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This paper presents a new way to consider the effect of roughness in fluid film lu-

brication. An artificial viscosity function is introduced to model the effect of roughness.

The parameters of the function are derived either from the homogenized solution or the

stochastic solution.With this method it is possible to determine the average velocity pro-

file, which cannot be done with the usual homogenization or stochastic methods.

1 Introduction

The objective of fluid film lubrication is to separate two surfaces in relative motion by a

thin film of fluid to avoid contact and wear and to reduce friction. Because of the thickness

of the film, perturbations induced by the surface roughness became an issue a long time

ago.

Tzeng and Saibel [1] were among the first to propose a solution for the pressure dis-

tribution in an infinite bearing with random rough surfaces. In the same period of time,
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Christensen [2] presented an averaged Reynolds equation obtained by a stochastic model.

These two approaches are, however, limited to striated rough surfaces, while the topogra-

phy of real surfaces often varies in both directions. About ten years later, Patir and Cheng

[3, 4] proposed a new approach based on numerically derived flow factors which over-

comes this limitation. The flow factors are included in an averaged Reynolds equation

to consider the roughness induced perturbations on the fluid flow. This method has the

advantage of not being limited to striated surfaces, and has thus been used in many appli-

cations. Many improvements can be found in the literature. Elrod [5] and then Tripp [6]

performed a theoretical calculation of the flow factors by using an asymptotic expansion.

Later, Harp and Salant [7] included the effect of inter-asperities micro-cavitation in this

model.

An alternate approach based on homogenization was proposed by Bayada and Faure

[8]. The main idea consists in using two scales, the smaller being used to describe a

periodical micro roughness. With this method, it is possible to consider all types of ori-

entations of surface roughness, which is more difficult with the flow factors method. This

approach has also been improved to include cavitation [9] as well as real measured surface

roughness [10, 11].

The improvement of computer performance now allows performing deterministic sim-

ulations where a real surface topography is included in the model without any averaging

procedure [12, 13]. However this method is still limited to small surfaces compared to

averaged roughness methods because of the computation burden.

In some applications, it is of interest to obtain not only the fluid pressure. For exam-

ple, the resolution of the energy equation in the film requires also knowing the velocity

distribution [14]. However, stochastic and homogenized approaches are not relevant to

determining the velocity profile. In the present paper, an artificial viscosity function is

introduced to model the effect of roughness. This artificial viscosity can be compared to

the turbulent viscosity used in fluid mechanics to model turbulent random eddies [15].

The parameters of the viscosity function are derived either from the homogenized solu-

tion or the stochastic solution. One of the main advantages is the possibility of calculating



the velocity profile based on usual through film viscosity integral functions [16]. An-

other possible field of application could be to consider roughness effects in the bulk flow

type equations used for inertial flows in thin films [17]. This procedure can be used for

2D isotropic roughness (as the viscosity is isotropic) or with the infinitely long device

assumption (1D Reynolds equation).

2 Averaged Reynolds equation incorporating roughness

Figure 1: Configuration of the problem

The studied problem is presented in figure 1. A smooth and flat surface is moving with

a velocity U in the~x direction. It is separated from a stationary rough surface by a distance

h. The gap between the two surfaces is filled by an incompressible fluid of viscosity µ0.

The local film thickness h is a function of the nominal film thickness h0 describing the

macroscopic geometry and of a roughness function f representing the local asperities

height variation:

h = h0 [1+ ε f ] (1)

where ε is a dimensionless parameter controlling the height of the roughness. This

roughness is supposed to be isotropic. Depending on the type of roughness (periodical

pattern or random distribution), the Reynolds equation governing the pressure distribution



can be derived by a homogenization or by a stochastic approach. For an isotropic 2D

roughness, the two approaches lead to the following Reynolds equation:

∂

∂x

(
h3

0
12µ0

φp
∂p
∂x

)
+

∂

∂y

(
h3

0
12µ0

φp
∂p
∂y

)
=

U
2

∂

∂x
(h0φs) (2)

where p is the averaged or homogenized pressure. φp and φs are correcting factors

used to model the effect of roughness. The averaged or homogenized shear stress on the

smooth moving surface along the~x direction can be written

τx (z = 0) =−∂p
∂x

h0

2
φτp−µ0

U
h0

φτs (3)

φτp and φτs are correcting factors used to model the effect of roughness.

