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Abstract— A way to assess rare aircraft incidents (e.g., runway 

excursion) is to identify contributing factors (e.g., late braking, 

long landing, inappropriate flare, unstable approach) and to 

build a dependency tree (e.g., long landing may be the result of 

an unstable approach not followed by a go around) that describes 

the causality between these factors. Probabilities are then fed 

into such models in order to evaluate the assessed risk. When 

estimating such probabilities, many sources can be of interest. 

Airlines have access to the comprehensive flight data records of 

their fleet; manufacturers push to collect data for the aircraft 

they build; air traffic control log radar tracks. Albeit not as 

complete as other flight data records, Mode S data is very 

attractive, esp. for academics, as the data is open, may be 

published without obfuscation and offers reproducible results to 

the community. Mode S also provides an indiscriminate source of 

information (not limited to an airline or to an aircraft type) that 

is of great help for putting in context flights matching unusual 

patterns. We propose to discuss the advantages and limitations of 

an analysis based only on Mode S data with a case study around 

the runway excursion risk assessment. 

Keywords— Air traffic safety, quantitative risk assessment, 

Mode S, ADS-B 

I.  INTRODUCTION 

The Future Sky Safety (FSS) P4 project [1] aims at 
developing a prototype Risk Observatory that will assist in the 
safety assessment of the total aviation transport system. The 
Risk Observatory should help to compute the probabilities of 
occurrences of various incident and accident categories using 
risk models. As a contribution to this effort, Bieber et al. [2] 
introduced a risk model that identifies the contributing factors 
leading to runway excursion. 

The frequencies of contributing factors shall be computed 
using data collected by stakeholders of the aviation transport 
system such as aircraft manufacturers, airline operators or Air 
Navigation Service Providers (ANSP). Limits were reached 
because quantitative evaluation of incidents and accidents 
would have required more information than was available from 
stakeholders. As necessary collected data are not shared 
openly, it has been difficult to compute the frequencies of 
contributing factors and, consequently, the probabilities of 

incidents and accidents. Also, the definition of contributing 
factors by experts is sometimes too vague for a proper 
numerical analysis. 

As a way to tackle this limitation, we decided to investigate 
Mode S data, an alternative source of data that could be used in 
order to evaluate the frequencies of contributing factors leading 
to runway excursion. Mode S is a protocol for identification, 
localisation and communication between aircraft and 
surveillance equipment; it is mandatory in Europe and its full 
implementation is expected by 2020. 

The OpenSky Network [4] provides an open access to their 
records for academic research, although its coverage is still 
behind commercial solutions like FlightRadar24. Mode S data 
is rather basic compared to the data collected by stakeholders 
of the aviation transport system, but they reveal another kind of 
precious information about the context where aircraft evolve 
that is not recorded elsewhere. 

We explain in the following section the runway excursion 
model developed in [2], then describe the information present 
in Mode S data with the subset [5] that we use for our study. 
Further, we introduce a machine learning approach which we 
applied to a specific contributing factor for runway excursion. 
We show how the data-based statistical model we construct 
can 1) help to better specify contributing factors; 2) provide 
figures for quantifying the contributing factor we specifically 
addressed; and 3) challenge choices made when building the 
model. Finally, we mention limitations we encountered in the 
currently deployed implementation of this protocol as we tried 
to address other contributing factors of our model. 

II. RELATED WORK AND LITERATURE REVIEW 

Aviation system stakeholders must collect relevant safety 
data in order to comply with regulations [6]. However, 
collected data cannot be easily shared as they are subject to 
privacy, warranty and competitiveness issues. Flight data 
monitors (FDM) collect data that can be a very rich source of 
information in terms of the number of features they provide; all 
analyses of the circumstances of accidents or incidents rely on 
such a comprehensive source of information. 
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In 2004, the European Aviation Safety Agency (EASA) 

and the Federal Aviation Administration (FAA) defined the 
Flight Operations Quality Assurance (FOQA) as a method of 
capturing, analysing and/or visualizing the data generated by 
an aircraft. Data sharing initiatives have also been sponsored 
by organisations in charge of the supervision of the aviation 
transport system. The ASIAS (Aviation Safety Information 
Analysis) programme [7] has established rules so that airline 
operators can share their data and preserve flight crew 
anonymity. The ASIAS programme would not authorize access 
to collected data that could easily be linked with a specific 
flight. Instead it provides to the ASIAS members general 
syntheses on the various categories of incident and accidents. 
In our case, general synthesis provided by ASIAS might be too 
general and not useful for computing the probabilities of 
contributing factors. 

