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Abstract: We present some discrete functional analysis tools for the proof of
convergence of numerical schemes, mainly for equations including diffusion terms
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1 Introduction
The main purpose of this paper is to describe some tools, which have been
recently developed, for the proof of convergence of numerical schemes for some
evolution problems.

We have two main examples in mind.
The first example is the case of the Navier-Stokes equations, with the three

classical particular cases, namely the incompressible case, the case of variable
density and the compressible case. We briefly describe the most difficult case,
which is the compressible case. The main unknowns are the density, 𝜌, the
pressure, 𝑝, and the velocity, 𝑢. They are function of the time 𝑡 which belongs
to [0, 𝑇 ] for a given 𝑇 > 0, and of the space variable 𝑥 which belongs to Ω where
Ω is a given bounded open connected set of R𝑑, 𝑑 = 2 or 3. With a given source
term, 𝑓 , in the momentum equation, and a perfect gas equation of state (EOS
for short), the equations read

𝜕𝑡𝜌+ div(𝜌𝑢) = 0, (1)
𝜕𝑡(𝜌𝑢) + div(𝜌𝑢 ⊗ 𝑢) − Δ𝑢 + ∇𝑝 = 𝑓, (2)

𝑝 = 𝜌𝛾 . (3)

The constant 𝛾 is larger than 1 for 𝑑 = 2 and 3/2 for 𝑑 = 3. To these equations
we have to add some boundary condition, 𝑢 = 0 for instance, and an initial
condition on 𝜌 and 𝑢 (or on 𝜌𝑢).
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Considering the most interesting case 𝑑 = 3, with a convenient discretization
of these equations, for instance with the so-called Marker-And-Cell scheme, MAC
scheme for short, see [HW65] for the seminal paper, it is possible to obtain
an 𝐿∞(]0, 𝑇 [, 𝐿𝛾(Ω))-estimate on 𝜌𝑛 and an 𝐿2(]0, 𝑇 [, 𝐿6(Ω)3)-estimate on 𝑢𝑛,
where (𝜌𝑛, 𝑝𝑛, 𝑢𝑛)𝑛∈N is a sequence of approximate solutions (with a mesh size
and a time step vanishing as 𝑛 → +∞). Then, up to a subsequence, it is possible
to assume that, as 𝑛 → +∞, 𝜌𝑛 weakly converges to some 𝜌 in 𝐿2(]0, 𝑇 [, 𝐿𝛾(Ω))
and 𝑢𝑛 weakly converges to some 𝑢 in 𝐿2(]0, 𝑇 [, 𝐿6(Ω)3). A first difficulty is that
this weak convergence is not sufficient to prove the convergence of the product
𝜌𝑛𝑢𝑛 to 𝜌𝑢 (and of 𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛 to 𝜌𝑢 ⊗ 𝑢, note that, since 𝛾 > 3/2, one has
𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛 bounded in 𝐿1(]0, 𝑇 [, 𝐿𝑟(Ω)3×3) for some 𝑟 > 1.). We tackle this
difficulty in this paper (at least if 𝛾 ≥ 2 for 𝜌𝑛𝑢𝑛 and 𝛾 ≥ 3 for 𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛).
Another difficulty, not solved by the present paper, is to pass to the limit in the
EOS (see, for instance, [GHLM17] for the stationary case).

The second example is the Stefan Problem. The set Ω is a given bounded
open set of R𝑑, 𝑑 ≥ 1. The function 𝜙 is a Lipschitz continuous function from
R to R, nondecreasing and such that 𝜙′ = 0 on ]𝑎, 𝑏[, for some real numbers 𝑎,
𝑏 with 𝑎 < 𝑏. We also assume that lim inf |𝑠|→+∞ |𝜙(𝑠)|/|𝑠| > 0. The unknowns
are the functions 𝜌 and 𝑢, from Ω×]0, 𝑇 [ to R, and the equation is

𝜕𝑡𝜌− Δ𝑢 = 0, 𝑢 = 𝜙(𝜌). (4)

Here also, we have to add a boundary condition, 𝑢 = 0, and an initial condition
on 𝜌.

Numerous discretizations of this problem, for instance with Finite Volumes
Methods (see [EGH00]) or Gradient Discretization Methods (see [DEG+17]),
lead to an 𝐿2(]0, 𝑇 [, 𝐿2(Ω))-estimate on a sequence of approximate solutions
(𝑢𝑛, 𝜌𝑛)𝑛∈N. Then, one has, up to a subsequence, that 𝜌𝑛 → 𝜌 weakly in 𝐿2(]0, 𝑇 [,
𝐿2(Ω)) and 𝑢𝑛 → 𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)), as 𝑛 → +∞.

With a mesh size and a time step vanishing as 𝑛 → +∞, it is quite easy
to prove that 𝜕𝑡𝜌 − Δ𝑢 = 0, in the distributional sense, but the difficulty is
to prove that 𝑢 = 𝜙(𝜌). The main step for proving 𝑢 = 𝜙(𝜌) is to prove that
lim𝑛→+∞

∫︀ 𝑇

0
∫︀

Ω 𝜌𝑛𝑢𝑛𝑑𝑥𝑑𝑡 =
∫︀ 𝑇

0
∫︀

Ω 𝜌𝑢𝑑𝑥𝑑𝑡. Then, by applying e.g. Minty’s trick,
one obtains the desired identity. This will be detailed in Sections 3.1.2 (continuous
setting) and 3.2.2 (discrete setting).

The common feature of these two examples is that we have two sequences,
namely (𝜌𝑛)𝑛∈N and (𝑢𝑛)𝑛∈N, weakly converging in 𝐿2(]0, 𝑇 [, 𝐿𝑞(Ω)) for a se-
quence and in 𝐿2(]0, 𝑇 [, 𝐿𝑝(Ω)) for the other sequence, with 𝑝, 𝑞 > 1, (1/𝑝) +
(1/𝑞) = 1. We denote by 𝜌 and 𝑢 the weak limits of these two sequences. Then,
the objective is to present some convenient additional hypothesis in order to
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prove that, with 𝑄 = Ω×]0, 𝑇 [,

lim
𝑛→+∞

∫︁
𝑄

𝜌𝑛(𝑦)𝑢𝑛(𝑦)𝑑𝑦 =
∫︁
𝑄

𝜌(𝑦)𝑢(𝑦)𝑑𝑦,

and to show that this additional hypothesis is satisfied in the case of the two
examples described above.

For the sake of clarity, we will first consider the simple case corresponding
essentially to the case of stationary equations (such as the stationary compressible
Stokes equations). Then, we will consider the more difficult case of evolution
equations, including the Stefan problem or the Navier-Stokes equations, where
the time derivative plays a different role than the space derivatives.

As usual, the discrete analysis follows closely the continuous analysis and for
this reason we begin by the tools in the continuous setting.

This paper uses ideas which were developed in some previous papers written
in collaboration with several authors, among whom Jérôme Droniou, Robert
Eymard, Raphaèle Herbin and Jean-Claude Latché. Part of the results given in
this paper were presented in [Gal17].

2 Stationary case

2.1 Continuous setting

Let Ω be a bounded open set of R𝑑 (𝑑 ≥ 1), 𝑝, 𝑞 > 1, (1/𝑝) + (1/𝑞) = 1, and
(𝜌𝑛)𝑛∈N and (𝑢𝑛)𝑛∈N be sequences such that 𝜌𝑛 → 𝜌 weakly in 𝐿𝑞(Ω), 𝑢𝑛 → 𝑢

weakly in 𝐿𝑝(Ω) as 𝑛 → +∞.
In general, one does not have, as 𝑛 → +∞,∫︁

Ω

𝜌𝑛𝑢𝑛 𝑑𝑥 →
∫︁
Ω

𝜌𝑢 𝑑𝑥. (5)

But, as it is well known, (5) is true if the sequence (𝑢𝑛)𝑛∈N is bounded in
𝐻1

0 (Ω) and 𝑝 < 2⋆, with 2⋆ = +∞, if 𝑑 = 1 or 2, and 2⋆ = 2𝑑/(𝑑− 2) if 𝑑 ≥ 3
(note that 2⋆ = 6 if 𝑑 = 3).

This can be proved in two slightly different ways.
The first way is to use the compactness of the sequence (𝑢𝑛)𝑛∈N (note that,

in this paper, “compactness” always means “strong compactness”). Indeed, since
𝐻1

0 (Ω) is compactly embedded in 𝐿𝑝(Ω), one has 𝑢𝑛 → 𝑢 in 𝐿𝑝(Ω) and then (5)
holds.
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The second way is to use the compactness of the sequence (𝜌𝑛)𝑛∈N in
𝐻−1(Ω). Since 𝐻1

0 (Ω) is compactly embedded in 𝐿𝑝(Ω), by duality 𝐿𝑞(Ω) is
compactly embedded in the dual space of 𝐻1

0 (Ω), namely 𝐻−1(Ω). Here, one has
identified, as usual, an element 𝑓 of 𝐿𝑞(Ω) with the element of 𝐿𝑝(Ω)′ defined
by 𝑔 ↦→

∫︀
Ω 𝑓𝑔𝑑𝑥. Then, one has

𝜌𝑛 → 𝜌 in 𝐻−1(Ω), as 𝑛 → +∞. (6)

Since (𝑢𝑛)𝑛∈N is bounded in 𝐻1
0 (Ω), one has also (without extraction of a

subsequence)
𝑢𝑛 → 𝑢 weakly in 𝐻1

0 (Ω), as 𝑛 → +∞. (7)

Using (6) and (7) we obtain∫︁
Ω

𝜌𝑛𝑢𝑛 𝑑𝑥 = ⟨𝜌𝑛, 𝑢𝑛⟩𝐻−1,𝐻1
0

→ ⟨𝜌, 𝑢⟩𝐻−1,𝐻1
0

=
∫︁
Ω

𝜌𝑢 𝑑𝑥. (8)

Remark 1. Another way to use the compactness of the sequence (𝜌𝑛)𝑛∈N in
𝐻−1(Ω) is to use, for all 𝑛, the solution of the Dirichlet problem with 𝜌𝑛 as
datum, namely the function 𝑤𝑛 such that

𝑤𝑛 ∈ 𝐻1
0 (Ω),

∫︁
Ω

∇𝑤𝑛 · ∇𝑣 𝑑𝑥 =
∫︁
Ω

𝜌𝑛𝑣 𝑑𝑥 for all 𝑣 ∈ 𝐻1
0 (Ω). (9)

Using the weak convergence of 𝜌𝑛 in 𝐿𝑞(Ω), one has 𝑤𝑛 → 𝑤 in 𝐻1
0 (Ω) where 𝑤

is the solution of

𝑤 ∈ 𝐻1
0 (Ω),

∫︁
Ω

∇𝑤 · ∇𝑣 𝑑𝑥 =
∫︁
Ω

𝜌𝑣 𝑑𝑥 for all 𝑣 ∈ 𝐻1
0 (Ω). (10)

Indeed, it is quite easy to prove that 𝑤𝑛 weakly converges to 𝑤 in 𝐻1
0 (Ω). Then,

taking 𝑣 = 𝑤𝑛 in (9) and using the convergence of 𝜌𝑛 to 𝜌 in 𝐻−1(Ω), one has

lim
𝑛→+∞

∫︁
Ω

∇𝑤𝑛 · ∇𝑤𝑛 𝑑𝑥 = lim
𝑛→+∞

∫︁
Ω

𝜌𝑛𝑤𝑛 𝑑𝑥 =
∫︁
Ω

𝜌𝑤 𝑑𝑥 =
∫︁
Ω

∇𝑤 · ∇𝑤 𝑑𝑥.

