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The gradient discretisation method for linear advection problems

J. Droniou, R. Eymard, T. Gallouét and R. Herbin
October 18, 2019

Abstract

We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic par-
tial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous
design and convergence analysis of various numerical schemes, corresponding to the methods known to be
GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes
on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The
scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the con-
vergence analysis with numerical tests based on the mass-lumped P; conforming and non conforming finite
element and on the hybrid finite volume method.

Keywords: linear scalar hyperbolic equation, Gradient Discretisation Method, convergence analysis,
numerical tests.
AMS subject classification: 656N12, 65N30

1 Introduction

We are interested here in designing and analysing an approximation of u, solution to the linear advection
problem stated in its strong form as

ot + div(aw) + ag” = fq', in Q x (0,7), (1a)
a(x,0) = uip;(x), for a.e. x € Q, (1b)

with the following assumptions on the data:

Q is an open bounded connected polyhedral subset of R?, d € N* and T' > 0, (2a)
Uini € L*(Q) and f € L*(Q x (0,7)), (2b)
¢, qF € L=(Q x (0,T)) with ¢! >0 and ¢© >0 a.e. in Q x (0,7), (2¢)
7€ Whe(Q x (0,T)) satisfies ¥ - n = 0 on 9Q x (0,T) and divei = ¢’ — ¢ a.e. in Q x (0,7), (2d)

where n is the outer normal to 9f2. Since the normal boundary value of ¥ vanishes, there is no need for a
boundary condition on (la).

The model (1) typically arises in oil recovery from underground reservoirs [1, 15] or in underground water
resources management [24], in which case ¢/ and ¢” may represent the injection and production wells and @
is the concentration of injected solvent or pollutant. The problem (1) is often discretised by the upstream
weighting finite volume scheme (see, for example, [16, Chapters 5 and 6] and references therein), which is easy
to implement even on unstructured meshes since the problem is first order. There are also numerous papers
studying Galerkin methods for this type of problems, which are based on the following weak formulation: a
function @ is said to be a weak solution of Problem (1) if:

@€ L*(Q x (0,T)) and, for all ¢ € C°(R? x [0,T)),

T T
/ / U Opp daedt — / Uini () p(z,0)de —|—/ /(—ﬂ ¥-Vo+a ¢ p)dedt = / / f ¢ o dzdt,
0o Ja 0o Jo



where C2°(R? x [0, 7)) is the set of the restrictions of functions of C%°(R? x (—o0,T)) to R? x [0, T).

Let 0 = t@ < t(M) < ... < ¢t(N) = T be a discretisation of the time interval, and let &) = (1) y(n)
We recall that, for V. C H'(Q) a finite dimensional space and 6 € [0, 1], the §-scheme takes the following form:
u®) € V being a chosen interpolate of uy;, the scheme consists in finding, for all n =0,..., N — 1,

u" Y e v, u(nt0) = gy (ntD) 4 (1- H)U(") and, for allv e V,

(n1) _ yy(m) 4
/ vty - dm+/(7u<n+9> F+3) Ty ) ((PYr+D ) g — / FOtD (1)) da, )
Q Q Q

snt3)
with suitable time approximations of the data indexed by (n+ %) This scheme is L? stable provided that § > %,
which is proved letting v = u("*t?) and following the calculus formula
(n+6)\2 (n+6)\2
/ w0 . Ty g — / gy g / @) divde. (5)
Q Q 2 o 2

Weak convergence properties are then obtained for the approximate solution, which generally displays oscilla-
tions. See [14] for a complete study of the particular case of Finite element methods, and [7] for a comparison
of different Galerkin schemes. A convergence result is proved in [13] under strong regularity hypotheses on the
solution and with a constant velocity field.

This paper is focused on the case where the approximation of u is no longer done in a subspace of H'(Q2). In a
number of situations, coupled problems including terms of different nature (e.g. diffusive, advective...) must be
solved in an industrial context where the discretisation method, imposed by the use of an existing code, is based
on non conforming finite element, discontinuous Galerkin or hybrid methods (with face and cell unknowns), for
example.

In order to handle such a situation, we use the Gradient Discretisation Method (GDM) framework, which
gives a unified formulation of a large class of conforming and nonconforming methods; we refer the reader to
the monograph [12] for details. The idea of the GDM is to replace, in a weak formulation of the continuous
problem, the continuous space by the vector space of the degrees of freedom of the method Xp, the functions u
and v by their reconstruction IIpu and IIpv, and the gradient Vv by the reconstruction of a discrete gradient
Vpv. For conforming methods, IIp(Xp) is a subspace of H!(Q2) and, for v € Xp, Vpv = V(Ilpv); for non-
conforming finite element methods, IIp(Xp) is a space of piecewise polynomial functions and, for all v € Xp,
Vpuv is the broken gradient of IIpv. Discontinuous Galerkin methods, which are popular in the framework
of hyperbolic problems, can also be embedded in the GDM; for these methods, IIp(Xp) is again a space of
piecewise polynomial functions, the expression of Vpuv takes into account both the broken gradient of IIpv and
the jump terms, and no additional stabilisation term has to be introduced in the formulation of the scheme (see
[12, Chapter 11]). Note that for fully discrete methods or mass-lumped versions of the previous schemes, Ip is
a genuine function reconstruction (see the schemes used in Section 5).

A natural scheme would then be: given an interpolate u(®) € Xp of uip;, solve forn =0,...,N —1

)

u™) e Xp, w0 = gu™ D) 4 (1 — 0)u™ and, for all v € Xp,

(n+1) _ ,,(n)
/ M = Mlpy da
Q &t2)

(6)
+ / (—Ipu(*?9 G2 . Vpu + Hpul*t? (qP)("+%)HDv)d:c = / Fots) (qI)(”J“%)HDv de.
Q Q

Unfortunately, it does not seem possible to establish the stability (and thus the convergence) of (6) due to the
absence of the equivalent of the calculus chain (5) in this fully discrete setting involving function and gradient
reconstructions IIp and Vp instead of the classical differential operators. To obtain a scheme amenable to a
convergence analysis, we thus consider an alternative formulation, using a skew-symmetric reformulation of the
advective term.



If Vi € L*(Q x (0,7)), owing to the relation

1. . 1 1
§dlvv+qp=§(q1—qp)+qp=§(q1+qp),

a function 4 € L?(Q2 x (0,T)) is a solution to (3) if and only if it satisfies

Vo € C°(R? x [0,T)),

T
—/ / u Opv dedt — / Uini () v(x,0) dz
0o Ja Q (7)
T e L1, p T I
+ =Viu-vv— —uv-Vo+ =u(q" +¢")v | dedt = fq vdzdt.
o Ja\2 2 2 o Ja

The idea to discretise (1a) is then to mimick the formulation (7) instead of (3) in the discrete setting (this idea
is in the same line as the weak formulation chosen in [4, Hypothesis (A1)]). Indeed, similarly to the standard
skew-symmetric formulation of the convective term in the Navier-Stokes equations, the advection component
in (7) vanishes when the solution is taken as a test function. The GDM scheme based on (7) is thus: take
u® € Xp and interpolant of uiy; and, for all n =0,..., N —1,

w") e Xp, w0 = gy (n ) 4 (1- Q)u(") and, for all v € Xp,

u u 1 1
/ HD n %) HD’U dx / (2 DU v 2 HDU 2HDU v 2 CDU (8)

1 1
+ o Tloul™ 0 (g8 4 @) Tpe)da = [0 (@) oo de.
Q

Letting v = u(®*? in (8) leads to an estimate on IIpu("*?), which entails a weak convergence property for the
reconstruction of the function. However a new difficulty arises: the scheme (8) does not yield any estimate on
Vpul"t?): this prevents us from obtaining any limit (even weak) for this term, and thus from passing to the
limit to recover the continuous problem.

