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Fibrosis represents an open issue for mid to long-term active implants, like pacemakers, given that this biological 

tissue surrounds the stimulation electrodes and can impact or modify the performances of the system. For this 

reason, we present a strategy for the continuous sensing of fibrosis induced by cardiac implants, based on the use of 

the same set of electrodes involved in the implant stimulation process and whose implementation can be integrated 

into the pacing and sensing circuitry of pacemakers. To do this, the proposed measurement system complies with 

certain requirements for its integration, such as rapid measurement time, flexibility, low power consumption and low 

use of resources. This was achieved through the use of an orthogonal multitone stimulation signal and the design of 

an Orthogonal Frequency Division Multiplexing (OFDM) architecture that are the bases of the system. As a proof of 

concept, we implemented this technique within a FPGA. Initial tests of this system have been performed through in 

vitro measurements of cell cultures related to fibrosis, which, once validated, have allowed us to advance to ex vivo 

measurements of inhibited and perfused cardiac tissue; conditions that offer a first view for in vivo measurements. 

This article describes the measurement system implemented and also discusses the results of its validation and of the 

in vitro and ex vivo measurements, comparing them with results obtained by a reference instrument. 

 

1. Introduction 

     These systems use the latest micro-nano-electronics 

technologies, with electrodes that stimulate and sense the 

surrounding biological environment. Such implanted devices 

induce an immediate and sustained inflammatory response 

of the body. This chronic and unresolved inflammation 

induces fibrosis, which is a complex biological process 

involving multiscale phenomena. At the cellular scale, 

fibroblasts are activated and differentiate to myofibroblasts; 

at the tissular scale, excessive secretion of extracellular 

matrix components, like collagen, finally produces a dense 

fibrous capsule around the implants, especially the 

electrodes [1]. 

     In case of PCM, fibrosis reduces both the functionality 

and the efficacy of the implant to target the desired tissue, 

diverting even the stimulating current to unforeseen regions 

and altering the impedance of the tissue around electrodes. 

Furthermore, it could change the shape and magnitude of the 

electric field generated [2] and forces the increase of the 

PCM stimulation threshold and the reduction of battery 

lifespan [3]. 

     The fibrosis can be treated medically to reduce its 

consequences, but the effectiveness of the treatment depends 

on the accurate diagnosis. The standard method for 

determining the degree of tissue reaction surrounding 

implanted electrodes is histology. Immunohistochemical 

methods enable the visualization of specific markers like 

collagen, fibronectin or smooth muscle actin [4]. The 

disadvantage of these methods is an inability to follow the 

tissue reaction in real time in vivo [5]. Optical methods such 

as Late Gadolinium enhanced Cardiac Magnetic Resonance 

(CMR) are used to detect fibrosis in cardiac tissues even if it 

is scattered and in low concentration [6]. However, their 

effectiveness decreases when the patient carries a PCM 

because it could alter the quality of the image. In addition, 

due to risk factors, it is contraindicated to apply CMR in 

patients with PCM, and even if this is done, it is 

recommended to carry it out weeks after post-implant 

surgery, which allows a considerable accumulation of 

fibrous tissue on the electrodes [7]. Chronic monitoring of 

tissue alteration around implanted electrodes could be a first 

step to understand this long-term biological process. This 
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Over the last fifty years, electrotherapy has shown a very 

rapid development with many innovators contributing to a 

whole series of devices. Electrotherapy uses an external 

source of electricity to stimulate human tissue in ways that 

produce a beneficial therapeutic effect. The best known 

electrotherapy devices are the active implantable medical 

devices, among them cardiac defibrillators (1949),

Peacemakers (PCM) (1957), cochlear (1971) and deep brain 

(2000) stimulators. 
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with the advantage that the Signal to Noise Ratio (SNR) can 

be improved when using random phases and also that the 

frequencies can be selected as required, i.e. linear or 

logarithmic [21]. Such approach is simple however does not 

scale easily with higher numbers of frequencies. The 

memory required for the generation of the multisine 

increases with the number of tones, as it is shown in Table 1 

and also found in [22]. Furthermore, the detection and 

impedance estimation at the receiver side could impede the 

implementation of this method. It could be verified, in the 

mentioned references, that the stimulation part could be 

implemented in digital form by storing in memory the 

externally created multisine signal. However, the receiving 

part requires a more complex hardware for the demodulation 

of the signal, usually implemented by the use of a data 

acquisition board or system, such as an oscilloscope, and a 

Personal Computer (PC) for the impedance computation. 

