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We study the time evolution of a supercurrent imprinted on a one-dimensional ring of interacting
bosons in the presence of a defect created by a localized barrier. Depending on interaction strength
and temperature, we identify various dynamical regimes where the current oscillates, is self-trapped
or decays with time. We show that the dynamics is captured by a dual Josephson model, and
involves phase slips of thermal or quantum nature.

Superfluidity is a fascinating phenomenon emerging
in interacting quantum systems and governing their low
temperature transport properties. Supercurrents, named
in analogy with superconductivity, are characterized,
among others, by frictionless flow and quantized vortices,
and are most easily evidenced in ring geometries. Ultra-
cold atoms confined in ring traps have proven to be a
great tool to study superfluid transport properties [1–3].
Due to their tunability and their high degree of control,
they are an ideal system for studying the effect of in-
teractions and dimensionality in the superfluid transport
dynamics. As superconducting SQUIDs have provided
a wealth of applications, the realization of their atomic
analogs – the AQUID [4] – is a first step in the whole
new field of atomtronics [5, 6].

From a fundamental point of view, an open question is
the stability of supercurrrents. For a three-dimensional
(3D) ring geometry the stochastic decay of the quantized
current has been studied, evidencing the role of the crit-
ical velocity [2, 7]. In the presence of a repulsive bar-
rier crossing the ring, resulting in a weak link, hysteresis
in the phase slips dynamics has been investigated [8–11]
and the role of thermal activation evidenced [12]. A sce-
nario for the phase slips dynamics induced by a weak link
based on the role of vortices can be used to explain qual-
itatively the experimental observations [13] but fails to
account quantitatively for the thermal activation [14, 15].

In this context one question naturally arises: if the
phase slips dynamics is driven in 3D by vortices crossing
the weak link, what happens in lower dimension? While
in two-dimensional (2D) systems vortices still play a cru-
cial role in the superfluid dynamics [4, 13], they cannot
exist in one-dimension (1D). Therefore the phase slips
phenomenon should be of a different nature in 1D.

Previous works have shown the role of phase-slips [16]
in the decay of 1D transport in the presence of peri-
odic perturbation [17]. For a microscopic impurity the
decay rate has been estimated by computing the drag
force [18]. For sufficiently small obstacles stationary cir-
culating states may exist [19, 20], while a forced flow
past a larger obstacle results in soliton emission [21, 22].
Most of these previous studies were performed in a rotat-

-1.5 -1 -0.5 0 0.5 1 1.5
Current

E
n
e
rg

y
 [
a
.u

.]

(a) (b)

FIG. 1. (a) Sketch of the quench protocol: a 1D Bose gas is
trapped in a ring, in the presence of a localized barrier, e.g.
a tightly focused repulsive optical potential (red), creating a
dip in the density (blue), and quenched out of equilibrium
by imprinting a phase gradient. (b) Energy landscape of the
homogeneous 1D Bose gas on a ring: the states with integer
values of the current per particle correspond to local minima
of the energy. The quench (black arrow) transfers the system
from the initial zero-current state (light blue circle) to the
state with one unit of current (light red circle). Depending
on the parameters, the barrier will then resonantly couple the
+1 and -1 states (light gray arrow) or induce an adiabatic
transition between the +1 and 0 states (dashed blue arrow),
see text for details.

ing frame, thus imposing a flow onto the ring, allowing to
estimate the nucleation rate of phase-slips [23]. For in-
termediate to strong interactions and small impurities it
has been shown that the nature of the decay of persistent
currents is related to the low-energy phonon excitations
within the ring [24].

In this work, we investigate how a free current flows in
1D: as illustrated in Fig. 1, starting from a system ini-
tially prepared in a well-defined current state in a ring
trap with a barrier, we follow its dynamics with the aim
of elucidating the current dynamics and its dissipation
mechanisms. Our study concerns both zero- and finite
temperature gases, both at weak and strong interactions.
We show that the dynamical behavior can be interpreted
as a dual of the Josephson effect, occurring among angu-
lar momentum states. Depending on the barrier strength
and the temperature regime we observe current oscilla-
tions, self-trapping or decay. In the weakly interacting
regime, we show that the observed dynamics corresponds
to self trapping among angular momentum states at zero
temperature, and that the decay of the currents at fi-
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nite temperature involves dark solitons. For strong in-
teractions, we show that coherent quantum phase slips
dominate the current dynamics at zero temperature, and
incoherent ones take over at finite temperature.