Previous works have already been conducted for safety 
analysis based on flight data. Das et al. [8] published results on 
anomaly detection based on NASA records, known as the 
Distributed National FOQA Archive (DNFA). This archive 
covers two million flights over 10 major carriers. They contain 
many continuous and discrete data from various on-board 
systems (propulsion systems, landing gears, cockpit switch 
positions, etc.), yet they do not offer a comprehensive view of 
the context in which aircraft evolve. Wang and Sherry [9, 10] 
also presented risk assessment analyses based on surveillance 
track data provided by the FAA National Offload Program. 
This data covers North America, and contains positional 
information at a sampling interval between 4 and 5 seconds. 

In addition to safety assessments based exclusively on 
collected data, several groups developed risk models to deal 
with situations where data is not fully available. The Integrated 
Risk Picture model was developed by EUROCONTROL to 
assess accidents and incidents related with ANSP 
contributors [11]. This model was first used to compute 
baseline probabilities for accidents relying on collected data 
and predict these probabilities of accidents in the future. Here, 
the model no longer computes probabilities based on collected 
data; instead, it uses values to describe an assumed evolution 
of probabilities over time, taking into account evolution factors 
such as the growth of traffic or the planned introduction of new 
safety technologies in aircraft and ATM systems. 

More recently, the Integrated Safety Assessment Model 
(ISAM) was developed following the same principles in order 
to analyse the NextGen framework of modernization of the US 
National Airspace [12]. Another risk model of interest is CATS 
(Causal Model for Air Transport Safety) developed by 
NLR [13]. In this model, the probabilities of some risk 
contributors could be provided by human analysis of accident 
and incident reports.  

To our knowledge, Mode S data, thoroughly presented in 
Section IV has not yet been used for safety analyses. Although 
it exposes less information than what can be found in FDM or 

DNFA, it offers a continuous feed of data for analysis. It also 
provides information about context in which aircraft fly, that is 
usually not available in the data owned by flight operators. 
This source of information has recently been used for various 
applications, including modelling aircraft performance [14], 
and improving weather models [15, 16] and forecasts [17]. 

III. MODELING THE RISK OF RUNWAY EXCURSION 

A backbone model for the risk of runway excursion [2] was 
developed by partners of the Future Sky Safety (FSS) P4. This 
model manages in a consistent way contributing factors leading 
to a runway excursion. The top level view of the backbone 
model for the risk of longitudinal runway excursion is 
described in Fig. 1. It is a fault tree that relates failed situations 
such as "unstable approach" or “incorrect touchdown” and 
barrier failures such as “4-Failure to manage stabilization in 
final approach” or “5.1- Absence of rejected landing”. 

The fault tree notation [18] is also used to describe formally 
the relation between Contributing factors and barrier failures. 
A contributing factor can be a technical factor (e.g. airborne or 
ground equipment failure) or a human factor (flight crew, 
ATC, ground operator errors). Fig. 2 shows a part of the fault 
tree containing contributing factors leading to "4. Failure to 
manage stabilization in final approach". Contributing factors 
belong to the aircraft domain or to the ATM domain. Tab. I 
gives a list of aircraft domain contributing factors in category 
Unstabilized Approach. The fault tree also contains a 
combination of two contributing factors: "4.8 Crew request late 
change" that belongs to the aircraft domain and "3.8 ATC does 
not reject change request" that belongs to the ATM domain. 

 

Figure 1.  Top level view of the backbone model describing the risk of 

runway excursion. 
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Figure 2.  The fault tree for contributing factor "4. Failure to manage 

stabilization in final approach" 

TABLE I.  CONTRIBUTING FACTORS FOR UNSTABILIZED APPROACH 

Id Contributing Factors Probability 

4.1 Excessive or unstable speed 10-2 

4.2 Excessive or unstable lateral and vertical path 3.10-2 

4.3 Excessive or unstable thrust 10-2 

4.4 Late or inappropriate flaps/gear configuration 5.10-3 

4.5 Inappropriate use of automation during approach 10-3 

4.6 Absence of go around when unstable approach 10-1 

4.7 Late destabilization of the approach 10-2 

4.8 Crew requests late change - 

 

The backbone model can be used to compute the 
probability of a failed situation given the probability of 
occurrence of each contributing factor [13]. The probability of 
occurrence of a contributing factor can be assessed using 
different sources. 