2.4. OFDM for our Application. Finally, orthogonal 

multitone signals also offer a wide spectrum for a rapid 

impedance estimation in the frequency bandwidth of 

interest. The generation of this kind of signals could be 

efficiently implemented by using the OFDM method [23]. 

This OFDM technique is successfully used in the field of 

digital communication, however the application for 

impedance measurement is a novelty and requires of 

modifications, such as those presented in Section 4.  The 

OFDM method allows to control the spectrum of the 

multitone signal with great flexibility by defining the values 

of the OFDM symbols, the use of an appropriate modulation 

scheme and / or the manipulation of the system parameters, 

such as the sampling frequency. 

    Compared to the multisine technique mentioned above, 

the OFDM method requires less memory for the 

implementation of the signal generator, as depicted by  

Table 1. Here the memory required for the multisine and the 

OFDM approaches for the generation of a broadband signal 

of length N.M is calculated, where N/2 is the quantity of 

frequencies of the broadband signal and M is the number of 

multisine periods or OFDM symbols needed to reduce noise 

by averaging.  

     As it can be noticed, the pre-calculated (stored in 

memory) multisine requires N·M memory words because it 

is advisable to apply different random phases on each period 

of the multisine signal for the improvement of the SNR. 

However, the normal OFDM approach requires only 2N 

memory words because during each cycle only one symbol  
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of N samples is generated and sequentially exit to the Digital 

to Analog Converter (DAC). This continues, synchronously, 

until reaching M symbols. For these reasons, the OFDM 

approach is finally the solution that we have retained. 

 

3. OFDM Considerations 

The OFDM model used here is composed of M blocks of N 
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each symbol modulating one of a set of N subcarriers for the 

generation of the multitone signal. The subcarriers are 

orthogonal and a cost effective approach is achieved when 

the Inverse Fast Fourier Transformation (IFFT) algorithm is 

used, giving the following general equation: 
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    In our application, a low Crest Factor (CF) of the 

multitone signal is desirable to avoid intermodulation due 

non-linearities of the analog parts (such as the saturation of 

the operational amplifiers). We use a simple technique to 

reduce the CF that consist of generating multiple set of N 

random complex values by controlling the seed and the 

output delay parameters of a random bit generator, then 

applying each of them to the OFDM emitter and calculating 

the CF. The seed and delay yielding the best crest factor is 

retained. The crest factor is calculated  as shown in 

equation (2): 
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x
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x
=                                (2) 

     The output of the IFFT is a sequence of complex values 

as a function of time. For the sake of  simplicity, real-valued 

signals are assumed hereafter which converts equation (1) 

into the following equation: 
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where 0,..., -1n N=  is the discrete time index and 

1,...,m M=  is the symbol index, being N ∈ZZZZ  and M ∈ZZZZ  

the IFFT size and the quantity of symbols blocks, 

respectively and θX is the random phase. 

     One step found in a telecommunication OFDM model is 

the addition of a Cyclic Prefix (CP) to reduce intersymbol 

interference caused by a multipath fading channel. This CP 

consist of taking a copy of Ncp elements from the end of the 

symbol block and concatenating them in front of it. 

However, EIS measurements do not suffer from Multipath 

propagation, therefore, instead of a CP, a small Guard 

Interval (GI) with zeros at the extremes of the frequency 

band (at 0 and Fs/2 Hz) will be used to reduce the energy 

applied on these not useful frequencies. 