Model We study an ensemble of N bosons of mass m
with repulsive contact interactions on a ring of circum-
ference L with periodic boundary conditions, i.e. the
Lieb-Liniger model, generalized to include the presence
of an external barrier potential V (x). The Hamiltonian
reads:

Ĥ =

∫ L

0

dx Ψ̂†
(
− ~2

2m

∂2

∂x2
+ V (x) +

g

2
Ψ̂†Ψ̂

)
Ψ̂, (1)

where Ψ̂ is the bosonic field operator and the correspond-
ing average density is n = N/L with the total number

of particles given by
∫ L

0
dx 〈Ψ̂†Ψ̂〉 = N . This model de-

scribes e.g. ultra-cold atoms confined in a tight ring trap.
In this case g = 2~ω⊥as is the one-dimensional interac-
tion strength, ω⊥ the radial confinement frequency and
as the 3D s-wave scattering length. In the following we
will consider either a delta potential V (x) = αδ(x), for
which analytical results can be obtained, or a Gaussian

potential V (x) = V0 exp
(
− x2

2σ2

)
, realistic from the ex-

perimental point of view. For homogeneous 1D gases
the equilibrium properties at finite temperature are cap-
tured by two dimensionless parameters [26]: γ = mg

~2n
quantifying the interaction regime from weakly (γ � 1)
to strongly interacting (γ � 1), and the reduced temper-
ature τ = T

Tdγ2 , where Td = ~2n2/2mkB is the quantum
degeneracy temperature.

Quench protocol Our goal is to study the dynamics
of the particle current in the presence of a barrier. We
first prepare the system in an equilibrium state Ψ0 in the
presence of the static barrier potential. This results in a
state with no current. Specific details on the implemen-
tation depend on the interaction regime and are given
later. We then quench the current by phase imprinting
a specific circulation onto the many-body wavefunction:
Ψ0(x1, ...xN )→ Ψ1(x1, ...xN ) = Ψ0× ei2π`

∑
j xj/L. Note

that this process can be implemented in experiments us-
ing specific light potentials according to various available
schemes [2, 27]. We then monitor the current by com-
puting the average of the current operator:

J(t) = −i ~
2m

1

N

∫ L

0

dx

L

〈
Ψ̂†∂xΨ̂− ∂xΨ̂†Ψ̂

〉
. (2)

The subsequent time evolution after the quench is de-
scribed by the following approaches depending on the in-
teraction and temperature regimes: (i) at T = 0 and
for a weakly interacting gas (γ � 1) we rely on the
Gross-Pitaevskii equation (GPE) numerical solution and
on an analytical two-mode model adapted from [28]; (ii)
at T > 0 and γ � 1 we use the Projected Gross-
Pitaevskii equation (PGPE) formalism [29, 30] and (iii)

at γ � 1 we rely on the exact time-dependent Bose-
Fermi mapping describing the infinitely strong interac-
tion Tonks-Girardeau (TG) limit for the whole temper-
ature range [31–33]. In this work we focus on a quench
with circulation ` = 1.

In the weakly interacting limit it is natural to define the
barrier strength relative to the chemical potential, i.e., we
define a Gaussian barrier strength as λGP = V0/µ0 with
µ0 = gn being the chemical potential of the homogeneous
annular gas. Figure 2 illustrates the results of our sim-
ulations in the weakly interacting regime as a function
of this barrier strength, for a relatively narrow barrier of
width σ = L/50, yet much larger than the healing length
ξ = ~/

√
2mgn.

