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Abstract:
The paper is twofold. It aims �rst to validate and compare adjoint-based sen-

sitivity and other sensitivity methods and their possible relation to Uncertainty

Quanti�cation analysis. These methods, illustrated on a simple toy-models can

be a lower cost tool for mathematical analysis of complex problems of industrial

interests. The second objective is to propose an Uncertainty Quanti�cation of

the compressible single stream jet stability subjected to frequency variation. The

governing equations are the low cost model called Parabolized Stability Equations.

This objective is strongly related to the noise sensitivity and control studies since

it has been demonstrated that noise is originated from K-H instability in such

a �ow. Later, the adjoint PSE approach will be used, to make the link between

sensitivity and UQ analysis as this quanti�cation for Large Eddy Simulations or

Reynolds Average Navier-Stokes simulations can be considerably expensive. En-

velope curves of the standard deviation are determined and compared with good

agreement for small variations of the input parameters in the �rst toy model.

For the jet stability, it has been found that the growth rate is almost insensitive

to small frequency variations and, on the other hand, the phases of the amplitude

functions of the disturbance are extremely sensitive to frequency.

Résumé:
Le papier comporte deux objectifs. Le premier consiste à valider et à com-

parer, sur un modèle simple, diverses approches de sensibilité et de relier les

résultats à ceux obtenus par une quanti�cation d'incertitude. Les approches

par sensibilité, numériquement moins conteuses peuvent être une bonne alter-

native aux analyses UQ pour des problèmes industriels plus complexe. Le sec-

ond objectif est de proposer une étude de quanti�cation d'incertitude associée

aux propriétés de stabilité d'un écoulement compressible simple �ux par rapport

à des variations de fréquences. L'étude est basé sur le modelés simple des des
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équations de stabilité paraboliques (PSE). Cet objectif est associé aux études de

sensibilités et de contrôle des émissions acoustiques dans les jets,celles-ici ont

pour origine les instabilités de type K-H. En parallèle, les équations PSE ad-

jointes seront utilisées pour faire le lien entre la sensibilité et l'analyse UQ. Ces

analyses UQ couramment employées sur des simulation de type LES et RANS

s'acèrent plus coûteuse numériquement qu'une étude de sensibilité. Des courbes

enveloppes à partir des variances sont déterminées et comparées avec de très

bon accord et pour des petites variations des paramètres d'entrée, pour le cas du

modèle de référence. Pour la partie stabilité de jet, l'analyse UQ conclut que

les taux d'ampli�cation des ondes d'instabilité sont peu sensibles à la fréquence,

alors que les phases des perturbations y sont à l'opposé très sensibles.

Keywords: sensitivity, adjoint, uncertainty quanti�ca-
tion, stability, PSE, aeroacoustics

1 Introduction

The generation of noise has been demonstrated to originate from Kelvin-

Helmholtz instabilities amplifying in the jet stream. Some noise reduction can

not be achieved before a deep analysis of the sensitivity of this instability to

any �ow perturbations or variations. In [3, 4] an adjoint -based sensitivity of

the jet �ow instability subjected to any forcing has been performed. This work

is based on the Linearized Parabolized Stability Equations (LPSE) and their

adjoint. Results are linked to uncertainty analysis. The Linear LPSE is used

to analyse the jet instability [5, 6, 8]. The base �ow under consideration is a

semi-analytical, axisymmetric, inviscid and low-Mach number single jet [6]. In

this paper, an Uncertainty Quanti�cation of the jet �ow stability subjected to

frequency variation is proposed since noise emission are related to frequency.