TABLE 1: Memory requirement for the multisine and the OFDM 

approaches for the generation of a N/2 frequency points 

broadband signal of length N∙M. 



 

 

4. OMEIS System Design, Implementation and 

Validation 

The proposed OMEIS technique is based on the OFDM 

model explained above, however, some additional 

modifications are necessary for the implementation of the 

EIS measuring system as following:  the shape and quantity 

of symbols should be generated taking into consideration the 

properties that a stimulation signal should have for fast EIS: 

low voltage, short duration and with a desired spectrum. It 

should assure that the energy is propagated at the frequency 

tones under test. Furthermore, a perfect synchronization is 

required in the implementation, therefore a pilot signal is 

used.  Both additions will be explained in Section 4.1. 

     In the following, the system will be analyzed into two 

parts, first the emitting and finally the receiving part. 

4.1. The OMEIS Emitter.  The emitter function is to 

generate the stimulation signal with the desired spectrum. 

The structure of the emitter is shown in Figure 2.a. It 

consists mainly of symbol generation, synchronization, 

inverse Fourier transformation and digital to analog 

conversion stages. 

     In the symbol generator, the code that gives shape to the 

multitone signal spectrum is created in a synchronized 

manner. There are several codes that offer a spectrum with 

specific differences. For example, a code with constant 

amplitude generates a spectrum with tones of similar values 

at the IFFT subcarrier frequencies, that is in Fp(n)=n·Fs/N, 

where Fs is the sampling frequency, N is the size of IFFT 

and n = 0, 1, ...,(N/2)-1. The SUT output to a signal with 

this spectrum could have an impulse responses that may 

require rapid sampling to capture the transients. Another 

example is a sinusoidal code, with constant frequency Fd, 

that when applied it is sparsed throughout the whole OFDM 

bandwidth, locating Fd above and below each subcarrier 

frequency, resulting in tones with amplitudes at frequencies 

Fp(n)-Fd and Fp(n)+Fd, being this signal a type of 

multisine. However, although this code does not inject much 

energy into the IFFT subcarrier frequencies, it could be used 

in case of nonlinearity analysis. Finally, a random code 

generates a random spectrum within the frequency 

bandwidth between 0 and Fs/2-Fs/N. However, as 

mentioned above, there is the possibility of a low amplitude 

in the frequencies of interest resulting in them being 

corrupted by noise.  
     Therefore, one solution is to combine a random code 

with a constant offset, other than zero, large enough to 

ensure good amplitude at the carrier frequencies. The latter 

is provided by a random-bit generator whose output values 

are mapped with a QPSK modulator and then amplified and 

shifted with a DC offset. The amplification (G) is selected 

based on the maximum signal amplitude required and the 

complex QPSK mapping is used because it introduces a 

random phase information to the IFFT subcarriers, as shown 

in eq. (3), that better improves the CF compared to real 

values mapping such as BPSK [24]. The mathematical 

backgrounds concerning the performances (BER vs. SNR) 

of digital modulations show that the OFDM-BPSK and 

OFDM-QPSK are very similar, but for the CF, QPSK is 

better [25]. The symbols are generated at a rate of one 

sample every 1/Fs seconds, with a total of N samples per 

measurement cycle. 

     Following the symbol generator is the synchronization 

section.  This is a critical step during the calibration stage 

Figure 2. OMEIS emitter and receiver structures. 
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because it measures the system delay. This information is 

used for the correct synchronization between the transmitter 

and the receiver. Perfect synchronization between both 

systems is essential to ensure that the selected N input 

samples of the FFT corresponds to the IFFT transmitted 

symbol. 
     The method for synchronization is the following: before 

calibration, a pilot signal is used which generates voltage 

peaks at known intervals. The generated peaks can be 

detected using an appropriate threshold. This method allows 

the recording of, in one hand, the delay of the transmitter 

output signal, and on the other, the joint delay of the analog-

digital-analog conversions and the AFE stages.  
     Next is the modulation stage. Here, as explained above, a 

GI is used before the IFFT. The size of the IFFT (N) gives 

the quantity of frequency points for the impedance 

spectrum. The minimum frequency is at Fs/N and the 

maximum at Fs/2-Fs/N with a frequency separation of Fs/N. 