For technical failures, we rely on failure rates computed by 
the aircraft manufacturer during the airworthiness certification 
process. For other contributors involving human errors, the 
aircraft manufacturer is not required by the regulation to 
compute probabilities. Average probabilities of contributing 
factors were established by an aircraft manufacturer using 
FDM collected data from several operators. These probabilities 
(occurrence rate per flight) are presented in Table I. However, 
this approach has several limitations. 

Firstly, FDM data cannot directly be used to compute the 
probabilities for all potential contributors. For instance, FDM 
collected data did not provide the probability of contributor 
“4.8 – Crew requests late change” and the probability of other 
contributors in the ATM domain. Secondly, the probability of 
contributors is often based on hidden assumptions. For 
instance, to measure the probability of contributor “4.1 - 
Excessive or unstable speed”, we need to establish threshold 
values defining what is an excessive value for the aircraft 
speed during approach. A third limitation is that average 
probabilities do not provide useful information about the risk 
in a given context (e.g. the probability of runway excursion 
under given weather conditions at a given airport).  

We investigated the use of Mode S data as a way to 
compute the probabilities of contributing factors that are used 
in the runway excursion backbone model. In particular, we 
wanted to assess whether it would be possible to overcome 
some of the three limitations that were presented previously.  

IV. THE MODE S DATASET 

Mode S has become one of the most important technologies in 
air traffic management as it supports the operation of 
secondary surveillance radar (SSR), traffic alert and collision 
avoidance systems (TCAS), and Automatic Dependent 
Surveillance–Broadcast (ADS-B). In practice, transponders in 
aircraft are selectively interrogated by sensors (radars) to 
provide situational awareness through the exchange of binary 
encoded information. 

To be able to selectively interrogate aircraft, transponders 
aboard aircraft have been assigned a unique 24-bit identifier. 
The assignment of addresses is done by the national authority 
where the aircraft is registered. These identifiers, often referred 
as ICAO addresses, are included in all Mode S messages and 
identify each aircraft. We use in Section VI an aircraft 
database [25] to relate each ICAO address to an aircraft model.  

Aircraft reply to ground sensor requests with messages of 
different types, called downlink formats (DF). We focus here 
on extended surveillance data from avionics such as intent- and 
status information via Comm-B messages (DF 20, 21). DFs 17 
and 18 are different messages which are not transmitted upon 
interrogation. They contain all information needed to 
determine the aircraft's identity, location, and velocity. These 
squittered information are called Automatic Dependent 
Surveillance–Broadcast (ADS-B). 

The OpenSky Network [4] is a crowd-sourced sensor 
network collecting air traffic data. Since ground-based 
receivers usually do not have a line of sight connection to the 
interrogators and since interrogations are done on a different 
frequency (1030 MHz), OpenSky only collects messages that 
are sent over the Mode S downlink on the 1090 MHz channel. 
The collected data used for this study contains ADS-B 
(DF 17, 18) and extended surveillance data (DF 20, 21) from 
February to July 2017. We trimmed our dataset to data 
collected by receivers based in Toulouse area.  

Apart from callsigns and position coordinates, messages 
contain information about flight dynamics parameters. ADS-B 
provides ground speed (GS) information, i.e. the horizontal 
speed of the aircraft relative to the ground (usually displayed 
on passengers' entertainment systems). GS is the vector sum of 
the true air speed (TAS) and the current wind, to be 
decomposed along a headwind and a crosswind components.  
Pitot tubes measure the difference between static and dynamic 
pressures in order to compute an indicated air speed (IAS). 
IAS is based on the sea level standard atmospheric density, 
hence differs from the TAS, that is the relative velocity 
between the aircraft and the surrounding air mass. 
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When an aircraft points its nose in a direction, the angle 

relative to North is the heading angle; its actual path travelled 
on the ground, because of the wind, makes a different angle 
known as track angle. When an aircraft lands, it must align its 
track angle with the magnetic bearing of the runway. 
Depending on the direction of landing, the two parallel 
runways at Toulouse–Blagnac airport have a magnetic bearing 
of 324° (QFU 32) and 144° (QFU 14). 

In this paper, we focus on several types of messages 
(Tab. II). We get positional (latitude, longitude, GPS and 
barometric altitude) and velocity information (track angle, 
ground speed and vertical rate) from ADS-B data (DF 17) 
received at a rate of about one message per second. We also 
focus on some specific Comm-B messages (DF 20, 21), only 
sent upon request, namely BDS 5,0 messages (track and turn 
report), which include roll and track angle; and BDS 6,0 
messages (heading and speed report), with heading and 
indicated air speed information. 