At zero temperature we observe in Fig. 2(a) that the
current remains very close to the initial quenched circu-
lating state for weak to moderate barriers, up to λGP ∼ 1.
Above this critical value, we observe a fast decay of the
current, followed by oscillations around the 0 value. This
is very similar to what has been obtained in 2D simula-
tions [14]. The new feature of the 1D mean-field regime
is the emergence of current oscillations at large barriers.
As we discuss here below, this behavior can be inter-
preted as the transition from self-trapping to Josephson
oscillations of the currents, in analogy to the well known
Josephson effect for particle imbalance predicted in [28]
and experimentally observed using ultra-cold atoms con-
fined in a double well trap [34]. In essence (see Supple-
mental Material for details), we derive a fully analyti-
cal two-mode model for two current states and demon-
strate that this accurately captures the Gross-Pitaevskii
dynamics at zero temperature and very weak interactions
(see the inset of Fig. 2(a)). This model predicts a tran-
sition from self-trapping to Josephson oscillations for a
critical value λcGP that depends on the strength of inter-
actions, as in [28]. Although the two-mode model breaks
down for large barrier or higher (but still weak) interac-
tions due to the spread of the mean-field wavefunction
onto many single particle orbitals, we observe the same
qualitative behavior in the simulations. Indeed, surpris-
ingly, the current always oscillates regularly at large bar-
riers, with a triangular shape and very small damping
rate. These oscillations can be understood using a hydro-
dynamic description with a transport mediated by shock
waves, thus at constant velocity, within an almost hard-
wall container [21].

For temperature T = µ0/kB , corresponding to the
quasi-condensate regime [26], the dynamics of the cur-
rent is quite different from the zero-temperature case,
see Fig. 2(b). At low barriers, i.e. λGP ≤ 0.5, we observe
an exponential decay of the current with a decay rate
increasing with the barrier strength. For larger barriers
we observe damped cosine oscillations of the current. In
this regime thermal phase slips occur at the position of
the barrier where the density vanishes. The transition
from exponential to damped oscillation decay is quali-
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FIG. 2. (color online) Average current per particle as a function of time (in units of mL2/~) after the quench in the mean field
regime for g = 20 × ~2/(mL) and N = 1000 (so that γ = 0.02). On all graphs the black dotted (dashed) lines are horizontal
guides to the eye for the current values 0 (±1). (a) Expectation value of the current at T = 0 (solid lines) for different barrier
strength λGP = {0.8, 1, 1.05, 1.1, 1.2, 2}, from top to bottom. An offset has been added to each curve for clarity. The red
dashed line indicates the separation between the self-trapped and decaying regimes, see text for details. The inset displays
the current evolution after a quench for a much smaller γ = 2 × 10−5, showing the agreement between the simulations (solid
lines) and the two-mode model (dashed lines) for λGP = {0.05, 0.1, 0.15, 0.2} (from top to bottom, following the arrow). (b)
Expectation value of the current at T = µ0/kB (solid lines), averaged over 100 realizations of the classical field, for different
barrier strength λGP = {0.4, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2}, from top to bottom. The overlayed red dashed curves are the results of
fits allowing to extract the typical damping rate of the current. The inset displays the decay rates Γ obtained from the fit [25],
for temperatures T = {0.5, 1, 1.5, 1.75} × µ0/kB (from bottom to top, following the arrow), see text for details. (c) Zoom on a
single classical field trajectory, for T = µ0/kB and λ = 0.6, illustrating the phase slip phenomenon: a jump in the value of the
current (top panel) is associated to the reflection of a slow soliton at the barrier visible in the density map (middle panel) and
a singularity in the phase profile (bottom panel).

tatively observed for all our temperatures in the range
0.5 ≤ kBT/µ0 ≤ 2.5. The inset of Fig. 2(b) displays
the value of the damping rate Γ given by the fit [25] for
increasing temperatures, in the range 0.5µ0 ≤ kBT ≤
1.75µ0. The damping rate increases with temperature,
displaying a non-monotonous dependence on the barrier
strength, with a max imum at the crossover between the
two decay regimes. The crossover occurs at lower bar-
rier strength for larger temperatures, consistent with the
thermal activation of solitons.

In order to elucidate the mechanisms for the current
decay, Fig. 2(c) shows a single classical field trajectory,
showing many spontaneous thermal gray solitons [35].
While most of the solitons present a small density dip,
hence are fast and are transmitted through the bar-
rier [36], we notice that the current undergoes discrete
jumps each time a soliton is reflected on the barrier: in
this case, when the soliton reaches zero velocity the den-
sity profile vanishes, allowing for a phase slip to occur.
This corresponds to the adiabatic process indicated by
the dashed blue line on Fig. 1(b). As the temperature
increases, the probability to find slow solitons increases
and the jumps occur more and more frequently, resulting
in an increase of the decay rate. Finally, as the bar-
rier couples the soliton dynamics to the long wavelength
sound excitations [36] we expect this process to be intrin-

sically stochastic, thus resulting in an exponential decay
of the average current as observed.