Serial to Parallel (S2P) and Parallel to Serial (P2S) blocks 

are required before and after the IFFT.  
     Finally, the real output of the IFFT is selected and 

converted into an analog signal by the DAC.  

4.2. The OMEIS Receiver. Once the signal coming from the 

AFE is encoded by the ADC, the Control Unit multiplexes 

it, depending on whether it is the pilot signal, which is sent 

during the synchronization, or the multitone one; sending it 

to the Threshold detector (TH) or the OFDM demodulation, 

respectively. At the end of the synchronization, when 

performing calibration or measurement, the response of the 

SUT is first demodulated using the FFT, then accumulated 

with values of previous measurement cycles and finally 

stored in the corresponding memories: Ycr, Yci in 

calibration and Yr, Yi in measurement, where r stands for 

real and i for imaginary. 

     As it is shown in Figure 2.b, the demodulation produces 

complex values which are averaged, stored and transmitted 

independently. The accumulation can increase the number of 

bits of the samples but reduces the amount of data to be 

transmitted. The impedance is then estimated with the 

following equation: 

( )
( ) ( )

( )
CAL

C

Y k
Z H k

Y k
ω =   ,                        (4) 

where HCAL is the known calibration SUT which may vary in 

frequency, but nevertheless, it is assumed constant in each 

cycle of multitone generation; Y is the measurement data 

and Yc the calibration data received, k = 1,2, ..., N. 

     At the end of the measurement, when all the computation 

cycles were performed, the resulting calibration and 

measurement data are sent to a PC for the final treatment 

and display. 

4.3. The OMEIS Implementation. The modified OFDM 

structure, detailed in the preceding sections, is suitable for 

embedded systems. The implementation takes advantage of 

the computing power and the parallel features of FPGAs, 

performing both emitter and receiver in a Cyclone IV FPGA 

device programmed in VHDL language. 

     Figure 3, shows the OMEIS system implementation. The 

emitter part of the OMEIS system is implemented by using 

the IFFT and the PLL Clock generator Megacores IP. The 

remaining block, for instance the Cell Automata (CA), the 

Fs Manager, the Pilot, and the QPSK blocks, were coded in 

VHDL. 

     The values of the emitter's parameters, such as IFFT size 

or sampling frequency can be adjusted as required. The 

default value used for the IFFT size is 1024. The Fs 

Manager allows to change the sampling frequency Fs of the 

system to 1 MHz, 500 kHz and 250 kHz.  
     The Symbol Generator is the combination of the CA and 

the QPSK blocks. First the CA uses a Cellular Automata 

algorithm for the creation of two (2) random bits that are 

next mapped in the following way: for bits "11" the QPSK 

output is (G+jG)+DC, "10" gives (G-jG)+DC, a "01" is     

(-G+jG)+DC and finally "00" results in (-G-jG)+DC, where 

G is 1023 and DC equal to 80 in our implementation, both 

values were selected taking into consideration the output 

voltage amplitude and frequency spectrum shape. 

     A synchronous state machine, which operates as a 

Control Unit (CU), manages the overall behavior of the 

system. Both, the CU and the DAC/ADC manager are coded 

in VHDL as well. 

     An Analog custom board has been developed in order to 

perform EIS in biological samples. It has a parallel input 12 
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Figure 3. The OMEIS System schematic. 
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and the stimulation time (Ts) for each configuration are 

shown in Table 2

5.1.2. Protocol

performed on immortalized mouse myoblast cell line 

(C2C12 cells.) Under 

that produce proteins related to fibrosis [2

for in vitro cell

following: at the beginning of the experiment, one well of 

the cultureware was filled with 7,000 C2C12 m

a 600 µL of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% Fetal Bovine Serum (FBS), sodium 

bicarbonate (3.7

filled with only 600

well. Cells were cultured i

CO2 and the medium was changed every 48 hours. Five 

measurements were taken during the 95 hours of incubation, 

enough time for a development of a large cell population on 

the electrode. Visual inspections were performed with a

standard inverted microscope.