This proves the convergence of the 𝐻1
0 (Ω)-norm of 𝑤𝑛 to the 𝐻1

0 (Ω)-norm of 𝑤.
This gives

lim
𝑛→+∞

∫︁
Ω

(∇𝑤𝑛 − ∇𝑤) · (∇𝑤𝑛 − ∇𝑤) 𝑑𝑥 = lim
𝑛→+∞

∫︁
Ω

∇𝑤𝑛 · ∇𝑤𝑛 𝑑𝑥

− 2 lim
𝑛→+∞

∫︁
Ω

∇𝑤𝑛 · ∇𝑤 𝑑𝑥+
∫︁
Ω

∇𝑤 · ∇𝑤 𝑑𝑥 = 0,
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which proves that 𝑤𝑛 converges to 𝑤 in 𝐻1
0 (Ω) (as 𝑛 → +∞). In order to

conclude, we now use (7) and obtain∫︁
Ω

𝜌𝑛𝑢𝑛 𝑑𝑥 𝑑𝑥 =
∫︁
Ω

∇𝑤𝑛 · ∇𝑢𝑛 →
∫︁
Ω

∇𝑤 · ∇𝑢 𝑑𝑥 =
∫︁
Ω

𝜌𝑢 𝑑𝑥,

since ∇𝑤𝑛 converges in 𝐿2(Ω)𝑑 to ∇𝑤 and ∇𝑢𝑛 weakly converges in 𝐿2(Ω)𝑑 to
∇𝑢.

2.2 Discrete setting

The set Ω is always a bounded open set of R𝑑 (𝑑 ≥ 1) but adapted to a space
discretization. For all 𝑛 ∈ N, one has 𝜌𝑛 ∈ 𝐿𝑛 and 𝑢𝑛 ∈ 𝐻𝑛, where 𝐿𝑛 and 𝐻𝑛 are
finite dimensional spaces included in 𝐿∞(Ω). Let 𝑝, 𝑞 > 1 with (1/𝑝) + (1/𝑞) = 1.
We assume that the sequence (𝑢𝑛)𝑛∈N weakly converges to 𝑢 in 𝐿𝑝(Ω) and the
sequence (𝜌𝑛)𝑛∈N weakly converges to 𝜌 in 𝐿𝑞(Ω). We also assume, as in Section
2.1, that 𝑝 < 2⋆ and we want (as in Section 2.1) a convenient additional condition
giving (5).

In the case of conforming discretizations (such as Finite Element Methods),
namely when 𝐻𝑛 ⊂ 𝐻1

0 (Ω), an easy condition is, as in Section 2.1, to assume that
the sequence (𝑢𝑛)𝑛∈N is bounded in 𝐻1

0 (Ω). We are interested here by the more
involved case when 𝐻𝑛 ̸⊂ 𝐻1

0 (Ω) but 𝐻𝑛 is equipped with a norm, depending
on 𝑛, “close” to the 𝐻1

0 -norm. This is the case for Finite Volume Methods
or Gradient Discretization Methods, see, for instance, [EGH00], [EGH10] and
[DEG+17] for elliptic and parabolic equations and see [HW65] for the seminal
paper on the Marker-And-Cell scheme for the Navier-Stokes equations. As in
Section 2.1, we will present two different methods, using compactness of the
sequence (𝑢𝑛)𝑛∈N or compactness of the sequence (𝜌𝑛)𝑛∈N.

2.2.1 Compactness of the sequence (𝑢𝑛)𝑛∈N

We first consider the case of classical Finite Volumes with admissible meshes,
as in [EGH00, Definition 9.1], see Fig. 1. Roughly speaking for 𝑑 = 2 or 3 (the
case 𝑑 = 1 is simpler), a classical Finite Volumes mesh consists in a family of
disjoints “control volumes” which are open polygonal (if 𝑑 = 2) or polyhedral (if
𝑑 = 3) convex subsets of Ω whose closures cover Ω. The interface between two
control volumes is contained in an hyperplane of R𝑑. For each control volume
𝐾, a point 𝑥𝐾 is given (it is not necessarily the center of gravity of 𝐾). Such a
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mesh is “admissible” if the segment joining the points 𝑥𝐾 and 𝑥𝐿 is orthogonal
to the interface 𝜎 between the control volumes 𝐾 and 𝐿 (see Fig. 1).

∙

∙

𝑥𝐿

𝑥𝐾

𝐾

𝐿

𝜎 = 𝐾|𝐿

d𝜎 𝑛𝐾,𝜎

Fig. 1: Here is an example of admissible mesh in the sense of [EGH00]

In this case, the space 𝐻𝑛 is the space of functions which are constant on each
control volume of the mesh ℳ𝑛. We denote by ℎ𝑛 the maximum of the diameter
of the control volumes of the mesh ℳ𝑛 and we assume that lim𝑛→+∞ ℎ𝑛 = 0.

The space 𝐻𝑛 is equipped with a discrete norm which mimics the 𝐻1
0 -norm.

We denote by ℰ𝑖𝑛𝑡 the interfaces which are in Ω and by ℰ𝑒𝑥𝑡 the interfaces which
are on the boundary of Ω. If 𝜎 is the interface between 𝐾 and 𝐿, we denote
by 𝑑𝜎 the distance between 𝑥𝐾 and 𝑥𝐿. If 𝜎 is an interface of 𝐾 lying on the
boundary of Ω, 𝑑𝜎 is the distance between 𝑥𝐾 and the boundary of Ω. Finally,
𝑚𝜎 denotes the (𝑑-1)-Lebesgue measure of 𝜎. With these notation, the norm on
𝐻𝑛, which mimics the 𝐻1

0 -norm, reads, if 𝑢𝐾 is the value of 𝑢 in the control
volume 𝐾,

‖𝑢‖2
1,2,𝑛 =

∑︁
𝜎∈ℰ𝑖𝑛𝑡,𝜎=𝐾|𝐿

𝑚𝜎𝑑𝜎|𝑢𝐾 − 𝑢𝐿

𝑑𝜎
|2 +

∑︁
𝜎∈ℰ𝑒𝑥𝑡,𝜎∈ℰ𝐾

𝑚𝜎𝑑𝜎|𝑢𝐾

𝑑𝜎
|2.

We assume that the sequence (‖(𝑢𝑛)‖1,2,𝑛)𝑛∈N is bounded. Then, it is proven in
[EGH00, Theorem 9.3] that 𝑢𝑛 → 𝑢 in 𝐿2(Ω). Now, we assume furthermore that
𝑑𝐾,𝜎/𝑑𝜎 is bounded from below by a positive number (independently of 𝐾 and
𝑛), where 𝑑𝐾,𝜎 is the distance between 𝑥𝐾 and 𝑥𝜎, the point belonging to 𝜎 and
the segment joining 𝑥𝐾 and 𝑥𝐿 (𝜎 = 𝐾|𝐿). Then, it is also proven in [EGH00,
Lemma 3.5] that the sequence (𝑢𝑛)𝑛∈N is bounded in 𝐿𝑟(Ω) for any 𝑟 < +∞, if
𝑑 = 1 or 2, and for 𝑟 = 6 if 𝑑 = 3. It is the so-called discrete Sobolev Embedding.
Then 𝑢𝑛 → 𝑢 in 𝐿𝑝(Ω) since 𝑝 < 2⋆. Finally, since 𝜌𝑛 → 𝜌 weakly in 𝐿𝑞(Ω) (and
𝑞 = 𝑝/(𝑝− 1)) we obtain (5) as desired.
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The fact that 𝑢𝑛 → 𝑢 in 𝐿2(Ω) (and therefore in 𝐿𝑝(Ω)) is a consequence of
the Kolmogorov compactness theorem and of the following inequality, which is
proven in [EGH00, Lemma 9.3] with some 𝐶 depending only on Ω and taking
𝑢 = 0 outside Ω,

‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 𝐶
√︀

|𝜂|‖𝑢‖1,2,𝑛 if 𝑢 ∈ 𝐻𝑛 and 𝜂 ∈ R𝑑. (11)

In order to prove (11) the admissibility of the mesh, namely the orthogonality
between the segment joining 𝑥𝐾 and 𝑥𝐿 and 𝐾|𝐿 (the interface between 𝐾

and 𝐿), is used in the proof of [EGH00, Lemma 9.3]. Without this admissibility
condition, we are not able to prove Inequality (11).

We consider now the case of non admissible meshes so that we do not assume
the orthogonality condition between the segment joining the points 𝑥𝐾 and 𝑥𝐿

and the interface 𝜎 between the control volumes 𝐾 and 𝐿 (see Fig. 1). But we
assume (as before) that 𝑑𝐾,𝜎/𝑑𝜎 is bounded from below by a positive number
(independently of 𝐾 and 𝑛). Then, we can also conclude by using an inequality
on the translates on 𝑢 in the 𝐿1(R𝑑)-norm instead of the 𝐿2(R𝑑)-norm. This is
done, for instance, in [EGH10]. Indeed, the ‖ · ‖1,2,𝑛-norm is the same as above
(see [EGH10, norm defined by (43) or by (74) in Lemma 5.2]) and it is proven in
[EGH10, Lemma 5.5] that

‖𝑢(· + 𝜂) − 𝑢‖𝐿1(R𝑑) ≤ |𝜂|
√
𝑑‖𝑢‖1,2,𝑛 if 𝑢 ∈ 𝐻𝑛. (12)

Using again the Kolmogorov compactness theorem, we obtain the compactness of
(𝑢𝑛)𝑛∈N in 𝐿1(Ω) and therefore 𝑢𝑛 → 𝑢 in 𝐿1(Ω). But, the estimate on ‖𝑢𝑛‖1,2,𝑛

also gives an estimate on 𝑢𝑛 in 𝐿𝑟(Ω) for any 𝑟 < +∞, if 𝑑 = 1 or 2, and for
𝑟 = 6 if 𝑑 = 3. This is again the discrete Sobolev embedding, given for instance in
[EGH10, Lemma 5.3]. Using this estimate, together with the 𝐿1(Ω) convergence,
we can deduce the convergence of 𝑢𝑛 in 𝐿𝑝(Ω) (since 𝑝 < 2⋆) and conclude as
before that (5) holds.

2.2.2 Compactness of the sequence (𝜌𝑛)𝑛∈N

Although it is, of course, not necessary in this stationary case, we will try now to
prove (5) by using compactness on 𝜌𝑛 instead of compactness of 𝑢𝑛. The interest
of this second method will appear in the evolution case where the time variable
plays a different role than that of the space variables. However, we will consider
here only the case 𝑝 = 𝑞 = 2, the general case (𝑝 < 2⋆, 𝑞 = 𝑝/(𝑝− 1)) needs more
work).

The main difficulty is that the bound on 𝑢𝑛 is on a norm which depends
on 𝑛 (even if this norm is “close” to the 𝐻1

0 -norm). The trick we propose here
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(presented in [Gal17]) is to use the Sobolev space 𝐻𝑠(R𝑑) with some 𝑠 ∈]0, 1[.
We first recall the definition of the space 𝐻𝑠(R𝑑).

Definition 1. For 𝑠 ≥ 0,𝐻𝑠(R𝑑) = {𝑢 ∈ 𝐿2(R𝑑) such that (1+|·|2) 𝑠
2 �̂� ∈ 𝐿2(R𝑑)},

where �̂� is the Fourier transform of 𝑢. The norm for the space 𝐻𝑠(R𝑑) is given
by

‖𝑢‖𝑠 = ‖(1 + | · |2)
𝑠
2 �̂�‖𝐿2(R𝑑). (13)

With this norm, 𝐻𝑠(R𝑑) is a Hilbert space.

