T , D, Q ∈ C[y, z], α ∈ C, and k ∈ N, such that ∂D ∂y = Q + 2z ∂Q ∂z , (5.11) 
and

K = ∇G + H∇φ + zD+2yzQ -3xzQ -xD+xyQ + α(x 2 z) k xz 0 -x 2 .
The polynomials G, H, D and Q are respectively of degree m -2, m -5, m -4 and m -5. Notice that, by hypothesis, α is supposed to be zero, except if m -3 = 2 + 3k. We now compute

K × ∇φ = ∇G × ∇φ + 3x 3 zQ 3x 2 zD -6x 2 z 2 Q + α(x 2 z) k 0 3x 3 z 0 .
Denoting by e the so-called Euler vector e := (x, y, z) ∈ T 3 , we use the following general result (Proposition 3.5 in [START_REF] Pichereau | Poisson (co)homology and isolated singularities[END_REF]), which is due to the exactness of the De Rham complex of C[x, y, z]: if A = (A 1 , A 2 , A 3 ) ∈ T 3 is a homogeneous element of degree d ∈ N, such that Div( A) = 0, then the Euler formula

∇A i • e = d A i (1 ≤ i ≤ 3), implies that (d + 2) A = ∇ × ( A × e). As Div 3x 3 zQ 3x 2 zD -6x 2 z 2 Q + α(x 2 z) k 0 3x 3 z 0 = Div K × ∇φ -∇G × ∇φ = ∇ × K -∇G • ∇φ = 0,
we can write K × ∇φ = ∇ × L, where L is given by:

L = G∇φ + 1 (m + 1) 3x 3 zQ 3x 2 zD -6x 2 z 2 Q × e + 1 m + 1 α(x 2 z) k 0 3x 3 z 0 × e = G∇φ + 1 (m + 1) 3x 2 z 2 D+6x 2 yz 2 Q -9x 3 z 2 Q 3x 3 yzQ-3x 3 zD + 3 m + 1 α(x 2 z) k+1 xz 0 -x 2 .
Moreover, we have also

xP C -2zP = 1 m + 1 ∇ × xP C -2zP × e = 1 m + 1 ∇ × zC+2yzP -3xzP -xC+xyP .
We finally obtain

∇ × F = ∇ × L + 1 m + 1 zC+2yzP -3xzP -xC+xyP
. This allows us to apply another general result (Proposition 3.5 in [START_REF] Pichereau | Poisson (co)homology and isolated singularities[END_REF]

): if A = (A 1 , A 2 , A 3 ) ∈ T 3 is a homogeneous element of degree d ∈ N, such that ∇ × A = 0, then the Euler formula ∇A i • e = d A i (1 ≤ i ≤ 3), implies that (d + 1) A = ∇( A • e).
This implies that there exists a homogeneous element S ∈ T (of degree m + 1), such that

F = ∇S + L + 1 m + 1 zC+2yzP -3xzP -xC+xyP = ∇S + G∇φ + 1 (m + 1) 3x 2 z 2 D+6x 2 yz 2 Q -9x 3 z 2 Q 3x 3 yzQ-3x 3 zD + 3 m + 1 α(x 2 z) k+1 xz 0 -x 2 + 1 m + 1 zC+2yzP -3xzP -xC+xyP
.

Let now V := 3 (2m-7) xz(D + 2yQ) (as 2m -7 = 0). The polynomial V is homogeneous of degree m -2. Now, using (5.11) and the Euler formulas y ∂D ∂y + z ∂D ∂z = (m -4)D and y ∂Q ∂y + z ∂Q ∂z = (m -5)Q, it is straightforward to verify that we have :

∇ - 3 m + 1 x 2 zV -V ∇φ = 1 (m + 1) 3x 2 z 2 D+6x 2 yz 2 Q -9x 3 z 2 Q 3x 3 yzQ-3x 3 zD .
Denoting by α := 3 m+1 α, G := G -V and by S := S -3 (m+1) x 2 zV , C = 1 m+1 C and P = 1 m+1 P , we can write:

F = ∇ S + G∇φ + α(x 2 z) k+1 xz 0 -x 2 + z C+2yz P -3xz P -x C+xy P .
Moreover, S and G are homogeneous polynomials and we have already seen that C and P satisfy the identity (5.9) so that this identity is also satisfied by C and P .

In the sequel, we will several times need the following technical result.

Lemma 5.5 If r ∈ N, c ∈ C and if K ∈ C[x, y, z] is a polynomial such that cxφ r 0 1 0 = ∇K × ∇φ, then K ∈ C[φ] and c is necessarily 0. Proof. The hypothesis on K is equivalent to ∂K ∂y = 0 and cφ r = -2z ∂K ∂z + x ∂K ∂x , hence K ∈ C[x, z]. Denote by D the operator D = -2z ∂ ∂z + x ∂ ∂x . For every i, j ∈ N, D(x i z j ) = (i -2j)x i z j , so that D is diagonalizable on C[x, z] and its kernel is C[x 2 z]. As D(K) = cφ r , we have 0 = D(cφ r ) = D 2 (K), hence K ∈ ker(D) = C[φ]. Finally, the fact that K is in C[φ]
implies ∇K × ∇φ = 0, and c = 0.