5.1.3. Results. 

at five measurement times when 

47h, 71h and 95h (h stand for hours after the beginning of 

the experimentation). In the frequency domain the spectrum

shows a negative constant slope, whose magnitude differs 

depending on the measurement time, from the first 

frequency up to the 20 kHz, when it begins to decrease. 

     The evolution of the impedance in time could be better 

evaluated by using the Figure 

impedance is depicted, taking time 0h as the reference 

[Measured impedance at point k divided by the I

of time 0h at the same point k].

module increases from 1.5

kHz to almost 3.5, at time 95h and frequency 95 kHz,

Figure  8. The circuit of the electric cell

(ECIS) protocol and the OMEIS system. Also, the picture and the scheme 

of the ECIS cultureware board (8W10E) with eight 

are depicted. 

Fs [MHz]

1 

0.5 

0.25

 

and the stimulation time (Ts) for each configuration are 

shown in Table 2. 

Protocol. The in vitro experimentations are 

performed on immortalized mouse myoblast cell line 

(C2C12 cells.) Under appropriate conditions, they are cells 

that produce proteins related to fibrosis [2

for in vitro cell-substrate EIS measurements is the 

following: at the beginning of the experiment, one well of 

the cultureware was filled with 7,000 C2C12 m

µL of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% Fetal Bovine Serum (FBS), sodium 

bicarbonate (3.7 g/L) and 1% antibiotics. Other well was 

filled with only 600 µL of medium and is used as control 

well. Cells were cultured i

and the medium was changed every 48 hours. Five 

measurements were taken during the 95 hours of incubation, 

enough time for a development of a large cell population on 

the electrode. Visual inspections were performed with a

standard inverted microscope.

Results.  Figure 9.a shows the impedance spectrum 

at five measurement times when 

47h, 71h and 95h (h stand for hours after the beginning of 

the experimentation). In the frequency domain the spectrum

shows a negative constant slope, whose magnitude differs 

depending on the measurement time, from the first 

frequency up to the 20 kHz, when it begins to decrease. 

The evolution of the impedance in time could be better 

evaluated by using the Figure 

impedance is depicted, taking time 0h as the reference 

Measured impedance at point k divided by the I

of time 0h at the same point k].

module increases from 1.5

almost 3.5, at time 95h and frequency 95 kHz,

TABLE 2: OMEIS default parameters

Figure  8. The circuit of the electric cell

(ECIS) protocol and the OMEIS system. Also, the picture and the scheme 

of the ECIS cultureware board (8W10E) with eight 

Fs [MHz] Fm [Hz] 

1  1952 

0.5  976 

0.25 488 

and the stimulation time (Ts) for each configuration are 

The in vitro experimentations are 

performed on immortalized mouse myoblast cell line 

appropriate conditions, they are cells 

that produce proteins related to fibrosis [2

substrate EIS measurements is the 

following: at the beginning of the experiment, one well of 

the cultureware was filled with 7,000 C2C12 m

L of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% Fetal Bovine Serum (FBS), sodium 

g/L) and 1% antibiotics. Other well was 

µL of medium and is used as control 

well. Cells were cultured in an incubator at 37°C and 5% 

and the medium was changed every 48 hours. Five 

measurements were taken during the 95 hours of incubation, 

enough time for a development of a large cell population on 

the electrode. Visual inspections were performed with a

standard inverted microscope. 