Then, we set, for 𝑠 > 0,

𝐻𝑠 = {𝑢 ∈ 𝐻𝑠(R𝑑), 𝑢 = 0 a.e. on R𝑑 ∖ Ω},

equipped with the 𝐻𝑠(R𝑑)-norm. The space 𝐻𝑠 is a Hilbert space as a closed
subspace of the Hilbert space 𝐻𝑠(R𝑑).

We begin with the case of admissible meshes. Using (11), it is possible to
prove that the sequence (𝑢𝑛)𝑛∈N is bounded in 𝐻𝑠 for 0 < 𝑠 < 1

2 . We give the
proof of this result in Lemma 4. Then, since 𝐻𝑠 is a Hilbert space (with its
natural norm), we have 𝑢𝑛 → 𝑢 weakly in 𝐻𝑠. But, since 𝑠 > 0, we also have
compactness of 𝐻𝑠 in 𝐿2(Ω) since the 𝐻𝑠-norm of 𝑢 allows a control on the
translates of 𝑢, see Lemma 5. Then, by duality, identifying the space 𝐿2(Ω) with
its dual space, one has compactness of 𝐿2(Ω) in (𝐻𝑠)′. This gives 𝜌𝑛 → 𝜌 in
(𝐻𝑠)′ and we can conclude as in the continuous case, but with 𝐻𝑠 instead of
𝐻1

0 : ∫︁
Ω

𝜌𝑛𝑢𝑛 𝑑𝑥 = ⟨𝜌𝑛, 𝑢𝑛⟩(𝐻𝑠)′,𝐻𝑠 → ⟨𝜌, 𝑢⟩(𝐻𝑠)′,𝐻𝑠 =
∫︁
Ω

𝜌𝑢 𝑑𝑥. (14)

In the case of non admissible meshes, we can also conclude but we need
a little more work. We have to work with (12) instead of (11). We recall that,
for 𝑢 ∈ 𝐻𝑛, we also have an 𝐿𝑟(R𝑑)-estimate (in term of ‖𝑢‖1,2,𝑛) on 𝑢 for any
𝑟 < +∞, if 𝑑 = 1 or 2, and 𝑟 = 6 if 𝑑 = 3. Then, taking 𝑟 > 2, we use the
inequality, for all 𝑎 > 0 and 𝜀 > 0,

𝑎2 ≤ 𝜀𝑎𝑟 + 𝜀
−1

𝑟−2 𝑎.

(Actually, this inequality follows from the fact that 𝑎2 > 𝜀𝑎𝑟 implies 𝑎𝑟−2 < 𝜀−1

which implies 𝑎 < 𝜀
−1

𝑟−2 . Therefore, for all 𝜀 > 0 and all 𝑎 > 0, one has
𝑎2 ≤ max{𝜀𝑎𝑟, 𝜀

−1
𝑟−2 𝑎}.) Taking 𝜂 ∈ R𝑑, 𝑎 = |𝑢(𝑥 + 𝜂) − 𝑢(𝑥)| and integrating

on R𝑑 (recall that all functions are taken equal to 0 outside Ω), we obtain, for
𝑢 ∈ 𝐻𝑛,

‖𝑢(· + 𝜂) − 𝑢‖2
𝐿2(R𝑑) ≤ 𝜀‖𝑢(· + 𝜂) − 𝑢‖𝑟

𝐿𝑟(R𝑑) + 𝜀
−1

𝑟−2 ‖𝑢(· + 𝜂) − 𝑢‖𝐿1(R𝑑).



Discrete functional analysis tools 9

It remains to choose 𝜀 = |𝜂|
𝑟−2
𝑟−1 . The 𝐿𝑟(R𝑑)-estimate on 𝑢 (in terms of ‖𝑢‖1,2,𝑛)

and (12) give the existence of 𝐶 depending only on Ω, 𝑟 and the regularity of
the mesh (to be more precise, we also use an homogeneity argument) such that

‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 𝐶|𝜂|
𝑟−2

2(𝑟−1) ‖𝑢‖1,2,𝑛 if 𝑢 ∈ 𝐻𝑛 and 𝜂 ∈ R𝑑. (15)

In the case 𝑑 = 3, one takes 𝑟 = 6 and one has 𝑟−2
2(𝑟−1) = 2

5 . It is now possible to
conclude as in the case of admissible meshes. Using (15), the sequence (𝑢𝑛)𝑛∈N
is bounded in 𝐻𝑠 for 0 < 𝑠 < 𝑟−2

2(𝑟−1) (see Lemma 4). Then, one has 𝑢𝑛 → 𝑢

weakly in 𝐻𝑠. Here also, since 𝑠 > 0, we have compactness of 𝐻𝑠 in 𝐿2(Ω) (see
Lemma 5) and, by duality and identifying the space 𝐿2(Ω) with its dual space,
compactness of 𝐿2(Ω) in (𝐻𝑠)′. This gives 𝜌𝑛 → 𝜌 in (𝐻𝑠)′ and we conclude
with (14).

Remark 2. To conclude this section, we can also remark that it is possible,
similarly to the continuous case, to use the compactness of (𝜌𝑛)𝑛∈N under the
form ∇𝑛𝑤𝑛 → ∇𝑤 in 𝐿2(Ω)𝑑 (and ∇𝑛𝑢𝑛 → ∇𝑢 weakly in 𝐿2(Ω)𝑑) where ∇𝑛 is
a discretization of ∇, 𝑤𝑛 is the solution of a discrete equivalent of (9) and 𝑤 is
the solution of (10). This method is used, for instance, in [DEG+17].

3 Evolution case

3.1 Continuous setting

Let Ω be a bounded open set of R𝑑 (𝑑 ≥ 1), 𝑇 > 0 and (𝜌𝑛)𝑛∈N and (𝑢𝑛)𝑛∈N
be sequences such that 𝜌𝑛 → 𝜌 weakly in 𝐿2(]0, 𝑇 [, 𝐿𝑞(Ω)), 𝑢𝑛 → 𝑢 weakly in
𝐿2(]0, 𝑇 [, 𝐿𝑝(Ω)), with 1 < 𝑝 < 2⋆ and 𝑞 = 𝑝/(𝑝 − 1) (recall that 2⋆ = +∞, if
𝑑 = 1 or 2, and 2⋆ = 2𝑑/(𝑑− 2) if 𝑑 ≥ 3). As in Section 2.1, in general one does
not have

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑢𝑛 𝑑𝑥𝑑𝑡 →
𝑇∫︁

0

∫︁
Ω

𝜌𝑢 𝑑𝑥𝑑𝑡, as 𝑛 → +∞, (16)

even if (𝑢𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝐻1
0 (Ω)) because there is no compactness of

𝐿2(]0, 𝑇 [, 𝐻1
0 (Ω)) in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) (or 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω))).

(We take here 𝑝 = 𝑞 = 2 for simplicity.) Of course, (16) holds if (𝑢𝑛)𝑛∈N is
bounded in 𝐻1(]0, 𝑇 [, 𝐻1

0 (Ω)) since there is compactness of 𝐻1(]0, 𝑇 [, 𝐻1
0 (Ω))

in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). Similarly, (16) holds if (𝜌𝑛)𝑛∈N is bounded in 𝐻1(]0, 𝑇 [,
𝐿2(Ω)) (and (𝑢𝑛)𝑛∈N bounded in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω))) since there is compactness
of 𝐻1(]0, 𝑇 [, 𝐿2(Ω)) in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)). (As usual, 𝐿2(Ω) is identified to
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its dual space.) But such hypotheses are quite strong and the objective is to
obtain (16) using weaker hypotheses on (𝜕𝑡𝑢𝑛)𝑛∈N or (𝜕𝑡𝜌𝑛)𝑛∈N. We consider,
for instance, the two examples given in Section 1.

3.1.1 Compressible Navier-Stokes Equations

Let 𝑇 > 0, Ω be a bounded open connected set of R𝑑, 𝑑 = 2 or 3 and 𝛾 ∈ R such
that 𝛾 > 1 if 𝑑 = 2, 𝛾 > 3/2 if 𝑑 = 3. For 𝑛 ∈ N, let (𝜌𝑛, 𝑝𝑛, 𝑢𝑛) be a (weak)
solution of (1)-(3) with 𝑓𝑛 as datum instead of 𝑓 and an homogeneous Dirichlet
boundary condition on 𝑢𝑛. We assume that 𝑓𝑛 → 𝑓 in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). Under
a convenient hypothesis on the initial condition (on density and velocity), it is
possible to obtain an 𝐿∞(]0, 𝑇 [, 𝐿𝛾(Ω))-estimate on 𝜌𝑛 and an 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)𝑑)-
estimate on 𝑢𝑛. Then, up to subsequences, it is possible to assume, as 𝑛 → +∞,
that 𝜌𝑛 weakly converges to some 𝜌 in 𝐿2(]0, 𝑇 [, 𝐿𝛾(Ω)) and 𝑢𝑛 weakly converges
to some 𝑢 in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)𝑑).
In order to pass to the limit on the equation 𝜕𝑡𝜌𝑛 + div(𝜌𝑛𝑢𝑛) = 0 for

proving that 𝜕𝑡𝜌+ div(𝜌𝑢) = 0 (in the distributional sense), the main difficulty
is to prove that, for any 𝜙 ∈ 𝐶∞

𝑐 (R𝑑×]0, 𝑇 [),

lim
𝑛→+∞

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑢𝑛 · ∇𝜙𝑑𝑥𝑑𝑡 =
𝑇∫︁

0

∫︁
Ω

𝜌𝑢 · ∇𝜙𝑑𝑥𝑑𝑡. (17)

This is not easy since we only have weak convergence of 𝜌𝑛 and 𝑢𝑛 in Lebesgue
spaces.

Let 𝑢𝑛 be a component of the vector valued function 𝑢𝑛 and consider that
𝑑 = 3 (the case 𝑑 = 2 is simpler). We do not have any space-time compact-
ness of (𝑢𝑛)𝑛∈N since we have no condition on 𝜕𝑡𝑢𝑛. But, using the fact that
(𝜌𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝐿𝛾(Ω)) and assuming that (𝑢𝑛)𝑛∈N is bounded
in 𝐿2(]0, 𝑇 [, 𝐿6(Ω))𝑑 we deduce, using 𝛾 > 6/5, that (𝜕𝑡𝜌𝑛)𝑛∈N is bounded
in 𝐿1(]0, 𝑇 [,𝑊−1,1(Ω)) and this gives a compactness result for the sequence
(𝜌𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)) by means of an adaptation of the well known
compactness results for evolution equation due to J. L. Lions, J. P. Aubin and
J. Simon (see, for instance, J.L. Lions [Lio69], J. P. Aubin [Aub63] and J. Si-
mon [Sim87]). Indeed, one uses Theorem 1 with 𝐵 = 𝐻−1(Ω), 𝑋 = 𝐿𝛾(Ω) and
𝑌 = 𝑊−1,1(Ω) (note that 𝑋 is compactly embedded in 𝐵 since 𝛾 > 6/5, this
is due, by duality, to the fact that 𝐻1

0 (Ω) is compactly embedded in 𝐿𝑟(Ω) for
𝑟 < 6). Then, one has 𝜌𝑛 → 𝜌 in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)). Since 𝑢𝑛 → 𝑢 weakly
converges in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)3) we then obtain (16) and, similarly, since ∇𝜙 is a
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regular function, (17). More precisely, for all 𝜓 ∈ 𝐶∞
𝑐 (R3×]0, 𝑇 [)3, one has

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑢𝑛 · 𝜓 𝑑𝑥𝑑𝑡 = ⟨𝜌𝑛,𝑢𝑛 · 𝜓⟩𝐿2(𝐻−1),𝐿2(𝐻1
0 )

→ ⟨𝜌,𝑢 · 𝜓⟩𝐿2(𝐻−1),𝐿2(𝐻1
0 ) =

𝑇∫︁
0

∫︁
Ω

𝜌𝑢 · 𝜓 𝑑𝑥𝑑𝑡,

which gives 𝜕𝑡𝜌+ div(𝜌𝑢) = 0 (in the distributional sense).
The same difficulty appears in the momentum equation in order to pass

to the limit on div(𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛). This will be possible if one proves that for all
𝜓 ∈ 𝐶∞

𝑐 (R3×]0, 𝑇 [), one has

lim
𝑛→+∞

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑣𝑛𝑢𝑛𝜓 𝑑𝑥𝑑𝑡 =
𝑇∫︁

0

∫︁
Ω

𝜌𝑣𝑢𝜓 𝑑𝑥𝑑𝑡, (18)

where 𝑢𝑛 and 𝑣𝑛 are two components of 𝑢𝑛 (and 𝑢, 𝑣 the corresponding compo-
nents of 𝑢).

