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The gradient discretisation method for linear advection problems

J. Droniou, R. Eymard, T. Gallouët and R. Herbin

March 27, 2019

Abstract

We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic par-
tial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous
design and convergence analysis of various numerical schemes, corresponding to the methods known to be
GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes
on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The
scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the con-
vergence analysis with numerical tests based on the mass-lumped P1 conforming and non conforming finite
element and on the hybrid finite volume method.

Keywords: linear scalar hyperbolic equation, Gradient Discretisation Method, convergence analysis,
numerical tests.
AMS subject classification: 65N12, 65N30

1 Introduction

We are interested here in designing and analysing an approximation of ū, solution to the linear advection
problem stated in its strong form as

∂tū+ div(ū~v) + ūqP = fqI , in Ω× (0, T ), (1a)

ū(x, 0) = uini(x), for a.e. x ∈ Ω, (1b)

with the following assumptions on the data:

Ω is an open bounded connected polyhedral subset of Rd, d ∈ N? and T > 0, (2a)

uini ∈ L2(Ω) and f ∈ L2(Ω× (0, T )), (2b)

qI , qP ∈ L∞(Ω× (0, T )) with qI ≥ 0 and qP ≥ 0 a.e. in Ω× (0, T ), (2c)

~v ∈W 1,∞(Ω× (0, T ))d satisfies ~v · n = 0 on ∂Ω× (0, T ) and div~v = qI − qP a.e. in Ω× (0, T ), (2d)

where n is the outer normal to ∂Ω. Since the normal boundary value of ~v vanishes, there is no need for a
boundary condition on (1a).
The model (1) typically arises in oil recovery from underground reservoirs [1, 15] or in underground water
resources management [24], in which case qI and qP may represent the injection and production wells and ū
is the concentration of injected solvent or pollutant. The problem (1) is often discretised by the upstream
weighting finite volume scheme (see, for example, [16, Chapters 5 and 6] and references therein), which is easy
to implement even on unstructured meshes since the problem is first order. There are also numerous papers
studying Galerkin methods for this type of problems, which are based on the following weak formulation: a
function ū is said to be a weak solution of Problem (1) if:

ū ∈ L2(Ω× (0, T )) and, for all ϕ ∈ C∞c (Rd × [0, T )),

−
∫ T

0

∫
Ω

ū ∂tϕ dxdt−
∫

Ω

uini(x) ϕ(x, 0)dx +

∫ T

0

∫
Ω

(−ū ~v · ∇ϕ+ ū qPϕ)dxdt =

∫ T

0

∫
Ω

f qIϕ dxdt,
(3)
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where C∞c (Rd × [0, T )) is the set of the restrictions of functions of C∞c (Rd × (−∞, T )) to Rd × [0, T ).

Let 0 = t(0) < t(1) < · · · < t(N) = T be a discretisation of the time interval, and let δt(n+ 1
2 ) = t(n+1) − t(n).

We recall that, for V ⊂ H1(Ω) a finite dimensional space and θ ∈ [0, 1], the θ-scheme takes the following form:
u(0) ∈ V being a chosen interpolant of uini, the scheme consists in finding, for all n = 0, . . . , N − 1,

u(n+1) ∈ V, u(n+θ) = θu(n+1) + (1− θ)u(n) and, for all v ∈ V ,∫
Ω

u(n+1) − u(n)

δt(n+ 1
2 )

v dx +

∫
Ω

(−u(n+θ) ~v(n+ 1
2 ) · ∇v + u(n+θ) (qP )(n+ 1

2 )v)dx =

∫
Ω

f (n+ 1
2 ) (qI)(n+ 1

2 )v dx,
(4)

with suitable time approximations of the data indexed by (n+ 1
2 ). This scheme is L2 stable provided that θ ≥ 1

2 ,

which is proved letting v = u(n+θ) and following the calculus formula∫
Ω

u(n+θ)~v · ∇u(n+θ)dx =

∫
Ω

~v · ∇ (u(n+θ))2

2
dx = −

∫
Ω

(u(n+θ))2

2
div~vdx. (5)

Weak convergence properties are then obtained for the approximate solution, which generally displays oscilla-
tions. See [14] for a complete study of the particular case of Finite element methods, and [7] for a comparison
of different Galerkin schemes. A convergence result is proved in [13] under strong regularity hypotheses on the
solution and with a constant velocity field.

This paper is focused on the case where the approximation of u is no longer done in a subspace of H1(Ω). In a
number of situations, coupled problems including terms of different nature (e.g. diffusive, advective. . . ) must be
solved in an industrial context where the discretisation method, imposed by the use of an existing code, is based
on non conforming finite element, discontinuous Galerkin or hybrid methods (with face and cell unknowns), for
example.
In order to handle such a situation, we use the Gradient Discretisation Method (GDM) framework, which
gives a unified formulation of a large class of conforming and nonconforming methods; we refer the reader to
the monograph [12] for details. The idea of the GDM is to replace, in a weak formulation of the continuous
problem, the continuous space by the vector space of the degrees of freedom of the method XD, the functions u
and v by their reconstruction ΠDu and ΠDv, and the gradient ∇v by the reconstruction of a discrete gradient
∇Dv. A natural scheme would then be: given an interpolant u(0) ∈ XD of uini, solve for n = 0, . . . , N − 1,

u(n+1) ∈ XD, u(n+θ) = θu(n+1) + (1− θ)u(n) and, for all v ∈ XD,∫
Ω

ΠD
u(n+1) − u(n)

δt(n+ 1
2 )

ΠDv dx

+

∫
Ω

(−ΠDu
(n+θ) ~v(n+ 1

2 ) · ∇Dv + ΠDu
(n+θ) (qP )(n+ 1

2 )ΠDv)dx =

∫
Ω

f (n+ 1
2 ) (qI)(n+ 1

2 )ΠDv dx.

(6)

Unfortunately, it does not seem possible to establish the stability (and thus the convergence) of (6) due to the
absence of the equivalent of the calculus chain (5) i this fully discrete setting involving function and gradient
reconstructions ΠD and ∇D instead of the classical differential operators. To obtain a scheme amenable to a
convergence analysis, we thus consider an alternative formulation, using a skew-symmetric reformulation of the
advective term.

If ∇ū ∈ L2(Ω× (0, T )), owing to the relation

1

2
div~v + qP =

1

2

(
qI − qP

)
+ qP =

1

2
(qI + qP ),

a function ū ∈ L2(Ω× (0, T )) is a solution to (3) if and only if it satisfies

∀v ∈ C∞c (Rd × [0, T )),

−
∫ T

0

∫
Ω

ū ∂tv dxdt−
∫

Ω

uini(x) v(x, 0) dx

+

∫ T

0

∫
Ω

(
1

2
∇ū · ~vv − 1

2
ū~v · ∇v +

1

2
ū(qI + qP )v

)
dxdt =

∫ T

0

∫
Ω

fqIvdxdt.

(7)
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The idea to discretise (1a) is then to mimick the formulation (7) instead of (3) in the discrete setting (this idea
is in the same line as the weak formulation chosen in [4, Hypothesis (A1)]). Indeed, similarly to the standard
skew-symmetric formulation of the convective term in the Navier-Stokes equations, the advection component
in (7) vanishes when the solution is taken as a test function. The GDM scheme based on (7) is thus: take
u(0) ∈ XD and interpolant of uini and, for all n = 0, . . . , N − 1,

u(n+1) ∈ XD, u(n+θ) = θu(n+1) + (1− θ)u(n) and, for all v ∈ XD,∫
Ω

ΠD
u(n+1) − u(n)

δt(n+ 1
2 )

ΠDv dx +

∫
Ω

(1

2
∇Du(n+θ) · ~v(n+ 1

2 )ΠDv −
1

2
ΠDu

(n+θ)~v(n+ 1
2 ) · ∇Dv

+
1

2
ΠDu

(n+θ)
[
(qI)(n+ 1

2 ) + (qP )(n+ 1
2 )
]

ΠDv
)

dx =

∫
Ω

f (n+ 1
2 ) (qI)(n+ 1

2 )ΠDv dx.