For an infinitely long device, the following 1D Reynolds equation is valid:

d
dx

(
h3

0
12µ0

φp
d p
dx

)
=

U
2

d
dx

(h0φs) (4)

The shear stress equation remains unchanged.

2.1 1D Periodic roughness

In the case of a 1D periodic roughness profile, the homogenization leads to an analytical

expression for the correcting factors. The film thickness can be expressed by

h(x,x1) = h0 (x) [1+ ε f (x1)] (5)

where x1 is the local scale of the roughness. f is a periodic function of x1 of wave length

1. Let us introduce the following notation:

Hn =
∫ 1

0
[1+ ε f (x1)]

n dx1 (6)

With this notation, it can be demonstrated that the correcting factors can be expressed



as [8]

φp =
1

H−3 (7)

φs = φτp =
H−3

H−2 (8)

φτs = 4H−1−3

(
H−2)2

H−3 (9)

The shear factor φs and the pressure friction factor φτp are equal.

2.2 2D Random roughness

The homogenization technique is able to deal with random roughness because the expres-

sion for the flow factors cannot be computed analytically in terms of f . Only numerical

computation is available [8]. In this case, it is better to use the stochastic method. If

the roughness function f is isotropic with an exponential auto-correlation function and a

standard deviation equal to one, it can be shown with the Tripp method [6] that

φp = 1− 3
2

ε
2 (10)

φs = φτp = 1− 3
2

ε
2 (11)

φτs = 1+
5
2

ε
2 (12)

As with the homogenization approach, it is found that φs = φτp. In this particular case,

these two factors are equal to the pressure factor φp. Note that many engineered surfaces

are found to have an exponential auto-correlation function [18].

3 Reynolds equation with variable viscosity

In this section, it is assumed that there is no roughness, f = 0, but that the viscosity of the

fluid varies through the film thickness:

µ(z) = µ0 [1+g(z)] (13)



where z is the through-film coordinate. This is a well-known problem developed in the

case of ThermoHydroDynamic (THD) lubrication in bearings [14, 16]. Let us introduce

the following notation for the through film viscosity integrals:

In =
∫ 1

0

z̄n

1+g(z̄)
dz̄ , z̄ =

z
h0

(14)

Using this notation, it can be shown that the Reynolds equation for smooth surfaces is (see

Appendix A):

∂

∂x

[
h3

0
µ0

(
I2−

I2
1

I0

)
∂p
∂x

]
+

∂

∂y

[
h3

0
µ0

(
I2−

I2
1

I0

)
∂p
∂y

]
=U

∂

∂x

(
h0

I1

I0

)
(15)

The shear stress on the moving wall can be expressed as

τx (z = 0) =−∂p
∂x

h0
I1

I0
−µ0

U
h0

1
I0

(16)

The velocity profile across the film thickness can be easily expressed:

Vx (z) =
∂p
∂x

h2
0

µ0

[
I1 (z)−

I1

I0
I0 (z)

]
+U

[
1− I0 (z)

I0

]
(17)

4 Equivalence between averaged and variable viscosity

Reynolds equations

The Reynolds and the shear stress equations with a variable viscosity are similar to those

obtained with rough surfaces by homogenization or the stochastic approach. By identifi-

cation, it is found that they are identical if

φp = 12
(

I2−
I2
1

I0

)
(18)

φs = φτp = 2
(

I1

I0

)
(19)



φτs =
1
I0

(20)

These relations suggest that it should be possible to model the roughness effect by using an

artificial viscosity varying through the film thickness. If there exists a viscosity function

g such that the corresponding integrals IO, I1 and I2 satisfy equations (18) to (20), then

the pressure and shear stress will be identical. The description of the average flow due to

roughness will be the same as the description of the flow with a variable viscosity along a

smooth surface. Equations (18) to (20) are equivalent to

I0 =
1

φτs
(21)

I1 =
φs

2φτs
(22)

I2 =
φp

12
+

φ2
s

4φτs
(23)

Let us assume that

G(z̄) =
1

1+g(z̄)
(24)

Because of the three equations, the function must contain three parameters. The choice of

G is not unique. However for each function satisfying eqs. (7) to (9) or eqs. (10) to (12),

the pressure and shear stress fields are the same. The objective of this paper is not to find

the best function or the function which provides the most physical solution. The objective

is to show the possibility of using a variable viscosity to model the effect of roughness.