This issue is solved by introducing a stabilisation term that yields a weak bound on Vpu("t? . Several versions
of such a stabilisation term can be found [22, 19], such as the symmetric linear stabilisation of [4], or the
Streamline-Upwind /Petrov-Galerkin (SUPG) stabilisation [3, 23, 21, 10]. The latter is equivalent to replacing,
in the term a9 of (la), u by u — h% -V (this is a kind of continuous upstream weighting for a mesh with size
h). This leads to the term

div <[a - h|%| . Va} 17) = div(av — hAVa), with A(z,t) = v(z’? ® U(x, t).

It is then numerically more stable to complete the SUPG scheme by modifying A into

A, t) = ”(‘”’? % (@, ) + ld,

for a small value > 0. This choice of stabilisation term div(—hAV@) can be generalised into
— h*div(A|VaR~*Va) where |Va|y = VAV - Vi, (9)

for some p € (1,+00) and a > 0, and A(x,t) symmetric positive definite with uniformly bounded eigenvalues.
An obvious and easy choice is p = 2 and A = Id, which leads to the classical Laplace operator. However, using
p # 2 may lead to a smaller numerical diffusion, see Section 5; let us note that in this case, the linear model
(1) is approximated by a non-linear problem, which is not in general much of a problem, since the complete
coupled physical model usually involves other non-linear terms. In this paper, we stabilise the scheme (8) by
introducing the discrete version of the stabilisation term (9), which leads to Scheme (21). Since the GDM method



also includes meshless schemes, the stabilisation term depends on a parameter hp which is an adaptation to
the hyperbolic setting of the space size of gradient discretisation for elliptic problems, see Definition 3.4 below.

In addition to providing a generic formulation that applies to a large variety of schemes, this paper presents the
following original features:

1. The analysis applies to mesh-based as well as meshless schemes, owing to Definition 3.4 of the size of
gradient discretisation which gives us a way to introduce an intrinsic vanishing viscosity without referring
to any mesh size.

2. We study and compare, for different values of p, the effect of the stabilisation of a hyperbolic scheme by
p-Laplace vanishing diffusion. Numerical examples show that in some cases, values of p different from 2
lead to more accurate solutions.

3. The strong convergence of the stabilised scheme is obtained through an energy estimate, proved in the L?
framework by regularisation as in [9]; this energy estimate is also used for the proof of uniqueness of the
solution.

4. Convergence is established without assuming additional regularity on the solution or the velocity field,
and a uniform-in-time weak convergence is proved.

This paper is organised as follows. The continuous problem and the energy estimate are studied in Section 2.
We then apply in Section 3 the gradient discretisation tools to Problem (3), and derive some estimates which
are used in Section 4 to establish the convergence of the scheme; as a by-product of this convergence, we also
obtain an existence result for the solution to (3). In Section 5 some numerical results are provided, using three
different schemes that fit into the GDM framework.

2 The continuous problem

Since the flux is null on the boundary 92, the problem (3) may be reformulated on the whole space R? by
extending ¥, ¢ and ¢ to R? x R: we first choose an extension 7 € W1>°(R? x R)¢, and then set ¢ =
max(div#,0) and ¢’ = max(—div#,0) outside Q x (0,7). We also extend @, f and u;,; by the value 0 outside
Q x (0,T) and 2 respectively. With these extensions and assuming (2), the problem (3) is equivalent to the
following problem, posed on the whole space:

@ € L*(R? x (0,7)) and, for all ¢ € C®(R? x [0,T)),

/ /Rduﬁtgo d:cdt—/ i (%) o, 0)da 10)

T
+/ / (—uv-Veo+u qpap)d:cdt:/ f ¢ dzdt.
0o Jre 0o Jre

Lemma 2.1 (Weak continuity with respect to time). Assuming (2), let 4 be a solution of (3), or to (10)
after extending i by 0 outside of Q. Let ¢ € CX(RY). Then the function Uy : t f]Rd u(x, t)(x) de
satisfies Uy € H'(0,T) C C°([0,T]) and Uy(0) = [pa wini(z)(x) de. Hence, u € Cyw([0,T], L*(Q)), where
Cy([a,b], L?()) stands for the space of functions [a,b] — L?(Y) that are continuous weakly in L*().

Proof. Let © € C°([0,T)). Taking ¢(x,t) = ©(t)y¥(x) in (10) yields

—/ @’(t)Uw(t)dt—@(O)/ wini(z) Y (x)dx

0 Rd

T
+ [ e [ (cuw.n o) o) + et o @) u(@)dedr (1)

0 Rd

— [ et [ f(@.1) ¢ (@ t)i(e) dadt.
0 R4



Restricting to © € C2°(0,T') this shows that, in the weak derivative sense,
Uy (t) = / (U@ '@ t) —a(@.1) " (@ O)(@) +ul@,t) 5@.1) - Vi(e))de. (12)

Since the right hand side of the above equation belongs to L2(0,T), this concludes the proof that Uq/, €
H'Y(0,T) c C°([0,T]). The relation Uy(0) = [pq uini(x)t(x) da is proved taking © € C°([0,T)) such that
©(0) =1 in (11), integrating-by-parts in time and using (12). O

Lemma 2.2 (Energy estimate). Assuming (2), any solution @ of (3) satisfies:

/ / V2daedt + ; /T(T— t) /Q(qf(:c,t) +qF (x,1)) a(x, t)*dadt
T /Q i ()2 + /O Yy /Q Fa, )¢ (. )i(, ) dadt.

Proof. By density of C2°(RY x [0,T)) in H*(R? x (0,T)), we can consider functions ¢ € CO(R¢ x [0,T)) N
HY(R? x (0,T)) in (10). Letting p be a mollifier on R%, and p,(x) = np(nzx) for all x € R? and n € N*, we
choose the function ¢ defined by

(13)

Va,t € RY x [0,T), la,t) = (T - 1) / d / iz, puly — 2)puly — @)=y,

which satisfies ¢ € CO(R? x [0,T)) N H*(R? x [0,T)) owing to Lemma 2.1. Using an integration by parts with
respect to y, we notice that

Va,t € R x [0,T], Vo(z,t) = (T —t) /Rd /Rd W(z,t)Vpn(y — 2)pn(y — x)dzdy,

With this choice of ¢ in (10) leads to 71 4+ T + 73" 4 T, 4 75 4 T, = T,(") | with

T
1) = [ [ o [ [ 00y - 2y - )zdydet
o Jrd Rd JRd
T
T2(n) :—/ (T—t)/ a(w,t)/ 8t(/ a(z,t)pn(y—z)pn(y—a:)dz>dydwdt,
0 Rd Rd Rd
T = -1 / Uini () / / Uini(2)pn (Y — 2)pn(y — z)dzdyde,
Rd Rd JRd

T
1 = [0 [ w0 s [ [ a0V -2 - o)dzydedt (14)
T
1 = @ -0 [ (aten) e —5w.0) [ [ 60V - 2y - @)izdyded,

T

100 = [ @0 [ i@ o @) [ [ a0n - 2. - 2yt
T

T7(n) :/0 (T —%) y f(x,t) ¢! (x,1) /Rd /Rd w(z,t)pn(y — 2)pn(y — x)dzdy daxdt.