(8)

Letting v = u(n+θ) in (8) leads to an estimate on ΠDu
(n+θ), which entails a weak convergence property for the

reconstruction of the function. However a new difficulty arises: the scheme (8) does not yield any estimate on
∇Du(n+θ); this prevents us from obtaining any limit (even weak) for this term, and thus from passing to the
limit to recover the continuous problem.
This issue is solved by introducing a stabilisation term that yields a weak bound on ∇Du(n+θ). Several versions
of such a stabilisation term can be found [22, 19], such as the symmetric linear stabilisation of [4], or the
Streamline-Upwind/Petrov-Galerkin (SUPG) stabilisation [3, 23, 21, 10]. The latter is equivalent to replacing,
in the term ū~v of (1a), ū by ū− h ~v

|~v| · ∇ū (this is a kind of continuous upstream weighting for a mesh with size

h). This leads to the term

div

([
ū− h

~v

|~v|
· ∇ū

]
~v

)
= div(ū~v − hΛ∇ū), with Λ(x, t) =

~v(x, t)

|~v(x, t)|
⊗ ~v(x, t).

It is then numerically more stable to complete the SUPG scheme by modifying Λ into

Λ(x, t) =
~v(x, t)

|~v(x, t)|
⊗ ~v(x, t) + µId,

for a small value µ > 0. This choice of stabilisation term div(−hΛ∇ū) can be generalised into

− hαdiv(Λ|∇ū|p−2
Λ ∇ū) where |∇ū|Λ =

√
Λ∇ū · ∇ū, (9)

for some p ∈ (1,+∞) and α > 0, and Λ(x, t) symmetric positive definite with uniformly bounded eigenvalues.
An obvious and easy choice is p = 2 and Λ = Id, which leads to the classical Laplace operator. However, using
p 6= 2 may lead to a smaller numerical diffusion, see Section 5; let us note that in this case, the linear model
(1) is approximated by a non-linear problem, which is not in general much of a problem, since the complete
coupled physical model usually involves other non-linear terms. In this paper, we stabilise the scheme (8) by
introducing the discrete version of the stabilisation term (9), which leads to Scheme (21). Since the GDM method
also includes meshless schemes, the stabilisation term depends on a parameter hD which is an adaptation to
the hyperbolic setting of the space size of gradient discretisation for elliptic problems, see Definition 3.3 below.

This paper is organised as follows. The continuous problem is studied in Section 2: we show that there exists at
most one solution to (3), detailing in the present framework some of the proof of [9]; more precisely, an energy
estimate is proven by regularisation as in [9]. This energy estimate is used for the proof of uniqueness of the
solution; it is also crucial in order to prove the strong convergence of the scheme. We then apply in Section 3 the
gradient discretisation tools to Problem (3), and derive some estimates which are used in Section 4 to establish
the convergence of the scheme; as a by-product of this convergence, we also obtain an existence result for the
solution to (3). Let us emphasise that this convergence result is obtained without assuming more regularity on
the solution nor on the velocity field, and that a uniform-in-time weak convergence is proved (which is original,
to our knowledge). In Section 5 some numerical results are provided, using three different schemes that fit into
the GDM framework.
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2 The continuous problem

Since the flux is null on the boundary ∂Ω, the problem (3) may be reformulated on the whole space Rd by
extending ~v, qI and qP to Rd × R: we first choose an extension ~v ∈ W 1,∞(Rd × R)d, and then set qI =
max(div~v, 0) and qP = max(−div~v, 0) outside Ω× (0, T ). We also extend ū, f and uini by the value 0 outside
Ω×(0, T ) and Ω respectively. With these extensions and under the hypotheses (2), the problem (3) is equivalent
to the following problem, posed on the whole space:

ū ∈ L2(Rd × (0, T )) and, for all ϕ ∈ C∞c (Rd × [0, T )),

−
∫ T

0

∫
Rd
ū ∂tϕ dxdt−

∫
Rd
uini(x) ϕ(x, 0)dx

+

∫ T

0

∫
Rd

(−ū ~v · ∇ϕ+ ū qPϕ)dxdt =

∫ T

0

∫
Rd
f qIϕ dxdt.

(10)

Lemma 2.1 (Weak continuity with respect to time). Under Hypotheses (2), let ū be a solution of (3), or to
(10) after extending ū by 0 outside of Ω. Let ψ ∈ C∞c (Rd). Then the function Ūψ : t 7→

∫
Rd ū(x, t)ψ(x) dx

satisfies Ūψ ∈ H1(0, T ) ⊂ C0([0, T ]) and Ūψ(0) =
∫
Rd uini(x)ψ(x) dx. Hence, ū ∈ Cw([0, T ], L2(Ω)), where

Cw([a, b], L2(Ω)) stands for the space of functions [a, b]→ L2(Ω) that are continuous weakly in L2(Ω).

Proof. Let Θ ∈ C∞c ([0, T )). Taking ϕ(x, t) = Θ(t)ψ(x) in (10) yields

−
∫ T

0

Θ′(t)Ūψ(t)dt−Θ(0)

∫
Rd
uini(x) ψ(x)dx

+

∫ T

0

Θ(t)

∫
Rd

(−ū(x, t) ~v(x, t) · ∇ψ(x) + ū(x, t) qP (x, t)ψ(x))dxdt

=

∫ T

0

Θ(t)

∫
Rd
f(x, t) qI(x, t)ψ(x) dxdt.

(11)

Restricting to Θ ∈ C∞c (0, T ) this shows that, in the weak derivative sense,

Ū ′ψ(t) =

∫
Rd

(
(f(x, t) qI(x, t)− ū(x, t) qP (x, t))ψ(x) + ū(x, t) ~v(x, t) · ∇ψ(x)

)
dx. (12)

Since the right hand side of the above equation belongs to L2(0, T ), this concludes the proof that Ūψ ∈
H1(0, T ) ⊂ C0([0, T ]). The relation Ūψ(0) =

∫
Rd uini(x)ψ(x) dx is proved taking Θ ∈ C∞c ([0, T )) such that

Θ(0) = 1 in (11), integrating-by-parts in time and using (12).

Lemma 2.2 (Energy estimate). Under Hypotheses (2), any solution ū of (3) satisfies:

1

2

∫ T

0

∫
Ω

(ū(x, t))2dxdt+
1

2

∫ T

0

(T − t)
∫

Ω

(qI(x, t) + qP (x, t)) ū(x, t)2dxdt

=
T

2

∫
Ω

uini(x)2dx +

∫ T

0

(T − t)
∫

Ω

f(x, t)qI(x, t)ū(x, t)dxdt.

(13)

Proof. By density of C∞c (Rd × [0, T )) in H1(Rd × (0, T )), we can consider functions ϕ ∈ C0
c (Rd × [0, T )) ∩

H1(Rd × (0, T )) in (10). Letting ρ be a mollifier on Rd, and ρn(x) = ndρ(nx) for all x ∈ Rd and n ∈ N?, we
choose the function ϕ defined by

∀x, t ∈ Rd × [0, T ], ϕ(x, t) = (T − t)
∫
Rd

∫
Rd
ū(z, t)ρn(y − z)ρn(y − x)dzdy,

which satisfies ϕ ∈ C0
c (Rd × [0, T )) ∩H1(Rd × [0, T )) owing to Lemma 2.1. Using an integration by parts with

respect to y, we notice that

∀x, t ∈ Rd × [0, T ], ∇ϕ(x, t) = (T − t)
∫
Rd

∫
Rd
ū(z, t)∇ρn(y − z)ρn(y − x)dzdy,
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With this choice of ϕ in (10) leads to T1
(n) + T2

(n) + T3
(n) + T4

(n) + T5
(n) + T6

(n) = T7
(n), with

T
(n)
1 =

∫ T

0

∫
Rd
ū(x, t)

∫
Rd

∫
Rd
ū(z, t)ρn(y − z)ρn(y − x)dzdydxdt,

T
(n)
2 = −

∫ T

0

(T − t)
∫
Rd
ū(x, t)

∫
Rd
∂t

(∫
Rd
ū(z, t)ρn(y − z)ρn(y − x)dz

)
dydxdt,

T
(n)
3 = −T

∫
Rd
uini(x)

∫
Rd

∫
Rd
uini(z)ρn(y − z)ρn(y − x)dzdydx,

T
(n)
4 = −

∫ T

0

(T − t)
∫
Rd
ū(x, t) ~v(y, t) ·

∫
Rd

∫
Rd
ū(z, t)∇ρn(y − z)ρn(y − x)dzdydxdt,

T
(n)
5 =

∫ T

0

(T − t)
∫
Rd

(−ū(x, t) (~v(x, t)− ~v(y, t)) ·
∫
Rd

∫
Rd
ū(z, t)∇ρn(y − z)ρn(y − x)dzdydxdt,

T
(n)
6 =

∫ T

0

(T − t)
∫
Rd
ū(x, t) qP (x, t)

∫
Rd

∫
Rd
ū(z, t)ρn(y − z)ρn(y − x)dzdydxdt,

T
(n)
7 =

∫ T

0

(T − t)
∫
Rd
f(x, t) qI(x, t)

∫
Rd

∫
Rd
ū(z, t)ρn(y − z)ρn(y − x)dzdy dxdt.