The remaining question is how sensitivity studies can be related to an Uncer-

tainty Quanti�cation? To answer we �rst propose a toy model on which both

sensitivity and UQ analysis are carried out. UQ analysis is about determining

how likely the outputs of a problem under investigation are when the inputs are

not precise. In the present, paper such output uncertainties are represented by

the standard deviation. For cases where the determination of uncertainties is

of a high interest it is recommended to also look into the probabilistic or cu-

mulate distribution functions. On the other hand, sensitivity analysis is about

apportioning the uncertainty in the output with the di�erent input uncertain-

ties (gradients). In this paper the gradients are calculated by four ways: i)

exactly calculating the sensitivity coe�cients of the governing equations with

the adjoint-based approach, ii) by integrating the standard deviation ratio from
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many direct computation, iii) by a sensitivity indices and iv) by a variance-based

sensitivity analysis. The approach ii) and iii) can be quali�ed as One-factor-

At-a-Time (OAT), just on component of the parameter vector is modi�ed when

the others are kept constant. In addition we present a way to perform local

sensitivity using gradient of the direct equations.

In the following, a toy model is proposed as a test where the input uncer-

tainties are set arbitrarily. This simple example wants to manifest the relation

between adjoint-based sensitivity and other sensitivity methods that can also in-

clude an uncertainty analysis. The next section is an application on the stability

of compressible single-jet �ow.

2 A model toy problem

a - ODE direct equations

The toy model is a set of two coupled ODE formulated as a classical opti-

mization problem. Given the state vector y = [y1, y2]
t ∈ C2 and the control or

design parameter λ = [λ1, λ2]
t ∈ C2 , where the exponent t always stands for

transpose. The goal is to get, quantitatively or qualitatively, the variation of

the cost function E(y, λ) with respect to the variation of the control parameter

λ. Moreover the state vector y and the control parameter λ are directly related

by the constrained state equation F (y, λ) = 0. The state equation of the toy

model (1) includes its initial condition and is given by:

F (y, λ) = ẏ(t, λ)−A(λ)y(t, λ)−b(λ)u(t) = 0, y(0) = y0 =

[
0
1

]
(1)

with

A =

[
−2I λ1
λ2λ

2
1 −5

]
, b =

[
1 + λ2
λ1λ

2
2

]
where I stands for the square root of −1 and u(t) can be any forcing or control

�xed in this simple model as a cosine function, u(t) = cos(3t).

The quadratic cost function (eq. 2) is de�ned as:

E(λ) =
1

2
〈y(t, λ),y(t, λ)〉t . (2)

Given v and u as two arbitrary complex vectors the brackets 〈v,u〉t indicates
an integral inner product in the complex plane de�ned by over the time domain

[0, T ]:

〈v,u〉t =

∫ T

0

vhu dt,

where the superscript h denotes transpose conjugate.
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The solution can be integrated numerically or analytically and the stability

will strongly depend on the values of λ and the eigenvalues of A.

In order to perform an UQ or variance-based sensitivity analysis a variation

of the control parameter λ has to be done. We decompose each component of

the vector λ into a reference value λi0 and a small perturbation ∆λi(η):

λi = λi0 + ∆λi(η), with i = 1, 2 (3)

where the parameter η is de�ned in the range [−1 1]. The small perturbation

∆λi is de�ned by:

∆λi = εif(η) (4)

where the amplitude εi is a constant and f(η) is set as a sine or a Gaussian

function.

In equation (3), and in the following η in λ1 and η in λ2 are considered as

independent variables.

b - Sensitivity analysis

A possible way to quantify uncertainties is to refer to the standard deviation

of a variable under interest. The ratio between the variance of the cost function

when varying one component λi of the parameter λ, and the standard deviation

of such parameter can be written as

σ2
Eλi

σ2
λi

=

∫ 1

−1
[E(λi)− Ēλi ]2dη∫ 1

−1
[λi − λ̄i]2dη

. (5)

The idea of using such ratio is to see whether a relation with local sensitivity

exists. The over-bar denotes the mean value of the function or of the parameter.

In the previous equation, E(λi) is the cost function where the component λi
may vary whilst the other components are kept constant. Ēλi is the mean value

and σEλi is the variance when considering λi as the varying parameter.