The description of current dynamics as dual of the
Josephson effect persists at strong interactions. In this
regime, the classical picture does not apply, rather,
we will show below that the dynamics corresponds to
quantum coherent oscillations among angular momentum
states (see [37] for the analog phenomenon in supercon-
ductors). We provide a microscopic description of the
dynamics of the current in the strongly interacting limit
γ � 1 using the exact Tonks-Girardeau solution, which
maps the interacting bosons ont a Fermi gas. In the
TG regime the relevant dimensionless barrier strength
is λTG = Vb/EF , with Vb = αn being the barrier as-
sociated energy and EF = ~2n2π2/2m being the Fermi
energy, corresponding to the zero-temperature chemical
potential for systems displaying fermionization (see Sup-
plemental Material). At zero temperature, Fig. 3(a),
we note that for weak barriers, λTG � 1, in con-
trast to the weakly interacting regime, there is no self-
trapping, rather, the current undergoes Rabi-like oscil-
lations. These oscillations correspond to coherent quan-
tum phase slips due to backscattering induced by the
presence of the barrier. Microscopically, it corresponds
to dynamical processes involving the whole Fermi sphere,
i.e. multiple-particle hole excitations where each particle
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FIG. 3. (color online) Average current per particle as a function of time (in units of ~/mL2) after the quench in the
Tonks-Girardeau regime for N = 23 bosons. On all graphs the black dotted (dashed) lines are horizontal guides to the
eye for the current values 0 (±1). (a) Expectation value of the current at T = 0 (solid lines) for different barrier strength
λTG = {0.05, 0.1, 0.5, 1, 2, 4}, from top to bottom. An offset has been added to each curve for clarity. (b) Expectation value
of the current at T = EF /kB (solid lines) for different barrier strength λTG = {0.05, 0.1, 0.5, 1, 2, 4}, from top to bottom. The
overlayed red dashed curves are the results of fits allowing to extract the typical damping rate of the current. The inset shows
the decay rate and frequency obtained from the fit [25], ω/N and Γ/N , as a function of λ, for N = 11 (solid blue curves) and
N = 23 (dashed red curves). The two datasets fall on the same curves. (c) Frequency of the different excitations produced by
the quench as a function of λ for N = 23 at T = 0. The colormap indicates the relative amplitude of the excitations.

coherently undergoes oscillations of angular momentum
from Lz = ~ to Lz = −~. As the strength of the bar-
rier increases, an envelope appears on top of the current
oscillations, degrading the Rabi oscillations. This en-
velope originates from the population of higher-energy
modes, each transition being characterized by a different
frequency, leading to a mode-mode coupling and dephas-
ing. In Fig. 3(c) we show the frequencies and amplitudes
of the various modes involved in the dynamics as a func-
tion of the barrier strength (see Supplemental Material
for more details).

At finite temperatures the quench dynamics of the
current involves also high-energy excitations with ampli-
tude weighted by the Fermi distribution (see Supplemen-
tal Material for details). The resulting dynamics corre-
sponds to an effective damping of the current oscillations
with a exponential decay, see Fig. 3(b), corresponding
to the effect of incoherent phase slips. The revivals ob-
served for large barrier at zero temperature are highly
suppressed due to the thermal excitations in the system.
In the inset of Fig. 3(b) we show the decay rate Γ of the
persistent currents as a function of the barrier strength
[25]. We find that the decay of persistent currents grows
monotonically with the barrier strength, since more and
more excitations are involved in the dynamics as the bar-
rier strength increases. In the same inset we show the
frequency of the maximally occupied state as a function
of λTG and observe that at incre asing barrier strength
the frequency of oscillations crosses over from a Rabi-like
regime with ω ∝ λTG to a Josephson-like regime with
ω ∝

√
λTG, in agreement with the predictions of the

low-energy Luttinger liquid theory [24]. Quite generally,
while our results have been derived for infinite interaction
strength, the predictions of the TG model are expected
to closely describe a Bose gas at strong interactions.

In conclusion, we have shown that the dynamical evo-
lution following a phase imprinting induces oscillations
of the current in a 1D ring, associated to a rich excita-
tion pattern, which can be described by a dual Josephson
dynamics. At weak interactions and finite temperature
we observe the formation of both sound waves and of
thermally activated dark solitons. We find that phase-
slippage occurs incoherently when the solitons are re-
flected by the barrier. In the strongly interacting regime
at zero temperature we find coherent Rabi oscillations
indicating quantum coherent phase slips, which are de-
graded by mode dephasing at large barrier strength or
by thermal fluctuations at finite temperature. In the
weakly-interacting limit we find self-trapping of current
states, while no self-trapping is found at infinitely strong
interactions, where quantum fluctuations dominate.