TABLE II.  DATA PARAMETERS ACCORDING TO DOWNLINK FORMAT 

DF 17 (ADS–B) DF 20, 21 (Comm-B) 

callsign callsign BDS 2,0 

latitude (°) roll angle (°) BDS 5,0 

longitude (°) track angle (°) BDS 5,0 

GPS altitude (ft) ground speed (kts) BDS 5,0 

barometric altitude (ft) true air speed (kts) BDS 5,0 

vertical rate (ft/min) heading (°) BDS 6,0 

ground speed (kts) indicated air speed (kts) BDS 6,0 

track angle (°) mach number BDS 6,0 

V. ASSESSMENT OF CONTRIBUTING FACTORS 

This section addresses the conjunction of contributing 
factors "4.8 Crew requests late change" and "3.8 ATC does not 
reject change request". Current regulations do not allow any 
access to recorded communications between ATC and pilots. 
However, an analysis of trajectory patterns may give strong 
hints of how pilots and ATC interacted. Although this 
approach does not enable us to detect a rejected late change 
from the data, we show in this section how we may detect 
specific late change requests which got clearance from the 
ATC. For the sake of clarity, we will write in this section 
"Crew requests late change" in place of the conjunction of 
contributing factors "4.8 Crew requests late change" and 
"3.8 ATC does not reject change request". 

A. Mathematical context 

Trajectories are mathematical objects used to describe the 
evolution of a moving object. They are described by a state 
vector with parameters (𝑥(𝑡), 𝑦(𝑡), ⋯ ) that evolve in time. In 
practice, this state vector is only known at some sampled times. 
For clarity concerns, we will name trajectory a sequence of 
recordings associated to an aircraft. The explosion of recorded 
data makes the study of trajectories a popular topic and opens 

new fields of research in data mining common patterns [3, 19, 
20] and identifying outliers in a set of trajectories. 

Unsupervised learning is about inferring the hidden 
structure from unlabelled data. Instead of having labels in part 
of our data, e.g. information about hazardous situations, we 
must focus on a set of unlabelled trajectories, try to grasp their 
structure and find outlying elements. Principal Component 
Analysis (PCA) [21, 22] is a tool for exploratory data analysis 
which explains the variance in the data. It cuts down the 
complexity of data by projecting data samples on axes holding 
the more variance, determined by an eigenvalue decomposition 
of the covariance matrix of our samples. 

Functional Principal Component Analysis (FPCA) [23] is a 
useful tool to analyse functional data, such as altitude, speed, 
or track angle profiles present in the data. Considering a 
dataset of n functions 𝑥1(𝑡), 𝑥2(𝑡), ⋯ 𝑥𝑛(𝑡), (e.g. representing 
an altitude profile), we generalise the decomposition over 
eigenvectors holding the more variance, as defined by 
Principal Component Analysis (PCA), to the infinite 
dimension. FPCA results from the Karhunen-Loève 
decomposition of a signal 𝑥(𝑡): 

𝑥(𝑡) = ∑ 𝜃𝑖𝛾𝑖(𝑡)+∞
𝑖=1  (1) 

where the principal component scores 𝜃𝑖 = 〈𝛾𝑖 , 𝑥〉  are centered 
and uncorrelated random variables s.t. 𝔼(𝜃𝑖) = 𝜆𝑖 ≥ 0. We can 
interpret the random scores 𝜃𝑖 = 〈𝛾𝑖 , 𝑥〉 as proportionality 
factors that represent strengths of the projection of each 
individual trajectory on the i-th principal component function. 

FPCA provides eigenfunction estimates that can be 
interpreted as modes of variation. They offer a visual tool to 
assess the main directions in which functional data vary. 
Nicol [24] then explains how FPCA can be equivalent to a 
PCA over discretisations of our 𝑥𝑖(𝑡) functions as a series of 
variables defined at each given time. 

B. Analysis of the track angle profiles 

 

Figure 3.  The track angle profile of Flight AF100GN on February 21 is 

resampled on the last 8 nautical miles before the runway threshold. 