Corollary 5.6 Let φ = -x 2 z ∈ T = C[x, y, z]. We have { F ∈ T 3 | ∇φ • (∇ × F ) = 0} {∇G + H∇φ | G, H ∈ T } ≃ C[φ] xz 0 -x 2 ⊕ C[z] z 2 0 -xz ⊕ n∈N 1≤k≤n+1 C (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k .
Proof. Lemma 5.4 gives:

{ F ∈ T 3 | ∇φ • (∇ × F ) = 0} {∇G + H∇φ | G, H ∈ T } = zC+2yzP -3xzP -xC+xyP + α(x 2 z) k xz 0 -x 2 | α ∈ C, k ∈ N, C, P ∈ C[y, z] satisfying ∂C ∂y =P +2z ∂P ∂z .
Fix now n ∈ N. Let C, P ∈ C[y, z] be homogeneous polynomials satisfying ∂C ∂y = P + 2z ∂P ∂z . We suppose that P is of degree n, so that C is zero or of degree equal to n + 1. We write C and P as

P = n k=0 a k y k z n-k , and C = n+1 k=0 b k y k z n+1-k , where a k , b k ∈ C. Now, compute 0 = ∂C ∂y -P -2z ∂P ∂z = n k=0 ((k + 1)b k+1 -(2(n -k) + 1)a k ) y k z n-k ,
so that, necessarily, for all k = 1, . . . , n + 1, we have b k = (2(n-k)+3) k a k-1 . We then can write

zC+2yzP -3xzP -xC+xyP = b 0 z 2 0 -xz z n + n+1 k=1 1 k a k-1 (2n+3)yz -3kxz (-2n+3(k-1))xy y k-1 z n-k+1 ∈ C[z] z 2 0 -xz + n+1 k=1 C (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k
We finally have shown that

{ F ∈ T 3 | ∇φ • (∇ × F ) = 0} {∇G + H∇φ | G, H ∈ T } ≃ C[φ] xz 0 -x 2 + C[z] z 2 0 -xz + n∈N 1≤k≤n+1 C (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k ,
and it remains to show that this sum is a direct one. To do this, it suffices to show that each homogeneous component of this sum is a direct sum. Notice that an element of the space of the right hand side of the previous equation is at least of degree 2, so that, we fix n ∈ N, and we consider the degree n + 2 component of the previous sum. Let α, c ∈ C and r ∈ N, and for all 1 ≤ k ≤ n + 1, we consider a k ∈ C. Suppose that there exist homogeneous elements G, H ∈ T , of respective degrees equal to n + 3 and n, satisfying:

αφ r xz 0 -x 2 + cz n z 2 0 -xz + n+1 k=1 a k (2n+3)y k z n+2-k -3kxy k-1 z n+2-k (-2n+3(k-1)) xy k z n+1-k = ∇G + H∇φ.
(5.12)

Notice that α = 0 if n = 3r. Applying the curl operator to this identity allows us to obtain

- n+1 k=1 k(2n + 6) a k y k-1 z n+2-k = 2xz ∂H ∂y ,
which implies that a k = 0, for all 1 ≤ k ≤ n + 1. This, together with (5.12) imply that ∂G ∂y = 0, so that G ∈ C[x, z], while, this together with the result obtained by applying the curl operator to the previous identity (5.12), give:

3(r + 1)α xφ r + (n + 3)cz n+1 = -2xz ∂H ∂z + x 2 ∂H ∂x .
This shows that x divides (n + 3)cz n+1 , which means that c = 0 and the equation (5.12) becomes: Using the identifications Ω 1 (T ) ≃ T 3 , Ω 2 (T ) ≃ T 3 , Ω 3 (T ) ≃ T explained above, the Poisson homology spaces of the Poisson algebra T are given by:

αφ r xz 0 -x 2 = ∇G + H∇φ. ( 5 
HP 0 (T ) ≃ xC[y] ⊕ C[y, z]; HP 1 (T ) ≃ C[φ] xz 0 -x 2 ⊕ C[z] z 2 0 -xz ⊕ n∈N * 0≤k≤n C 0 ky k-1 z n-k (n-k)y k z n-1-k ⊕ n∈N C y n n xy n-1 0 ⊕ n∈N 1≤k≤n+1 C (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k ; HP 2 (T ) ≃ C[φ] x y z ⊕ (xC[φ] ⊕ zC[z]) 0 1 0 ⊕ n∈N 0≤k≤n C (k+1)x (2(n-k)+1) y -2(k+1) z y k z n-k ; HP 3 (T ) ≃ C[φ].
Proof. Remark that it is not possible to apply the results of Monnier for the computation of Poisson homology as we have seen for the third type (proof of Proposition 4.5). Actually, it is easy to check that the Poisson bracket derived from the potential x 2 z is not diagonalizable.

To determine the Poisson homology spaces, notice that the polynomial φ is homogeneous of degree 3, so that, considering T graded by the total degree of the polynomials, the operator δ p (1 ≤ p ≤ 3) is homogeneous of degree 1. This allows one to determine the Poisson homology spaces, degree by degree.