(14)

Introducing the function ūn(y, t) =
∫
Rd ū(z, t)ρn(y − z)dz, which converges to ū in L2(Rd × (0, T )) as n→∞

and satisfies ūn ∈ H1(R× (0, T )) and ūn(y, 0) =
∫
Rd uini(z)ρn(y − z)dz (see Lemma 2.1), we have

T
(n)
1 =

∫ T

0

∫
Rd
ūn(y, t)2dydt

and, using an integration-by-parts,

T
(n)
2 = −

∫ T

0

(T − t)
∫
Rd
ūn(y, t)∂tūn(y, t)dydt = −

∫ T

0

(T − t)
∫
Rd
∂t

(
1

2
ūn(y, t)2

)
dydt

=
T

2

∫
Rd
ūn(y, 0)2dy −

∫ T

0

∫
Rd

1

2
ūn(y, t)2dydt.

Gathering these results leads to

T
(n)
1 + T

(n)
2 + T

(n)
3 =

1

2

∫ T

0

∫
Rd
ūn(y, t)2dydt− T

2

∫
Rd
ūn(y, 0)2dy

and therefore

lim
n→∞

(T
(n)
1 + T

(n)
2 + T

(n)
3 ) =

1

2

∫ T

0

∫
Rd
ū(x, t)2dxdt− T

2

∫
Rd
uini(x)2dx.

Turning to T
(n)
4 we write, using the divergence formula and div~v = qI − qP ,

T
(n)
4 = −

∫ T

0

(T − t)
∫
Rd
ūn(y, t) ~v(y, t) · ∇ūn(y, t)dydt

= −
∫ T

0

(T − t)
∫
Rd
~v(y, t) · ∇

(
1

2
ūn(y, t)2

)
dydt

=
1

2

∫ T

0

(T − t)
∫
Rd
ūn(y, t)2(qI(y, t)− qP (y, t))dydt.

Hence,

lim
n→∞

T
(n)
4 =

1

2

∫ T

0

(T − t)
∫
Rd
ū(y, t)2(qI(y, t)− qP (y, t))dydt.
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We then easily see that, as n→∞,

T
(n)
6 =

∫ T

0

(T − t)
∫
Rd
ūn(y, t)2 qP (y, t)dydt→

∫ T

0

(T − t)
∫
Rd
ū(y, t)2 qP (y, t)dydt

and

T
(n)
7 →

∫ T

0

(T − t)
∫
Rd
ū(y, t)f(y, t) qI(y, t)dydt.

The proof is completed by gathering all the above convergence results and by proving that

lim
n→∞

T
(n)
5 = 0. (15)

In order to do so, we follow the technique of [9, Lemma II.1] and [17, Lemma B.4]. An integration-by-parts
gives

T
(n)
5 =

∫ T

0

(T − t)
∫
Rd
an(y, t)ūn(y, t)dydt,

with

an(y, t) = div
(∫

Rd
(ū(x, t)ρn(y − x) (~v(x, t)− ~v(y, t))dx

)
.

Since the function (T − t)ūn converges to (T − t)ū in L2(Rd × (0, T )) as n→∞, the proof of (15) is complete
if we can show that an → 0 weakly in L2(Rd × (0, T )). We have

an(y, t) =

∫
Rd
ū(x, t)∇ρn(y − x) · (~v(x, t)− ~v(y, t))dx−

∫
Rd
ū(x, t)ρn(y − x)div~v(y, t))dx. (16)

By Lipschitz continuity of ~v, there exists C~v > 0 depending only on ~v such that |∇ρn(y−x)·(~v(x, t)−~v(y, t))| ≤
C~v|y−x| |∇ρn(y−x)|. Noting that the sequence of functions z 7→ |z| |∇ρn(z)| is bounded in L1(Rd), Young’s
inequality for convolution shows that the first term in the right-hand side of (16) is bounded in L2(Rd× (0, T )).
The same Young inequality also easily shows that the second term in this right-hand side is also bounded in
the same space, which proves that an itself remains bounded in L2(Rd × (0, T )). The weak convergence of an
therefore only needs to be assessed for smooth functions. Taking ψ ∈ C∞c (Rd × (0, T )), we have∫ T

0

∫
Rd
an(y, t)ψ(y, t)dydt = −

∫ T

0

∫
Rd

∫
Rd
ū(y + z, t)ρn(z) (~v(y + z, t)− ~v(y, t)) · ∇ψ(y, t)dzdydt.

Hence, using the Lipschitz-continuity of ~v and the fact that ρn is supported in the ball centred at 0 and of
radius 1/n, there exists C > 0 depending only on ū, ~v and ψ such that∣∣∣∣∣

∫ T

0

∫
Rd
an(y, t)ψ(y, t)dydt

∣∣∣∣∣ ≤ C

n
.

Hence an converges to 0 weakly in L2(Rd × (0, T )), which concludes the proof of (15) and of the lemma.

Corollary 2.3 (Uniqueness). Under Hypotheses (2), there exists at most one solution ū to (3).

Proof. The difference of two solutions to (3) is a solution for the same problem with right-hand-side f = 0 and
initial condition uini = 0. The energy estimate (13) shows that this difference is a.e. equal to 0.

6



3 The gradient discretisation method for the linear advection equa-
tion

The gradient discretisation method (GDM) is a general framework for nonconforming approximations of elliptic
or parabolic problems, see [12] for a general presentation of the method and of some models and schemes it
applies to.
The principle of the GDM is to design a set of discrete elements (space, operators) called a gradient discretisation
(GD), which is substituted in the weak formulation of the PDE in lieu of the related continuous elements leading
to a discretisation scheme.

Definition 3.1. (Gradient discretisation) Let p ∈ (1,+∞) be given and let p′ ∈ (1,+∞) with 1
p + 1

p′ = 1.

A gradient discretisation D is defined by D = (XD,ΠD,∇D) where:

1. the set of discrete unknowns XD is a finite dimensional vector space on R,

2. the linear mapping ΠD : XD → Lmax(2,p′)(Ω) reconstructs functions,

3. the linear mapping ∇D : XD → Lmax(2,p)(Ω)d reconstructs approximations of their gradients,

4. the quantity ‖ · ‖D := ‖ΠD · ‖L2(Ω) + ‖∇D · ‖Lp(Ω)d defines a norm on XD.

Remark 3.2. In the above definition, the definition of the norm is not standard in the GDM setting (in the
sense of [12, Definition 2.1]), because of the simultaneous use of the Lp, Lp

′
and L2 norms.

The properties of such a GD are assessed through the two following functions SD and WD. The first one
measures an interpolation error:

SD : W 2,∞(Ω)→ [0,+∞) such that, for ϕ ∈W 2,∞(Ω),

SD(ϕ) = min
v∈XD

(
‖ΠDv − ϕ‖Lmax(2,p′)(Ω) + ‖∇Dv −∇ϕ‖Lmax(2,p)(Ω)d

)
,

(17)

whilst the second one is a measure of a conformity defect (i.e. the defect in a discrete integration-by-parts
formula): letting W 1,∞

n,0 (Ω)d be the set of elements of W 1,∞(Ω)d with zero normal trace on ∂Ω,

WD : W 1,∞
n,0 (Ω)d → [0,+∞) such that, for ϕ ∈W 1,∞

n,0 (Ω)d,

WD(ϕ) = max
u∈XD\{0}

1

‖u‖D

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ . (18)

Let us now define the space size of a GD relative to some regularity spaces, which is a measure of the approx-
imation properties of a given GD, see [12, Definition 2. 22]. For mesh-based low-order methods, for example,
hD is of order of the mesh size [12, Remark 2. 24].