In this paper, as a �rst step, the integrals over η are numerically computed

over a constant mesh grid for η = (ηk)k=1,N . To evaluate the integral of the

numerator of equation (5), N computations of the ODE system (eq. (1)) and N

evaluations of E are required. The ODE is solved with a fourth-order Runge-

Kutta scheme.

As a second step, the sensitivity is now performed in order to get the gra-

dients of the cost function E(λ) with respect to λi,
∂E
∂λi

. The sensitivity ∂E
∂λi

is

calculated by solving the adjoint of the state model, see [1, 3]. The gradients

are determined with a Lagrangian functional L where

L = E − 〈y∗, F (y, λ)〉t



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

As a result, the gradients and therefore the sensitivity function are the ad-

joint states:

∂E

∂λi
= 〈y∗, z〉t , with z =

∂A

∂λi
y(t, λ) +

∂b

∂λi
u(t) (6)

where y∗ is the adjoint state solution of:

ẏ∗(t, λ) = −A(λ)hy∗(t, λ)− y(t, λ), y∗(T, λ) = 0 (7)

The adjoint equations are solved in reverse time, and a terminal condition at

t = T has to be set.

Only two computations of equations (1) and (7) are required to solve the

sensitivity functions with the adjoint approach.

Finally, the numerical results σE/σλi of equation (5) and the gradients ∂E
∂λi

from (6) are compared and a very good agreement has been found as shown in

table 1. It shows that for small uncertainties in the inputs, an adjoint-based

sensitivity analysis provides the same numerical results than equation (5), which

is computationally much more expensive and less exact. These results can be

explained by the linearity that the response may have in such a small range.

To explore such property, two more sensitivity analysis have been developed: a

One-factor-At-a-Time (OAT) with sensitivity indices SI and a Variance-Based

Sensitivity Analysis. Sensitivity indices provide a relatively good measure of

the sensitivity of an output with respect to the variation in the inputs in the

cases that the model is linear additive and the parameters are independent each

other. This method also represents an ine�cient sampling of the random space,

as only the initial and last values of the interval are computed. The sensitivity

indices can be obtained by:

SIi =
E(λimax

)− E(λimin
)

λimax
− λimin

(8)

In the literature, this coe�cient SIi is often normalized by the mean quantities

: λ̄i/Ē. In Table 1 it can be seen that they are relatively close to the ones cal-

culated by the previous two methods. This is a sign about the linear property

our model is experiencing in the small range of uncertainties.

In addition to the previous methods, a Variance-Based Sensitivity Analysis

has been carried out in order to have a global understanding of the contributions

of the input uncertainties. To develop such analysis, a decomposition of the

variance is shown in equation (9), and sensitivity coe�cients, de�ned di�erently

from the previous approaches, are computed in equation (10) from its proportion

with respect to the total variance. Si and STi , in equation (11), are the �rst-

order and total sensitivities index respectively. In the following equations the
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Method
∂E

∂λ1

∂E

∂λ2

∂E

∂λ2
/
∂E

∂λ1

Adjoint approach 0.27262 1.7992 6.5997
OAT σ-ratio 0.27084 1.8006 6.6482
OAT SI 0.20670 1.3772 6.6628

Table 1: Comparison among sensitivity methods.

λ1 λ2
√
S2/S1

S1 = 0.0224 S2 = 0.9776 6.606
ST1

= 0.0228 ST2
= 0.9772 6.547

Table 2: Results from Variance-Based Sensitivity Analysis.

multiple subscripts refer to second, third or higher order interactions, depending

on the number of subscripts, see [10].

The results of such analysis are shown in table 2. Note that m represents

the dimension of the stochastic space.