The 0-th Poisson homology space HP 0 (T ). According to (5.4),

HP 0 (T ) ≃ T δ 1 ( G) | G = (G 1 , G 2 , G 3 ) ∈ T 3
,

where δ 1 ( G) = 2xz ∂G2 ∂z -∂G3 ∂y + x 2 ∂G1 ∂y -∂G2 ∂x . Now let G ∈ T . We can write G as G = xF + H with F ∈ T and H ∈ C[y, z].
Then, F can also be written as

F = xA + zB + C, with A, B ∈ T and C ∈ C[y], so that G = x 2 A + xzB + xC + H. Now, there exist G 1 ∈ T and G 3 ∈ T , such that A = ∂G1
∂y and B = -2 ∂G3 ∂y , so that The first Poisson homology space HP 1 (T ). By (5.4),

G = x 2 A + xzB + xC + H = -2xz ∂G 3 ∂y + x 2 ∂G 1 ∂y + xC + H = δ 1 ( G) + xC + H, with G = (G 1 , 0, G 3 ) ∈ T 3 .
HP 1 (T ) = F ∈ T 3 | ∇φ • (∇ × F ) = 0 -∇ G • ∇φ + Div( G)∇φ | G ∈ T 3
.

Let F ∈ T 3 be an element satisfying ∇φ • (∇ × F ) = 0. According to corollary 5.6, there exist G, H ∈ T such that: 

F ∈ ∇G + H∇φ + C[φ] xz 0 -x 2 + C[z]
F ∈ δ 2 (-∇ × L + K × ∇φ) + ∇(xA + B) + (x à + B)∇φ + C[φ] xz 0 -x 2 + C[z] z 2 0 -xz + n∈N n+1 k=1 C u n,k . Now, let us consider A 1 ∈ C[y] satisfying ∂A1 ∂y = à and B 1 ∈ C[y, z] satisfying ∂B1 ∂y = B. It is then straightforward to verify that δ 2 -x B xA1-2z ∂B 1 ∂z 2z B = (x à + B)∇φ, so that F ∈ Im(δ 2 ) + ∇(xA + B) + C[φ] xz 0 -x 2 + C[z] z 2 0 -xz + n∈N n+1 k=1 C u n,k .
This allows us to write with no constant term), K ∈ T 3 , and for every n ∈ N and every 1 ≤ k ≤ n + 1, suppose that α n k ∈ C are constants, such that:

HP 1 (T ) ≃ C[φ] xz 0 -x 2 + C[z]
∇(xA + B) + P (φ) xz 0 -x 2 + Q(z) z 2 0 -xz + n∈N n+1 k=1 α n k u n,k = -∇( K • ∇φ) + Div( K)∇φ.
This implies that

P (φ) xz 0 -x 2 + Q(z) z 2 0 -xz + n∈N n+1 k=1 α n k u n,k ∈ {K∇φ + ∇L | K, L ∈ T }.
According to Corollary 5.6, necessarily P = 0, Q = 0 and α n k = 0, for all n ∈ N and all 1 ≤ k ≤ n + 1. It then remains ∇(xA + B + K • ∇φ) = Div( K)∇φ, which implies that ∇(xA + B + K • ∇φ) × ∇φ = 0 and according to the determination of the space HP 3 (T ), this gives the existence of polynomial in one variable R ∈ C[X], such that xA+B+ K •∇φ = R(φ). As there is no constant term in B and for degree reason, necessarily φ = -x 2 z divides R(φ) and x divides B ∈ C[y, z], which implies that B = 0. Moreover, last equation allows us to obtain A ∈ C[y] ∩ (xT + zT ) = {0}. This allows us to conclude that the sum in (5.14) is a direct one, i.e., we can write

HP 1 (T ) ≃ C[φ] xz 0 -x 2 ⊕ C[z] z 2 0 -xz ⊕ n∈N n+1 k=1 C u n,k ⊕ {∇(xA + B) | A ∈ C[y], B ∈ yC[y, z] + zC[y, z]} .
Finally, it is clear that

{∇(xA + B) | A ∈ C[y], B ∈ yC[y, z] + zC[y, z]} = n∈N C y n n xy n-1 0 ⊕ n∈N * 0≤k≤n C 0 ky k-1 z n-k (n-k)y k z n-1-k
, and this finishes the determination of HP 1 (T ).

The second Poisson homology space HP 2 (T ). According to (5.4), we have .