We focus on a set of 2194 trajectories landing at Toulouse 
airport in February 2017. Among them, 1398 trajectories 
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landed on 32R and 32L runways: we trimmed their final 
approach trajectory to the last 8 nautical miles before the 
runway threshold. We arbitrarily chose a resampling in 30 
equidistant points on the 8 nautical miles before the runway 
threshold (Fig. 3). Eq. (1) becomes for each 𝑥𝑖(𝑡) signal as a 
linear combination over a set of 30 eigenfunctions (𝛾1, 𝛾2, ⋯ ): 

𝑥𝑖(𝑡) =  ∑ 𝜃𝑖,𝑗𝛾𝑗(𝑡)30
𝑗=1  (2) 

The resulting 30 component vectors are then passed 
through a PCA engine, resulting in a variance ratio distribution 
shown on Fig. 4. The diagram reads as follows: the first 
component holds 35 % of the total variance, the second 
component about 17 %, etc.; and all variance ratios sum to 1. 
In our case, the total variance is distributed on the few first 
components; we can choose to ignore components with a 
variance ratio under a given threshold and reduce our 
functional data to a handful of 𝜃𝑖,𝑗 components. 

 

Figure 4.  Explained variance ratios for each component of a FPCA 

decomposition over the 1398 track angle profiles. 

 

Figure 5.  FPCA decomposition of the track angle profile and its 

decomposition over the three first eigenfunctions with the more variance. 

Fig. 5 shows the three first eigenfunctions 𝛾1(𝑡), 𝛾2(𝑡) and 
𝛾3(𝑡) holding more than 10 % of the total variance over our set 
of 1398 track angle profiles. They describe the three most 
significant modes of variation present in our data. The full line 
represents the average signal and the dashed lines variations of 

±3√𝜆𝑗in the direction of 𝛾𝑗(𝑡). This means that we can now 

rewrite each track angle profile 𝑥𝑖(𝑡) as a decomposition: 

𝑥𝑖(𝑡) = 𝜃𝑖,1𝛾1(𝑡) + 𝜃𝑖,2𝛾2(𝑡) + 𝜃𝑖,3𝛾3(𝑡) + ⋯ (3) 

that is 𝜃𝑖,1 along the first mode of variation, 𝜃𝑖,2 along the 

second mode of variation, etc. 

We can interpret the modes of variation as follow: the first 
component 𝜃𝑖,1 quantifies a variation around the average 

profile (full line) and between the two dashed lines. This mode 
depicts a variation on the distance to the roll-out point, i.e. the 
point where the aircraft aligns with the runway. 

𝜃𝑖,2 and 𝜃𝑖,3 are particularly interesting as they depict low 

frequency variations on the track angle profile during final 
approach. It may seem surprising to see such variations in the 
track angle profiles at this stage, when the aircraft should align 
its ground trajectory with the magnetic bearing of the runway. 

 

Figure 6.  Heading signals for aircraft landing on QFU 32 with |𝜃𝑖,2| > 𝑞2
0.98 

Let 𝑞𝑗
0.98 be the 98th percentile of the {|𝜃𝑖,𝑗|} projections of 

𝑥𝑖(𝑡) on 𝛾𝑗 and select on Fig. 6 all track angle profiles with the 

most significant components 𝜃𝑖,2 along 𝛾2(𝑡): 

|𝜃𝑖,2| > 𝑞2
0.98 (4) 

 

Figure 7.   Between 11:21 and 11:22 on February 7, EZY74ZU shifts from its 

alignment on 32L to 32R, after BAW4DP takes off. 

Fig. 7 shows context and suggests an interpretation to what 
Eq. 4 reflects: EZY74ZU on February 7 was aligned on runway 
32L at 11:21; at that time, BAW4DP was ready for take-off. One 
minute later, BAW4DP started rolling to take-off, then EZY74ZU 
switched and aligned to runway 32R. Toulouse airport terminal 
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is actually located on the east side of the runway, and landing 
on 32R saves a significant time of taxiing, which matters for 
commercial flights. EZY74ZU most probably asked for a late 
runway change during approach. 

At this point, we should work with experts in order to 
select a subset of trajectories (e.g. one month); define a proper 
threshold in place of 𝑞2

0.98 and 𝑞3
0.98 so as to be able to properly 

extract all flights requesting a late runway change in final 
approach; compute the probability for a larger set of 
trajectories (e.g. one year, fixed, or on a sliding time window); 
and eventually, inject the probability in the fault-tree and 
compute a runway excursion risk. 

C. Cross-analysis with altitude profiles 

A similar FPCA analysis can be performed on barometric 
altitude profiles: a similar interpretation suggests that the 
second and third components reflect low frequency variations 
around the glide path (GP), to be related to contributing factor 
"4.2 Excessive or unstable lateral or vertical path". 