Definition 3.3 (Space size of a GD). Let D be a gradient discretisation. The space-size of D is hD defined by

hD = max

(
sup

{
SD(ϕ)

‖ϕ‖W 2,∞(Ω)
: ϕ ∈W 2,∞(Ω) \ {0}

}
; sup

{
WD(ϕ)

‖ϕ‖W 1,∞
n,0 (Ω)d

: ϕ ∈W 1,∞
n,0 (Ω)d \ {0}

})
. (19)

Definition 3.4 (Space-time gradient discretisation). A family DT = (XD,ΠD,∇D, ID, (t(n))n=0,...,N ) is a
space-time gradient discretisation if

• D = (XD,ΠD,∇D) is a gradient discretisation of Ω, in the sense of Definition 3.1,

• ID : L2(Ω)→ XD is an interpolation operator,

• t(0) = 0 < t(1) . . . < t(N) = T .
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We then set δt(n+ 1
2 ) = t(n+1) − t(n), for n = 0, . . . , N − 1, and δtD = maxn=0,...,N−1 δt

(n+ 1
2 ).

The following definition is an adaptation to the hyperbolic setting of [12, Definition 2.22]; recall in the case of
mesh-based GDM’s, the GD space size hD is in fact related to the mesh size, see [12, Remark 2.24].

Definition 3.5 (Consistent and limit-conforming sequence of space-time gradient discretisation).
A sequence (DTm)m∈N of space-time gradient discretisations is said to be consistent and limit-conforming if hDm ,
δtDm and, for all w ∈ L2(Ω), ‖w −ΠDmIDmw‖L2(Ω) tend to 0 as m→∞.

Given a space–time gradient discretisation DT = (XD,ΠD,∇D, ID, (t(n))n=0,...,N ) (in the sense of Definition
3.4), we now describe the gradient scheme defined from this GD. For n = 0, . . . , N − 1 and a given space-time
function g ∈ L1(Ω × (0, T ))` with ` = 1, ` = d or ` = d × d (g could be Λ, f , ~v, qI or qP ), set, for a.e. x ∈ Ω
and for all n = 0, . . . , N − 1,

g(n+ 1
2 )(x) =

1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

g(x, t)dt and gD(x, t) = g(n+ 1
2 )(x) for a.e. t ∈ (t(n), t(n+1)). (20)

Let θ ∈ [ 1
2 , 1] and α ∈ (0, p). The (θ-implicit) scheme for Problem (3) is defined by replacing the continuous

space and operators in (7) with their discrete counterparts given by D, as follows: find u = (u(n))n=0,...,N such
that

u(0) = IDuini and, for n = 0, . . . , N − 1, u(n+1) ∈ XD is such that,

setting δ
(n+ 1

2 )

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2 )

and u(n+θ) = θu(n+1) + (1− θ)u(n),∫
Ω

(
δ

(n+ 1
2 )

D uΠDv +
1

2
∇Du(n+θ) · ~v(n+ 1

2 )ΠDv −
1

2
ΠDu

(n+θ)~v(n+ 1
2 ) · ∇Dv

+
1

2
ΠDu

(n+θ)
[
(qI)(n+ 1

2 ) + (qI)(n+ 1
2 )
]

ΠDv + hαD|∇Du(n+θ)|p−2
Λ Λ(n+ 1

2 )∇Du(n+θ) · ∇Dv
)

dx

=

∫
Ω

f (n+ 1
2 )(qI)(n+ 1

2 )ΠDvdx, ∀v ∈ XD,

(21)

denoting for short

|∇Du(n+θ)|Λ =

√
Λ(n+ 1

2 )∇Du(n+θ) · ∇Du(n+θ). (22)

We introduce the following notations Πθ
D and ∇θD for reconstructed space-time functions: given v = (vn)n=0,...,N

in XN+1
D , we set

Πθ
Dv(x, t) = ΠDv

(n+θ)(x) and ∇θDv(x, t) = ∇Dv(n+θ)(x) ,

for a.e. (x, t) ∈ Ω× (t(n), t(n+1)], ∀n = 0, . . . , N − 1.
(23)

We extend these definitions to t = 0 by setting ΠDv(x, 0) = ΠDv0 and ∇Dv(x, 0) = ∇Dv0.

4 Convergence analysis

Our main convergence result is stated in the following theorem. We recall (see [11, Definition 2.11]) that a
sequence (vn)n∈N of bounded functions [0, T ]→ L2(Ω) is said to converge uniformly on [0, T ] weakly in L2(Ω)
towards a function v if for all ϕ ∈ L2(Ω), the sequence of functions t ∈ [0, T ] 7→ 〈vn(t), ϕ〉L2(Ω) ∈ R converges
uniformly on [0, T ] towards the function t 7→ 〈v(t), ϕ〉L2(Ω).

Theorem 4.1 (Convergence of the GDM). Let Hypotheses (2) be fulfilled. Let (DTm)m∈N be a consistent and
limit-conforming sequence of space-time gradient discretisations in the sense of Definition 3.5. Let θ ∈ [ 1

2 , 1],
p ∈ (1,+∞) and α ∈ (0, p) be given. Then, for any m ∈ N, there exists a unique um solution to Scheme (21)
with DT = DTm.
Moreover, as m → ∞, Πθ

Dmum converges in L2(Ω × (0, T )), and uniformly on [0, T ] weakly in L2(Ω), to the
unique solution ū of Problem (3).
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The uniqueness component of this theorem is the most straightforward part, and the purpose of the following
lemma.

Lemma 4.2 (Uniqueness of a discrete solution). Assume (2) and let DT = (XD,ΠD,∇D, ID, (t(n))n=0,...,N ) be
a space-time gradient discretisation in the sense of Definition 3.4. Let θ ∈ [ 1

2 , 1], p ∈ (1,+∞) and α ∈ (0, p) be
given. Then there exists at most one solution to Scheme (21).

Proof. The scheme defines exactly one approximation u(0). Let us assume that, for a given n ∈ N and for a
given u(n), there exist two solutions u(n+1) and û(n+1) to Scheme (21). Let us create the difference of the two
equations (21), and let us choose v = u(n+θ)− û(n+θ) = θ(u(n+1)− û(n+1)) in the resulting equation. We obtain∫

Ω

([
θ

δt(n+ 1
2 )

+
θ2

2
((qI)(n+ 1

2 ) + (qI)(n+ 1
2 ))

]
(ΠDu

(n+1) −ΠDû
(n+1))2

+hαDΛ(n+ 1
2 )(|∇Du(n+θ)|p−2

Λ ∇Du(n+θ) − |∇Dû(n+θ)|p−2
Λ ∇Dû(n+θ)) · (∇Du(n+θ) −∇Dû(n+θ))

)
dx = 0.

(24)
It is classical (see for instance [12, Lemma 2.40] or [2, Lemma 2.1]), that

∀ξ, χ ∈ Rd, (|ξ|p−2ξ − |χ|p−2χ) · (ξ − χ) ≥ λmin(
p− 1

2
, 21−p)|ξ − χ|2 (|ξ|+ |χ|)p−2.

Applying this inequality in (24) with χ = (Λ(n+ 1
2 ))1/2∇Du(n+θ) and ξ = (Λ(n+ 1

2 ))1/2∇Dû(n+θ) (in which the left
hand side is therefore the sum of non-negative terms), we get that ∇Du(n+θ) = ∇Dû(n+θ) a.e., and therefore
∇Du(n+1) = ∇Dû(n+1) as well as ΠDu

(n+1) = ΠDû
(n+1). Hence, thanks to the property of the norm assumed

in Definition 3.1, u(n+1) = û(n+1), which concludes the proof of uniqueness by induction.

The proof of Theorem 4.1 hinges on a priori estimates stated in the following lemma.