HP 2 (T ) = F ∈ T 3 | -∇( F • ∇φ) + Div( F )∇φ = 0 {∇G × ∇φ | G ∈ T } . Let F ∈ T 3 be a homogeneous element of degree n ∈ N, satisfying -∇( F • ∇φ) + Div( F )∇φ = 0. ( 5 
We now compute the divergence of F :

Div( F ) = αrφ r-1 + (∇ × G) • ∇φ -D + xA ′ + ∂B ∂y -2z ∂D ∂z .
The equation (5.15) then becomes 

0 = (∇ × G) • ∇φ -D + xA ′ + ∂B ∂y -2z ∂D 
G = ∇G + H∇φ + z 0 -x C + 2yz -3xz xy P + γ φ k xz 0 -x 2 .
Now, this enables us to write: 

F = α 3 φ r-1 e + ∇G × ∇φ + xD B -2zD + 3x 3 z P 3x 2 z C -6x 2 z 2 P + (-3γ xφ k+1 + βx)
= P 1 + 2z ∂P1 ∂z + ηz n-3 . Now compute δ 3 -3xzP 1 + -3η 2n -5 xz n-2 = -3∇ xzP 1 + η 2n -5 xz n-2 × ∇φ = 3   z P1+ η 2n-5 z n-2 xz ∂P 1 ∂y xP1+xz ∂P 1 ∂z + η(n-2) 2n-5 xz n-3   × 2xz 0 x 2 = 3 x 3 zP x 2 zP1+2x 2 z 2 ∂P 1 ∂z +ηx 2 z n-2 -2x 2 z 2 P = 3x 3 zP 3x 2 z C -6x 2 z 2 P . This implies: F ∈ Im(δ 3 ) + C[φ] e + xD B -2zD + xC[φ] 0 1 0
. Conversely, it is straightforward to see that an element of this space lies in the kernel of δ 2 . In other words,

HP 2 (T ) = C[φ] e + xC[φ] 0 1 0 + xD B -2zD | D, B ∈ C[y, z] satisfying ∂B ∂y =D+2z ∂D ∂z .
Let us show that the previous sum is a direct one. To do this, let us consider a homogeneous element of this sum. Let n ∈ N, α, β ∈ C, and homogeneous polynomials D, B ∈ C[y, z] of respective degrees equal to 3n and 3n + 1 satisfying ∂B ∂y = D + 2z ∂D ∂z and a homogeneous G ∈ T of degree 3n, such that

αφ n e + βxφ n 0 1 0 + xD B -2zD = ∇G × ∇φ = -x 2 ∂G ∂y -2xz ∂G ∂z +x 2 ∂G ∂x 2xz ∂G ∂y .
Computing the inner product of this identity with ∇φ leads to 3αφ n+1 = 0, so that α = 0. Moreover, this gives xD = - According to Lemma 5.5, G is in C[φ] and β = 0. We then have obtained 

HP 2 (T ) = C[φ] e ⊕ xC[φ] 0 1 0 ⊕ xD B -2zD | D, B ∈ C[y, z] : ∂B ∂y =D+2z ∂D ∂z , so that it remains to show that xD B -2zD | D, B ∈ C[y, z] : ∂B ∂y = D + 2z ∂D ∂z = zC[z] 0 1 0 ⊕ n∈N 0≤k≤n C (k+1)x (2(n-k)+1) y -2(k+1) z y k z n-k . ( 5 
k ∈ C, 0 ≤ k ≤ n and b 0 ∈ C, such that D = n k=0 a k y k z n-k , and B = b 0 z n+1 + n+1 k=1 2(n-k)+3 k a k-1 y k z n+1-k . This gives xD B -2zD = b 0 z n+1 0 1 0 + n k=0 a k k + 1 (k+1) xy k z n-k (2(n-k)+1) y k+1 z n-k -2(k+1) y k z n+1-k ∈ zC[z] 0 1 0 ⊕ n k=0 C (k+1)x (2(n-k)+1) y -2(k+1) z y k z n-k .
Notice that the previous sum is a direct one, because of degree reasons. This allows us to conclude that (5.17) holds, which finishes the determination of HP 2 (T ).

Remark 5.7 Recall that the Poisson structure which equips the algebra T is unimodular, i.e., its modular class (see [START_REF] Weinstein | The modular automorphism group of a Poisson manifold[END_REF]) vanishes (here, even the curl vector field (see [START_REF] Dufour | Rotationnels et structures de Poisson quadratiques[END_REF]) is zero), which implies that there is a duality between the Poisson cohomology and the Poisson homology of the Poisson algebra T : HP • (T ) ≃ HP 3-• (T ). Now, we show in an elementary way that each Poisson cycle can be lifted to a Koszul cycle. By definition, a Koszul cycle is a cycle of the filtered complex (5.3). Proposition 5.8 We keep the notations of the beginning of the section for the algebra B and the Poisson algebra (T, {•, •}). Let us consider the filtration F on the algebra B, given by the degree in y. For every Poisson cycle X, there exists a Koszul cycle (i.e. a cycle of the filtered complex (5.3)) X such that gr F ( X) ≃ X.

Proof. Proposition 5.7 gives a basis for each Poisson homology vector space of T . For every Poisson boundary δ k (X), we have seen in Proposition 5.2 that gr F ( dk (Y )) = δ k (X), where Y is the element X, viewed in the algebra B and written in the basis (x i y j z k ), i, j, k ∈ N. So that X := dk (Y ) is a Koszul cycle satisfying gr F ( X) ≃ δ k (X). This implies that it suffices to show that each element X of the bases of the Poisson homology spaces given in Proposition 5.7, can be lifted to a Koszul cycle, i.e., for each element X of the bases, we will give a Koszul cycle X, satisfying gr F ( X) = X. Notice that we will use here the identifications explained before: B(k(c(w)) ≃ B, BR B ≃ B 3 , BV B ≃ B 3 , and Ω 3 (T ) ≃ T , Ω 2 (T ) ≃ T 3 , Ω 1 (T ) ≃ T and Ω 0 (T ) ≃ T .