Introducing the function iy, (y,t) = [p. u(z ,t)pn(y — z)dz, which converges to % in L?(R% x (0,7T)) as n — oo
and satisfies @, € H'(R x (0,7)) and @, (y,0) = [pa tini(2)pn(y — 2)dz (see Lemma 2.1), we have

T
T = / / U (y, 1) 2dydt
0 R4



and, using an integration-by-parts,

T T
1) = [ @1 [ w00 0dydt = - [ (@0 / Z (2 (y7t)2)dydt
0 R4 0
T
T/ Un(y —/ / 1an(y,t)Qdychs.
Rd 0o Jra2

Gathering these results leads to

n n w17 T [
T + 1T + T = 5/0 /Rd ﬂn(y,t)zdydt—g/w un(y,0)*dy

and therefore
lim (T(n) + T( + 15 n) / / (x,t)*dzdt — —/ Uini () *dee.
n—oo Rd Rd

Turning to T4(n) we write, using the divergence formula and dive’ = ¢ — ¢7,

T
T = - / (T 1) / (Y, 1) By, 1) - Vit (y, t)dydt

0 R4

—/OT(T—t) /R b(y,t) -V (;un(yi)?) dydt

3] =0 [ 0w ) ")y

Hence,
1T )
im 70 = 5 [ 0= 0) [ oy 176 0.0~ o (1) dyet
0 R

We then easily see that, as n — oo,

T T
1) = [ @ =0 [ awn? o wnipa— [0 -0 [ awn? o oaar

and "
T o [0 [ aly 05w o vyt
0 Rd
The proof is completed by gathering all the above convergence results and by proving that

lim 74" = 0. (15)

n—roo

In order to do so, we follow the technique of [9, Lemma II.1] and [17, Lemma B.4]. An integration-by-parts
gives

T
Tén) = / (T - t) / an(yv t)a” (y’ t)dydt7
0 R
with

an(yot) = div( [ (@l 0puly ~ @) ((e1) — 6(y.0)de).

Since the function (T — t)a,, converges to (T'— t)u in L2(R% x (0,7T)) as n — oo, the proof of (15) is complete
if we can show that a, — 0 weakly in L2(R? x (0,7)). We have

an(y,t) = /Rd w(x, t)Vpn(y — ) - (U(x,t) — 0(y,t))de — / w(x, t)pn(y — x)divi(y, t))dz. (16)

Rd



By Lipschitz continuity of ¥, there exists Cz > 0 depending only on ¢/ such that |V, (y—z)-(0(z,t)—0(y, t))| <
Csly — x| |Vpn(y — )|. Noting that the sequence of functions z + |z||Vp,(z)| is bounded in L'(R%), Young’s
inequality for convolution shows that the first term in the right-hand side of (16) is bounded in L?(R9 x (0,T)).
The same Young inequality also easily shows that the second term in this right-hand side is also bounded in
the same space, which proves that a,, itself remains bounded in L?(R¢ x (0,7)). The weak convergence of a,
therefore only needs to be assessed for smooth functions. Taking 1) € C°(R? x (0,T)), we have

/ /Rd“" Y )Py, t)dydt = / /R/R (y + 2, t)pn(2) (B(y + z,1) — B(y, 1)) - Vib(y, t)dzdydt.

Hence, using the Lipschitz continuity of ¥ and the fact that p, is supported in the ball centred at 0 and of
radius 1/n, there exists C' > 0 depending only on @, ¥ and v such that

c
an(y, t)(y, t)dydt| < —

Rd
Hence a,, converges to 0 weakly in L?(R? x (0,T)), which concludes the proof of (15) and of the lemma. [

Corollary 2.3 (Uniqueness). Assuming (2), there ezists at most one solution @ to (3).

Proof. The difference of two solutions to (3) is a solution for the same problem with right-hand-side f = 0 and
initial condition wu;,; = 0. The energy estimate (13) shows that this difference is a.e. equal to 0. O

3 The gradient discretisation method for the linear advection equa-
tion

The gradient discretisation method (GDM) is a general framework for nonconforming approximations of elliptic

or parabolic problems, see [12] for a general presentation of the method and of some models and schemes it

applies to.

The principle of the GDM is to design a set of discrete elements (space, operators) called a gradient discretisation

(GD), which is substituted in the weak formulation of the PDE in lieu of the related continuous elements leading
to a discretisation scheme.

Definition 3.1 (Gradient discretisation). Let p € (1,400) be given and let p' € (1,+00) with % + i =1 A
gradient discretisation D is defined by D = (Xp,p, Vp) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on R,

2. the linear mapping llp : Xp — Lmax(zp/)(ﬂ) reconstructs functions,

3. the linear mapping Vp : Xp — Lma"(z’p)(ﬁ)d reconstructs approximations of their gradients,
4. the quantity || - ||p := [[Up - [|z2(0) + VD - [|Lr(@)¢ defines a norm on Xp.

Remark 3.2. In the above definition, the definition of the norm is not standard in the GDM setting (in the
sense of [12, Definition 2.1]), because of the simultaneous use of the LP, LP and L? norms.

This notion is extended to evolution problems in the following definition.

Definition 3.3 (Space-time gradient discretisation). A family DT = (XD,HD,VD,ID,(t("))nzo,_“’]\/) 5 a
space-time gradient discretisation if

e D= (Xp,lp,Vp) is a gradient discretisation of ), in the sense of Definition 3.1,

e Ip : L*(Q) — Xp is an interpolation operator,



et =0<t® <t =1,
We then set &%) = (4D _ () forn =0,...,N — 1, and &p = max,—g__y_1 8" 2).

The properties of GDs are assessed through the two following functions Sp and Wp. The first one measures an
interpolation error:

Sp : W2(Q) — [0, +00) such that, for ¢ € W2(Q),

Sp() = min ([pv - |

(17)

Lmax(z,p/)(Q) + HV'DU - V‘P”Lmax(zp)(g)d) )

whilst the second one is a measure of a conformity defect (i.e. the defect in a discrete integration-by-parts
formula): letting W,,’o° ()¢ be the set of elements of W°°(Q)? with zero normal trace on 0%,

Wp : W2 ()% = [0,400) such that, for ¢ € W,ILZEC(Q)d,

a | (19
/Q (Vpu(x) - p(x) + Mpu(zx)dive(x)) de

Wp(p) =

1
max ———
ueXp\{0} ||ullp
Let us now define the space size of a GD relative to some regularity spaces. This definition, which holds for both

mesh-based and meshless methods, is a measure of the approximation properties of a given GD (this notion is
defined in the framework of elliptic problems with homogeneous boundary conditions in [12, Definition 2.22]).

Definition 3.4 (Space size of a GD). Let D be a gradient discretisation. The space-size of D is hp defined by

fmmmGw{&W):wwmmwm%w{”M”wemeﬂmD.um

Telweec Tl o

Remark 3.5 (Link between hp and the size of the mesh for mesh-based GDs). In the case of the mesh-based
GDs detailed in [12, Chapters 8-14], hp is related to the size of the mesh haq by hp < Chaq (see, e.g., [12,
Remark 2.24]).

Definition 3.6 (Consistent and limit-conforming sequence of space-time gradient discretisation).
A sequence (D) ,en of space-time gradient discretisations is said to be consistent and limit-conforming if hp,, ,
&p,, and, for allw € L*(Q), ||lw —p,, Ip, w| r2(q) tend to 0 as m — oo.

m m

Remark 3.7 (Link with the core properties of a GD in the framework of elliptic or parabolic problems). An
adaptation of [12, Lemma 2.25] to elliptic problems with homogeneous Neumann boundary conditions yields an
equivalence between Definition 3.6 and [12, Definitions 3.4 and 3.5] of consistent and limit-conforming sequences
of gradient discretisations, assuming that the sequence (DL )nen is compact (this holds true for the GDs detailed
in [12, Chapters 8-14]).