.a shows the impedance spectrum 

at five measurement times when Fs = 1 MHz: times 0h, 23h, 

47h, 71h and 95h (h stand for hours after the beginning of 

the experimentation). In the frequency domain the spectrum

shows a negative constant slope, whose magnitude differs 

depending on the measurement time, from the first 

frequency up to the 20 kHz, when it begins to decrease. 

The evolution of the impedance in time could be better 

evaluated by using the Figure 9.b, where the normalized 

impedance is depicted, taking time 0h as the reference 

Measured impedance at point k divided by the I

of time 0h at the same point k].  As shown, the impedance 

module increases from 1.5 at time 23h and frequency 55

almost 3.5, at time 95h and frequency 95 kHz,

OMEIS default parameters

Figure  8. The circuit of the electric cell-substrate impedance sensing 

(ECIS) protocol and the OMEIS system. Also, the picture and the scheme 

of the ECIS cultureware board (8W10E) with eight 

∆F [Hz] 

976 

488 

244 

and the stimulation time (Ts) for each configuration are 

The in vitro experimentations are 

performed on immortalized mouse myoblast cell line 

appropriate conditions, they are cells 

that produce proteins related to fibrosis [27]. The protocol 

substrate EIS measurements is the 

following: at the beginning of the experiment, one well of 

the cultureware was filled with 7,000 C2C12 myoblast plus 

L of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% Fetal Bovine Serum (FBS), sodium 

g/L) and 1% antibiotics. Other well was 

L of medium and is used as control 

n an incubator at 37°C and 5% 

and the medium was changed every 48 hours. Five 

measurements were taken during the 95 hours of incubation, 

enough time for a development of a large cell population on 

the electrode. Visual inspections were performed with a

.a shows the impedance spectrum 

= 1 MHz: times 0h, 23h, 

47h, 71h and 95h (h stand for hours after the beginning of 

the experimentation). In the frequency domain the spectrum

shows a negative constant slope, whose magnitude differs 

depending on the measurement time, from the first 

frequency up to the 20 kHz, when it begins to decrease. 

The evolution of the impedance in time could be better 

.b, where the normalized 

impedance is depicted, taking time 0h as the reference 

Measured impedance at point k divided by the Impedance 

As shown, the impedance 

at time 23h and frequency 55

almost 3.5, at time 95h and frequency 95 kHz, 

OMEIS default parameters 

substrate impedance sensing 

(ECIS) protocol and the OMEIS system. Also, the picture and the scheme 

of the ECIS cultureware board (8W10E) with eight mini wells (∼

Ts [ms] 

65.5 

131 

262 

and the stimulation time (Ts) for each configuration are 

The in vitro experimentations are 

performed on immortalized mouse myoblast cell line 

appropriate conditions, they are cells 

The protocol 

substrate EIS measurements is the 

following: at the beginning of the experiment, one well of 

yoblast plus 

L of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% Fetal Bovine Serum (FBS), sodium 

g/L) and 1% antibiotics. Other well was 

L of medium and is used as control 

n an incubator at 37°C and 5% 

and the medium was changed every 48 hours. Five 

measurements were taken during the 95 hours of incubation, 

enough time for a development of a large cell population on 

the electrode. Visual inspections were performed with a 

.a shows the impedance spectrum 

= 1 MHz: times 0h, 23h, 

47h, 71h and 95h (h stand for hours after the beginning of 

the experimentation). In the frequency domain the spectrum 

shows a negative constant slope, whose magnitude differs 

depending on the measurement time, from the first 

frequency up to the 20 kHz, when it begins to decrease.  

The evolution of the impedance in time could be better 

.b, where the normalized 

impedance is depicted, taking time 0h as the reference 

mpedance 

As shown, the impedance 

at time 23h and frequency 55 

 in 

 

 

 

 

 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

measurements

     

impedances at 3 sampling frequencies are evaluated 

together. 