Lifting of the Poisson 0-cycles. As every element of B is a Koszul 0-cycle (and similarly for the Poisson 0-cycles), every Poisson 0-cycle can be lifted to a Koszul 0-cycle. It is clear that gr F ( Wp ) = w p and moreover, using lemma 5.1, we obtain that d1 ( Wp ) = 0, i.e., Wp is a Koszul 1-cycle. , where r, s, t, n ∈ N and 0 ≤ k ≤ n.

Lifting of the Poisson

Lifting of the

First, if r ∈ N, then, using the definition of d2 and lemma 5.1, we obtain easily: d2 (x 2r+1 z r ⊗ r 1 + x 2r yz r ⊗ r 2 + x 2r z r+1 ⊗ r 3 ) = 0, so that Cr := x 2r+1 z r ⊗ r 1 + x 2r yz r ⊗ r 2 + x 2r z r+1 ⊗ r 3 is a Koszul 2-cycle satisfying gr (k + 1)! j! x k-j y j z n+1-k   ⊗ r 3 .

Then, using once more lemma 5.1, it is straightforward to verify that d2 ( Õn,k ) = 0. Moreover, we have of course, gr F ( Õn,k ) = o n,k , which finishes the proof.

Proof of Theorem 1.1. Actually, it remains to prove that the Hochschild homology of the algebra B is isomorphic to the Poisson homology of T obtained in Proposition 5.7. Following the same method as in [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF], we use the Brylinski spectral sequence of the almost commutative algebra B [START_REF] Brylinski | A differential complex for Poisson manifolds[END_REF][START_REF] Kassel | L'homologie cyclique des algèbres enveloppantes[END_REF]. Denote by C the filtered complex (5. where F p denotes the filtration of the total degree. Let us consider the spectral sequence associated to the filtered complex C (Section 5.4 in [START_REF] Weibel | An introduction to homological algebra[END_REF]). The term E 0 of this spectral sequence is the graded complex naturally associated to the filtered complex C. By Proposition 5.2, E 0 is isomorphic to the Poisson complex of the Poisson algebra T (actually, the proof of Proposition 5.2 provides an explicit isomorphism). Since the filtration F of the complex C is increasing, exhaustive and bounded below (F -1 B = 0), the spectral sequence converges to H • (C) (Theorem 5.5.1.2 in [START_REF] Weibel | An introduction to homological algebra[END_REF]):

E 1 pq = H p+q (F p C/F p-1 C) =⇒ H p+q (C). (5.19)
Thus, in order to conclude that the Hochschild homology of the algebra B is isomorphic to the Poisson homology of T , it is sufficient to prove the following.

Proposition 5.9 The spectral sequence associated to the filtered complex C degenerates at E 1 .

Proof. We apply a standard criterion for degeneration of spectral sequences (Lemma 5.2 in [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF]) with r = 1 (we use the notation of [START_REF] Van Den Bergh | Non-commutative homology of some three-dimensional quantum spaces[END_REF]). This criterion consists in proving that the natural edge map φ 

Theorem 1 . 1

 11 Let B be the C-algebra defined by the generators x, y, z, and the following relations zy = yz + 2xz, zx = xz, yx = xy + x 2 .

Proposition 3 . 1

 31 Let k be a field and n ≥ 1. Let M and N be in M n (k). Then A(M ) ∼ = A(N ) if and only if M is congruent to a non-zero scalar multiple of N . If any element of k is a square in k, then A(M ) ∼ = A(N ) if and only if M and N are congruent.

  = 0. There is only one orbit, which is the orbit of M = 0 -1 1 0 . One has w = (yx -xy)z. The relations of B(M ) are the following: zy = yz, xz = zx, yx = xy. Hence B(M ) = C[x, y, z] the commutative polynomial algebra. Note that it is the unique orbit such that z is central in B(M ) (Proposition 2.10), or such that A(M ) is Calabi-Yau (Proposition 2.1).

  The relations of B(M ) are the following: xy = qyx, yz = qzy, zx = qxz. So B(M ) is a quantum affine space. Proposition 4.1 For any M ∈ GL(2, C), the algebra B(M ) is a

8 ) 3

 83 implies that Q is equal to the identity matrix and we recover the fact that B(M ) is of type A (by definition). Next, define the subvariety C of P 2 by its equation S(W) = 0, where S(W) denotes the symmetrization of the element W. The symmetrization consists in replacing products of variables in the free algebra by the same products in the polynomial algebra. In our situation, S(W) = 3S(w) = 3S(f )z. Set φ = S(f )z. The above classification in three types allows us to limit ourselves to the following matrices w = (ax 2 + bxy + yx)z, φ = (ax 2 + (b + 1)xy)z.(4.4)In the classical type, one has C = P 2 , and otherwise C is the union of three straight lines, two of which coincide in the Jordan type. Definition 4.2 The polynomial φ = φ(M ) is called the Poisson potential associated to the algebra B(M ). This definition will be more natural when B(M ) will be viewed as a Gerstenhaber deformation whose Poisson bracket {•, •} will be defined on C[x, y, z] by the formulas {x, y} = ∂φ ∂z , {y, z} = ∂φ ∂x , {z, x} = ∂φ ∂y , i.e., {•, •} = The so-defined Poisson bracket {•, •} is called the Poisson bracket derived from the Poisson potential φ.