Given a space-time gradient discretisation DT = (Xp,Ilp, Vp, Ip, (t(”))n:() _____ ~) (in the sense of Definition
3.3), we now describe the gradient scheme defined from this GD. For n = 0,..., N — 1 and a given space-time
function g € L1 (2 x (0,7))¢ with £ =1, f =d or £ = d x d (g could be A, f, @, g% or ¢¥), set, for a.e. £ € Q
and foralln =0,...,N — 1,

(n+1)
1 t
gt (z) = W/ g(z,t)dt and gp(x,t) = g2 (z) for a.e. t € (£, ¢ HD), (20)
nT3 t(n)
Let 0 € [%, 1] and a € (0,p). The (f-implicit) scheme for Problem (3) is defined by replacing the continuous
space and operators in (7) with their discrete counterparts given by D, as follows: find u = (u(™),—¢

.....



that

u® = Tpuy; and, for n =0,...,N — 1, «("™Y € X1 is such that,

(n+1) _ ,,(n)
ing 678y = 11 Y Y (n+6) — g (n+1) 4 (1 — g)yu(m)
setting 6 >'u =1Ilp D) and u!"*?) = Gu\" T + (1 — O)u'™,
n+i 1 n Ll 1 n+0) =(n+1
/Q (6é+2)uﬂpv + §VDu( +0) . 5l +§)HDU — iﬂpu( +0) g(nt+3) Vpv (21)

1 1 1 1
+§HDU(”+9) [(ql)("+§) + (qP)(nJr?)} [pv + h$|Vpu 0 [E=2 A+ 2) gy (00 va> dx

= / f(n+%)(q1)(n+%)ﬂpvdw, Yo € Xp,
Q

denoting for short

|VDU(n+9)‘A _ \/A(n+§)vpu(n+a) - Vpu(nto), (22)

We introduce the following notations H% and Vf) for reconstructed space-time functions: given v = (vy,)n=o,... N
in Xg“, we set

% (x, t) = Mpv "9 (z) and Viu(x,t) = Vpo "+ (),

for a.e. (x,t) € Qx (™ "V vp=0,...,N —1.
We extend these definitions to ¢t = 0 by setting pv(x,0) = llpvg and Vpu(x,0) = Vpug.

4 Convergence analysis

Our main convergence result is stated in the following theorem. We recall (see [11, Definition 2.11]) that a
sequence (vy,)nen of bounded functions [0, 7] — L?(Q) is said to converge uniformly on [0, 7] weakly in L?(Q)
towards a function v if for all ¢ € L?(£2), the sequence of functions t € [0,T] — (vn(t),¥)r2(0) € R converges
uniformly on [0, 7] towards the function ¢ — (v(t),©)r2(q)-

Theorem 4.1 (Convergence of the GDM). Assuming (2), let (DL),.en be a consistent and limit-conforming
sequence of space-time gradient discretisations in the sense of Definition 3.6. Let 6 € [%, 1], p € (1,400) and
a € (0,p) be given. Then, for any m € N, there exists a unique u,, solution to Scheme (21) with DT = DI .
Moreover, as m — oo, H%mum converges in L?(2 x (0,T)), and uniformly on [0,T] weakly in L*(Q), to the

unique solution 4 of Problem (3).

Remark 4.2 (Theoretical order of convergence). Assuming sufficient smoothness of the continuous solution and
the velocity field, and letting p = 2, it seems possible to derive a theoretical error estimate in L>(0,T; L?(Q))
norm with order hgm(a’Q_a). This provides a maximal order 1 if a = 1. However, in the numerical tests with a
regular solution (see Section 5.3), much better numerical orders of convergence are obtained, even letting o = 2.

The question of the theoretical derivation of these better rates remains open.

The uniqueness component of this theorem is the most straightforward part, and the purpose of the following
lemma.

Lemma 4.3 (Uniqueness of a discrete solution). Assuming (2), let DT = (Xp,1lp, Vo, Zp, (1) po...n) be
a space-time gradient discretisation in the sense of Definition 3.3. Let 6 € [%, 1], p € (1,400) and « € (0,p) be
given. Then there exists at most one solution to Scheme (21).

Proof. The scheme defines exactly one approximation u(?). Let us assume that, for a given n € N and for a
given u(™, there exist two solutions u(®*1) and @("*1) to Scheme (21). Let us create the difference of the two
equations (21), and let us choose v = u(**t?) —G("+0) = g(y(*+1) —7("+1)) in the resulting equation. We obtain

2
/ <|:5t( 0+1) n % ((q[)(ﬂ%»%) + (qI)(n+§)):| (HDu(n+1) _ HDa(n+1))2
Q nT2
+hHAT D) (|Vpu O P25 () — | w0 P2 0y L (p () — vpa<"+9>)) de = 0.
(24)




It is classical (see for instance [12, Lemma 2.40] or [2, Lemma 2.1]), that

VE X €RY, (IEP726 — [XP2x) - (€ —x) > Amin(p; Lot )E = xI* (€] + |x[)P~2

Applying this inequality in (24) with y = (AT2))1/2V5u(+0) and ¢ = (A+2))1/29,55(" ) (in which the left
hand side is therefore the sum of non-negative terms), we get that Vpultt0 = vygnt+o) a.e., and therefore
Vput) = Vpu(™*th as well as Ipu"t1) = IIpa("+t1). Hence, thanks to the property of the norm assumed

in Definition 3.1, v(**1) = ("1 which concludes the proof of uniqueness by induction.
O

The proof of Theorem 4.1 hinges on a priori estimates stated in the following lemma.

Lemma 4.4 (L*°(0,T; L*(Q)) and discrete L*(0,T; H}(Q2)) estimates, existence of a discrete solution). As-
suming (2), let DT = (Xp,Ip,Vp,Ip, (t(”))nzow,N) be a space-time gradient discretisation in the sense of
Definition 3.3. Let 0 € [%, 1], p € (1,400) and « € (0,p) be given. Then there exists one and only one solution
to Scheme (21). Moreover, this solution satisfies, for allk =1,...,N

1 1
/ (HI;u(k)(a:)2 - HDU(O)($)2> dx + h%/
o \2 2 0

J
()

/Q Vhu(a, )2 dedt

1 t(k> t(k) (25)
+ 5/ / 9u(z,t)? [ap(z,t) + qp(z,t)] dzdt §/ / fo(z, t)gh (x, ) Thu(x, t)dadt,
0
and there exists C1 > 0, depending only on Cini > ||tin; — HDIpum1||L2(Q A, f and g’ such that
”HZGDUHLOC(O,T;L?(Q)) <Ci (26)
and
h%Hv'guHiP(QX(QT)) S Cl- (27)

Remark 4.5 (Weak BV estimate). The estimate (27) is the adaptation in the GDM framework of the classical
weak BV estimate used for finite volumes see [5] for the seminal paper and [16, chapters 5 & 6] for more general
results. This estimate is used in two occasions: first to pass to the limit in the skew-symmetric term, and second
to show that the stabilisation term vanishes at the limit.

Proof. Before establishing the existence of at least one discrete solution to Scheme (21), let us first prove that
any solution to this scheme satisfies (25)—(27). We first notice that for all a,b € R,

oo [fo- o (1) oo

(6-3) @02+ 5@ =) 2 ya - )

(a— b)(Ba+ (1 — O)b)

Hence, letting v = &1 2)y (n+0) i (21) and applying the estimate above with a = Hpu™tD) and b = Hpu™,
we obtain

1 1 1
/Q (2(HDu(n+1))2 o §(HDu(n))Q + 5(St(n+%)(HDu(n+9))2 {(qI)(n-&-%) + (qI)(n-i-%)}
+ & pe |Vpu("+9)i> de < &+ / FEED () D [Ty 4+0) 4
Q
Taking k =1,..., N and summing this inequality over n =0, ...,k — 1 proves (25).
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The Young inequality and the property 0 < ¢y < ¢f, + ¢5 yield

—_

1
foapllpu < i(HGDU)z [%IJ + qg} + 5(fD)2QD

Plugging this into (25) leads to

()
1 t
ST )+ W52Vl 0 ) < Mool +5 [ [ (nPabaanct

1
< §||HDIDUiniH2L2(Q) + Hf||L2(Q><(O,T))||qI||L°°(S2><(O,T))7 (28)

where we have used the Jensen inequality to bound the L?-norm of fp by the L?-norm of f. Estimate (27)
directly follows from (28) with & = N. Estimate (26) is also a consequence of (28), once we notice that
% u(zx, t) = 0pu™ D (z) + (1 — §)pu™ (z) for ae. x € Q, all t € (1 ¢t D) and all n = 0,..., N — 1.