We consider here also the case 𝑑 = 3 and we use the fact that 𝛾 > 3/2. It gives
that 𝜌𝑛𝑢𝑛 is bounded in 𝐿2(]0, 𝑇 [, 𝐿𝑟(Ω)) with 𝑟 = 6𝛾/(6 + 𝛾) > 6/5. Since we
already know that 𝜌𝑛𝑢𝑛 → 𝜌𝑢 in the distributional sense, this gives that 𝜌𝑛𝑢𝑛 →
𝜌𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿𝑟(Ω)). Using now the momentum equation, we prove that
(𝜕𝑡(𝜌𝑛𝑢𝑛))𝑛∈N is bounded in 𝐿1(]0, 𝑇 [,𝑊−1,1(Ω)) and this gives a compactness
result for the sequence (𝜌𝑛𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)) using Theorem 1 with
𝐵 = 𝐻−1(Ω), 𝑋 = 𝐿𝑟(Ω) and 𝑌 = 𝑊−1,1(Ω) (𝑋 is compactly embedded in
𝐵 since 𝑟 > 6/5). Since 𝑣𝑛 → 𝑣 weakly converges in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)) we then
obtain (18) and this allows us to pass to the limit in div(𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛).

3.1.2 Stefan problem

Let 𝑇 > 0, Ω be a bounded open set of R𝑑, 𝑑 ≥ 1. For 𝑛 ∈ N, let (𝜌𝑛, 𝑢𝑛) be
a (weak) solution of (4) with an homogeneous Dirichlet boundary condition on
𝑢𝑛 and an initial condition on 𝜌𝑛 (bounded in 𝐿2(Ω)). We recall that 𝜙 is a
Lipschitz continuous function from R to R, nondecreasing, such that 𝜙′ = 0 on
]𝑎, 𝑏[, for some real numbers 𝑎, 𝑏 with 𝑎 < 𝑏 and lim inf |𝑠|→+∞ |𝜙(𝑠)|/|𝑠| > 0.

The natural estimates for this problem are an 𝐿2(]0, 𝑇 [, 𝐿2(Ω))-estimate on
𝜌𝑛 and an 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω))-estimate on 𝑢𝑛. Then we have, up to a subsequence,
𝜌𝑛 → 𝜌 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) and 𝑢𝑛 → 𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)).
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It is quite easy to pass to the limit in the equation 𝜕𝑡𝜌𝑛 − Δ𝑢𝑛 = 0 and one
obtains 𝜕𝑡𝜌− Δ𝑢 = 0, in the distributional sense, but it is less easy to prove that
𝑢 = 𝜙(𝜌).

The way to prove that 𝑢 = 𝜙(𝜌) consists in proving (16) and then to use the
Minty trick given (in this simple case) in Lemma 1. In order to prove (16), one
can use, as in Section 2.1, compactness on (𝑢𝑛)𝑛∈N or compactness on (𝜌𝑛)𝑛∈N
(this was not the case in the case of the compressible Navier-Stokes equations
described above).

The proof of compactness of (𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) (which leads to
(16)) is not easy since there is no direct estimate on 𝜕𝑡𝑢𝑛, but a trick due to Alt
and Luckhaus [AL83] allows to obtain directly an estimate on the time-translates
of 𝑢𝑛 (without estimate on 𝜕𝑡𝑢𝑛) in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) and therefore gives the
compactness of (𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). Then, (16) holds and this (with
the Minty trick) concludes the proof of 𝑢 = 𝜙(𝜌).

Instead of proving compactness of (𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)), it is perhaps
simpler to prove compactness of the sequence (𝜌𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)).
Indeed, since 𝜕𝑡𝜌𝑛 − Δ𝑢𝑛 = 0 and since (𝑢𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)),
the sequence (𝜕𝑡𝜌𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)). This gives compactness
of (𝜌𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)) using Theorem 1 with 𝐵 = 𝑌 = 𝐻−1(Ω) and
𝑋 = 𝐿2(Ω). Then one has

𝑢𝑛 → 𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐻1
0 (Ω)),

𝜌𝑛 → 𝜌 in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)),

and this gives (16) since

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑢𝑛 𝑑𝑥𝑑𝑡 = ⟨𝜌𝑛, 𝑢𝑛⟩𝐿2(𝐻−1),𝐿2(𝐻1
0 )

→ ⟨𝜌, 𝑢⟩𝐿2(𝐻−1),𝐿2(𝐻1
0 ) =

𝑇∫︁
0

∫︁
Ω

𝜌𝑢 𝑑𝑥𝑑𝑡.

Here also, it remains to use the Minty trick in order to conclude that 𝑢 = 𝜙(𝜌).

Remark 3. As for the stationary case, for this Stefan problem, it is also possible to
use the compactness of (𝜌𝑛)𝑛∈N under the form ∇𝑤𝑛 → ∇𝑤 in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑)
(and ∇𝑢𝑛 → ∇𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑)) where 𝑤𝑛 is the solution of (9)
and 𝑤 is the solution of (10) (see, for instance, [DEG+17]).

Lemma 1 (Minty trick). Let 𝑄 be a bounded open set of R𝑁 , 𝑁 ≥ 1, and 𝜙 be
a continuous nondecreasing function from R to R. We assume that there exists
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𝐶 ∈ R+ such that
|𝜙(𝑠)| ≤ 𝐶|𝑠| + 𝐶 for all 𝑠 ∈ R. (19)

(Note that the existence of 𝐶 is true if 𝜙 is Lipschitz continuous.) Let (𝜌𝑛)𝑛∈N
and (𝑢𝑛)𝑛∈N be sequences such that 𝜌𝑛 → 𝜌 weakly in 𝐿2(𝑄), 𝑢𝑛 → 𝑢 weakly in
𝐿2(𝑄). We assume that 𝑢𝑛 = 𝜙(𝜌𝑛) a.e., for all 𝑛, and that

lim
𝑛→+∞

∫︁
𝑄

𝜌𝑛(𝑦)𝑢𝑛(𝑦)𝑑𝑦 =
∫︁
𝑄

𝜌(𝑦)𝑢(𝑦)𝑑𝑦.

Then, 𝑢 = 𝜙(𝜌) a.e..

Proof. Since 𝜙 is nondecreasing, one has, for all 𝜌 ∈ 𝐿2(𝑄),

0 ≤
∫︁
𝑄

(𝜌𝑛 − 𝜌)(𝜙(𝜌𝑛) − 𝜙(𝜌))𝑑𝑦 =
∫︁
𝑄

(𝜌𝑛 − 𝜌)(𝑢𝑛 − 𝜙(𝜌))𝑑𝑦.

Inequality (19) gives that 𝜙(𝜌) ∈ 𝐿2(𝑄). Then,

0 ≤
∫︁
𝑄

𝜌𝑛𝑢𝑛𝑑𝑦 −
∫︁
𝑄

𝜌𝑛𝜙(𝜌)𝑑𝑦 −
∫︁
𝑄

𝜌𝑢𝑛𝑑𝑦 +
∫︁
𝑄

𝜌𝜙(𝜌)𝑑𝑦.

Passing to the limit as 𝑛 → +∞ in this inequality yieds

0 ≤
∫︁
𝑄

(𝜌− 𝜌)(𝑢− 𝜙(𝜌))𝑑𝑦.

Let 𝜓 ∈ 𝐶∞
𝑐 (𝑄) and 𝑚 > 0. Taking 𝜌 = 𝜌− (1/𝑚)𝜓 in the previous inequality

gives
0 ≤

∫︁
𝑄

(𝑢− 𝜙(𝜌− (1/𝑚)𝜓))𝜓 𝑑𝑦.

The function (𝑢− 𝜙(𝜌− (1/𝑚)𝜓))𝜓 converges a.e. to (𝑢− 𝜙(𝜌)𝜓, as 𝑚 → +∞,
and is dominated by the fonction (|𝑢|+𝐶|𝜌|+𝐶|𝜓|+𝐶)𝜓 which belongs to 𝐿1(𝑄).
Then, using the Dominated Convergence Theorem, we obtain, as 𝑚 → +∞,

0 ≤
∫︁
𝑄

(𝑢− 𝜙(𝜌))𝜓 𝑑𝑦.

This inequality with 𝜓 and −𝜓 gives 0 =
∫︀

𝑄
(𝑢− 𝜙(𝜌))𝜓 𝑑𝑦 and then, since 𝜓 is

arbitrary, 𝑢 = 𝜙(𝜌) a.e. in 𝑄.

In the previous examples, we use a compactness result for evolution equations
which is essentially due to [Lio69, Aub63, Sim87], a proof is given in [GH15]. We
now give this theorem.
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Theorem 1. Let 𝑋, 𝐵, 𝑌 be three Banach spaces, 𝑋 ⊂ 𝐵, 𝑋 ⊂ 𝑌 , such that
1. 𝑋 is compactly embedded in 𝐵,
2. for any bounded sequence (𝑤𝑛)𝑛∈N of 𝑋, if ‖𝑤𝑛 −𝑤‖𝐵 → 0 and ‖𝑤𝑛‖𝑌 → 0,

then 𝑤 = 0.
Let 𝑇 > 0, 1 ≤ 𝑝 < +∞ and (𝑢𝑛)𝑛∈N be a sequence such that
– (𝑢𝑛)𝑛∈N is bounded in 𝐿𝑝(]0, 𝑇 [, 𝑋),
– (𝜕𝑡𝑢𝑛)𝑛∈N is bounded in 𝐿1(]0, 𝑇 [, 𝑌 ).
Then there exists 𝑢 ∈ 𝐿𝑝(]0, 𝑇 [, 𝐵) such that, up to a subsequence, 𝑢𝑛 → 𝑢 in
𝐿𝑝(]0, 𝑇 [, 𝐵).

Hypothesis 2 of Theorem 1 on the spaces, 𝑋, 𝐵, 𝑌 is perhaps a little bit
curious. Indeed, we can distinguish two cases. A simple situation appears when
‖ · ‖𝐵 ≤ 𝐶‖ · ‖𝑌 for some 𝐶 > 0 (this is the case, in particular, when 𝑌 = 𝑋

and Hypothesis 1 holds). Another situation is discussed in [Sim87], when 𝐵

is continuously embedded in 𝑌 , that is ‖ · ‖𝑌 ≤ 𝐶‖ · ‖𝐵 (for some 𝐶 > 0).
Hypothesis 2 in Theorem 1 covers a more general framework.