σ2
E =

m∑
i=1

σ2
Eλi

+

m∑
i=1,j>i

σ2
Eλij

+

m∑
i=1,k>j>i

σ2
Eλijk

+ ... (9)

1 =

m∑
i=1

Si +

m∑
i=1,j>i

Sij +

m∑
i=1,k>j>i

Sijk + ...+ Sijk,...,m (10)

STi = Si + Sij + Sijk + ...+ Sijk,...,m (11)

Figure 1: Latin Hypercube Sampling with 5000 samples.
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The value of σ2
E has been calculated by Latin Hypercube Sampling with

a total of 5000 samples, as shown in Fig. 1, and it has been found that, by

comparing with the data from equation (5) and with the third columns of table

1 and 2, we get

σ2
E ≈

2∑
i=1

σ2
Eλi

or

√
S2

S1
≈ ∂E

∂λ2
/
∂E

∂λ1

This is re�ects the weak interaction of the higher-order sensitivities, again due

to the linearised behaviour of the model.

c - Local sensitivity or gradient

Sensitivity based on global (integral of time or space) value is referred as a

global sensitivity and in this section, local sensitivity means variation of a local

(at a given time t) quantity.

Regarding the representation of the variation of the output, the uncertainty

quanti�cation can be localized at each time t. It is usual to plot the stochastic

response with its mean and its standard deviation to display envelope curves

in cases where the probabilistic or cumulate distribution functions are not of a

high interest.

To perform this new study, from a sensitivity point of view, we are looking

for the variation of y with respect to λi, that is
∂y

∂λi
= wλi . In this case, we have

two vectors of dimension two. The local sensitivities can be determined with

the same ideas of the adjoint equation, by deriving equation (1) with respect to

any λi:

ẇλi(t) = A(λ)wλi(t) + z, wλi(0) = 0 (12)

where z is the same as found in equation (6). The initial condition is null

since the initial condition of the state y does not depend on λ. This equation

can be called "gradient" equation and it is not the same as the adjoint or state

equations. It is then easy to write the standard deviation ratio:

σ
(n)
yλi

(t)

σλi
= w

(n)
λi

(t), (13)

where the exponent n indicates the component of the vector (n=1 or 2 here).

The stochastic mean and standard deviation envelopes are plotted in �gure

2. It is an example, where λ1 is �xed and λ2 is the varying parameter calcu-

lated by ranging η from −1 to +1 in equal step size (see equation (3)). The
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graph are representing the real part, the imaginary part and the modulus of

the �rst component (n = 1) of the state vector y solution of the ODEs (eq. 1)

for a given value of λ2. The black full-lines and the dash-lines are respectively

the real part, the imaginary part and the modulus of ȳ
(1)
λ2

and ȳ
(1)
λ2
± σ(1)

yλ2
. Sim-

ilar results are found with the second components of y and for y when λ1 varies.

In conclusion two types of sensitivity or variance sensitivity can be deter-

mined:

1. Sensitivity of global function (E) or global variance sensitivity Eλ. One

state and one adjoint equation computation are required from one hand.

For UQ (and also for the presented Variance-Based Sensitivity) at mini-

mum N state equation computations are necessary, when N is normally

large and depends on the integration method (Monte Carlo, quadrature,

�nite di�erence, etc).

2. Local sensitivity or local variance sensitivity w
(n)
λi

(t). Denote m as the di-

mension of the parameter λ, one state and m gradient equation computa-

tions are required on one hand. For UQ (and Variance-Based Sensitivity),

a minimum of N computations of the state equation are necessary.

"Gradient" and "adjoint" approaches can be some low computational tech-

niques to analyse sensitivity or uncertainties of a given problem subjected to

varying parameters with a given distribution. These cheap approaches remain

interesting as soon as the variations of the inputs remain small. For this reason,

the aim of future work is to explore the possibility of using a costless model

based on adjoint sensitivity theory, to apply UQ sampling techniques. This

would represent a very e�cient tool.

4 PSE and sensitivity in jet stability analysis

The approach described in the previous section is to be extended to analyse

the sensitivity of the stability properties of a compressible single jet-stream �ow.