We can now prove the existence of a solution to Scheme (21) (the uniqueness is proved in Lemma 4.3). If
p = 2 then, at each time step, (21) describes a linear square system on u(t0) (after substituting u(th) =
u™ + 071 (w9 — (™)), The estimates (26) and (27) show that any solution u("*?) to this system satisfies
a priori bounds. The kernel of the matrix of this linear system is therefore reduced to {0}, and the matrix is
invertible, which establishes the existence of a unique solution u(**? (and thus of u(**1)) to the system at time
step n + 1.

If p # 2 we use the topological degree [8]. Let us assume the existence of u(™. Let us substitute the term
(Vpu O[22 Upu+0) of the scheme by v|Vpu )R >Vpu+0) 4 (1 — v)Vpu™t9) for v € [0,1]. Tt is
clear that the above estimates still hold (again after substituting «(®*9 = u(") 4+ =1 (w9 — (")) so that
[Hpu* | 12(q) and v||Vpu 1P Loy + (1= v)h$ || Vpu+h) ||L2 () Temain bounded independently of v. We
infer from this latter estimate a bound on ||u(®*||p that is uniform with respect to v. Hence, all solutions to
the scheme with the above substitution remain bounded independently of v. This shows that, on a large enough
ball, the topological degree of the non-linear mapping defining the scheme is independent of v. For v = 0 this
mapping is linear and the arguments developed in the case p = 2 show that its topological degree is non-zero.
The degree for the original scheme (corresponding to v = 1) is therefore also non-zero, proving that this scheme
has at least one solution. O

We can now prove our convergence results, starting with the uniform-in-time weak-in-space convergence.

Proof of Theorem 4.1: uniform-in-time weak-in-space convergence. Owing to (26) there is 4 € L*(Q x (0,7T))
and a subsequence of (D, )men such that H%m U, converges to @ in L>=(0,T; L?(Q)) weak-x as m — oo. Let
m € N, and let us denote D = D,,, (belonging to the above subsequence); we drop some indices m to simplify
the notations.

Let p € C°([0,T)) and w € C°(R?), and let P,,w € Xp that realises the minimum in Sp(w). We denote
by Pne : (0,T) — R the function equal to o™= = gp(t(M) + (1 — 0)p(t™*V), on (™) t(+1)) for all
n=0,...,N —

Forn=0,...,N—1andte (¢, ¢t"+t1)) let ug)(t) = gulp ™ 4 (1- 9)1&7(7?) € Xp, and notice that Il u,, (t) =
puly (t) and Vu,,(t) = vDu<9> (t). By definition (18) of Wp and (19) of hp, since wi(t) € Wy ()7 we
have, for a.e. t € (0,T), recalling the definition (19) of hp,

< W (wi(t))|ufy) (8)l|lp < hpllwdllwr. @xom) luly) (¢)llo-

/Q (Voul®) (8) - 68w + Tpul® (1) div(wi (1)) )da

Thanks to (26)—(27), there is Cy depending only on C; and T such that

T 1/p e
hp (/ ||u§3)(t)ll%> < Co(hp +hp 7).
0

11



This right-hand side tends to 0 as m — oo (remember that a < p) and thus, since Py, is bounded in L>°(0,T),

T
im [ Poo(t) / (Vo (£) - B(£)w + Ty (£)liv (w (1)) )dadt = 0.
By strong convergence of P,,¢ to ¢ in L?(0,T) and weak convergence of I[I%u,, to @ in L*(Q x (0,T)) we infer
T T
lim / / Pro(t) Vi, (t) - 8(t)wdadt = —/ / p(t)udiv(wd(t))dzdt.
0o Ja 0o Jo

m—r o0

A Cauchy—Schwarz inequality yields

T
/ Pt / (VU (1) - B(t)w — Vit (t) - U(t)Ip Pryw)dadt
0 Q

< ||VIO>UmHLp(szx(0,T))d | Prsp(vw — mDme)”LP’(Qx(O,T))d
and, by definition of P,,¢, hp and P,w,
| Pmip () (8w — BT Prtw) || Lo (e (0,172 < TP N0l e (0,0 181| Lo (2 (0,2 e l[w | w20 () -

Therefore, using (27) again,
T

T
lim Prop(t) / Vit (t) - F(t)p Ppywdadt = lim Poop(t) / Vit (t) - B(t)wdadt
m—roo 0 Q m— o0 0 Q
T
= — / o(t) / a(t)div(wd(t))dadt. (29)
0 Q

We take &("+%)tp(t("))me as test function in (21) and sum the resulting equation over n = 0,..., N — 1. This
gives

m 1 m 1 m 1 m m m
Ts( )+§T9( )+§T1(0)*§T1(1)+T1(2):T1(3) (30)
with
N-1 .
T = 37 gt pnt1=0) / 52wy, Tp Prwde,
n=0 Q
N-1
Ty = § gt h)pnt1-6) / Voul+? . g0 Py wda,
n=0 Q
N-1 .
Tw(m) _ &(n+§)(p(n+179)/ HDugngG) {((qI)(njL%) + (qI)(nJr%)} HDmed:D,
n=0 Q
N-1 .
Ty, ™ = & +3) p(nt1-0) / Mpu" TGy (x,t) - Vp Ppwde,
n=0 Q
N-1
1 1
Ty (™) = hp &(n+§)@(n+170)/ |VDU7(;LL+6)|ﬁ_2A(n+5)VDU$+0) - VpPpwde,
n=0 Q
N-1
T3(™ = Lp(n+1—(9)5t("+%)/ f("+%)(ql)("+%)Hmewd:Bdt.
Q

0

3
I

The summation-by-parts formula [12, Eq. (D.17)] reads

N-1 N-1
Z (D — M) (0a™ 4 (1 — B)a D) = —p© (0 — Z (06D £ (1 — 0)b") (0D — ¢y 4 V) (V)
n=0 n=0

12



1
Using this relation to transform, in the sum appearing in Tém), the term &("+%)4p(”+1*9)6g+ 2)y,, into (™) —

(M ONIpult ™ we see that

T
7™ = — / o(t) / %y, Tp P wdedt — ¢(0) / pu'® Tp P wde,
0 Q Q

and so, since I$u,, — 4 weakly in L?(Qx (0, 7)), llp P,,w — w strongly in L?(£2), and Hpug,?) =1lp, Ip, tini —

Uini n LQ(Q>7
T

lim 7™ :—/ @’(t)/u(cc,t)wda:dt—w(O)/ Uipjwdz.
0 Q

m—»00 Q

Noticing that
T
™ = / Py / Vot - B1p Ppwde,
0 Q

the relation (29) yields

T T T
lim T{™ = — / o(t) / adiv(w®)dodt = — / o(t) / wwdiv(@)dzdt — / o(t) / uw - Vwdadt.
m—e0 0 Q 0 Q 0 Q
Moreover, since
q{)m - qgm — ¢’ — ¢ ae. in Q x (0,T) as m — oo and remains bounded, (31)

4w weakly converges to u in L*(Q x (0,T)), Tlp(P,w) strongly converges in L2(Q2), and Vp(P,w) strongly
converges to Vw in L2(Q)¢, we have

T
lim Tl(gn) = /0 o(t) /Q aw(q" + ¢7)dzdt,

m—roo

T
lim THn) = / go(t)/ av - Vwdxdt.
0 Q

m— oo

The Hélder inequality and (27) show that

<P/ o -
75| < NPTV ] Lo 0.y B IVBUIIE e 0.9y | VD (Pent) | o

~p/2

< XY gl oo 0.y i) POV P VD (Pt | 1 ).