Proposition 4 . 4

 44 The element Φ of B(M ) defined by Φ = (ax 2 + (b + 1)xy)z belongs to the center of B(M ). Proof. Relations (4.5) allow us to decompose xΦ and Φx in thebasis (x i y j z k ) i≥0,j≥0,k≥0 . The computations are straightforward and they show that xΦ = ax 3 z + (b + 1)x 2 yz = Φx. In the same manner, we get yΦ = a 2 (b -1)x 3 z + a(b 2 -b -1)x 2 yz -b(b + 1)xy 2 z = Φy and zΦ = ax 2 z 2 + (b + 1)xyz 2 = Φz.

  xy = qyx, yz = qzy, zx = qxz. Let S = C[x, y, z] be the polynomial C-algebra in x, y, z, endowed with the Poisson bracket derived from the Poisson potential φ = (1 -q -1 )xyz. Denote by Z = C[xyz] the subalgebra of S generated by xyz. Then the Hochschild homology of B is isomorphic to the Poisson homology of S and is given by

while d2 (a ⊗ r 1 )

 1 = (za + az) ⊗ x + (za -az) ⊗ y + (ax + xa + ay -ya) ⊗ z, d2 (a ⊗ r 2 ) = (az -za) ⊗ x + (xa -ax) ⊗ z, d2 (a ⊗ r 3 ) = (xa + ax + ya -ay) ⊗ x + (ax -xa) ⊗ y,and d3 (a ⊗ c(w)) = [a, x] ⊗ r 1 + [a, y] ⊗ r 2 + [a, z] ⊗ r 3 .

. 13 ) 0 =

 130 Applying to this equation the cross product with ∇φ leads to: -3αxφ r+1 0 1 ∇G × ∇φ. This, together with lemma 5.5, give α = 0, which is what remains to prove. We now determine the Poisson homology of the Poisson algebra (T, {•, •}). Proposition 5.7 Set T = C[x, y, z] and consider φ = -x 2 z ∈ T . The algebra T becomes a Poisson algebra when equipped with the Poisson bracket {•, •}, defined by: {y, z} = ∂φ ∂x = -2xz, {z, x} = ∂φ ∂y = 0, {x, y} = ∂φ ∂z = -x 2 .

  This shows that HP 0 (T ) ≃ xC[y] + C[y, z]. It is also clear that this sum is a direct one, because an equality of the form xC + H = F • ∇φ, with C ∈ C[y], H ∈ C[y, z] and F ∈ T 3 implies that x divides H, so H = 0 and then it remains that C ∈ (xT + zT ) ∩ C[y] which means that C = 0. We finally have obtained HP 0 (T ) ≃ xC[y] ⊕ C[y, z]. The third Poisson homology space HP 3 (T ). First, it is easy to see that C[φ] ≃ C[φ]dx ∧ dy ∧ dz ⊆ HP 3 (T ). Conversely, we consider an element F ∈ HP 3 (T ), i.e., F ∈ T ≃ Ω 3 (T ) satisfying ∇F × ∇(x 2 z) = 0. Lemma 5.5 (with c = 0) then implies that F ∈ C[φ], so that HP 3 (T ) ≃ C[x 2 z] = C[φ].

C

  u n,k , where u n,k = (2n+3) yz -3k xz (-2n+3(k-1)) xy y k-1 z n+1-k , for n ∈ N and 1 ≤ k ≤ n + 1.Now, according to the determination of HP 0 (T ), there existL, K ∈ T 3 , A, à ∈ C[y] and B, B ∈ C[y, z] such that G = ∇φ • (∇ × L) + xA + B,andH = ∇φ • (∇ × K) + x à + B.As δ 2 (-∇ × L) = ∇ ∇φ • (∇ × L) , and δ 2 ( K × ∇φ) = ∇φ • (∇ × K) ∇φ, we obtain

+

  {∇(xA + B) | A ∈ C[y], B ∈ yC[y, z] + zC[y, z]} . (5.14) Let us show that this sum is a direct one. Suppose that there exist P ∈ C[X] a polynomial in one variable, Q ∈ C[z], A ∈ C[y], and a polynomial B ∈ yC[y, z] + zC[y, z] (i.e., B ∈ C[y, z]

. 15 )