In the following, a polynomial function which can be analytically integrated is chosen. In

order to enforce that the viscosity is not modified close to the smooth wall, we impose the

following constraints:

G(0) = 1 (25)

dG
dz̄

(0) = 0 (26)



Function G is thus defined by:

G(z̄) = 1+Az̄2 +Bz̄3 +Cz̄4 (27)

It can be shown that:

I0 = 1+
A
3
+

B
4
+

C
5

(28)

I1 =
1
2
+

A
4
+

B
5
+

C
6

(29)

I2 =
1
3
+

A
5
+

B
6
+

C
7

(30)

The parameters A, B are C are solutions of the system


1
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1
4

1
5

1
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1
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1
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1
5

1
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7




A

B

C

=


1

φτs
−1

φs
2φτs
− 1

2
φp
12 +

φ2
s

4φτs
− 1

3

 (31)

The determinant of the matrix is different from zero and the system always has a

solution. The matrix can thus be inverted:


300 −900 630

−900 2880 −2100

630 −2100 1575




1
φτs
−1

φs
2φτs
− 1

2
φp
12 +

φ2
s

4φτs
− 1

3

=


A

B

C

 (32)

5 Numerical application to periodic roughness for an in-

finitely long device

In this section, it is assumed that the roughness is a ‘crenel’ function:

f (x1) = sign [cos(2πx1)] (33)



5.1 Example 1: Viscosity and velocity profiles

By solving the system (32), it is possible to find the values of A, B and C and then the

function G (the solution is given in the Appendix B). The profile of this function is pre-

sented in figure 2. This function is equal to 1 close to the smooth wall (bottom), increases

slightly, and then decreases sharply when the distance to the rough wall is reduced. As

is logical, the magnitude of the variations increases with the roughness height ε. G can

become negative for ε greater than about 0.37. In this case, the viscosity function 1+ g,

which is the inverse of G, would be singular. This situation must be avoided. This is a

limitation to the artificial viscosity method.

Figure 2: G function distribution for a crenel roughness profile and different values of the
roughness height ε

The corresponding viscosity roughness functions 1+g = µ
µ0

are presented in figure 3.

The artificial viscosity is increased close to the rough wall when the roughness height

increases. Moreover, the maximum effective viscosity value is shifted toward the center

of the channel when the roughness height is increased.

The advantage of the viscosity approach compared to homogenization is that it is

possible to compute the averaged velocity profile of the fluid in the lubricating film. Some

examples of velocity profiles corresponding to a pure pressure flow and a pure shear flow



Figure 3: Roughness function for a crenel roughness profile and different values of the
roughness height ε

are presented in figure 4 and compared to smooth wall solutions. Generally speaking,

the fluid velocity is reduced because of the higher friction (and viscosity) induced by

the roughness. For the pressure flow, the maximum of the speed is shifted toward the

smooth wall (bottom) where the friction is lower. For the shear flow, an almost linear

speed distribution is observed close to the smooth wall but with a steeper slope than for

the smooth surfaces solution.

5.2 Example 2: 1D slider bearing

Although not previously mentioned, the present analysis is valid for a non-uniform gap

h0 (x). In this case, ε, A, B and C as well as G and g vary along the x direction. It is thus

possible to use the present approach to study a 1D slider bearing. In this case, the nominal

film thickness is defined by

h0 (x) =−
ho

2L
x+

3ho

2
(34)

where L is the length of the contact and ho the outlet nominal film thickness. In this case

the inlet film thickness is 3ho
2 . The roughness height is constant along the contact.

In figure 5, the pressure profiles obtained with different methods are presented. For



Figure 4: Velocity profiles for a crenel roughness profile with ε = 0.3

the deterministic approach, 10 waves were used for the contact. This exact approach leads

to pressure oscillations along the contact because of the height variations. The homoge-

nization method gives an excellent approximation of the average pressure variations. As

expected, the present viscosity model gives exactly the same pressure profile as the ho-

mogenized pressure profile. If roughness is not considered in the simulation, the pressure

is significantly underestimated.