The boundedness of Vp(P,w) in LP() (since this sequence converges in this space) and a > 0 then yield
limpm o T2 = 0.
Finally, using (31) again,
T
lim Tl(;n) :/ w(t)/ f(x,t)q" (x, t)w(x)dadt.
0 Q

m—r o0

Passing to the limit m — oo in (30) shows that @ satisfies (3) for any test function of the form ¢ (¢t)w(x), and
thus for sums of such test functions. Since the set 7 = {>7_, ¢;(t)w;(z) : ¢ € N,¢; € C°[0,T),w; € C(R%)}
is dense in the set of the restrictions to 2 x [0, T) of the elements of C2°(R? x [0,T)), we conclude that 4 is a
solution of (3).

It now suffices to prove the uniform-in-time weak-L?(2) convergence of 11, w, to @. Let w € C°(R?) and
define P,w as before. For 0 < s < t, writing 1%, up(x,t) — 1% up(x,s) as the sum of its jumps at each
t() € (s,t) (see [12, Proof of Theorem 4.19] for details), Scheme (21) and the estimates in Lemma 4.4 give the
existence of C3, depending only on the data introduced in 2, such that

/ (U, um (2, t) =y un (2, 5))p,, (Puw)(@)de| < Cs(t — s + &) 2| Puwlp,-
Q

13



Hence, introducing +w, and using (26) again,

/Q(H%mum(m,t) — H%mum(az, s))w(x)dx

Using vt — s + 20, </t — 5+ /2&,,, we get

/Q (It (@,1) — T, ) ()| < g(t — 5, h5)),

< (t = 5+ 28) /2Cs| P, +2C1 |w — I, (P) | 12(0).

with g(a,b) = /aCy + b, Cy = Czsup,, | Prw|p,, and hf, = (2&,,)*/2Cy + 201 |w — Lp,, (Prw)| 12(q). We
then may apply [12, Theorem C.11] or [11, Theorem 6.2] to deduce that H(’Dmum weakly tends to u in L?(9)

uniformly on [0, T1.

O

Proof of Theorem /.1: strong convergence. The proof makes use of the continuous energy estimate (13) and a
discrete version thereof, in a similar way as in the proof of [11, Theorem 2.16]. Let us first establish this discrete

energy estimate. We remark that for all a,b,c,d € R,

a+b a—>b c+d c—d
_ T _ _
(a b)( > + « 5 )( 5 o 5 )

1 , 1 , 1 a+b  a-b\>
f2(T d)a 2(T c)b +2(d c)( 5 ta— )
(a—b)? c+d c—d d—c 9

t— alT 5 a—— )+ — (1—a)].

Setting tM+1=0) = 9t™ 4 (1 — )tV letting v = &2y + (T — ¢(n+1-0)) in (21), applying the above
relation with a = IIpu™*tY, b =Tpu™, a =20 — 1, ¢ = ™, d =tV and dropping the last addend (which

is positive), we obtain
1 (n+1)32 (nt1)y L (n)\2 )y 4 Lg(ntd) (n+6)\2
i(HDU (T —t )—§(HDu (T —t )+§§t ) (Mlpu )
Q
1
+ (T _ t(n+1—9))§&(n+%)(HDu(n+6))2 [<q1)(n+%) + (ql)(n-&-%)]

+ (T _ t(n+170))&(n+%)h% |vDu(n+0)|§>\> dx

< (T _ t(n+170))&(n+%) / f(n+%) (ql)(nJr%)HDu(nJrQ)dm. (32)
Q
Summing the obtained inequality on n = 0,..., N — 1, and denoting by ¢p the function equal to t(*T1=9) for
all t € (£ ¢t D) we get
I 0 2 e 0 27 1 P
3 (Mpu(e,t)*dzdt + 5 | (T —tn(t) | (pu(@,1))* [4p(®. ) + gp (@, 1)] dwdt
0o Ja 0 Q
T T
<5 [ MoToum(@)de+ [ (7 to(t) [ oletble,)ula. tdadt. (33
Q 0 Q
Taking the superior limit as m — oo of the above inequality for D = D,,,, we get
7]1msup/ / 9 um(z, 1) (1+ (T —tp,, (t) [ab, (x.t) +ap, (z,t)]) dzdt
m—ro0
T
< 5/ Uini ()% da +/ (T - t)/ f(z, t)q! (x, t)a(x, t)daxdt. (34)
Q 0 Q
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We then use (13) to substitute the right-hand side of this inequality and find

T T
limsup/0 /Q(H%mum)z (1+ (T —tp,) [ap,, + ap,,]) dedt g/ /az (1+(T —1t) [¢" +¢"]) dzdt. (35)

m— o0

Developing the square (H%mum — )% we have

/ / (U, um —)* (1+(T ~tp,) [4p,, +4p,,]) dedt
T
- / / (0%, um)* (1+ (T = tp,,) [ap,, +ap,,]) dedt
0 Q
T
- 2/ / 9w a(1+ (T —tp,) [ab, +ap, ]) dedt
0 Q

T
+ / / @’ (1+ (T —tp,,) [ab, +ab, |) dzdt. (36)
0 Q

The limit of the second (resp. third) term in the right-hand side is obtained by weak/strong (resp. strong)
convergence:

T T
lim / /H%mum u(1+ (T —tp,) [ab, +q£m])dxdt:/ /a2 (L+(T —t)[¢" + ¢"]) dedt,
Q 0 Q

m—r oo 0

and

T T
lim / / w’ (14 (T —tp,,) [ap,, + b, |) dedt = / / w* (14 (T —t) [¢" + ¢"]) dadt.
0 Q 0 Q

m—r 00

Hence, using (35) to deal with the first term in the right-hand side of (36) we find

lim sup/ / b um —0)? (L+ (T —tp,) [ab, +ap, ])dedt <0,

m—o0

and therefore, since 1 + (T — tp,,) [qu +qh5 ] >1,

m

lim/ /H U, — U dwdt—O
m—r 00

which concludes the proof of the convergence of I1%, up, to @ in L2(Q x (0,T)).

5 Numerical results

Let Q = (0,1)? and consider meshes T = (M, F,P,V) as per [12, Definition 7.2]: M is the set of polygo-
nal/polyhedral cells K, F is the set of faces o, P is a set of points (€ x)xerm with K star-shaped with respect
to xx for all K € M, and V is the set of vertices v. Let us define two test cases.

Case 1.
This test case is divergence free (it corresponds to the pure transport of a tracer). We choose T' = 5, ujpni(x) =1
if z = (z1,22) € (0.1,0.4) x (0.1,0.4) and uipi(z) = 0 elsewhere, ¢/ = ¢© = 0 and ¥ is given by

B(z1,x2) = (1 = 2x2) (21 — 3), —(1 — 221) (20 — 23)).

Case 2.
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This test case includes source terms. We choose T' = 1, w;y; = 0, U is given by

v(x1,22) = (21 — x%a@ - x%),

¢! (z,t) = max(div(¥)(x),0) = max(2 — 2(z; + 22),0) and f(z,t) = 1, ¢"'(x,t) = max(—div(¥)(z),0) =
max(2(z1 + x2) — 2,0). Then the solution @(x,t) to (1) can be analytically calculated. Find first X (s)
S

2

(X1(s), X2(s)) by solving the differential equation X'(s) = ¥(X (s)), letting X (0) = & = (1, %2) for any &

(this is easy owing to the expression of ¥); set then o(s) = a(X(s),s), which leads to ¥'(s) = (f(X(s)) —
9(s))q’ (X (s)) with 9(X (0)) = 0. This requires to compute 3 such that X;(3) + X2(3) = 1, since ¢/ (X (s)) =0
for s > §. Finally, we get that @(xz,t) = 9(¢), when Z is chosen such that X (¢) = x, and we have @(z,t) = 0 if

Z1 + 2o > 1. Denoting by a := min(1, %), this leads to the following expressions.