TABLE III.  NUMBER OF TRAJECTORIES WITH EQ. 4 VERIFIED. 

 𝒒𝟐
𝟎.𝟗𝟖 𝒒𝟑

𝟎.𝟗𝟖 𝒒𝟐
𝟎.𝟗𝟖or 𝒒𝟑

𝟎.𝟗𝟖 

heading 27 27 51 (3.6 %) 

altitude 27 27 51 (3.6 %) 

heading and altitude   6 

Tab. III counts the number of flights requesting a runway 
change, based on the projections on 𝛾2(𝑡) and 𝛾3(𝑡), and those 
showing signs of excessive or unstable vertical path. 51 track 
angle profiles (out of 1398, i.e. 3.6 %) reflect a late runway 
change; among them, 6 trajectories (out of 51, i.e. 11.8 %) also 
show signs of an unstable approach. Fig. 8 shows how one of 
the 6 flights extracted from 0, asks for a late runway change 
and does not follow a stable glide path. 

 

Figure 8.  On February 21, AF106GX shifts from 32L to 32R and presents an 

unstable glide path (altitude in feet). The dashed lines on the altitude profile 

depict the 3 ± 0.5° glide path. 

A model for evaluating these contributing factors, i.e. 
"Crew requests late change" or "Excessive or unstable vertical 
path", consists of the FPCA transformation matrix (how to 
project each track angle profile on the 𝛾𝑖(𝑡) functional 

coordinates), and of threshold values to be validated with 
experts. As a reference, we computed the probability on six 
months of data with 𝑞2

0.98 and 𝑞3
0.98 as threshold values: among 

387 trajectories asking for a late runway change, 64 trajectories 
also show signs of excessive or unstable vertical path, with an 
estimated probability of 16.54 %. 

As a matter of fact, this possible correlation may lead us to 
reconsider the classical independence assumption used to 
compute probabilities of failed situations in the fault tree of 
Fig. 2. Further investigations may lead us to reconsider the 
fault tree and introduce a new contributor accounting for the 
combination of contributing factors "Crew requests late 
approach" and "Excessive or unstable vertical path". 

VI. LIMITS OF MODE S DATA FOR SAFETY ASSESSMENTS 

A. Speed reports 

A common rule of thumb for qualifying non stabilised 
approaches is to consider aircraft flying too high and too fast 
on their glide path. Previous section studies how to work with 
track angle and altitude profiles. Considering speed signals 
could also bring insight to our analysis. 

DF 17 (ADS-B) provides ground speed signals. Fig. 9 plots 
the distribution of ground speeds according to the aircraft 
model in the last minute of their airborne trajectories. The 
distributions show the importance of considering aircraft types 
when studying speed profiles. Even between aircraft of similar 
types and sizes (Airbus 319, 320 and 321), the distribution is 
centred on different ground speeds. Indeed, the piloting during 
approach depends on the aircraft model as each type of aircraft 
is limited by its stalling speed. 

 

Figure 9.  Average ground speed distribution on the last nautical mile before 

landing according to the aircraft type (limited to most frequent aircraft) 

It would be difficult to apply the presented approach on 
speed profiles: ground speed is mainly used by the FMS to 
estimate its time of landing but not used for piloting; indicated 
air speed is more relevant (it appears in the cockpit) as it is 
related to the aerodynamics of the aircraft. 
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Figure 10.  Flight EZY158T attempts to land at Toulouse airport on February 5. 

The plots suggest strong gusty crosswind. 

DF 20, 21 (EHS), namely BDS 6,0 messages (heading and 
speed report), provide profiles of heading and indicated 
airspeed which call for further analysis. Fig. 10 shows the 
example of Flight EZY158T on February 5, a day of strong 
gusty crosswind (see the influencing factor related to weather 
conditions). The gap between the track and heading angles is a 
sign of a crab approach; the roll angle profile shows a lateral 
instability during approach; and the stable profile of GS to be 
compared with the more hectic profile of IAS shows how IAS 
is also impacted by the wind gusts during final approach. 

Future works should include a model of wind per altitude 
layer to be maintained from BDS 4,4 messages (meteorological 
routine air-report): these messages are already being used in 
building meteorological model [15]. Then, we could focus on 
the difference between IAS and wind, an indicator to what the 
pilot tries to maintain, i.e. a stable airspeed regardless of the 
wind gusts, and closely relates to the total energy of the plane. 