 15 This implies that ∇( F • ∇φ) × ∇φ = 0. This, together with the determination of HP 3 (T ) gives the existence of α ∈ C and r ∈ N such that F • ∇φ = αφ r . Notice that if r = 0, then for degree reasons, α = 0. According to the Euler formula ∇φ • e = 3φ (where we recall that e = (x, y, z) ∈ T 3 ), we get F • ∇φ = α 3 φ r-1 e • ∇φ. With the help of the determination of H φ 2 (T ) in Lemma 5.3, this gives the existence of a homogeneous element G ∈ T 3 of degree n -2, and homogeneous polynomials B, D ∈ C[y, z] and A ∈ C[y] such that F = α 3 φ r-1 e + G × ∇φ + xD xA+B -2zD

  ∂z , which shows that x divides the polynomial ∂B ∂y -2z ∂D ∂z -D ∈ C[y, z]. This implies that ∂B ∂y = D+2z ∂D ∂z and 0 = (∇× G)•∇φ+xA ′ , so that we also have A ′ ∈ (xT +zT )∩C[y] = {0}. We have obtained that A = β ∈ C is a constant and (∇ × G) • ∇φ = 0. Lemma 5.4 leads to the existence of homogeneous polynomials G, H ∈ T , and C, P ∈ C[y, z], of respective degrees equal to n -3 and n -4, satisfying ∂C ∂y = P + 2z ∂P ∂z (5.16) and γ ∈ C, k ∈ N, such that

.

  Let us now fix a homogeneous polynomial P 1 ∈ C[y, z] verifying ∂P1 ∂y = P . Then the equation (5.16) gives ∂ ∂y C -P 1 -2z ∂P1 ∂z = 0, i.e., C -P 1 -2z ∂P1 ∂z is a homogeneous polynomial in C[z], of degree n-3, which means that there exists η ∈ C such that C

x 2 0 =

 20 ∂G ∂y , so that D ∈ xT ∩ C[y, z] = {0} and ∂G ∂y = 0, i.e., G ∈ C[x, z]. Moreover, the second row of the previous equation implies that B ∈ xT ∩ C[y, z] = {0}, and B = 0. It remains to show that β = 0, while we have βxφ n 0 1 ∇G × ∇φ.

  3-cycles. According to Proposition 5.7, HP 3 (T ) ≃ C[φ] = C[x 2 z]. For each c ∈ C and k ∈ N, the definition of d3 and lemma 5.1 clearly lead to d3 (cx 2k zk ⊗ c(w)) = 0, so that cx 2k z k ⊗ c(w), which is identified to cx 2k z k , is a Koszul 3-cycle satisfying gr F (cx 2k z k ) = cx 2k z k .Lifting of the Poisson 1-cycles. According to Proposition 5.7, the space HP 1 (T ) is generated as a C-vector space by the following elements:A k := (x 2 z) k xz 0 -x 2 , B r := z r z 2 0 -xz , u n,k = (2n+3) y k z n+2-k -3k xy k-1 z n+2-k (-2n+3(k-1)) xy k z n+1-k , v m,s := 0 sy s-1 z m-s (m-s)y s z m-1-s ,and w p := y p p xy p-1 0, where n, p ∈ N, m ∈ N * and 1≤ k ≤ n+1, 0 ≤ s ≤ m.Now, by definition of d1 and because xz = zx in B, it is clear that:d1 (x 2k+1 z k+1 ⊗ x -x 2k+2 z k ⊗ z) = 0, and d1 (z r+2 ⊗ x -xz r+1 ⊗ z) = 0, so that Ãk := x 2k+1 z k+1 ⊗ x -x 2k+2 z k ⊗ z and Br := z r+2 ⊗ x -xz r+1 ⊗ z are Koszul 1-cycles satisfying gr F ( Ãk ) = A k and gr F ( Br ) = B r .Next, we let Ũn,k :=(2n + 3) y k z n+2-k ⊗ x -3k xy k-1 z n+2-k ⊗ y + (-2n + 3(k -1)) xy k z n+1-k ⊗ z                          --k)-(k-ℓ) X k-ℓ,ℓ,n+2-k , if 3k -2(n + 2) k,ℓ (n,k) -a n,k,ℓ " ℓ-ℓ (n,k) X k-ℓ,ℓ,n+2-k -k,ℓ ℓ-ℓ (n,k) X k-ℓ,ℓ,n+2-k k! (ℓ (n,k) +1)! a n,k,ℓ (n,k) x 2n+3-2k y 3k-3-2n z n+2-k ⊗ x, if 3k -2(n + 2) ≥ 0, where for 1 ≤ k ≤ n+1 and 0 ≤ ℓ ≤ k-2, a n,k,ℓ := -2n-6+6k-3ℓ+2n(k-ℓ)-3k(k-ℓ),for all a, b, c ∈ N, X a,b,c := x a y b z c ⊗y-2c x a y b z c ⊗x and if 3k-2(n+2) ≥ 0, ℓ (n,k) := 3k-4-2n. Then, we have gr F ( Ũn,k ) = u n,k and lemma 5.1 allows one to verify that Ũn,k is a Koszul 1-cycle. Now, let m ∈ N * , 0 ≤ s ≤ m and consider Ṽm,s := s y s-1 z m-s ⊗ y + (m -s) y s z m-1-s ⊗ z + s-ℓ-1 y ℓ z m-s ⊗ y.Then we have gr F ( Ṽm,s ) = v m,s and it is straightforward, using lemma 5.1, to verify that Ṽm,s is a Koszul 1-cycle. Finally, let p ∈ N and consider k y k ⊗ y.