. (1 —z1)(1 —x9)
a = min (1, \/371962)’

e (e — D)(1 (e — 1)
u<w7t) =1 (a(et(l — 561) +$1)(6t(1 — 132) + T2

2
)) if ae’ > 1, u(zx,t) = 0 otherwise.

5.1 Case 1, different schemes with p =2

We apply Scheme (21) with three different gradient discretisations, corresponding respectively to the mass-
lumped conforming P; finite element method (or CVFE method, see [18] for the seminal paper and [12, Chapter
8] for the study in the GDM framework), to the mass-lumped non-conforming P; (MLNC-P; for short) finite
element method [12, Chapter 9], and to (a variant of) the Hybrid Finite Volume method (HFV), a member of
the family of Hybrid Mimetic Mixed methods [12, chapter 13]. For the sake of completeness we briefly recall
the definition of these gradient discretisations.

09 y

/¢
Vil

Figure 1: Dual cells for the mass-lumped Py gradient discretisations: conforming P; (CVFE, left) and non-
conforming Py (right).

29)

e CVFE method (mass-lumped conforming Py ): the mesh ¥ is a conforming simplicial mesh [12, Definition
7.4], and
* Xp ={u=(uy)vey : uy € R for all ve V}.

* For each vertex v € V, a dual cell C, is constructed around the vertex by joining the cell centres of
mass, the face centres of mass and (in 3D) the edge midpoints around v (see Figure 1, left). Then, for
u € Xp and any v € V, (Ilpu)|c, = uy.
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*x For u € Xp, Vpu is the gradient of the P; function constructed from the vertex values (uy)vey.

The proof that this GD leads to a consistent and limit-conforming sequence of space-time gradient dis-
cretisation in the sense of Definition 3.6 can be obtained by following that of [12, Theorem 8.17].

o MLNC-P;: the mesh ¥ is also a conforming simplicial mesh, and

* Xp ={u=(ug)ocr : uy € R for all o € F}.

* For each face 0 € F, a dual cell C, is constructed as the union, for each cell on each side of o, of the
convex hulls on the face and the cell centre of mass (see Figure 1, right). Then, for u € Xp and any
o€ F, (llpu)c, = to.

* For u € Xp, Vpu is the gradient of the non-conforming P; function constructed from the edge values
(UJ)UEJ:'

The proof that this GD leads to a consistent and limit-conforming sequence of space-time gradient dis-
cretisation in the sense of Definition 3.6 can be obtained by following that of [12, Theorem 9.17].

o (Variant of the) HF'V method: T is a generic polygonal/polyhedral mesh and

* Xp ={u=((ux)kem, (Us)oecr : uxg € R for all K € M, u, € R for all o € F}.
% A coefficient y € (0, 1] is chosen and each cell K is partitioned into K and (K,)qscr,, where Fx is the

set of faces of K, |K| = ~|K| and |K,| = ﬁ(}mﬁﬂ (here, |E| denotes the Lebesgue measure of the
set F).

* For all u € Xp and all K € M, (HDu)‘k = ug and, for all o0 € Fg, (Ilpu)|x, = to-
* For all u € Xp, all K € M and all 0 € Fi (where F is the set of faces of K),

Vd

dK,U

(Vou)|py, = Viu+ Bk [t —ug — Viu- (To — xg)| nE,0

where S > 0 is a user-defined parameter and

¢ Nk, and X, are respectively the outer normal to K on o and the centre of mass of o,
o Vigu= ﬁ Y overy |OlUoN K o, With [K| and |o| the d- and (d — 1)-measure of K and o, respectively,

¢ dg,, the orthogonal distance between g and o.

The proof that this GD leads to a consistent and limit-conforming sequence of space-time gradient dis-
cretisation in the sense of Definition 3.6 can be obtained by following that of [12, Theorem 13.16].

Remark 5.1 (Original HFV method). The original HFV scheme (also known as SUSHI scheme) consists in
choosingy =1 [12, chapter 13], that is, (Ilpu)|x = ug for all K € M (the face unknowns are not involved in the
definition of Ilp). We however found that, when applied to the gradient scheme (21) for the linear hyperbolic
equation, the HFV method requires quite a lot of fiddling with various parameters (diffusion magnitude and
direction, the coefficients Bk, etc.) to produce acceptable results. Indeed, for v = 1, the face unknowns are not
involved in the accumulation term in (21), so that these unknowns are not accurately updated at each time step
— the diffusion is the quantity that links the face and cell unknowns, and with a vanishing diffusion, this link
looses too much strength. Involving the face unknowns in the definition of llp, by re-distributing the fraction
1 —~ of the complete volume to these unknowns in the accumulation term, ensures a much better stability and
behaviour of the method. However, for v = 0, i.e. when the total volume |K| is re-distributed so that only the
face unknowns are accounted for in llp, the solution displays severe oscillations around the discontinuities of
the initial condition. The coefficient y should therefore be chosen in (0,1).
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Remark 5.2 (Choice of K and K,). In practice, implementing the HF'V method does not require to choose a
detailed geometry for K and K,, as source and advection integral terms are approzimated using only the values
of the function at the centres of mass of K and o and the measures of K and K,. For example,

AfHDwa% Z <|K|f(wK)UK+ Z |Ka|f(wcr)va>a

KeM oc€FK
where, for E =K or E =0, g is the centre of mass of E.

We also compare the results, obtained with these GDs, with the results using the upstream weighting scheme
based on the standard CVFE method [6, Section 4.3] on a triangular mesh (upstream values are computed
with respect to the sign of fluxes computed at the boundaries of the dual mesh). All the considered meshes
are from [20]. For the CVFE, MLNC-P; and upstream schemes we use the family of meshes mesh1_X. For the
HFV method we fixed v = 0.3, 8 = 1 for all K € M and we ran the simulations on the locally refined and
non-conforming family of meshes mesh3 X. A sensitivity analysis on the parameter v was carried out. Tests
were performed for v ranging from 0 to 1. As mentioned in Remark 5.1 for v = 0, severe oscillations occur
because the cell unknowns are no longer present in the accumulation term. The numerical results obtained for
v € (0,1) do not vary much, although taking v € (0, 1) instead of v = 1 seems to reduce the numerical diffusion
and produces a scheme which is more stable with respect to changes in the parameter A. Examples of the
considered mesh families are shown in Figure 2. We let 6 = %, p =2 and a = 2 for the discretisation scheme
(note that we only proved that the scheme converges for « € (0,2)). The analytical solution is approximated
by the characteristics method, where the characteristics ODE is approximated using the explicit Euler scheme
with time step 0.001.

The errors are calculated at the final time, by projecting the analytical solution onto the appropriate piecewise-
constant functions (depending on the considered method). Thus, for ¢ =1 or ¢ = 2, we set

1/q
CVFE and _ N .
upstream Py~ errlq = (; 1Cul |uy” — a(v, T) > )

1/q
MLNC-P; : errlq= (Z |Cy ] [ul — u(:l:a,T)|q> ,

ceF

1/q
HFV: errlq= ( Z VK| [ul¥ — a(@x, T)|P + Z Z Card )|K| Juy (ﬁcmT”q) .