An example of Banach spaces 𝑋, 𝐵, 𝑌 satisfying 1–2 is 𝑋 = 𝑊 1,1
0 (Ω), 𝐵 =

𝐿1(Ω), 𝑌 = 𝑊−1,1
⋆ (Ω) = (𝑊 1,∞

0 (Ω))′, where, as usual, we identify an element
of 𝐿1(Ω) with the corresponding linear form on 𝑊 1,∞

0 (Ω).
A main tool, crucial for the case where ‖·‖𝐵 ̸≤ 𝐶‖·‖𝑌 is the following lemma

essentially due to Lions [Lio69], the proof of which is quite easy by contradiction.

Lemma 2. Let 𝑋, 𝐵, 𝑌 are three Banach spaces, 𝑋 ⊂ 𝐵, 𝑋 ⊂ 𝑌 , satisfying
Hypotheses 1–2 of Theorem 1. Then, for any 𝜀 > 0, there exists 𝐶𝜀 such that,
for 𝑤 ∈ 𝑋,

‖𝑤‖𝐵 ≤ 𝜀‖𝑤‖𝑋 + 𝐶𝜀‖𝑤‖𝑌 .

A particular case for which the conclusion of Lemma 2 is true, simpler than
Lemma 2, is when 𝐵 is a Hilbert space, 𝑋 is a Banach space continuously
embedded in 𝐵 and 𝑌 = 𝑋 but the norm in 𝑌 , denoted by ‖ · ‖𝑌 , is the dual
norm of ‖ · ‖𝑋 with respect to the scalar product of 𝐵, namely

‖𝑢‖𝑌 = sup{(𝑢|𝑣)𝐵 , 𝑣 ∈ 𝑋, ‖𝑣‖𝑋 ≤ 1}.

Then, for any 𝜀 > 0 and 𝑤 ∈ 𝑋, one has

‖𝑤‖𝐵 ≤ 𝜀‖𝑤‖𝑋 + 1
𝜀

‖𝑤‖𝑌 .

The proof is simple since

‖𝑢‖𝐵 = (𝑢|𝑢)
1
2
𝐵 ≤ (‖𝑢‖𝑌 ‖𝑢‖𝑋)

1
2 ≤ 𝜀‖𝑤‖𝑋 + 1

𝜀
‖𝑤‖𝑌 .

In this simple case, the compactness of 𝑋 in 𝐵 is not needed for the conclusion
of Lemma 2 but nevertheless this compactness is needed for Theorem 1 even in
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this case. We can also remark that in this simple case, the space 𝑌 is the space
𝑋 with the norm ‖ · ‖𝑌 and it is not necessarily a Banach space. Indeed, the fact
that 𝑌 is a Banach space is never needed in Theorem 1, we only need 𝑌 to be a
normed space since we can always complete this normed space in order to have
a Banach space.

We recall the spaces 𝑋, 𝐵, 𝑌 which were used in this section for the examples
describes above (Navier-Stokes Equations and Stefan Problem).

For the compressible Navier-Stokes equations, in order to prove the com-
pactness of (𝜌𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐻−1(Ω)) we choose 𝐵 = 𝐻−1(Ω), 𝑋 =
𝐿𝛾(Ω) and 𝑌 = 𝑊−1,1(Ω). In order to prove the compactness of (𝜌𝑛𝑢𝑛)𝑛∈N in
𝐿2(]0, 𝑇 [, 𝐻−1(Ω)) we choose 𝐵 = 𝐻−1(Ω), 𝑋 = 𝐿𝑟(Ω) (with 𝑟 = 6𝛾/(6 + 𝛾))
and 𝑌 = 𝑊−1,1(Ω).

For the Stefan problem, we choose 𝑋 = 𝐿2(Ω), 𝐵 = 𝑌 = 𝐻−1(Ω).

Remark 4. Another interesting example is the case of the incompressible Navier-
Stokes equations for 𝑑 = 2 or 3 (see [CEGH14]), where we have to pass to the
limit on div(𝑢𝑛 ⊗ 𝑢𝑛). We set 𝐻 = {𝑢 ∈ 𝐻1

0 (Ω)𝑑, div 𝑢 = 0} (which is the
natural space for the velocity) and we can use, for this case, Theorem 1 with
𝑝 = 2, 𝐵 = 𝐿2(Ω), 𝑋 = 𝐻, 𝑌 = 𝐻 ′ (with the identification of 𝐿2(Ω) with its
dual space). It gives the compactness of the sequence of approximate velocities
(𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑) which allows to pass to the limit in div(𝑢𝑛 ⊗ 𝑢𝑛).
In this example one has 𝑋 continuously embedded in 𝐵 (and, even, compactly
embedded in 𝐵) but 𝑋 is not dense in 𝐵 so that 𝐵′ (which is identified with 𝐵)
is not included in 𝑌 . However one has 𝐻 ⊂ 𝐻 ′ (using the identification of 𝐵′

with 𝐵), which is the hypothesis needed in Theorem 1. This is a situation quite
general. If 𝐸 is a Banach space, continuously embedded in the Hilbert 𝐹 , and
if 𝐹 ′ is identified with 𝐹 , then one has 𝐸 ⊂ 𝐸′ but one does not have 𝐹 ⊂ 𝐸′

except if 𝐸 is dense in 𝐹 (see, for instance, [GH15, Chapter 4]).

3.2 Discrete setting

The objective of this section is to adapt the methods of Section 3.1 (in particular
Theorem 1) to a discrete setting, in order to prove the convergence of numerical
schemes.

The set Ω is now a bounded open set of R𝑑 adapted to a space discretization.
The time interval is [0, 𝑇 ], 𝑇 > 0.

Let 𝑛 ∈ N, one has a time step 𝑘𝑛 such that 𝑇 = 𝑘𝑛𝑁𝑛 with some positive
integer 𝑁𝑛 and one has a space discretization which gives two finite dimensional
spaces 𝐿𝑛 and 𝐻𝑛. As in the stationary case, Section 2.2, we consider the case
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where 𝐿𝑛 and 𝐻𝑛 are spaces of functions constant on control volumes defined by
some meshes (which can be different for 𝐿𝑛 and 𝐻𝑛 as in interesting case of the
MAC-scheme)

We assume that 𝜌𝑛 and 𝑢𝑛 are functions constant in time on each interval
](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[, for 𝑙 = 1, . . . , 𝑁𝑛 (but we could also assume that these functions
are continuous in time and affine on each interval ](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[, this will not
change the results given hereafter). For all 𝑡 ∈](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[, 𝑙 = 1, . . . , 𝑁𝑛, one
has

𝜌𝑛(·, 𝑡) = 𝜌
(𝑙)
𝑛 ∈ 𝐿𝑛 and 𝑢𝑛(·, 𝑡) = 𝑢

(𝑙)
𝑛 ∈ 𝐻𝑛.

Since we consider functions which are constant in time on each interval ](𝑙 −
1)𝑘𝑛, 𝑙𝑘𝑛[, we have also to define discrete derivatives, namely for 𝑙 ∈ {2, . . . , 𝑁𝑛},

𝜕𝑡,𝑛𝑢𝑛(·, 𝑡) = 𝜕
(𝑙)
𝑡,𝑘𝑛

𝑢 = 1
𝑘𝑛

(𝑢(𝑙)
𝑛 − 𝑢

(𝑙−1)
𝑛 ) for 𝑡 ∈](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[,

𝜕𝑡,𝑛𝜌𝑛(·, 𝑡) = 𝜕
(𝑙)
𝑡,𝑘𝑛

𝜌𝑛 = 1
𝑘𝑛

(𝜌(𝑙)
𝑛 − 𝜌

(𝑙−1)
𝑛 ) for 𝑡 ∈](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[,

and, for 𝑙 = 1, 𝜕𝑡,𝑛𝑢𝑛(·, 𝑡) = 𝜕𝑡,𝑛𝜌𝑛(·, 𝑡) = 0, for 𝑡 ∈]0, 𝑘𝑛[.

We assume that lim𝑛→+∞ 𝑘𝑛 = 0 and lim𝑛→+∞ ℎ𝑛 = 0, where ℎ𝑛 is the
maximum of the diameter of the control volumes of the meshes defining 𝐿𝑛

and 𝐻𝑛. The sequences (𝜌𝑛)𝑛∈N and (𝑢𝑛)𝑛∈N weakly converge to 𝜌 and 𝑢 in
𝐿2(]0, 𝑇 [, 𝐿2(Ω)) (we do not consider in this section the more general case of weak
convergence in 𝐿2(]0, 𝑇 [, 𝐿𝑞(Ω)) and 𝐿2(]0, 𝑇 [, 𝐿𝑝(Ω)), with (1/𝑝) + (1/𝑞) = 1).
We want, as in Section 3.1, a convenient additional condition giving (16). We
will mimic the method of Section 3.1.

We begin with a discrete version of Lemma 2.

Lemma 3. Let 𝐵 be a Banach space and (𝐵𝑛)𝑛∈N be a sequence of finite di-
mensional subspaces of 𝐵. Let ‖ · ‖𝑋𝑛

and ‖ · ‖𝑌𝑛
be two norms on 𝐵𝑛 such

that:
If (‖𝑤𝑛‖𝑋𝑛

)𝑛∈N is bounded, then,
1. up to a subsequence, there exists 𝑤 ∈ 𝐵 such that 𝑤𝑛 → 𝑤 in 𝐵,
2. If ‖𝑤𝑛 − 𝑤‖𝐵 → 0 and ‖𝑤𝑛‖𝑌𝑛

→ 0, then 𝑤 = 0.
Then, for any 𝜀 > 0, there exists 𝐶𝜀 such that, for all 𝑛 ∈ N and all 𝑤 ∈ 𝐵𝑛,

‖𝑤‖𝐵 ≤ 𝜀‖𝑤‖𝑋𝑛
+ 𝐶𝜀‖𝑤‖𝑌𝑛

. (20)

Proof. We first remark that 𝐵𝑛 is a finite dimensional subspace of 𝐵. Then, for
all 𝑛 and for all 𝜀 > 0, there exists 𝐶𝜀 satisfying (20) for all 𝑢 ∈ 𝐵𝑛. The problem
is to find 𝐶𝜀 independently of 𝑛.

We argue by contradiction. Assume that there exists 𝜀 > 0 such that 𝐶𝜀 does
not exists. Then, for a subsequence of (𝐵𝑛)𝑛∈N, still denoted (𝐵𝑛)𝑛∈N, there



Discrete functional analysis tools 17

exists (𝑤𝑛)𝑛∈N such that 𝑤𝑛 ∈ 𝐵𝑛 and

‖𝑤𝑛‖𝐵 > 𝜀‖𝑤𝑛‖𝑋𝑛
+ 𝐶𝑛‖𝑤𝑛‖𝑌𝑛

,

with lim𝑛→+∞ 𝐶𝑛 = +∞.
By homogeneity, it is possible to assume that ‖𝑤𝑛‖𝐵 = 1. Then (‖𝑤𝑛‖𝑋𝑛

)𝑛∈N
is bounded and, by Hypothesis 1, up to a subsequence, 𝑤𝑛 → 𝑤 in 𝐵 (so that
‖𝑤‖𝐵 = 1). But ‖𝑤𝑛‖𝑌𝑛

→ 0, so that 𝑤 = 0 (by Hypothesis 2), in contradiction
with ‖𝑤‖𝐵 = 1.

We now give a discrete version of Theorem 1, the proof of which uses Lemma 3.