0 , E t := z t+1 0 1 0 ,

 00 Poisson 2-cycles. According to Proposition 5.7, the space HP 2 (T ) is generated as a C-vector space by the following elements:C r := (x 2 z) r x y z , D s := x(x 2 z) s 0 1 o n,k := (k+1)xy k z n-k (2(n-k)+1) y k+1 z n-k -2(k+1) y k z n-k+1

F 2 +

 2 ( Cr ) = C r . Moreover, if s, t ∈ N, then, because xz = zx in B and by definition of d2 , we have d2 (x 2s+1 z s ⊗ r 2 ) = 0, and d2 (z t+1 ⊗ r 2 ) = 0, so that Ds := x 2s+1 z s ⊗ r 2 and Ẽt := z t+1 ⊗ r 2 are Koszul 2-cycles and satisfy gr F ( Ds ) = D s and gr F ( Ẽt ) = E t . Now, let n ∈ N and 0 ≤ k ≤ n and Õn,k := (k + 1) xy k z n-k ⊗ r 1 + (2(n -k) + 1) y k+1 z n-k ⊗ r -2(k + 1) y k z n-k+1 -

3 )

 3 and denote by (F p C) p∈Z its filtration. The complex F p C is the following0 -→ F p+3 (B(Cc(w))) d3 -→ F p+2 (BR B ) d2 -→ F p+1 (BV B ) d1 -→ F p (B) -→ 0 (5.18)

1 p

 1 1 p : H • (F p C) -→ E is surjective for any p. Since the term E 1 is isomorphic to the Poisson homology of T , surjectivity is given by Proposition 5.8. Actually the proof of Proposition 5.8 provides an explicit section of the edge map φ 1 p . Consequently we have an explicit isomorphism from HP • (T ) to HH • (B) described as follows: Proposition 5.7 gives an explicit family (c) of Poisson cycles c such that the family ([c]) of their classes form a basis of the space HP • (T ), and the proof of Proposition 5.8 lifts each Poisson cycle c to an explicit Koszul cycle c, so that the Hochschild classes [c] form a basis of HH • (B). Since B is 3-Calabi-Yau (Theorem 2.9), we deduce Hochschild cohomology of B from Theorem 1.1: HH • (B) ∼ = HH 3-• (B).

  , p.485). The k-algebra T A (Az) is generated by A ⊕ Az, hence by x 1 , . . . x n , z. , . . . x n , z. Then v • u and u • v coincide with the respective identity maps since the k-algebras T A (Az) and B are both generated by x 1 , . . . , x n , z. Thus u and v are isomorphisms, inverse to each other. The following lemma is crucial. , . . . , x n and M ′ is the union of M with the singleton {z}, where λ i,α,β and µ α,β are in k, and where the sums are finitely supported. In the second sum, one has deg z α + deg z β = 1 where deg z denotes the degree in z. Viewing the linear system (2.3) in the free algebra F and reducing it to the triangular form, we see that z in α or β can be put on the right modulo the elements ∂ xi (w).

	which leaves "fixed" x 1 Lemma 2.5 The left (resp. right) sub-A-module Az (resp. zA) of B is free generated by z.
	Proof. Let a ∈ k x 1 , . . . , x n be homogeneous of degree ℓ ≥ 0 such that az belongs to the
	two-sided ideal of F generated by ∂ x1 (w), . . . , ∂ xn (w), f . Our aim is to prove that a belongs
	to the two-sided ideal of k x 1 , . . . , x n generated by f . Write	
	az =	λ i,α,β α∂ xi (w)β +	µ α,β αf β,	(2.7)
	1≤i≤n,α,β∈M		α,β∈M ′	
	where M denotes the set of (non-commutative) monomials in x 1 Moreover
	the non-commutative Euler relation			
	∂ xi (w)x i + f z =	x i ∂ xi (w) + zf = c(w)	(2.8)
	1≤i≤n	1≤i≤n		
	associated to the potential w shows that the z appearing in each αf β can be put completely
	on the right modulo the elements ∂ xi (w). So we can write	
	az =			
	1≤i≤n,α,β∈M			
	Let			
		u : T A (Az) → B	
	be the natural morphism of k-algebras extending the inclusion A ⊕ Az ֒→ B. The inclusions
	x 1 , . . . , x n ֒→ A and z ֒→ Az define a morphism of k-algebras	
		F → T A (Az)	
	factoring out the relations of B and providing the morphism of k-algebras
		v : B → T A (Az)	

  .17) To do this, let us consider n ∈ N and homogeneous polynomials D, B ∈ C[y, z] of respective degrees n and n + 1, satisfying ∂B ∂y = D + 2z ∂D ∂z . We have already seen in the proof of Corollary 5.6 that this implies the existence of complex numbers a
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