Unlike ADS-B, EHS messages are only sent upon request 
from the ATC. Mode S being expected to be fully implemented 
in Europe by 2020, we found that it is still difficult today to 
rely on EHS data as for many flights landing in Toulouse, ATC 
requests for such messages look erratic. Fig. 11 shows the 
average number of BDS 6,0 messages per aircraft during final 
approach according to the day and time in February 2017: in 
addition to a probable maintenance of the ATC system on 
February 10 between 11am and 8pm, our study is hampered by 
the lack of messages received in the second half of the month. 

Discrepancies in the number of requests for each type of 
EHS messages are to be expected between control centres, 
though BDS 6,0 message rate should be of one per second. 
Apart from the observed maintenance issue, several factors 
may explain the lack of messages we observe: apart from CRC 
checks on received messages, decoding DF 20, 21 messages 
requires assumptions on the types of messages that have been 
requested. As things stand, we do not receive nor decode 
request messages, which forces us to discard messages when 
data looks consistent with many kinds of BDS messages. 

 

Figure 11.  Average number per flight of BDS 6,0 messages during final 

approach. This calendar view very different profiles from day to day. 

B. GPS precision and touchdown point 

 

Figure 12.  ADS-B data prove to be not precise enough for properly 

determining the touchdown point on the runway. (Flight DLH83K on Feb. 25) 

Another topic of interest when analysing the risk of runway 
excursion would be to determine the touchdown point on the 
runway. Equipped aircraft have a sensor which detects the 
pressure on the landing gear when the aircraft lands, which 
triggers a different type of DF 17 positional messages. Fig. 12 
plots an aircraft trajectory, with surface messages as brown 
dots and airborne messages as blue dots. The label next to it 
reads the vertical speed, also available in DF 17: the colour 
associated to the label changes when vertical speed stabilises 
and suggests that the aircraft has landed. Looking at both 
sources of data, we can only suppose that the aircraft touched 
the runway between 18:06:21 and 18:06:33, that is a 12-second 
confidence interval, not enough for determining a precise 
touchdown point. 
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VII. CONCLUSION 

This paper presented a model for the risk of runway 
excursion and a ML approach to assess specific contributors to 
this risk from real traffic Mode S data. The model was 
constructed using one month of data around Toulouse airport, 
then was used on a longer period to compute figures that could 
be fed into our model or could challenge hypotheses of non-
correlation that were made when building the model. 

The proposed approach addresses three limitations 
identified in Section III: 1) we showed how to compute the 
probabilities of contributors that are not covered by other 
sources of data (FDM, communications with ATC). But our 
investigation also showed that using Mode-S data has currently 
some drawbacks such as missing data due to an imperfect 
infrastructure for receiving and decoding messages; 2) the 
approach helps to uncover hidden assumptions that may have 
been made by experts. In particular, the unsupervised learning 
approach attempts to quantify what experts would label as 
“excessive”; 3) context helps refining the analysis that could 
have been done with FDM data, in addition to offering the 
possibility to compare flight profiles landing at a given airfield 
under the same conditions, even if onboard data is not owned 
by the same stakeholder. 

It is our belief that using Mode S data together with other 
sources of data is a reasonable approach to quantify safety 
requirements for air traffic. Its full implementation in Europe 
expected by 2020 should make it an unavoidable source of data 
for safety analysis. 

VIII. ACKNOWLEDGEMENTS 

This study has received funding from the European Union's 
Horizon 2020 Research and Innovation Programme under 
Grant Agreement no. 640597. 

IX. REFERENCES 

[1]  J. Verstraeten, G. van Baren, and R. Wever, “The Risk Observatory: 
Developing an Aviation Safety Information Sharing Platform in 
Europe,” Journal of Safety Studies, vol. 2, no. 2, p. 91, 2016. 

[2] P. Bieber, S. Metge, M. Morel, and J. Plé, “Aircraft Safety Model 
Development and Integration in a Risk Observatory,” in Proc. of the 7th 
International conference on Innovation in European Aeronautics 
Research. EASN, 2017. 

[3] S. Sidiropoulos, A. Majumdar, K. Han, and W. Ochieng, “Identifying 
significant traffic flow patterns in multi-airport systems terminal 
manoeuvring areas under uncertainty,” in 16th AIAA Aviation 
Technology, Integration, and Operations Conference, 2016, p. 3162. 

[4] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, 
“Bringing up OpenSky: A large-scale ADS-B sensor network for 
research,” in Proc. of the 13th international symposium on Information 
processing in sensor networks. IEEE Press, 2014, pp. 83–94. 