Theorem 2. Let 𝐵 be a Banach space, 1 ≤ 𝑞 < +∞ and (𝐵𝑛)𝑛∈N a family of
finite dimensional subspaces of 𝐵. Let ‖ · ‖𝑋𝑛

and ‖ · ‖𝑌𝑛
be two norms on 𝐵𝑛

such that:
If (‖𝑤𝑛‖𝑋𝑛

)𝑛∈N is bounded, then,
1. up to a subsequence, there exists 𝑤 ∈ 𝐵 such that 𝑤𝑛 → 𝑤 in 𝐵,
2. if ‖𝑤𝑛 − 𝑤‖𝐵 → 0 and ‖𝑤𝑛‖𝑌𝑛

→ 0, then 𝑤 = 0.
The space 𝑋𝑛 is the space 𝐵𝑛 with norm ‖ · ‖𝑋𝑛

, the space 𝑌𝑛 is 𝐵𝑛 with norm
‖ · ‖𝑌𝑛

.
Let 𝑇 > 0, 𝑘𝑛 > 0, 𝑇 = 𝑘𝑛𝑁𝑛, and (𝑢𝑛)𝑛∈N be a sequence such that

– for all 𝑛, 𝑢𝑛(·, 𝑡) = 𝑢
(𝑙)
𝑛 ∈ 𝐵𝑛 for 𝑡 ∈ ((𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛), 𝑙 = 1, . . . , 𝑁𝑛,

– the sequence (𝑢𝑛)𝑛∈N is bounded in 𝐿𝑞(]0, 𝑇 [, 𝑋𝑛), that is to say that there
exists 𝐶1 > 0 such that

∑︀𝑁𝑛

𝑙=1 𝑘𝑛‖𝑢(𝑙)
𝑛 ‖𝑞

𝑋𝑛
≤ 𝐶1 for all 𝑛,

– the sequence (𝜕𝑡,𝑘𝑛
𝑢𝑛)𝑛∈N is bounded in 𝐿1(]0, 𝑇 [, 𝑌𝑛), that is to say that

there exists 𝐶2 > 0 such that
∑︀𝑁𝑛

𝑙=2 𝑘𝑛‖𝜕𝑡,𝑘𝑛
𝑢

(𝑙)
𝑛 ‖𝑌𝑛

≤ 𝐶2 for all 𝑛.
Then, there exists 𝑢 ∈ 𝐿𝑞(]0, 𝑇 [, 𝐵) such that, up to a subsequence, 𝑢𝑛 → 𝑢 in
𝐿𝑞(]0, 𝑇 [, 𝐵).

See for instance [GH15, Theorem 4.51] for a proof of Theorem 2. Similar theorems
are also in [CEGH14, GL12].

Of course, the main example for the present paper is 𝐵𝑛 = 𝐿𝑛 or 𝐵𝑛 = 𝐻𝑛.
But it remains to choose 𝐵, ‖ · ‖𝑋𝑛

and ‖ · ‖𝑌𝑛
. We present these choices for

the discretization of the two examples of Section 3.1, namely the compressible
Navier-Sokes equations and the Stefan problem.

3.2.1 Navier-Stokes Equations

We begin with the case of the compressible Navier-Stokes equations as in Section
3.1.1 with a discretization using the MAC scheme, see [HW65, CEGH14]. In this
example, 𝑢𝑛 is one component of the vector valued function 𝑢𝑛, which is the
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discrete velocity field, and each component of 𝑢𝑛 is a constant function on each
control volume of its own mesh and for all time interval ](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[ (it is the
so-called staggered discretization). The discrete density 𝜌𝑛 is a constant function
on the control volumes of another grid, generally called the primal grid, denoted
𝐿𝑛, and for all time interval ](𝑙 − 1)𝑘𝑛, 𝑙𝑘𝑛[.

We denote by �̄�𝑛 the spatial space for the discrete velocity field. This space is
equipped with a norm, denoted ‖ · ‖1,2,𝑛, which mimics the (𝐻1

0 )𝑑-norm. Indeed,
this norm contains, for each component of 𝑢𝑛 the norm ‖ · ‖1,2,𝑛 defined in
Section 2.2 in the case of admissible meshes.

The estimates that can be obtained on the approximate solutions mimics
the ones of the continuous setting. One obtain an estimate in 𝐿∞(]0, 𝑇 [, 𝐿𝛾(Ω))
for 𝜌𝑛 and an estimate on 𝐿2(]0, 𝑇 [, �̄�𝑛) for 𝑢𝑛 where �̄�𝑛 is equipped with
the norm ‖ · ‖1,2,𝑛 (the way to obtain this estimate on 𝑢𝑛 is roughly ex-
plained below). In particular this gives that the sequence (𝑢𝑛)𝑛∈N is bounded in
𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑). We also assume that 𝛾 ≥ 2 so that the sequence (𝜌𝑛)𝑛∈N is
bounded in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). Then, we can assume, up to a subsequence, that
𝜌𝑛 → 𝜌 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) and 𝑢𝑛 → 𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑). We
recall that we want to obtain (16) or, more generally, to prove the convergence
of 𝜌𝑛𝑢𝑛 to 𝜌𝑢 in a convenient Lebesgue space. In order to obtain (16), we will
use, as in Section 3.1.1, a compactness result on 𝜌𝑛.

Taking for instance, an implicit discretization of the mass balance (namely
𝜕𝑡𝜌 + div(𝜌𝑢) = 0), we have with some convenient upwind discretization of
div(𝜌𝑢), for all 𝑙 ∈ {2, . . . , 𝑁𝑛},

𝜕
(𝑙)
𝑡,𝑘𝑛

𝜌𝑛 + div𝑛(𝜌(𝑙)
𝑛 𝑢

(𝑙)
𝑛 ) = 0. (21)

A crucial idea in the discretization of Navier-Stokes Equations with staggered
grids is to deduce from (21) a discrete mass balance on the mesh, or on the
meshes (in the case of the MAC scheme), associated to the velocity field. In the
case of the MAC scheme, this discrete mass balance reads for each 𝑖 = 1, . . . , 𝑑
and for all 𝑙 ∈ {2, . . . , 𝑁𝑛},

𝜕
(𝑙)
𝑡,𝑘𝑛

𝜌𝑛,𝑖 + div𝑛,𝑖(𝜌(𝑙)
𝑛 𝑢

(𝑙)
𝑛 ) = 0, (22)

where the function 𝜌𝑛,𝑖 is a reconstruction of 𝜌𝑛 on the mesh associated to the
corresponding component of 𝑢𝑛 and div𝑛,𝑖 a discretization of div deduced from
div𝑛. We refer to [GGHL08, Section 3.3] for the first application of this idea, but
not with the MAC scheme, and, for instance, [HL10] for the application of this
idea with the MAC scheme. A main interest of this idea is that it gives, together
with the discretization of the momentum equation, a kinetic energy balance and
therefore an estimate on 𝑢𝑛 in 𝐿2(]0, 𝑇 [, �̄�𝑛) where �̄�𝑛 is equipped with the
norm ‖ · ‖1,2,𝑛.
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In order to apply Theorem 2, one takes 𝐵𝑛 = 𝐿𝑛 and ‖ · ‖𝑋𝑛
= ‖ · ‖𝐿2(Ω) so

that (𝜌𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝑋𝑛). For the choice of ‖ · ‖𝑌𝑛
, we remark

that a discrete integration by part leads to, for all 𝑙 ∈ {2, . . . , 𝑁𝑛},∫︁
Ω

𝑣𝜕
(𝑙)
𝑡,𝑘𝑛

𝜌𝑛𝑑𝑥 = −
∫︁
Ω

𝑣div𝑛(𝜌(𝑙)
𝑛 𝑢

(𝑙)
𝑛 )𝑑𝑥 =

∫︁
Ω

(𝜌𝑢)(𝑙)
𝑛 · ∇𝑛𝑣𝑑𝑥, for all 𝑣 ∈ 𝐿𝑛,

where ∇𝑛 is a convenient discretization of ∇. Then, a natural choice of ‖ · ‖𝑌𝑛
is,

for all 𝑤 ∈ 𝐿𝑛,

‖𝑤‖𝑌𝑛
= max{

∫︁
Ω

𝑤𝜙; 𝜙 ∈ 𝐿𝑛; ‖∇𝑛𝜙‖𝐿∞(Ω)𝑑 + ‖𝜙‖𝐿∞(Ω) = 1}.

With this norm, one has ‖𝜕(𝑙)
𝑡,𝑘𝑛

𝜌𝑛‖𝑌𝑛
≤ ‖(𝜌𝑢)(𝑙)

𝑛 ‖𝐿1(Ω)𝑑 . Since (𝜌𝑛)𝑛 is bounded
in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)) and (𝑢𝑛)𝑛 is bounded in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑), one has a bound
for (𝜌𝑢)𝑛 in 𝐿1(]0, 𝑇 [, 𝐿1(Ω)𝑑) which gives a bound for 𝜕𝑡,𝑘𝑛

𝜌𝑛 in 𝐿1(]0, 𝑇 [, 𝑌𝑛).
We choose 𝐵 = (𝐻𝑠)′ for 𝑠 such that 0 < 𝑠 < 1/2 (see Section 2.2 for the

definition of 𝐻𝑠) and we now prove that the hypotheses 1-2 of Theorem 2 are
satisfied. We already know that 𝐿2(Ω) is compactly embedded in (𝐻𝑠)′ (see
Section 2.2 and Lemma 5 in Section 4). This gives Hypothesis 1. In order to prove
Hypothesis 2, let 𝑤𝑛 ∈ 𝐿𝑛 such that (𝑤𝑛)𝑛∈N is bounded in 𝐿2(Ω), 𝑤𝑛 → 𝑤

in (𝐻𝑠)′ and ‖𝑤𝑛‖𝑌𝑛
→ 0. We want to prove that 𝑤 = 0. Let 𝜙 ∈ 𝐶∞

𝑐 (Ω). We
define 𝜙𝑛 in 𝐿𝑛 taking, for instance, the values of 𝜙 at the centers of the control
volumes defining the space 𝐿𝑛. It is quite easy to prove that the 𝐿∞-norm of
∇𝑛𝜙𝑛 is bounded by the 𝐿∞-norm of ∇𝜙. Then, one has

|
∫︁
Ω

𝑤𝑛𝜙𝑛 𝑑𝑥| ≤ ‖𝑤𝑛‖𝑌𝑛
(‖∇𝑛𝜙𝑛‖𝐿∞(Ω)𝑑 + ‖𝜙𝑛‖𝐿∞(Ω))

≤ ‖𝑤𝑛‖𝑌𝑛
(‖∇𝜙‖𝐿∞(Ω)𝑑 + ‖𝜙‖𝐿∞(Ω)).

This gives that lim𝑛→+∞
∫︀

Ω 𝑤𝑛𝜙𝑛𝑑𝑥 = 0. But, since (𝑤𝑛)𝑛∈N is bounded in
𝐿2(Ω) and 𝑤𝑛 → 𝑤 in (𝐻𝑠)′, one has also 𝑤𝑛 → 𝑤 weakly in 𝐿2(Ω) (we use
here the uniqueness of the limit in (𝐻𝑠)′). Then, since 𝜙𝑛 → 𝜙 uniformly in Ω,
one has

lim
𝑛→+∞

∫︁
Ω

𝑤𝑛𝜙𝑛 𝑑𝑥 =
∫︁
Ω

𝑤𝜙𝑑𝑥.