The dual Josephson picture is a new paradigm for dy-
namics of atomtronics circuits in which a current state
encodes quantum information. Our work evidences the
importance of the dynamics of the current in a 1D
system, which can be accurately measured using ex-
isting experimental tools: either by using an interfer-
ometric measurement giving access to the local cur-
rents [38, 39] or by studying appropriate long wavelength
excitations [40, 41]. The stochastic decay of the current
in 1D via phase slips is very reminiscent of the stochastic
decay due to vortex/anti-vortex recombination in 2D or
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3D systems [13], where however oscillations are strongly
damped by vortex creation [14]. As main difference be-
tween 1D and the higher-dimensional counterparts is that
in the former case the current dynamics is more robust:
at weak interactions, the solitons properties are gradu-
ally degraded by the several interactions with t he bar-
rier, mainly by sound wave radiation [36], and at strong
interactions we observe the coherent dynamics of all par-
ticles. In outlook, it would be very interesting to investi-
gate how the self-trapping disappears for large but finite
interactions as well as to study the crossover to a quasi-
1D geometry to explore the role of radial modes in the
decay dynamics.

We thank Maxim Olshanii and Jook Walraven for stim-
ulating discussions. We acknowledge financial support
from the ANR project SuperRing (Grant No. ANR-15-
CE30-0012).
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SUPPLEMENTAL MATERIAL

Methods

Gross-Pitaevskii equation Weakly interacting bosons,
with γ � 1, can be described at zero temperature by
the well known Gross-Pitaevskii equation, obtained by
considering the mean-field limit of Eq. (1):

i~
∂ψ

∂t
=

(
− ~2

2m

∂2

∂x2
+ V (x) + g|ψ|2

)
ψ.

Two-mode model Within the mean field approach at
zero temperature, we model the dynamics of the system
after the quench by focusing on a subspace of the occu-
pied spatial modes ϕj(x). In particular, for weak barrier
strengths, for which the Bose gas occupies mostly two
modes, we use a two-mode approximation in which the
wavefunction can be written as ψ(x, t) = φ1(t)ϕ1(x) +
φ2(t)ϕ2(x) [28]. The amplitudes φi(t) of each of these two
modes correspond to the occupation of the corresponding
angular momentum states, while ϕ1(2)(x), which are built
as a symmetric (antisymmetric) combination of the first
and second excited states, produce states with ±` angu-
lar momentum. Note however that, at difference from
Ref.[28], both modes ϕj(x) coexist in space and their or-
thogonality is given by their relative phase and not by
their physical spatial separation.

This simplified model allows us to describe the dynam-
ics of the current in terms of the Josephson equations for
the dual variables with respect to the usual case: in place
of relative number and phase among two macroscopic
phase-coherent objects, we obtain here the Josephson os-
cillations of the average current and its conjugate phase
on a ring. We refer to the following section for the de-
tailed derivation.

Projected Gross-Pitaevskii equation To model the fi-
nite temperature weakly interacting regime γ � 1 we use
the classical field methodology and more precisely the
projected Gross-Pitaevskii equation (PGPE) [29, 30]:

i~
∂ψC
∂t

= PC

[(
− ~2

2m

∂2

∂x2
+ PC

[
V (x) + g|ψC |2

])
ψC

]
,

where ψC is the classical field, obtained by restricting the
system to the highly populated modes only (which can
be treated classically) and PC [...] is the projector onto
this subspace. This projector is implemented in the sin-
gle particle momentum basis, by defining a cutoff on the
wavevectors k. We follow the rule kcut ≤ 2kgrid/3 to
avoid aliasing and enforce momentum conservation (in
the absence of the barrier), even in the presence of a
non negligible thermal fraction [42]. To prepare the ini-
tial state we sample an equilibrium thermal state using a
stochastic PGPE [43, 44] while fixing the average number
of particles [45]. The simulation is ran typically 100 times
with different initial states and measured quantities are

averaged over this ensemble. The PGPE is particularly
relevant to model 1D Bose gases at finite temperature, in
the quasi-condensate regime, allowing to perform quan-
titative comparison with experiments [30].