Figure 5: Pressure distribution in a 1D slider bearing with a crenel rough wall, ε(L) = 0.3



The shear stress profiles on the moving wall obtained with the different approaches

are presented in figure 6. Here also, the viscosity model gives exactly the same results as

the homogenization, which is a good approximation to the deterministic solution.

Figure 6: Shear stress distribution on the moving wall of a 1D slider bearing with a crenel
rough wall, ε(L) = 0.3

The load generated in the contact and the friction force are presented as a function of

the roughness height in figures 7 and 8. The viscosity model and the deterministic model

lead to results in close agreement, showing that the roughness tends to increase the load

as well as the friction. The slight difference on the load could be due to the too small

number of waves (10) used for the deterministic simulation.

6 Numerical applications to random roughness in 2D de-

vices

In this section, the roughness function f is a Gaussian height distribution having an ex-

ponential auto-correlation function. The height of the roughness is ε = σ

h0
where σ is the

standard deviation of the roughness distribution.



Figure 7: Generated load in a 1D slider bearing with a crenel rough wall as a function of
of the roughness height ε(L)

Figure 8: Friction force in a 1D slider bearing with a crenel rough wall as a function of of
the roughness height ε(L)



6.1 Example 1: Viscosity and velocity profiles

By solving the system (32), it is possible to find the values of A, B and C and then the

function G (the solution is given in the Appendix). The profile of this function is presented

in figure 9. This function is equal to 1 close to the smooth wall (bottom), increases slightly,

and then decreases sharply when the distance to the rough wall is reduced. As is logical,

the magnitude of the variations increases with the roughness height ε. As with the crenel

roughness profile, G can become negative for ε greater than about 0.33. In this case, the

viscosity, which is the inverse of G, would be singular. This is a limitation to the viscosity

method. However this situation corresponds approximately to the appearance of contact

between the two surfaces, for which the viscosity concept makes no sense.

Figure 9: G function distribution for a random roughness and different values of the
roughness height ε

The corresponding effective viscosity functions are presented in figure 10. The artifi-

cial viscosity increases close to the rough wall when the roughness height increases. The

viscosity distribution is different from the one obtained with a crenel roughness profile.

For example, the location of the maximum of the effective viscosity is almost constant,

whereas it changes with the roughness height for a striated surface (see figure 3).

Some examples of velocity profiles corresponding to a pure pressure (Poiseuille) flow

and a pure shear (Couette) flow are presented in figure 11 and compared to smooth wall



Figure 10: Effective viscosity function for a random roughness and different values of the
roughness height ε

solutions. As with 1D roughness, the fluid velocity is reduced because of the higher

friction (and viscosity) induced by the roughness. For the pressure flow, the maximum of

the speed is shifted toward the smooth wall (bottom) where the friction is lower. For the

shear flow, an almost linear speed distribution is observed close to the smooth wall but

with a steeper slope than that of the smooth surfaces solution. Because of the different

viscosity distribution, the velocity profiles are different from those obtained with a crenel

roughness. The viscosity in the vicinity of the rough wall is decreased leading to a higher

speed than with smooth surfaces. Indeed, with a smooth surface, all the fluid has a zero

speed at z = h0 whereas, with rough surfaces, a part of the fluid has the possibility of

flowing between the asperities ending at z≈ h0 +3σ.

6.2 Example 2: 2D slider bearing

The different approaches are now used to study a 2D slider bearing. In this case, the

nominal film thickness is defined by

h0 (x) =−
ho

2L
x+

3ho

2
(35)



Figure 11: Velocity profiles for a random roughness with ε = 0.3

where L is the length of the contact and ho the outlet nominal film thickness. The inlet

film thickness is 3ho
2 . Note that the width of the contact is equal to length of the contact L.

The standard deviation σ of the roughness is constant in the contact. For this comparison,

five different rough surfaces were used. These surfaces are Gaussian and isotropic. The

correlation lengths of the surfaces vary from 0.022L to 0.053L. They were numerically

generated by the Hu and Tonder algorithm [19].

In figure 12, the pressure profile obtained in the center line of the bearing with the

deterministic (averaged over 5 surfaces) and viscosity methods are presented. The vis-

cosity method gives a good approximation of the pressure increase due to roughness. A

better correlation would certainly be obtained by using more than 5 surfaces. Note that

the solution given by the viscosity approach is exactly the same as the one given by the

stochastic approach, which is thus not presented here.