We then conclude that
∫︀

Ω 𝑤𝜙𝑑𝑥 = 0 for all 𝜙 ∈ 𝐶∞
𝑐 (Ω) and therefore that 𝑤 = 0

a.e. on Ω.
We can now apply Theorem 2, it gives 𝜌𝑛 → 𝜌 in 𝐿2(]0, 𝑇 [, (𝐻𝑠)′).
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Indeed, the previous proof shows that it is also possible to prove that the
sequence (𝜕𝑡,𝑘𝑛

𝜌𝑛)𝑛∈N is bounded in 𝐿1(]0, 𝑇 [,𝑊−1,1
⋆ (Ω)) and then to apply

Theorem 2 with ‖ · ‖𝑌𝑛
= ‖ · ‖𝑊 −1,1

⋆ (Ω), where 𝑊−1,1
⋆ (Ω) = 𝑊 1,∞

0 (Ω)′.
We now conclude. Taking 0 < 𝑠 < 1/2, we recall, see Section 2.2 and

Lemma 4, that an estimate on ‖𝑣‖1,2,𝑛 gives an estimate on 𝑣 in 𝐻𝑠. Then,
the sequence (𝑢𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, (𝐻𝑠)𝑑) and therefore weakly
convergent in this space (up to a subsequence). By uniqueness of the weak limit
in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑), its limit is necessarily 𝑢 (and the convergence holds without
extracting a subsequence) so that we finally obtain (16) for any component 𝑢𝑛

of 𝑢𝑛. Furthermore it is possible to prove that for all 𝜙 ∈ 𝐶∞(R𝑑×]0, 𝑇 [,R) one
has

𝑇∫︁
0

∫︁
Ω

𝜌𝑛𝑢𝑛 · ∇𝑛𝜙𝑑𝑥𝑑𝑡 = ⟨𝜌𝑛,𝑢𝑛 · ∇𝜙⟩𝐿2((𝐻𝑠)′),𝐿2(𝐻𝑠) +𝑅𝑛

→ ⟨𝜌,𝑢 · ∇𝜙⟩𝐿2((𝐻𝑠)′),𝐿2(𝐻𝑠) =
𝑇∫︁

0

∫︁
Ω

𝜌𝑢 · ∇𝜙𝑑𝑥𝑑𝑡.

This gives, in particular, 𝜕𝑡𝜌+ div(𝜌𝑢) = 0 in the distributional sense.
The previous proof gives also, for all 𝜓 ∈ 𝐶∞(R𝑑×]0, 𝑇 [,R𝑑),

𝑇∫︁
0

𝜌𝑛𝑢𝑛𝜓 𝑑𝑥𝑑𝑡 →
𝑇∫︁

0

𝜌𝑢𝜓 𝑑𝑥𝑑𝑡.

In the case 𝑑 = 3 (the most interesting case), one has an estimate on 𝑢𝑛

in 𝐿2(]0, 𝑇 [, 𝐿6(Ω)𝑑) (this is due to the discrete Sobolev inequality, see Sec-
tion 2.1, proven in [EGH00, Lemma 3.5]) and then an estimate on 𝜌𝑛𝑢𝑛

in 𝐿2(]0, 𝑇 [, 𝐿𝑟(Ω)𝑑). with 𝑟 = 6𝛾/(6 + 𝛾). This allows us to concude that
𝜌𝑛𝑢𝑛 → 𝜌𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿𝑟(Ω)). If 𝛾 ≥ 3, one has 𝑟 ≥ 2. Then it is
also possible, if 𝛾 ≥ 3, to pass to the limit (in the momentum equation) in the
term div(𝜌𝑛𝑢𝑛 ⊗ 𝑢𝑛) as we did in Section 3.1.1. We use Theorem 2 with each
component of 𝑢𝑛 and the corresponding reconstruction of 𝜌𝑛 on the associated
mesh (and this gives the space 𝐵𝑛). We choose 𝐵 = (𝐻𝑠)′ (with 0 < 𝑠 < 1/2),
the 𝐿2-norm for 𝑋𝑛 and, for instance, the 𝑊−1,1

⋆ (Ω)-norm for 𝑌𝑛. This gives the
compactness in 𝐿2(]0, 𝑇 [, (𝐻𝑠)′) for each component of the sequence (𝜌𝑛𝑢𝑛)𝑛∈N
and we conclude using the boundedness in 𝐿2(]0, 𝑇 [, 𝐻𝑠) of each component of
the sequence (𝑢𝑛)𝑛∈N.
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3.2.2 Stefan Problem

For the case of the Stefan problem, the spatial discretization is the same for 𝜌𝑛

and for 𝑢𝑛 (with the notation of the beginning of Section 3.2, one has 𝐿𝑛 = 𝐻𝑛).
We recall that we are interested by the case where the space 𝐻𝑛 is not included in
𝐻1

0 (Ω) but 𝐻𝑛 is equipped with a norm, depending on 𝑛, “close” to the 𝐻1
0 -norm

and denoted ‖ · ‖1,2,𝑛. We refer, for instance, to [EGH00, EGH10, DEG+17].
The discretization of the Stefan problem described in Section 1, gives that

the couple (𝜌𝑛, 𝑢𝑛) satisfy

𝜕𝑡,𝑘𝑛
𝜌𝑛 − Δ𝑛𝑢𝑛 = 0, 𝑢𝑛 = 𝜙(𝜌𝑛). (23)

The discrete operator Δ𝑛 from 𝐻𝑛 to 𝐻𝑛 is a convenient discretization of Δ
as it is done, for instance, in [EGH00, EGH10, DEG+17]. We recall that 𝜙 is a
Lipschitz continuous function from R to R, nondecreasing such that 𝜙′ = 0 on
]𝑎, 𝑏[, for some real numbers 𝑎, 𝑏 with 𝑎 < 𝑏 and lim inf |𝑠|→+∞ |𝜙(𝑠)|/|𝑠| > 0.

A natural estimate for this problem gives that the sequence (𝑢𝑛)𝑛∈N is
bounded in 𝐿2(]0, 𝑇 [, 𝑍𝑛), where 𝑍𝑛 is the space 𝐻𝑛 with the norm ‖ · ‖1,2,𝑛.
Then, using a discrete Poincaré estimate (see [EGH00] for the case of admissible
meshes or [EGH10] for a more general case of meshes), one obtains that the
sequence (𝑢𝑛)𝑛∈N is bounded in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). From this estimate on 𝑢𝑛,
one deduces, with the hypothesis lim inf |𝑠|→+∞ |𝜙(𝑠)|/|𝑠| > 0, that the sequence
(𝜌𝑛)𝑛∈N is also bounded in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). A consequence of these estimates is
that we can assume, up to a subsequence, that 𝜌𝑛 → 𝜌 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω))
and 𝑢𝑛 → 𝑢 weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)).

The weak convergence of 𝜌𝑛 and 𝑢𝑛 and some consistency property of the
discretization of Δ lead to

𝜕𝑡𝜌− Δ𝑢 = 0.

Using the estimate of 𝑢𝑛 is 𝐿2(]0, 𝑇 [, 𝑍𝑛), it is also classical to prove that
𝑢 ∈ 𝐿2(]0, 𝑇 [, 𝐻1

0 (Ω)) (see [EGH00] for the case of admissible meshes or [EGH10]
for a more general case of meshes).

Our purpose here is to give two ways to prove that 𝑢 = 𝜙(𝜌). As in the
continuous case, the first step is to prove (16) and then to conclude with the
Minty trick (Lemma 1).

For proving (16), as in the continuous case (Section 3.1.2), we can use
compactness of (𝑢𝑛)𝑛∈N or compactness of (𝜌𝑛)𝑛∈N.

The compactness of (𝑢𝑛)𝑛∈N in not given by an application of Theorem 2
because we do not have any estimate on 𝜕𝑡,𝑘𝑛

𝑢𝑛. However, it is sometimes
possible to adapt the method of Alt-Luckhaus [AL83] to this discrete setting in
order to obtain some estimates on the time-translates of 𝑢𝑛 and then compactness
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of the sequence (𝑢𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)). This gives (16) and then, using the
Minty trick, 𝑢 = 𝜙(𝜌). This way is, for instance, used in [EGH00].

The second way is to prove some compactness on the sequence (𝜌𝑛)𝑛∈N. We
recall that the norm ‖ · ‖1,2,𝑛 control the 𝐻𝑠-norm for some convenient 𝑠 > 0
(see Section 2.2 and Lemma 4 in Section 4). In the case of admissible meshes as
in [EGH00], we can take any 𝑠 < 1/2. in the case of more general meshes as in
[EGH10], we can take, for 𝑑 = 3, any 𝑠 < 2/5. Then, one has 𝑢𝑛 → 𝑢 weakly in
𝐿2(]0, 𝑇 [, 𝐻𝑠) (since 𝐿2(]0, 𝑇 [, 𝐻𝑠) is a Hilbert space). In order to prove (16), it
suffices to prove that (𝜌𝑛)𝑛∈N converges in 𝐿2(]0, 𝑇 [, (𝐻𝑠)′) (as usual, 𝐿2(Ω) is
identified with its dual space). We will prove this compactness on (𝜌𝑛)𝑛∈N with
Theorem 2 applied with

𝐵 = (𝐻𝑠)′, 𝐵𝑛 = 𝐻𝑛, ‖ · ‖𝑋𝑛
= ‖ · ‖𝐿2(Ω), ‖ · ‖𝑌𝑛

= ‖ · ‖−1,2,𝑛,

where ‖ · ‖−1,2,𝑛 is the dual norm of the norm ‖ · ‖1,2,𝑛, that is, for 𝑣 ∈ 𝐻𝑛,

‖𝑣‖−1,2,𝑛 = max{
∫︁
Ω

𝑣𝑤 𝑑𝑥 ; 𝑤 ∈ 𝐻𝑛, ‖𝑤‖1,2,𝑛 = 1}.

Multiplying, for 𝑤 ∈ 𝐻𝑛, the equation 𝜕𝑡,𝑘𝑛
𝜌𝑛 − Δ𝑛𝑢𝑛 = 0 by 𝑤 and using

a discrete integration by part, the estimate on 𝑢𝑛 in 𝐿2(]0, 𝑇 [, 𝑍𝑛) gives an
estimate on 𝜕𝑡,𝑘𝑛

𝜌𝑛 in 𝐿2(]0, 𝑇 [, 𝑌𝑛). In order to apply Theorem 2, it remains
to verify Hypotheses 1–2 of Theorem 2. Hypothesis 1 is due to compactness of
𝐿2(Ω) in (𝐻𝑠)′ (which is a consequence, by duality, of the compact embedding
of 𝐻𝑠 in 𝐿2(Ω), Lemma 5 in Section 4). For proving Hypothesis 2, let (𝑤𝑛)𝑛∈N
be a bounded sequence of 𝐿2(Ω) converging to 𝑤 in (𝐻𝑠)′ and to 0 for the 𝑌𝑛-
norm. We first remark that 𝑤𝑛 → 𝑤 weakly in 𝐿2(Ω). Let 𝜓 ∈ 𝐶∞

𝑐 (Ω). We can
define 𝜓𝑛 in 𝐿𝑛 taking for instance the mean values of 𝜓 on the control volumes
defining the space 𝐿𝑛. It is possible to prove that ‖𝜓𝑛‖1,2,𝑛 ≤ 𝐶‖𝜓‖𝐻1(Ω) where
𝐶 depends only the regularity of the mesh (see, for instance, [EGH00, Lemma
9.4] for the case of admissible meshes). Then, under a regularity hypothesis on
the sequence of meshes, one has

|
∫︁
Ω

𝑤𝑛𝜓𝑛 𝑑𝑥| ≤ ‖𝑤𝑛‖𝑌𝑛
‖𝜓𝑛‖1,2,𝑛 ≤ 𝐶‖𝑤𝑛‖𝑌𝑛

‖𝜓‖𝐻1(Ω).