Lemma 4.3 (L∞(0, T ;L2(Ω)) and discrete L2(0, T ;H1
0 (Ω)) estimates, existence of a discrete solution). Under

Hypotheses (2), let DT = (XD,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation in the sense
of Definition 3.4. Let θ ∈ [ 1

2 , 1], p ∈ (1,+∞) and α ∈ (0, p) be given. Then there exists one and only one
solution to Scheme (21). Moreover, this solution satisfies, for all k = 1, . . . , N ,∫

Ω

(
1

2
ΠDu

(k)(x)2 − 1

2
ΠDu

(0)(x)2

)
dx + hαD

∫ t(k)

0

∫
Ω

|∇θDu(x, t)|pΛdxdt

+
1

2

∫ t(k)

0

∫
Ω

Πθ
Du(x, t)2

[
qID(x, t) + qPD(x, t)

]
dxdt ≤

∫ t(k)

0

∫
Ω

fD(x, t)qID(x, t)Πθ
Du(x, t)dxdt,

(25)

and there exists C1 > 0, depending only on Cini ≥ ‖uini −ΠDIDuini‖L2(Ω), λ, f and qI such that

‖Πθ
Du‖L∞(0,T ;L2(Ω)) ≤ C1 (26)

and
hαD‖∇θDu‖

p
Lp(Ω×(0,T )) ≤ C1. (27)

Remark 4.4 (Weak BV estimate). The estimate (27) is the adaptation in the GDM framework of the classical
weak BV estimate used for finite volumes see [5] for the seminal paper and [16, chapters 5 & 6] for more gereral
results. This estimate is used in two occasions: first to pass to the limit in the skew-symmetric term, and second
to show that the stabilisation term vanishes at the limit.

Proof. Before establishing the existence of at least one discrete solution to Scheme (21), let us first prove that
any solution to this scheme satisfies (25)–(27). We first notice that for all a, b ∈ R,

(a− b)(θa+ (1− θ)b) = (a− b)
[(
θ − 1

2

)
a+

(
1

2
− θ
)
b

]
+

1

2
(a− b)(a+ b)

=

(
θ − 1

2

)
(a− b)2 +

1

2
(a2 − b2) ≥ 1

2
(a2 − b2).
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Hence, letting v = δt(n+ 1
2 )u(n+θ) in (21) and applying the estimate above with a = ΠDu

(n+1) and b = ΠDu
(n),

we obtain∫
Ω

(
1

2
(ΠDu

(n+1))2 − 1

2
(ΠDu

(n))2 +
1

2
δt(n+ 1

2 )(ΠDu
(n+θ))2

[
(qI)(n+ 1

2 ) + (qI)(n+ 1
2 )
]

+ δt(n+ 1
2 )hαD |∇Du(n+θ)|pΛ

)
dx ≤ δt(n+ 1

2 )

∫
Ω

f (n+ 1
2 )(qI)(n+ 1

2 )ΠDu
(n+θ)dx.

Taking k = 1, . . . , N and summing this inequality over n = 0, . . . , k − 1 proves (25).
The Young inequality and the property 0 ≤ qID ≤ qID + qPD yield

fDq
I
DΠθ
Du ≤

1

2
(Πθ
Du)2

[
qID + qPD

]
+

1

2
(fD)2qID.

Plugging this into (25) leads to

1

2
‖ΠDu(k)‖2L2(Ω) + hαDλ

p/2‖∇θDu‖
p
Lp(Ω×(0,t(k)))

≤ 1

2
‖ΠDIDuini‖2L2(Ω) +

1

2

∫ t(k)

0

∫
Ω

(fD)2qIDdxdt

≤ 1

2
‖ΠDIDuini‖2L2(Ω) + ‖f‖L2(Ω×(0,T ))‖qI‖L∞(Ω×(0,T )), (28)

where we have used the Jensen inequality to bound the L2-norm of fD by the L2-norm of f . Estimate (27)
directly follows from (28) with k = N . Estimate (26) is also a consequence of (28), once we notice that
Πθ
Du(x, t) = θΠDu

(n+1)(x) + (1− θ)ΠDu(n)(x) for a.e. x ∈ Ω, all t ∈ (t(n), t(n+1)) and all n = 0, . . . , N − 1.

We can now prove the existence of a solution to Scheme (21) (the uniqueness is proved in Lemma 4.2). If
p = 2 then, at each time step, (21) describes a linear square system on u(n+θ) (after substituting u(n+1) =
u(n) + θ−1(u(n+θ) − u(n))). The estimates (26) and (27) show that any solution u(n+θ) to this system satisfies
a priori bounds. The kernel of the matrix of this linear system is therefore reduced to {0}, and the matrix is
invertible, which establishes the existence of a unique solution u(n+θ) (and thus of u(n+1)) to the system at time
step n+ 1.
If p 6= 2 we use the topological degree [8]. Let us assume the existence of u(n). Let us substitute the term
|∇Du(n+θ)|p−2

Λ ∇Du(n+θ) of the scheme by ν|∇Du(n+θ)|p−2
Λ ∇Du(n+θ) + (1 − ν)∇Du(n+θ) for ν ∈ [0, 1]. It is

clear that the above estimates still hold (again after substituting u(n+1) = u(n) + θ−1(u(n+θ) − u(n))) so that
‖ΠDu(n+1)‖L2(Ω) and ν‖∇Du(n+1)‖pLp(Ω) + (1− ν)hαD‖∇Du(n+1)‖2L2(Ω) remain bounded independently of ν. We

infer from this latter estimate a bound on ‖u(n+1)‖D that is uniform with respect to ν. Hence, all solutions to
the scheme with the above substitution remain bounded independently of ν. This shows that, on a large enough
ball, the topological degree of the non-linear mapping defining the scheme is independent of ν. For ν = 0 this
mapping is linear and the arguments developed in the case p = 2 show that its topological degree is non-zero.
The degree for the original scheme (corresponding to ν = 1) is therefore also non-zero, proving that this scheme
has at least one solution.

We can now prove our convergence results, starting with the uniform-in-time weak-in-space convergence.

Proof of Theorem 4.1: uniform-in-time weak-in-space convergence. Owing to (26) there is ū ∈ L2(Ω × (0, T ))
and a subsequence of (Dm)m∈N such that Πθ

Dmum converges to ū in L∞(0, T ;L2(Ω)) weak-? as m → ∞. Let
m ∈ N, and let us denote D = Dm (belonging to the above subsequence); we drop some indices m to simplify
the notations.
Let ϕ ∈ C∞c ([0, T )) and w ∈ C∞c (Rd), and let Pmw ∈ XD that realises the minimum in SD(w). We denote
by Pmϕ : (0, T ) → R the function equal to ϕ(n+1−θ) := θϕ(t(n)) + (1 − θ)ϕ(t(n+1)), on (t(n), t(n+1)), for all
n = 0, . . . , N − 1.
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For n = 0, . . . , N − 1 and t ∈ (t(n), t(n+1)), let u
(θ)
m (t) = θu

(n+1)
m + (1− θ)u(n)

m ∈ XD, and notice that Πθ
Dum(t) =

ΠDu
(θ)
m (t) and ∇θDum(t) = ∇Du(θ)

m (t). By definition (18) of WD and (19) of hD, since w~v(t) ∈ W 1,∞
n,0 (Ω)d we

have, for a.e. t ∈ (0, T ), recalling the definition (19) of hD,∣∣∣∣∫
Ω

(∇Du(θ)
m (t) · ~v(t)w + ΠDu

(θ)
m (t)div(w~v(t)))dx

∣∣∣∣ ≤WD(w~v(t))‖u(θ)
m (t)‖D ≤ hD‖w~v‖W 1,∞(Ω×(0,T ))d‖u(θ)

m (t)‖D.

Thanks to (26)–(27), there is C2 depending only on C1 and T such that

hD

(∫ T

0

‖u(θ)
m (t)‖pD

)1/p

≤ C2(hD + h
1−αp
D ).

This right-hand side tends to 0 as m→∞ (remember that α < p) and thus, since Pmϕ is bounded in L∞(0, T ),

lim
m→∞

∫ T

0

Pmϕ(t)

∫
Ω

(∇θDum(t) · ~v(t)w + Πθ
Dum(t)div(w~v(t)))dxdt = 0.

By strong convergence of Pmϕ to ϕ in L2(0, T ) and weak convergence of Πθ
Dum to ū in L2(Ω× (0, T )) we infer

lim
m→∞

∫ T

0

∫
Ω

Pmϕ(t)∇θDum(t) · ~v(t)wdxdt = −
∫ T

0

∫
Ω

ϕ(t)ūdiv(w~v(t))dxdt.