[5] “ADS-B and EHS trajectories through Toulouse–Blagnac airport in 
February 2017.” [Online]. https://doi.org/10.5281/zenodo.1067697 

[6] ICAO, Safety Management Manual - 3rd Edition - Doc 9859 AN /460, 
2013. 

[7] C. Halford and M. Harper, “Asias: Aviation safety information analysis 
and sharing,” 2008. 

[8] S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza, “Multiple 
kernel learning for heterogeneous anomaly detection: algorithm and 
aviation safety case study,” in Proc. of the 16th SIGKDD international 
conference on Knowledge discovery and data mining. ACM, 2010, pp. 
47–56. 

[9] Z. Wang, L. Sherry, and J. Shortle, “Airspace risk management using 
surveillance track data: Stabilized approaches,” in Integrated 
Communication, Navigation, and Surveillance Conference (ICNS), 
2015. IEEE, 2015, pp. W3–1–14. 

[10] L. Sherry, Z. Wang, H. K. Kourdali, and J. Shortle, “Big data analysis of 
irregular operations: aborted approaches and their underlying factors,” 
in Integrated Communications, Navigation and Surveillance Conference 
(ICNS), 2013. IEEE, 2013, pp. H5–1–10. 

[11] E. Perrin, B. Kirwan, and R. Stroup, “A systematic model of ATM 
safety: the integrated risk picture,” in Proceedings of the Conference on 
Risk Analysis and Safety Performance in Aviation, 2006. 

[12] S. S. Borener, V. S. Guzhva, I. Crook, and R. Fraga, “Safety assessment 
of implemented nextgen operational improvements,” Transportation 
Research Procedia, vol. 14, no. Supplement C, pp. 3731 – 3740, 2016, 
transport Research Arena TRA2016. 

[13] B. Ale, L. Bellamy, R. Cooke, M. Duyvis, D. Kurowicka, C. Lin, O. 
Morales, A. Roelen, and J. Spouge, Causal model for air transport 
safety. Ministerie van Verkeer en Waterstaat, Directoraat-Generaal 
Luchtvaart en Maritieme Zaken, 2008. 

[14] J. Sun, J. Ellerbroek, and J. Hoekstra, “Modeling aircraft performance 
parameters with open ADS-B data,” in Proc. of the 12th USA/Europe 
Air Traffic Management Research and Development Seminar. 
FAA/EUROCONTROL, 2017. 

[15] S. de Haan, “Estimates of Mode-S EHS aircraft derived wind 
observation errors using triple collocation,” Atmospheric Measurement 
Techniques Discussions, vol. 8, pp. 12 633–12 661, 2015. 

[16] J. Sun, V. Huy, J. Ellerbroek, and J. Hoekstra, “Ground-based wind field 
construction from Mode-S and ADS-B data with a novel gas particle 
model,” SESAR Innovation Days, 2017. 

[17] E. K. Stone and G. Pearce, “A Network of Mode-S Receivers for 
Routine Acquisition of Aircraft-Derived Meteorological Data,” Journal 
of Atmospheric and Oceanic Technology, vol. 33, no. 4, pp. 757–768, 
2016. 

[18] W. Vesely, Fault Tree Handbook with Aerospace Applications. NASA 
Technical Report, 2002. 

[19] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans. Intell. 
Syst. Technol., vol. 6, no. 3, pp. 29:1–29:41, 2015. 

[20] M. Conde Rocha Murca, R. DeLaura, R. J. Hansman, R. Jordan, T. 
Reynolds, and H. Balakrishnan, “Trajectory clustering and classification 
for characterization of air traffic flows,” in 16th AIAA Aviation 
Technology, Integration, and Operations Conference, 2016. 

[21] H. Hotelling, “Analysis of a complex of statistical variables into 
principal components.” Journal of Educational Psychology, vol. 24, no. 
6, p. 417, 1933. 

[22] K. Pearson, “On lines and planes of closest fit to systems of points in 
space,” The London, Edinburgh, and Dublin Philosophical Magazine 
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. 

[23] J. O. Ramsay and B. W. Silverman, Functional data analysis. Springer- 
Verlag, 2005. 

[24] F. Nicol, “Functional principal component analysis of aircraft 
trajectories,” in Proc. of the 2nd International Conference on 
Interdisciplinary Science for Innovative Air Traffic Management, 2013. 

[25] J. Sun, “World Aircraft Database (Data file),” 2017. [Online]. Available: 
http://junzis.com/adb/data 