This gives that lim𝑛→+∞
∫︀

Ω 𝑤𝑛𝜓𝑛𝑑𝑥 = 0. But, since 𝑤𝑛 → 𝑤 weakly in 𝐿2(Ω)
and 𝜓𝑛 → 𝜓 uniformly in Ω, one has

lim
𝑛→+∞

∫︁
Ω

𝑤𝑛𝜓𝑛 𝑑𝑥 =
∫︁
Ω

𝑤𝜓 𝑑𝑥.
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We then conclude that
∫︀

Ω 𝑤𝜓𝑑𝑥 = 0 for all 𝜓 ∈ 𝐶∞
𝑐 (Ω) and therefore that 𝑤 = 0

a.e. on Ω.
All the hypotheses of Theorem 2 are satisfied and we obtain the convergence

of (𝜌𝑛)𝑛∈N in 𝐿2(]0, 𝑇 [, (𝐻𝑠)′). It gives (16) and we conclude with the Minty
trick (Lemma 1) that 𝑢 = 𝜙(𝜌).

Remark 5. Here also, as in Section 2.2, it is possible to use the compactness of
(𝜌𝑛)𝑛∈N under the form ∇𝑛𝑤𝑛 → ∇𝑤 in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑) (and ∇𝑛𝑢𝑛 → ∇𝑢
weakly in 𝐿2(]0, 𝑇 [, 𝐿2(Ω)𝑑)) where ∇𝑛 is a discretization of ∇, 𝑤𝑛 is the solution
of a discrete equivalent of (9) and 𝑤 is the solution of (10). This method is used,
for instance, in [DEG+17].

4 Appendix
We prove here that the space 𝑁𝛼,2(R𝑑) (which is a Nikolsky-space) is continuously
embedded in the space 𝐻𝑠(R𝑑) for 0 ≤ 𝑠 < 𝛼 ≤ 1 (Lemma 4) and that the space
𝐻𝑠 (with 𝑠 > 0 and Ω bounded) is compactly embedded in 𝐿2(R𝑑) (Lemma 5).

Definition 2. Let 0 < 𝛼 ≤ 1 and 𝑑 ≥ 1. The space 𝑁𝛼,2(R𝑑) is the set of elements
𝑢 in 𝐿2(Ω) such that there exists 𝐶 satisfying

‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 𝐶|𝜂|𝛼, for all 𝜂 ∈ R𝑑. (24)

The norm in the space 𝑁𝛼,2(R𝑑) is defined by

‖𝑢‖𝑁𝛼,2 = ‖𝑢‖𝐿2(R𝑑) + max
𝜂∈R𝑑, 𝜂 ̸=0

‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑)
|𝜂|𝛼

.

With this norm, 𝑁𝛼,2 is a Banach space.

Lemma 4. Let 𝑑 ≥ 1, 0 ≤ 𝑠 < 𝛼 ≤ 1. Then the space 𝑁𝛼,2(R𝑑) is continuously
embedded in the space 𝐻𝑠(R𝑑) (see Definition 1).

Proof. Let 𝑢 ∈ 𝑁𝛼,2(R𝑑) and 𝐶 = ‖𝑢‖𝑁𝛼,2 . For all 𝜂 ∈ R𝑑, one has

‖ ̂𝑢(· + 𝜂) − ̂︀𝑢‖𝐿2(R𝑑) = ‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 𝐶|𝜂|𝛼.

We recall that for all 𝜂 ∈ R𝑑, ̂𝑢(· + 𝜂)(𝜉) = 𝑒𝑖𝜂·𝜉�̂�(𝜉) a.e.. Then∫︁
R𝑑

|𝑒𝑖𝜂·𝜉 − 1|2|̂︀𝑢(𝜉)|2𝑑𝜉 ≤ 𝐶2|𝜂|2𝛼. (25)
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Let 𝑒1, . . . , 𝑒𝑑 be the canonical basis of R𝑑. Let 𝑗 ∈ {1, . . . , 𝑑} and 𝑡 > 0. With
𝜂 = 𝑡𝑒𝑗 in (25) one obtains∫︁

R𝑑

|𝑒𝑖𝑡𝜉𝑗 − 1|2

𝑡2𝛼
|̂︀𝑢(𝜉)|2𝑑𝜉 ≤ 𝐶2,

and then, for 𝜀 > 0 and for all 𝑡 > 0,∫︁
R𝑑

|𝑒𝑖𝑡𝜉𝑗 − 1|2

𝑡2𝛼
|̂︀𝑢(𝜉)|2𝑑𝜉 1

𝑡1−𝜀
≤ 𝐶2 1

𝑡1−𝜀
.

Integrating this inequality between 0 and 1 and using Fubini-Tonelli Theorem
lead to ∫︁

R𝑑

|̂︀𝑢(𝜉)|2
(︀ 1∫︁

0

|𝑒𝑖𝑡𝜉𝑗 − 1|2

𝑡2𝛼+1−𝜀
𝑑𝑡

)︀
𝑑𝜉 ≤ 𝐶2

𝜀
.

We use now the change of variable 𝑡|𝜉𝑗 | = 𝜏 so that (since |𝑒𝑖𝜏 − 1| = |𝑒−𝑖𝜏 − 1|)∫︁
R𝑑

|̂︀𝑢(𝜉)|2|𝜉𝑗 |2𝛼−𝜀
(︀ |𝜉𝑗 |∫︁

0

|𝑒𝑖𝜏 − 1|2

𝜏2𝛼+1−𝜀
𝑑𝜏

)︀
𝑑𝜉 ≤ 𝐶2

𝜀
. (26)

We set 𝑎𝜀 =
1∫︁

0

|𝑒𝑖𝜏 − 1|2

𝜏2𝛼+1−𝜀
𝑑𝜏 .

Note that 0 < 𝑎𝜀 < +∞ since |𝑒𝑖𝜏 − 1|2 = (cos(𝜏) − 1)2 + (sin(𝜏))2 ≤ 2𝜏2

and 𝛼 ≤ 1. With this definition of 𝑎𝜀, one has∫︁
R𝑑

|̂︀𝑢(𝜉)|2|𝜉𝑗 |2𝛼−𝜀𝑑𝜉

≤
∫︁

|𝜉𝑗 |<1

|̂︀𝑢(𝜉)|2𝑑𝜉 + 1
𝑎 𝜀

∫︁
|𝜉𝑗 |≥1

|̂︀𝑢(𝜉)|2|𝜉𝑗 |2𝛼−𝜀
(︀ |𝜉𝑗 |∫︁

0

|𝑒𝑖𝜏 − 1|2

𝜏2𝛼+1−𝜀
𝑑𝜏

)︀
𝑑𝜉,

and then we deduce from (26)∫︁
R𝑑

|̂︀𝑢(𝜉)|2|𝜉𝑗 |2𝛼−𝜀𝑑𝜉 ≤ ‖𝑢‖2
𝐿2(R𝑑) + 𝐶2

𝜀𝑎𝜀
≤ 𝑏𝜀‖𝑢‖2

𝑁𝛼,2
,

with 𝑏𝜀 = 1 + 1
𝜀𝑎𝜀

. This gives

‖𝑢‖2
𝛼− 𝜀

2
=

∫︁
R𝑑

(1 + |𝜉|2)𝛼− 𝜀
2 |̂︀𝑢(𝜉)|2𝑑𝜉 ≤ 𝑑𝑏𝜀‖𝑢‖2

𝑁𝛼,2

and concludes the proof.
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Lemma 5. Let Ω be a bounded open set of R𝑑 (𝑑 ≥ 1), 𝑠 > 0 and

𝐻𝑠 = {𝑢 ∈ 𝐻𝑠(R𝑑), 𝑢 = 0 a.e. on R𝑑 ∖ Ω},

equipped with the norm ‖ · ‖𝑠 given in (13). Then, 𝐻𝑠 is compactly embedded in
𝐿2(R𝑑).

Proof. Since 𝐻𝑠 is continuously embedded in 𝐻𝑠 for 0 ≤ 𝑠 < 𝑠, we have only to
prove the lemma for 0 < 𝑠 ≤ 1.

Let 0 < 𝑠 ≤ 1, we are going to prove that for all 𝑢 ∈ 𝐻𝑠 and 𝜂 ∈ R𝑑,

‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 2‖𝑢‖𝑠|𝜂|𝑠. (27)

Inequality (27) gives that 𝐻𝑠 is compactly embedded in 𝐿2(R𝑑). It is a con-
sequence of the Kolmogorov theorem in 𝐿𝑝-spaces (see, for instance, [GH13,
Theorem 8.16]).

Let 𝜂 ∈ R𝑑, 𝜂 ̸= 0. One has, as in Lemma 4,

‖𝑢(· + 𝜂) − 𝑢‖2
𝐿2(R𝑑) = ‖ ̂𝑢(· + 𝜂) − ̂︀𝑢‖2

𝐿2(R𝑑) =
∫︁
R𝑑

|𝑒𝑖𝜂·𝜉 − 1|2|̂︀𝑢(𝜉)|2𝑑𝜉.

We now remark that for all 𝜂, 𝜉 ∈ R𝑑, one has

|𝑒𝑖𝜂·𝜉 − 1|2 ≤ 4(1 + |𝜉|2)𝑠|𝜂|2𝑠. (28)

Indeed, since (for all 𝑥 ∈ R) |𝑒𝑖𝑥 − 1| ≤ 2, (28) is true if |𝜂| ≥ 1 and if |𝜂| < 1 but
|𝜉||𝜂| ≥ 1. If |𝜂| < 1 and |𝜉||𝜂| < 1, (28) is also true since |𝑒𝑖𝑥 − 1|2 ≤ 2𝑥2 and
then |𝑒𝑖𝜂·𝜉 − 1|2 ≤ 2|𝜉|2|𝜂|2 ≤ 2|𝜉|2𝑠|𝜂|2𝑠 (since 𝑠 ≤ 1), which gives (28). Using
(28), we then obtain that

‖𝑢(· + 𝜂) − 𝑢‖2
𝐿2(R𝑑) ≤

∫︁
R𝑑

4(1 + |𝜉|2)𝑠|𝜂|2𝑠|̂︀𝑢(𝜉)|2𝑑𝜉

and, finally, ‖𝑢(· + 𝜂) − 𝑢‖𝐿2(R𝑑) ≤ 2‖𝑢‖𝑠|𝜂|𝑠. This concludes the proof.

5 Conclusion
This paper presents some tools useful for proving the convergence of numerical
schemes. The main result is Theorem 2. Two applications are presented. The first
one appears for the discretization of the Navier-Stokes equations and the second
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one for the Stefan problem. However, one may find other problems where the
tools discussed here can be applied for proving the convergence of the numerical
schemes. The ideas that are developed in this paper can probably also been
extended to the analysis of high-order nonconforming methods (e.g., for the
convergence analysis of discretization schemes for the Navier-Stokes equations,
Leray-Lions problems, nonlinear elasticity models. . . ).

In the case of the discrete setting of the compressible Navier-Stokes equations
when the equation of state does not allow an 𝐿2(]0, 𝑇 [, 𝐿2(Ω))-estimate on 𝜌,
it will be interesting to work with a sequence (𝜌𝑛)𝑛∈N weakly convergent in
𝐿2(]0, 𝑇 [, 𝐿𝑞(Ω)) with some 1 < 𝑞 < +∞ and a sequence (𝑢𝑛)𝑛∈N weakly
convergent in 𝐿2(]0, 𝑇 [, 𝐿𝑝(Ω)) with (1/𝑝) + (1/𝑞) = 1 (we only consider in this
paper the case 𝑝 = 𝑞 = 2).
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