A Cauchy–Schwarz inequality yields∣∣∣∣∣
∫ T

0

Pmϕ(t)

∫
Ω

(∇θDum(t) · ~v(t)w −∇θDum(t) · ~v(t)ΠDPmw)dxdt

∣∣∣∣∣
≤ ‖∇θDum‖Lp(Ω×(0,T ))d‖Pmϕ(~vw − ~vΠDPmw)‖Lp′ (Ω×(0,T ))d

and, by definition of Pmϕ, hD and Pmw,

‖Pmϕ(t)(~vw − ~vΠDPmw)‖Lp′ (Ω×(0,T ))d ≤ T
1/p‖ϕ‖L∞(0,T )‖~v‖L∞(Ω×(0,T ))dhD‖w‖W 2,∞(Ω).

Therefore, using (27) again,

lim
m→∞

∫ T

0

Pmϕ(t)

∫
Ω

∇θDum(t) · ~v(t)ΠDPmwdxdt = lim
m→∞

∫ T

0

Pmϕ(t)

∫
Ω

∇θDum(t) · ~v(t)wdxdt

= −
∫ T

0

ϕ(t)

∫
Ω

ū(t)div(w~v(t))dxdt. (29)

We take δt(n+ 1
2 )ϕ(t(n))Pmw as test function in (21) and sum the resulting equation over n = 0, . . . , N − 1. This

gives

T
(m)
8 +

1

2
T

(m)
9 +

1

2
T

(m)
10 − 1

2
T

(m)
11 + T

(m)
12 = T

(m)
13 (30)
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with

T8
(m) =

N−1∑
n=0

δt(n+ 1
2 )ϕ(n+1−θ)

∫
Ω

δ
(n+ 1

2 )

D um ΠDPmwdx,

T9
(m) =

N−1∑
n=0

δt(n+ 1
2 )ϕ(n+1−θ)

∫
Ω

∇Du(n+θ)
m · ~v(n+ 1

2 )ΠDPmwdx,

T10
(m) =

N−1∑
n=0

δt(n+ 1
2 )ϕ(n+1−θ)

∫
Ω

ΠDu
(n+θ)
m

[
((qI)(n+ 1

2 ) + (qI)(n+ 1
2 )
]

ΠDPmwdx,

T11
(m) =

N−1∑
n=0

δt(n+ 1
2 )ϕ(n+1−θ)

∫
Ω

ΠDu
(n+θ)
m ~vD(x, t) · ∇DPmwdx,

T12
(m) = hαD

N−1∑
n=0

δt(n+ 1
2 )ϕ(n+1−θ)

∫
Ω

|∇Du(n+θ)
m |p−2

Λ Λ(n+ 1
2 )∇Du(n+θ)

m · ∇DPmwdx,

T13
(m) =

N−1∑
n=0

ϕ(n+1−θ)δt(n+ 1
2 )

∫
Ω

f (n+ 1
2 )(qI)(n+ 1

2 )ΠDPmwdxdt.

The summation-by-parts formula [12, Eq. (D.17)] reads

N−1∑
n=0

(b(n+1) − b(n))(θa(n) + (1− θ)a(n+1)) = −b(0)a(0) −
N−1∑
n=0

(θb(n+1) + (1− θ)b(n))(a(n+1) − a(n)) + b(N)a(N).

Using this relation to transform, in the sum appearing in T
(m)
8 , the term δt(n+ 1

2 )ϕ(n+1−θ)δ
(n+ 1

2 )

D um into (ϕ(t(n))−
ϕ(t(n+1)))ΠDu

(n+θ)
m , we see that

T
(m)
8 = −

∫ T

0

ϕ′(t)

∫
Ω

Πθ
Dum ΠDPmwdxdt− ϕ(0)

∫
Ω

ΠDu
(0)
m ΠDPmwdx,

and so, since Πθ
Dum → ū weakly in L2(Ω×(0, T )), ΠDPmw → w strongly in L2(Ω), and ΠDu

(0)
m = ΠDmIDmuini →

uini in L2(Ω),

lim
m→∞

T
(m)
8 = −

∫ T

0

ϕ′(t)

∫
Ω

u(x, t)wdxdt− ϕ(0)

∫
Ω

uiniwdx.

Noticing that

T
(m)
9 =

∫ T

0

Pmϕ

∫
Ω

∇θDum · ~vΠDPmwdx,

the relation (29) yields

lim
m→∞

T
(m)
9 = −

∫ T

0

ϕ(t)

∫
Ω

ūdiv(w~v)dxdt = −
∫ T

0

ϕ(t)

∫
Ω

ūwdiv(~v)dxdt−
∫ T

0

ϕ(t)

∫
Ω

ū~v · ∇wdxdt.

Moreover, since

qIDm − q
P
Dm → qI − qP a.e. in Ω× (0, T ) as m→∞ and remains bounded, (31)

Πθ
Du weakly converges to u in L2(Ω × (0, T )), ΠD(Pmw) strongly converges in L2(Ω), and ∇D(Pmw) strongly

converges to ∇w in L2(Ω)d, we have

lim
m→∞

T
(m)
10 =

∫ T

0

ϕ(t)

∫
Ω

ūw(qI + qP )dxdt,

lim
m→∞

T
(m)
11 =

∫ T

0

ϕ(t)

∫
Ω

ū~v · ∇wdxdt.

12



The Hölder inequality and (27) show that

|T (m)
12 | ≤ λ

p/2
T 1/p‖ϕ‖L∞(0,T )h

α
D‖∇θDu‖

p−1
Lp(Ω×(0,T ))d

‖∇D(Pmw)‖Lp(Ω)

≤ λp/2T 1/p‖ϕ‖L∞(0,T )h
α/p
D C

(p−1)/p
1 ‖∇D(Pmw)‖Lp(Ω).

The boundedness of ∇D(Pmw) in Lp(Ω) (since this sequence converges in this space) and α > 0 then yield

limm→∞ T
(m)
12 = 0.

Finally, using (31) again,

lim
m→∞

T
(m)
13 =

∫ T

0

ϕ(t)

∫
Ω

f(x, t)qI(x, t)w(x)dxdt.

Passing to the limit m → ∞ in (30) shows that ū satisfies (3) for any test function of the form ϕ(t)w(x), and
thus for sums of such test functions. Since the set T = {

∑q
i=1 ϕi(t)wi(x) : q ∈ N, ϕi ∈ C∞c [0, T ), wi ∈ C∞c (Rd)}

is dense in the set of the restrictions to Ω× [0, T ) of the elements of C∞c (Rd × [0, T )), we conclude that ū is a
solution of (3).

It now suffices to prove the uniform-in-time weak-L2(Ω) convergence of Πθ
Dmum to ū. Let w ∈ C∞c (Rd) and

define Pmw as before. For 0 ≤ s ≤ t, writing Πθ
Dmum(x, t) − Πθ

Dmum(x, s) as the sum of its jumps at each

t(n) ∈ (s, t) (see [12, Proof of Theorem 4.19] for details), Scheme (21) and the estimates in Lemma 4.3 give the
existence of C3, depending only on the data introduced in Hypotheses 2, such that∣∣∣∣∫

Ω

(Πθ
Dmum(x, t)−Πθ

Dmum(x, s))ΠDm(Pmw)(x)dx

∣∣∣∣ ≤ C3(t− s+ δtm)1/2‖Pmw‖Dm .

Hence, introducing ±w, and using (26) again,∣∣∣∣∫
Ω

(Πθ
Dmum(x, t)−Πθ

Dmum(x, s))w(x)dx

∣∣∣∣ ≤ (t− s+ 2δtm)1/2C3‖Pmw‖Dm + 2C1‖w −ΠDm(Pmw)‖L2(Ω).

Using
√
t− s+ 2δtm ≤

√
t− s+

√
2δtm, we get∣∣∣∣∫

Ω

(Πθ
Dmum(x, t)−Πθ

Dmum(x, s))w(x)dx

∣∣∣∣ ≤ g(t− s, hϕm),

with g(a, b) =
√
aC4 + b, C4 = C3 supm ‖Pmw‖Dm and hϕm = (2δtm)1/2C4 + 2C1‖w − ΠDm(Pmw)‖L2(Ω). We

then may apply [12, Theorem C.11] or [11, Theorem 6.2] to deduce that Πθ
Dmum weakly tends to u in L2(Ω)

uniformly on [0, T ].