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively.

expected, the impedance at the same

Figure

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

71h. 

substrate impedance sensing 

(ECIS) protocol and the OMEIS system. Also, the picture and the scheme 

∼0.6 mL) 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

measurements, Figure 9.c

     For the study of the flexibility of the system, the 

mpedances at 3 sampling frequencies are evaluated 

together. Here we are using the sampling frequencies of 

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively.

expected, the impedance at the same

Figure  9. Impedance spectrum performed on C2C12 cells cultured 

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

71h. The scale bar represents 

Electrode 

Cells not yet 

and spread 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

, Figure 9.c. 

For the study of the flexibility of the system, the 

mpedances at 3 sampling frequencies are evaluated 

Here we are using the sampling frequencies of 

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively.

expected, the impedance at the same

Impedance spectrum performed on C2C12 cells cultured 

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

The scale bar represents 100 µm

0hyet adhered 

 

 

    
 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

For the study of the flexibility of the system, the 

mpedances at 3 sampling frequencies are evaluated 

Here we are using the sampling frequencies of 

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively.

expected, the impedance at the same measurement time but 

Impedance spectrum performed on C2C12 cells cultured 

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

µm. 

0h 

71

 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

For the study of the flexibility of the system, the 

mpedances at 3 sampling frequencies are evaluated 

Here we are using the sampling frequencies of 

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively.

measurement time but 

Impedance spectrum performed on C2C12 cells cultured in vitro

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

23h

71h 

Cells 

proliferation

Few adhered 

and spread cells

 

 

 

 

correspondence with the increase of the cell population in 

the electrode. This is validated using microscopy photos to 

visually correlate the state of the culture with the 

For the study of the flexibility of the system, the 

mpedances at 3 sampling frequencies are evaluated 

Here we are using the sampling frequencies of       

1 MHz, 500 kHz and 250 kHz that give the frequency 

resolution of 976 Hz, 488 Hz and 244 Hz, respectively. As 

measurement time but 

in vitro. 

Five measures were taken at 0, 23, 47, 71 and 95 hours. a) Impedance 

Module. b) Normalized impedance. c) Microscopy photos at 0h, 23h and 

h 

proliferation 

Few adhered 

and spread cells 



 

at different sampling frequencies overlaps, as shown in the 

Figure 10. This flexibility allows the addition of more 

frequency points for a better evaluation of the regions of 

interest. It should be noted that the sampling frequency ca

be changed by software, either manually or automatically 

without the need to reconfigure the system.

     The results obtained in these experiments show that the 

frequency band from 30 kHz to 200 kHz is optimal for the 
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associated with the micro
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using a Powell method [2
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acquired values from OMEIS allow us to distinguish 

between 'Muscular' tissue from the 'Collagen' tissue.  

     Since the cells used for the in vitro experimentation 

produce collagen in the extracellular matrix, and due the fact 

that fibrosis tissue is composed mainly by collagen (with 

few cells), we have performed both experimentation          

(in vitro and ex vivo) in order to study the OMEIS system in 

both scenarios. As shown in the in vitro results, when the 

cells reproduce the impedance also increases, therefore as it 

is shown in the ex vivo experimentation, the "collagen" 

region has a lower impedance than that of the "muscle" (full 

of cells) tissue. 

     The performance in the measurement speed is inside the 

requirements, giving 510 frequency points in a stimulation 

time of about 64 ms with the OMEIS parameters: N = 1024, 

M = 32 and Fs = 1 MHz. 

     The tradeoff between the noise reduction and the symbol 

quantity is a critical step in the calibration of the system. We 

were using 32 symbols that showed good results during 

electrical circuits and in vitro experimentations, but that was 

in the limit for the ex vivo experimentation. The increase of 

the symbols quantity should solve the problem with the cost 

of reducing the measurement speed, however this solution 

should be carefully analyzed in order to remain in the time 

frame required for the proposed strategy. Another solution 

could be the use of another OFDM code, that with the 

appropriated modulation scheme, could improve better the 

CF. These are topics for future research in our group to 

further improve the OMEIS system since it is the tool that 

will allow us to establish an electrical signature of a fibrotic 

tissue. 
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