The shear stress profiles on the moving wall obtained with the different approaches

are presented in figure 13. The viscosity model provides a higher shear stress than the

smooth surfaces solution, which is in agreement with the shear stress averaged over the 5

deterministic solutions.

The load generated in the contact and the friction force are presented as a function of



Figure 12: Pressure distribution in the center line of a 2D slider bearing having a random
rough rough wall, ε(L) = 0.2

Figure 13: Shear stress distribution on the moving wall of a 2D slider bearing having a
random rough rough wall, ε(L) = 0.2



the roughness height in figures 14 and 15. Generally speaking, the load and the friction

increase with the roughness height. However, the evolution can be different from one

surface to the other. The viscosity model is a good approximation of the results obtained

with the five different rough surfaces.

Figure 14: Generated load in a 2D slider bearing with a random rough wall as a function
of of the roughness height ε(L)

7 Conclusion

In this paper a new method to treat the roughness effect in fluid film lubrication has been

presented. The idea is to introduce an artificial viscosity function. The parameters of this

function can be set so as to obtain similar results as those calculated with the homogeniza-

tion method or the flow factors method. The great advantage is that it is possible to derive

the velocity profile, which is not possible with the usual approaches. The method has

been satisfactory compared to deterministic solutions. The approach is, however, limited

to isotropic roughness. An anisotropic viscosity function could be introduced to deal with

more complex roughness patterns. Moreover, a first extension to the case of two rough

surfaces is proposed in the Appendix D of the paper.



Figure 15: Friction force in a 2D slider bearing with a random rough wall as a function of
of the roughness height ε(L)
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A The Reynolds equation with a variable viscosity func-

tion

The Reynolds equation is derived for the configuration given in figure 1. The simplifed

Navier–Stokes equation for a thin viscous fluid film is given by [16]:

∂p
∂x

=
∂

∂z

(
µ

∂Vx

∂z

)
(36)

∂p
∂y

=
∂

∂z

(
µ

∂Vy

∂z

)
(37)

∂p
∂z

= 0 (38)

Since p does not vary with z, the two first equations can be integrated twice to find the

velocity components Vx and Vy:

Vx (z) =
∂p
∂x

h2
0

µ0

[
I1 (z)−

I1

I0
I0 (z)

]
+U

[
1− I0 (z)

I0

]
(39)

Vy (z) =
∂p
∂y

h2
0

µ0

[
I1 (z)−

I1

I0
I0 (z)

]
(40)

The continuity equation integrated through the film thickness is:

∫ h

0

∂Vx

∂x
dz+

∫ h

0

∂Vy

∂y
dz = 0 (41)

Considering that Vx (h) =Vy (h) = 0, the equation can be modified in this way:

∂

∂x

∫ h

0
Vxdz+

∂

∂y

∫ h

0
Vydz = 0 (42)

By replacing the velocity components Vx and Vy by their expressions, the following Reynolds

equation is finally obtained:
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+
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=U
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B Viscosity function parameters for 1D roughness

A =−60+
300H−3−450H−2 +210H−1

4H−1H−3−3(H−2)
2 (44)

B = 160+
−900H−3 +1440H−2−700H−1

4H−1H−3−3(H−2)
2 (45)

C =−105+
630H−3−1050H−2 +525H−1

4H−1H−3−3(H−2)
2 (46)

C Viscosity function parameters for 2D random rough-

ness

A =
105ε2 + 315

2 ε4

1+ 5
2ε2

(47)

B =
−360ε2−525ε4

1+ 5
2ε2

(48)

C =
525

2 ε2 + 1575
4 ε4

1+ 5
2ε2

(49)

D Extension to two rough surfaces

In many situations, the two surfaces involved in the contact exhibit some level of rough-

ness. For two rough surfaces, the situation is more complex, as several scales exist in both

space and time. However the homogenized situation can also be associated to a Reynolds

equation with known coefficients written between two smooth surfaces. They are obtained

by first making a space homogenization (with time acting as a fixed parameter) and then

by making some local time averaging [20]. In the case of random isotropic roughness,

simple expressions for the flow factors can be found. Let us assume that ε1 is the relative

roughness height of the bottom moving surface and ε2 is the relative roughness height of

the top stationary surface:

φp = 1− 3
2
(
ε

2
2 + ε

2
1
)

(50)



φs = φτp = 1− 3
2
(
ε

2
2− ε

2
1
)

(51)

φτs = 1+
5
2
(
ε

2
2 + ε

2
1
)

(52)

An inverse viscosity function G can be computed for each surface using the exact solu-

tion presented in the Appendix. When expressing the polynomial solution, it is necessary

to invert the z direction for the bottom surface:

G1 (z̄) = 1+A(ε1)(1− z̄)2 +B(ε1)(1− z̄)3 +C (ε1)(1− z̄)4 (53)

G2 (z̄) = 1+A(ε2) z̄2 +B(ε2) z̄3 +C (ε2) z̄4 (54)

If the top surface is smooth, ε2 = 0, the viscosity is

µ(z) = µ0 [1+g1 (z)] =
µ0

G1 (z̄)
(55)

It can be demonstrated that the correcting factors solution with ε2 = 0 and ε1 6= 0 is

recovered.

When the two surfaces are rough, it is possible to propose several viscosity function

combinations. The first one is the sum of the contributions:

µ(z) = µ0 [1+g1 (z)+g2 (z)] = µ0
G1 (z̄)+G2 (z̄)−G1 (z̄)G2 (z̄)

G1 (z̄)G2 (z̄)
(56)

Due to the complex expression for the inverse of the viscosity, it is not possible to obtain a

simple analytical expression for the integrals In. Another way consists in using the product

of the contributions:

µ(z) = µ0 [1+g1 (z)] [1+g2 (z)] = µ0
1

G1 (z̄)G2 (z̄)
(57)

This gives a very simple expression for the inverse of the effective viscosity. These

two solutions will be compared to the exact flow factors expression (eqs 50 to 52). For

this, ε1 and ε2 are varied in the range from 0 to 0.3. The effective viscosity function



is numerically integrated and the resulting flow factors are compared to the analytical

expressions in figures 16 to 18. A good agreement between the viscosity method and

the exact correcting factors is obtained when the combined roughness ε =
√

ε2
2 + ε2

1 is

lower than 0.33 (ε2 < 0.1). This value corresponds to the appearance of contact between

asperities. Above this value, some significant deviations are observed for φs and φτs. This

is not surprising since the artificial viscosity function for two rough walls was arbitrarily

and not theoretically derived.

An interesting point is that the two ways to combine viscosity functions (product and

sum) lead to almost the same results and both of them can be used. As can be seen in

equation 58, this means that the product of g1 by g2 is small compared to unity. Indeed

these functions are close to zero in the half channel where the other function is different

from zero (see figure 19).

[1+g1 (z)] [1+g2 (z)] = 1+g1 (z)+g2 (z)+g1 (z)g2 (z)≈ 1+g1 (z)+g2 (z) (58)

Figure 16: Comparison of the resulting pressure flow factors for two rough surfaces with
the analytical expression



Figure 17: Comparison of the resulting shear flow factors for two rough surfaces with the
analytical expression



Figure 18: Comparison of the resulting shear friction factors for two rough surfaces with
the analytical expression

Figure 19: Artificial viscosity of the upper wall (µ1 with ε1 = 0.25), of the lower wall (µ2
with ε2 = 0.2), of the two walls by product and sum methods



Nomenclature

A, B, C parameters of the viscosity function (-)
f roughness function (-)
Ff friction force (N)
g artificial viscosity function (-)
G = 1

1+g inverse of the effective viscosity (-)
h local film thickness (m)
h0 nominal film thickness (m)
I∗ viscosity integral function (-)
L length and width of the domain (-)
p pressure (Pa)
u speed of the fluid (m/s)
U sliding speed (m/s)
W load carrying capacity (N)
x longitudinal coordinate (m)
x1 local scale of the roughness (-)
y transverse coordinate (m)
z height coordinate (m)
z̄ = z

h0
dimensionless height coordinate (m)

H dimensionless averaged height (-)
ε relative roughness height (-)
φ∗ correcting flow factors (-)
µ0 dynamic fluid viscosity (Pa.s)
τx shear stress in the x direction (Pa)