Proof of Theorem 4.1: strong convergence. The proof makes use of the continuous energy estimate (13) and a
discrete version thereof, in a similar way as in the proof of [11, Theorem 2.16]. Let us first establish this discrete
energy estimate. We remark that for all a, b, c, d ∈ R,

(a− b)
(
a+ b

2
+ α

a− b
2

)(
T − c+ d

2
− αc− d

2

)
=

1

2
(T − d)a2 − 1

2
(T − c)b2 +

1

2
(d− c)

(
a+ b

2
+ α

a− b
2

)2

+
(a− b)2

2

[
α

(
T − c+ d

2
− αc− d

2

)
+
d− c

4
(1− α2)

]
.

Setting t(n+1−θ) = θt(n) + (1 − θ)t(n+1), letting v = δt(n+ 1
2 )u(n+θ)(T − t(n+1−θ)) in (21), applying the above

relation with a = ΠDu
(n+1), b = ΠDu

(n), α = 2θ− 1, c = t(n), d = t(n+1), and dropping the last addend (which

13



is positive), we obtain

∫
Ω

(
1

2
(ΠDu

(n+1))2(T − t(n+1))− 1

2
(ΠDu

(n))2(T − t(n)) +
1

2
δt(n+ 1

2 )(ΠDu
(n+θ))2

+ (T − t(n+1−θ))
1

2
δt(n+ 1

2 )(ΠDu
(n+θ))2

[
(qI)(n+ 1

2 ) + (qI)(n+ 1
2 )
]

+ (T − t(n+1−θ))δt(n+ 1
2 )hαD |∇Du(n+θ)|pΛ

)
dx

≤ (T − t(n+1−θ))δt(n+ 1
2 )

∫
Ω

f (n+ 1
2 )(qI)(n+ 1

2 )ΠDu
(n+θ)dx. (32)

Summing the obtained inequality on n = 0, . . . , N − 1, and denoting by tD the function equal to t(n+1−θ) for
all t ∈ (t(n), t(n+1)), we get

1

2

∫ T

0

∫
Ω

(Πθ
Du(x, t))2dxdt+

1

2

∫ T

0

(T − tD(t))

∫
Ω

(Πθ
Du(x, t))2

[
qID(x, t) + qPD(x, t)

]
dxdt

≤ T

2

∫
Ω

(ΠDIDuini(x))2dx +

∫ T

0

(T − tD(t))

∫
Ω

fD(x, t)qID(x, t)Πθ
Du(x, t)dxdt. (33)

Taking the superior limit as m→∞ of the above inequality for D = Dm, we get

1

2
lim sup
m→∞

∫ T

0

∫
Ω

(Πθ
Dmum(x, t))2

(
1 + (T − tDm(t))

[
qIDm(x, t) + qPDm(x, t)

])
dxdt

≤ T

2

∫
Ω

uini(x)2dx +

∫ T

0

(T − t)
∫

Ω

f(x, t)qI(x, t)ū(x, t)dxdt. (34)

We then use (13) to substitute the right-hand side of this inequality and find

lim sup
m→∞

∫ T

0

∫
Ω

(Πθ
Dmum)2

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt ≤

∫ T

0

∫
Ω

ū2
(
1 + (T − t)

[
qI + qP

])
dxdt. (35)

Developing the square (Πθ
Dmum − ū)2 we have∫ T

0

∫
Ω

(Πθ
Dmum − ū)2

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt

=

∫ T

0

∫
Ω

(Πθ
Dmum)2

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt

− 2

∫ T

0

∫
Ω

Πθ
Dmum ū

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt

+

∫ T

0

∫
Ω

ū2
(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt. (36)

The limit of the second (resp. third) term in the right-hand side is obtained by weak/strong (resp. strong)
convergence:

lim
m→∞

∫ T

0

∫
Ω

Πθ
Dmum ū

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt =

∫ T

0

∫
Ω

ū2
(
1 + (T − t)

[
qI + qP

])
dxdt,

and

lim
m→∞

∫ T

0

∫
Ω

ū2
(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt =

∫ T

0

∫
Ω

ū2
(
1 + (T − t)

[
qI + qP

])
dxdt.
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Hence, using (35) to deal with the first term in the right-hand side of (36) we find

lim sup
m→∞

∫ T

0

∫
Ω

(Πθ
Dmum − ū)2

(
1 + (T − tDm)

[
qIDm + qPDm

])
dxdt ≤ 0,

and therefore, since 1 + (T − tDm)
[
qIDm + qPDm

]
≥ 1,

lim
m→∞

∫ T

0

∫
Ω

(Πθ
Dmum − ū)2dxdt = 0,

which concludes the proof of the convergence of Πθ
Dmum to ū in L2(Ω× (0, T )).

5 Numerical results

We choose Ω = (0, 1)2, T = 5, uini(x) = 1 if x = (x1, x2) ∈ (0.1, 0.4) × (0.1, 0.4) and uini(x) = 0 elsewhere,
qI = qP = 0 and ~v is given by

~v(x1, x2) = ((1− 2x2)(x1 − x2
1),−(1− 2x1)(x2 − x2

2)).

We consider meshes T = (M,F ,P,V) as per [12, Definition 7.2]: M is the set of polygonal/polyhedral cells K,
F is the set of faces σ, P is a set of points (xK)K∈M with K star-shaped with respect to xK for all K ∈ M,
and V is the set of vertices v.

5.1 Different schemes with p = 2

We apply Scheme (21) with three different gradient discretisations, corresponding respectively to the mass-
lumped conforming P1 finite element method (or CVFE method, see [18] for the seminal paper and [12, Chapter
8] for the study in the GDM framework), to the mass-lumped non-conforming P1 (MLNC–P1 for short) finite
element method [12, Chapter 9], and to (a variant of) the Hybrid Finite Volume method (HFV), a member of
the family of Hybrid Mimetic Mixed methods [12, chapter 13]. For the sake of completeness we briefly recall
the definition of these gradient discretisations.

K
Cv

v

∂Ω v′

Cv′

Cσ
σ

σ′

∂Ω

Cσ′

Figure 1: Dual cells for the mass-lumped P1 gradient discretisations: conforming P1 (CVFE, left) and non-
conforming P1 (right).

• CVFE method (mass-lumped conforming P1): the mesh T is a conforming simplicial mesh [12, Definition
7.4], and
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∗ XD = {u = (uv)v∈V : uv ∈ R for all v ∈ V}.
∗ For each vertex v ∈ V, a dual cell Cv is constructed around the vertex by joining the cell centres of

mass, the face centres of mass and (in 3D) the edge midpoints around v (see Figure 1, left). Then, for
u ∈ XD and any v ∈ V, (ΠDu)|Cv

= uv.

∗ For u ∈ XD, ∇Du is the gradient of the P1 function constructed from the vertex values (uv)v∈V .

• MLNC–P1: the mesh T is also a conforming simplicial mesh, and

∗ XD = {u = (uσ)σ∈F : uσ ∈ R for all σ ∈ F}.
∗ For each face σ ∈ F , a dual cell Cσ is constructed as the union, for each cell on each side of σ, of the

convex hulls on the face and the cell centre of mass (see Figure 1, right). Then, for u ∈ XD and any
σ ∈ F , (ΠDu)|Cσ = uσ.

∗ For u ∈ XD, ∇Du is the gradient of the non-conforming P1 function constructed from the edge values
(uσ)σ∈F .

• (Variant of the) HFV method : T is a generic polygonal/polyhedral mesh and

∗ XD = {u = ((uK)K∈M, (uσ)σ∈F : uK ∈ R for all K ∈M, uσ ∈ R for all σ ∈ F}.
∗ A coefficient γ ∈ (0, 1] is chosen and each cell K is partitioned into K̂ and (Kσ)σ∈FK , where FK is the

set of faces of K, |K̂| = γ|K| and |Kσ| = 1−γ
Card(FK) |K| (here, |E| denotes the Lebesgue measure of the

set E).

∗ For all u ∈ XD and all K ∈M, (ΠDu)|K̂ = uK and, for all σ ∈ FK , (ΠDu)|Kσ = uσ.

∗ For all u ∈ XD, all K ∈M and all σ ∈ FK (where FK is the set of faces of K),

(∇Du)|DK,σ = ∇Ku+ βK

√
d

dK,σ

[
uσ − uK −∇Ku · (xσ − xK)

]
nK,σ,

where βK > 0 is a user-defined parameter and

� nK,σ and xσ are respectively the outer normal to K on σ and the centre of mass of σ,

� ∇Ku = 1
|K|
∑
σ∈FK |σ|uσnK,σ, with |K| and |σ| the d- and (d− 1)-measure of K and σ, respectively,

� dK,σ the orthogonal distance between xK and σ.