Usually the linear stability theory (LST) leads to some ODEs and an eigenvalue

problem. The �ow stability depends on the sign of the imaginary part of the

eigenvalue. The PSE (for Parabolized Stability Equations [5]) approach used

in that work consists on solving a set of Partial Di�erential Equations (PDE)

mostly parabolic in the streamwise direction. Several advantages can be found

in the use of the PSE. Indeed, contrary to LST where local parallel �ow is

assumed they take into account the small streamwise variations of the base �ow

and of the disturbances directly in the formulation. Since PSE are PDEs, it is

simple to solve them by adding various boundary conditions and source terms.

This leads to use them for receptivity and sensitivity analysis [1], in optimal

�ow control approaches [2] and for weakly nonlinear stability studies [5].
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Figure 2: Mean and standard deviation envelopes of y1 and |y|2/2 with respect
to a number of di�erent values λ2 function of time. Dash line: from gradients
(sensitivity analysis), green full line: direct computations of equation (1).

For this analysis, the PSE are derived from the Linearized Euler Equations

(LEE) in cylindrical coordinates (x, r, θ, t). The total �ow �eld with components

respectively velocity, density and pressure, is decomposed into a base �ow q̄ =

(ūx, ūr, ūθ, ρ̄, p̄)
t and a small perturbation quantity q′ = (u′x, u

′
r, u
′
θ, ρ
′, p′)t. Any

perturbation is assumed to have a like-wave exponential term χ(x) exp(i(mθ −
ωt)) and a x-slowly amplitude function q(x, r) :

q′ = q(x, r) χ(x) exp (i (mθ − ωt)), with χ(x) = exp

[
i

∫ x

x0

α(ξ)dξ

]
(14)

where α(x) is the complex axial wavenumber. The imaginary part, αi(x), can

be de�ned as a growth rate and 2π/αr(x) corresponds to a spatial wavelength.

m is the �xed integer azimuthal wavenumber and the real number ω is the

�xed angular frequency of the disturbance. x0 is the inlet of the computational

domain.

Substituting equation (14) into LEE we get the so-called Parabolized Sta-

bility equations (PSE):

LPSE q = 0 (15)

From equation (14) it can be noticed that the streamwise change of the distur-
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bance can be described by the product of the amplitude function and of the

exponential term. This ambiguity must be resolved by the introduction of an

additional equation, called normalization or closure relationship, which imposes

that the growth of the disturbance is absorbed by the wave function part of the

decomposition χ(x), making sure that the shape function q(x, r) stays slowly

varying in x [5]. We set :

N(q, x) =

∫ ∞
0

q̄t
∂q

∂x
r dr = 0 (16)

Where t denotes transpose and over-bar, complex conjugate. Equations

(15) and (16) are solved using a streamwise marching solution starting from the

initial condition at x = x0 which is the solution of the local approach (LST).

A compressible PSE solver designed by the ONERA stability team [6] has been

used here.

Then the adjoint of PSE has been written speci�cally to investigate �ow

sensitivities to any disturbances of non-viscous jet and to de�ne some new noise

control strategies. Similarly to PSE, a PDE and a closure relation are found

and solved. As usual, some sources terms are coming from the PSE solution and

from the de�nition of the output. This output is a quadratic integral observation

functional J de�ned from the perturbation �eld along the computational domain

or only at the outlet of the computational domain. Adjoint PSE has been

validated in case of subsonic single stream jet excited with a number of di�erent

external (source) forcing [3]. It is easy to demonstrate that adjoint PSE can be

extended to sensitivity analysis of any parameters. The sensitivity with respect

to the frequency ω is investigated in the following. The result is the sensitivity

function:
∂J

∂ω
= Sω(ρ̄,M, α,q,q∗)

where M is the Mach number and q∗ is the solution of the adjoint PSE.

Similarly to the approach used in equation (12), it is possible to compute

dα/dω, indeed, equations (15) and (16) can be derived with respect to ω and

local sensitivity qω can be found.

LPSE qω = −∂LPSE
∂ω

q = A0q,

∫ ∞
0

[
q̄tω

∂q

∂x
+ q̄t

∂qω
∂x

]
r dr = 0 (17)

The numerical computation of equation (17) is currently in progress. In the

following the outputs of the UQ analysis (α, q) are referred as Φ.