KeM KeMoeFk

h errl?2 rate errll rate umin | umax
0.250 | 2.95E-01 - 1.95E-01 - 0.108 | 0.137
0.125 | 2.55E-01 | 0.212 | 1.37E-01 | 0.504 | 0.014 | 0.174
0.062 | 2.32E-01 | 0.136 | 1.23E-01 | 0.158 | 0.000 | 0.344
0.031 | 1.77E-01 | 0.394 | 8.55E-02 | 0.525 | -0.001 | 0.734
0.016 | 1.23E-01 | 0.524 | 4.73E-02 | 0.853 | -0.013 | 1.003

Table 1: Case 1, results with the centred scheme, using the CVFE method, & = 0.4h

We observe that all the convergence rates are lower than one half (due to the discontinuity of the exact solution,
better orders cannot be expected). The GDM based methods seem to produce such an order when refining the
meshes. Note that these convergence orders are much smaller than that observed on Test Case 2 (see Section
5.3), which can be expected since the analytical solution is discontinuous here, whereas it is continuous in Test
Case 2.
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Figure 2: Meshes used for the simulations: mesh1 2 (left) and mesh3_2 (right).

h errl2 rate errll rate umin | umax
0.250 | 2.52E-1 - 1.10E-1 - 0.043 | 0.054
0.125 | 2.65E-1 | -0.076 | 1.51E-1 | -0.457 | 0.016 | 0.194
0.062 | 2.37E-1 | 0.165 | 1.31E-1 | 0.208 | 0.000 | 0.361
0.031 | 1.82E-1 | 0.381 | 8.64E-2 | 0.597 | 0.000 | 0.687
0.016 | 1.33E-1 | 0.456 | 5.34E-2 | 0.694 | 0.000 | 0.960

Table 2: Case 1, results with the centred scheme, using the MLNC-P; method, & = 0.4h

h errl?2 rate errll rate umin | umax
0.35 | 2.80E-1 - 2.08E-1 - 0.152 | 0.155
0.18 | 2.79E-1 | 0.001 | 1.54E-1 | 0.436 | 0.044 | 0.124
0.09 | 2.59E-1 | 0.111 | 1.30E-1 | 0.236 | 0.001 | 0.220
0.04 | 2.10E-1 | 0.300 | 1.08E-1 | 0.276 | 0.000 | 0.499
0.02 | 1.47E-1 | 0.520 | 6.57E-2 | 0.713 | 0.000 | 0.906

Table 3: Case 1, results with the centred scheme, using the HFV method, & = 0.4h

h errl2 rate errll rate | umin | umax
0.250 | 2.59E-01 - 1.65E-01 - 0.005 | 0.313
0.125 | 2.32E-01 | 0.159 | 1.19E-01 | 0.462 | 0.000 | 0.286
0.062 | 2.13E-01 | 0.122 | 1.10E-01 | 0.122 | 0.000 | 0.454
0.031 | 1.85E-01 | 0.205 | 9.13E-02 | 0.266 | 0.000 | 0.672
0.016 | 1.53E-01 | 0.270 | 6.93E-02 | 0.398 | 0.000 | 0.868

Table 4: Case 1, results with the upstream Py scheme, & = 0.4h
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Figure 3: Top: values of u (darkblue 0, darkred 1). Left to right: analytical solution at final time T' = 5, centred
CVFE, upwind CVFE, HFV, MLNC-P; at last step N. Bottom: Profiles at the same times and time step along
the segment [z(0), (v/1.04)] with curvilinear abscissae s such that 2(0) = (0.9,0) and x(1/1.04) = (0.7,1), with
6 = 0.5. Left: analytical solution; centre: centred scheme with « = 2; right: upstream P; scheme.

5.2 Case 1, different values of p with CVFE scheme

In Figure 4, we compare on the triangular mesh mesh1_4 the results obtained on the same problem as the
previous section, but using only the CVFE scheme, and letting p vary. The numerical scheme is solved quite
accurately at each time step using Newton’s method (the p-Laplace operator being particularly easy to compute
using the P! finite element). The homogeneity degree of the coefficient for the diffusion term, with respect to
the units of length and @, is a function of p. Because of that, properly comparing the results for various p is
difficult at best.

The considered mesh meshl 4 is too coarse for the scheme to have already converged. However, there is
something to be learnt on the results on this mesh since computing numerical solutions on a too coarse mesh
is a standard situation in industrial contexts. We observe that, on this mesh, the profiles obtained with p < 2
differ quite a bit from those obtained with p > 2, the latter being closer to the expected solution. This seems
to indicate that, in practical applications, choosing a higher value of p provides better results.

5.3 Case 2, comparison of CVFE schemes with analytical solution

We apply Scheme (21) with the CVFE method to Case 2, with p = 2 and § = 0.5. In this case, the solution @ is
regular (it belongs to C1(2 x [0,T])), and therefore the convergence orders are much higher that those observed
in Test Case 1; this is shown in Table 5, which provides the convergence orders including for the L°°-norm
at the final time. The convergence orders with Scheme (21) are also higher that the ones observed in Table 6
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Figure 4: Comparison of the solutions IIpu™) (x(s)) at time step N for different values of p (p = 3 for the red
curve, p = 1,5 for the blue curve and p = 2 for the black curve), along the same segment as in Figure 3.

for the upstream scheme (these orders for the L! error are close to 1, as expected in this regular case). This
accurate convergence is confirmed by Figure 5, where we plot the profiles of the approximate solutions and of
the exact solution at final time along the first diagonal.

u(x(s), T)

%Ifmm(m(s)) Hpu™ (2(s)) — az(s), T)|

Figure 5: Case 2. Left: approximate solution at the last time step with Scheme (21). Middle: Tpu™) (x(s))
and exact solution u(z(s), T'), along the first diagonal (segment [x(0), (1/2)] with curvilinear abscissae s such
that (0) = (0,0) and x(v/2) = (1,1)), with # = 0.5. Red line and plus: exact solution; blue line and circles:
approximate solution with Scheme (21); green line and squares: approximate solution with upstream scheme.
Right: |TIpu™)(2(s)) — @(x(s), T)|, blue line and circles: approximate solution with Scheme (21); green line
and squares: approximate solution with upstream scheme. Computations done using mesh1 4 and & = 0.0125.
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h errl2 rate errll rate errloo rate
0.250 | 4.96E-02 - 4.34E-02 - 0.138 -
0.125 | 1.82E-02 | 1.44 | 1.42E-02 | 1.61 | 7.17E-02 | 0.94
0.062 | 5.89E-03 | 1.62 | 4.26E-03 | 1.73 | 3.59E-02 | 0.99
0.031 | 1.81E-03 | 1.70 | 1.16E-03 | 1.87 | 1.78E-02 | 1.01
0.016 | 5.51E-04 | 1.71 | 3.06E-04 | 1.92 | 8.86E-03 | 1.01

Table 5: Case 2, results with Scheme (21), using the CVFE method, & = 0.4h

h errl2 rate errll rate errloo rate
0.250 | 5.37E-02 - 5.01E-02 - 9.25E-02 -
0.125 | 2.88E-02 | 0.90 | 2.59E-02 | 0.95 | 5.85E-02 | 0.66
0.062 | 1.57E-02 | 0.87 | 1.35E-02 | 0.94 | 3.36E-02 | 0.80
0.031 | 8.55E-03 | 0.88 | 6.94E-03 | 0.96 | 2.21E-02 | 0.60
0.016 | 4.57E-03 | 0.90 | 3.53E-03 | 0.98 | 1.50E-02 | 0.55

Table 6: Case 2, results with the upstream scheme, using the CVFE method, & = 0.4h

6 Conclusion

We designed a numerical scheme, based on the Gradient Discretisation Method, for linear advection equations.
The approximation is built on a skew-symmetric formulation of the advective terms, which enables estimates
and a complete proof of convergence without additional regularity on the solution. The abstract notion of the
size of a GD is used in both the design of the scheme and in the characterisation of the properties of the GDM.
We note that this size of GD is defined purely using the underlying abstract spaces and operators; although
linked to the mesh size for mesh-based schemes, it can also be fully defined for meshless methods.

The analysis carried out in this paper may also lead to the development and analysis of novel GDM-based
schemes for coupled hyperbolic-parabolic problems.
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