Remark 5.1 (Original HFV method). The original HFV scheme (also known as SUSHI scheme) consists in
choosing γ = 1 [12, chapter 13], that is, (ΠDu)|K = uK for all K ∈M (the face unknowns are not involved in the
definition of ΠD). We however found that, when applied to the gradient scheme (21) for the linear hyperbolic
equation, the HFV method requires quite a lot of fiddling with various parameters (diffusion magnitude and
direction, the coefficients βK , etc.) to produce acceptable results. Indeed, for γ = 1, the face unknowns are not
involved in the accumulation term in (21), so that these unknowns are not accurately updated at each time step
– the diffusion is the quantity that links the face and cell unknowns, and with a vanishing diffusion, this link
looses too much strength. Involving the face unknowns in the definition of ΠD, by re-distributing the fraction
1− γ of the complete volume to these unknowns in the accumulation term, ensures a much better stability and
behaviour of the method. However, for γ = 0, i.e. when the total volume |K| is re-distributed so that only the
face unknowns are accounted for in ΠD, the solution displays severe oscillations around the discontinuities of
the initial condition. The coefficient γ should therefore be chosen in (0, 1).

Remark 5.2 (Choice of K̂ and Kσ). In practice, implementing the HFV method does not require to choose a
detailed geometry for K̂ and Kσ, as source and advection integral terms are approximated using only the values
of the function at the centres of mass of K and σ and the measures of K̂ and Kσ. For example,∫

Ω

fΠDvdx ≈
∑
K∈M

(
|K̂|f(xK)vK +

∑
σ∈FK

|Kσ|f(xσ)vσ

)
,

where, for E = K or E = σ, xE is the centre of mass of E.
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Figure 2: Meshes used for the simulations: mesh1 2 (left) and mesh3 2 (right).

We also compare the results, obtained with these GDs, with the results using the upstream weighting scheme
based on the standard CVFE method [6, Section 4.3] on a triangular mesh (upstream values are computed
with respect to the sign of fluxes computed at the boundaries of the dual mesh). All the considered meshes
are from [20]. For the CVFE, MLNC–P1 and upstream schemes we use the family of meshes mesh1 X. For the
HFV method we fixed γ = 0.3, βK = 1 for all K ∈ M and we ran the simulations on the locally refined and
non-conforming family of meshes mesh3 X. A sensitivity analysis on the parameter γ was carried out. Tests
were performed for γ ranging from 0 to 1. As mentioned in Remark 5.1 for γ = 0, severe oscillations occur
because the cell unknowns are no longer present in the accumulation term. The numerical results obtained for
γ ∈ (0, 1) do not vary much, although taking γ ∈ (0, 1) instead of γ = 1 seems to reduce the numerical diffusion
and produces a scheme which is more stable with respect to changes in the parameter Λ. Examples of the
considered mesh families are shown in Figure 2. We let θ = 1

2 , p = 2 and α = 2 for the discretisation scheme
(note that we only proved that the scheme converges for α ∈ (0, 2)). The analytical solution is approximated
by the characteristics method, where the characteristics ODE is approximated using the explicit Euler scheme
with time step 0.001.
The errors are calculated at the final time, by projecting the analytical solution onto the appropriate piecewise-
constant functions (depending on the considered method). Thus, for q = 1 or q = 2, we set

CVFE and
upstream P1

: errlq =

(∑
v∈V
|Cv| |uNv − ū(v, T )|q

)1/q

,

MLNC–P1 : errlq =

(∑
σ∈F
|Cσ| |uNσ − ū(xσ, T )|q

)1/q

,

HFV : errlq =

( ∑
K∈M

γ|K| |uNK − ū(xK , T )|p +
∑
K∈M

∑
σ∈FK

1− γ
Card(FK)

|K| |uNσ − ū(xσ, T )|q
)1/q

.

We observe that all the convergence rates are lower that one half (due to the discontinuity of the exact solution,
better orders cannot be expected). The GDM based methods seem to produce such an order when refining the
meshes.
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h errl2 rate errl1 rate umin umax
0.250 2.95E-01 - 1.95E-01 - 0.108 0.137
0.125 2.55E-01 0.212 1.37E-01 0.504 0.014 0.174
0.062 2.32E-01 0.136 1.23E-01 0.158 0.000 0.344
0.031 1.77E-01 0.394 8.55E-02 0.525 -0.001 0.734
0.016 1.23E-01 0.524 4.73E-02 0.853 -0.013 1.003

Table 1: Results with the centred scheme, using the CVFE method, δt = 0.4h

h errl2 rate errl1 rate umin umax
0.250 2.52E-1 - 1.10E-1 - 0.043 0.054
0.125 2.65E-1 -0.076 1.51E-1 -0.457 0.016 0.194
0.062 2.37E-1 0.165 1.31E-1 0.208 0.000 0.361
0.031 1.82E-1 0.381 8.64E-2 0.597 0.000 0.687
0.016 1.33E-1 0.456 5.34E-2 0.694 0.000 0.960

Table 2: Results with the centred scheme, using the MLNC–P1 method, δt = 0.4h

h errl2 rate errl1 rate umin umax
0.35 2.80E-1 - 2.08E-1 - 0.152 0.155
0.18 2.79E-1 0.001 1.54E-1 0.436 0.044 0.124
0.09 2.59E-1 0.111 1.30E-1 0.236 0.001 0.220
0.04 2.10E-1 0.300 1.08E-1 0.276 0.000 0.499
0.02 1.47E-1 0.520 6.57E-2 0.713 0.000 0.906

Table 3: Results with the centred scheme, using the HFV method, δt = 0.4h

h errl2 rate errl1 rate umin umax
0.250 2.59E-01 - 1.65E-01 - 0.005 0.313
0.125 2.32E-01 0.159 1.19E-01 0.462 0.000 0.286
0.062 2.13E-01 0.122 1.10E-01 0.122 0.000 0.454
0.031 1.85E-01 0.205 9.13E-02 0.266 0.000 0.672
0.016 1.53E-01 0.270 6.93E-02 0.398 0.000 0.868

Table 4: Results with the upstream P1 scheme, δt = 0.4h

5.2 Different values of p with CVFE scheme

In Figure 4, we compare on the triangular mesh mesh1 4 the results obtained on the same problem as the
previous section, but using only the CVFE scheme, and letting p vary. The numerical scheme is solved quite
accurately at each time step using Newton’s method (the p-Laplace operator being particularly easy to compute
using the P1 finite element). The homogeneity degree of the coefficient for the diffusion term, with respect to
the units of length and ū, is a function of p. Because of that, properly comparing the results for various p is
difficult at best.
The considered mesh mesh1 4 is too coarse for the scheme to have already converged. However, there is
something to be learnt on the results on this mesh since computing numerical solutions on a too coarse mesh
is a standard situation in industrial contexts. We observe that, on this mesh, the profiles obtained with p < 2
differ quite a bit from those obtained with p ≥ 2, the latter being closer to the expected solution. This seems
to indicate that, in practical applications, choosing a higher value of p provides better results.
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Figure 3: Top: values of u (darkblue 0, darkred 1). Left to right: analytical solution, centred CVFE, upwind
CVFE, HFV, MLNC–P1. Bottom: Profiles along the line (0.9, 0)–(0.7, 1), with θ = 0.5. Left: analytical
solution; centre: centred scheme with α = 2; right: upstream P1 scheme.

6 Conclusion

We designed a numerical scheme, based on the Gradient Discretisation Method, for linear advection equations.
The approximation is built on a skew-symmetric formulation of the advective terms, which enables estimates
and a complete proof of convergence without additional regularity on the solution. The abstract notion of the
size of a GD is used in both the design of the scheme and in the characterisation of the properties of the GDM.
We note that this size of GD is defined purely using the underlying abstract spaces and operators; although
linked to the mesh size for mesh-based schemes, it can also be fully defined for meshless methods.
The analysis carried out in this paper may also lead to the development and analysis of novel GDM-based
schemes for coupled hyperbolic-parabolic problems.
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