5 PSE and UQ in jet stability analysis

In this section, an UQ study is performed di�erently from section 1 and 2,

since only the PSE are solved and considered as a black-box with uncertain

input and outputs.
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The input uncertainty associated to the frequency ω has been modelled by an

Uniform Probabilistic Distribution and then the Stochastic Collocation Method

(SCM) with a Clenshaw- Curtis (C-C) Sparse Grid [9] has been implemented.

SCM was developed by Mathelin and Hussaini [7] to improve the high costs

of the Galerkin Polynomial Chaos method with non-linear equations. For each

collocation point, the CFD problem is solved deterministically, and the solution

can be constructed as an expansion:

Φ(x, β) ≈
N∑
i=1

Φi(x) `i(β) (18)

where Φi(x) with x = (x, r) stands for the deterministic solutions and `i are

the Lagrange interpolant polynomials. Statistical moments can be obtained by

applying quadrature rules and SCM represents a very e�cient option for lower

dimension problems in comparison with sampling techniques such as Monte-

Carlo. For higher dimension problems, sampling techniques use to be more

suitable.

In this paper, the collocation points of the sparse grid have been determined

according to the C-C quadrature nested rule. Special attention must be paid in

the Probabilistic Density Function of the random variable, ξ ∈ Ξ, as we have

to perform a mathematical transformation from the physical random variable

space to an arti�cial stochastic space, called α-domain but here referred to as

β-domain ( β = Sξ(ξ)), as α is used for the wavenumber. This transformation

is an important di�erence with respect to other UQ methods.

Regarding the source of uncertainty, it has been based on a 10% of variation

of the frequency, whose deterministic base value is imposed to ω̄ = 1.2π, the

mean value. An uniform distribution ω ∼ U(−0.1ω̄, 0.1ω̄) is set.

In Figure 3, the mean and standard deviation of the real and imaginary parts

of α = αr + i αi, the complex axial wavenumber, is plotted for 33 Clenshaw-

Curtis quadrature nodes. It can be observed that the imaginary part is not very

sensitive with respect to the uncertain frequency in long distances, whilst the

real one is very slowly changing along the x/D axis of the jet. In conclusion a

small uncertainty on the frequency wave will modify the wavelength of the sound

wave but the instability (growth rate) of the �ow will remain almost unchanged.

In Figure 4, the mean value and envelopes of the real part of the amplitude

function of the streamwise and radial velocity are displayed for r/Dj = 0.51.

The uncertainty on the frequency generates strong variation on the phases of

the amplitude functions, so that the real or imaginary parts are very sensitive

to frequency variations. This results have been con�rmed by the sensitivity

analysis based on adjoint PSE.
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Figure 3: Mean and standard deviation envelopes of the wavenumber αr (a)
and of the growth rate αi (b).

Figure 4: Mean and standard deviation envelopes of the real part of the ampli-
tude functions ur (a) and ux (b), r/Dj = 0.51.

6 Conclusions

The relationship between a Uncertainty Quanti�cation (standard deviation

ratio) and a adjoint-based sensitivity analyses have been demonstrated, �rst on

a toy ODE model and after on a PDE stability problem. The use of adjoint equa-

tions required few computations comparing to some general usual UQ method,

since if m is the number of parameters with uncertainties, only m+ 1 computa-

tions are necessary to get the standard deviation and the envelope curves. It has

also been noticed that an uncertainty frequency wave modify the wavelength of

the sound wave but the growth rate will remain insensitive.

The next step will be to perform a propagation of instability by taking into

account uncertainties of the mean �ow into the stability of single- and double-

stream jet and to propagate the uncertainties to the far-�eld noise emission.
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Also, as here has been demonstrated that the sensitivity coe�cients can be

quickly obtained by the adjoint approach, the next step is to explore the pos-

sibility of quantify uncertainties by using a costless surrogate model based on

the exactly calculated adjoint-based sensitivity coe�cients.
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