Tonks-Girardeau regime To describe the limit of
strongly interacting bosons, γ � 1, we focus on the
Tonks-Girardeau (TG) limit of infinitely strong repul-
sive interactions, and model the dynamics by using the
exact TG solution [31]. In particular, we make use of the
time-dependent Bose-Fermi mapping [31–33], where the
many-body wavefunction ΨTG reads

ΨTG(x1, ..., xN ) = Π1≤j<`≤N sgn(xj − x`) det[ψk(xj , t)],
(3)

where ψj(x, t) is the single-particle solution of the
Schrödinger equation i~∂tψj =

[
−~2∂2

x/2m+ V (x, t)
]
ψj

with initial conditions ψj(x, 0) = ψ0
j , with ψ0

j being
the eigenfunctions of the Schrödinger equation at ini-
tial time. This approach allows to describe by an ex-
act solution the full dynamics after the quantum quench
provided by the phase imprinting. In detail, we write
the initial wavefunction as the groundstate of a ring po-
tential in the presence of a barrier αδ(x), constructed
by the first N single-particle orbitals ψ0

j (x), which we
then multiply by a phase profile that is induced by
the phase imprinting, obtaining the initial wavefunction
χj(x) = e2πi`x/Lψ0

j (x). The evolution is calculated by
projecting such state with the eigenbasis of the unper-
turbed system ψn(x, t) =

∑∞
j 〈ψ0

j |χn〉ψ0
j (x)e−iεjt/~ and

where εn is the nth single-particle eigenenergy [46, 47].
The current within the TG regime, as being a local quan-
tity, can be easily calculated using the occupations ampli-
tudes of the single-particle eigenbasis, which in our case
is found upon the projection over the initial state, as :

j(x, t) =
~
m

Im

[ ∞∑
n

f(εn)ψ∗n(x, t)∂xψn(x, t)

]
(4)

with f(εn) being the Fermi-Dirac distribution. In this
work we focus in particular on the average current flow
along the ring, given by J =

∫
dxj(x, t)/(LN).

Comparing different barriers We note that, in the
thin-barrier limit, corresponding to σ � n−1 and σ � ξ,
where ξ =

√
~2/2mgn is the healing length, the Gaus-

sian and the delta barriers have a comparable effect
and the strength of the delta barrier potential can be
related to the parameters of Gaussian barrier through
V (x) = αeffδ(x) with αeff =

√
2πσV0. This is useful

to compare for example the dynamics obtained with the
analytical two-mode model (with a delta barrier) to a
full numerical simulation of the Gross-Pitaevskii equa-
tion (with a thin Gaussian barrier).
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Two-mode model

In this section we present the generalized version of the
two-mode model [28]. This extension of the model also
corresponds to a generalization of the two-mode approach
presented in [48], where all overlapping modes were real
functions.

We define the two-mode wavefunction as:

Ψ(x, t) = φ1(t)ϕ1(x) + φ2(t)ϕ2(x),

fulfilling the orthonormalization condition:

∫ L

0

dxϕ∗iϕj = δi,j ,

and where ϕ1/2 are the x-coordinate representation of
the wavefunctions build as a linear combinations of the
first and second excited states of the system as follows:

ϕ1(x) =
(iψ1(x) + ψ2(x))√

2
, ϕ2(x) =

(iψ1(x)− ψ2(x))√
2

.

Note that φi(t) represent the probability amplitude of
populating state ϕi, which is a state carrying one posi-
tive/negative unit of angular momentum. For our pur-
poses we will form ϕi as a combination of the first and
second excited states of the noninteracting system, ψi,
(which can be calculated analytically). Nonetheless, one
can always calculate the first and second excited states
of the interacting system from the GPE and then calcu-
late the tunneling and interacting parameters appearing
in the model.

By introducing the previous ansatz into the GPE equa-
tion and integrating over the spatial coordinate one ob-
tains two coupled equations that can be rewritten in
the relative coordinates representation z = (N1(t) −
N2(t))/N and θ = θ2 − θ1 as:

ż = −2
√

(1− z2) Im
[
Keiθ

]
+
(
1− z2

)
|U2211| sin (2θ − arg (U2211))

+
√

(1− z2) (1 + z) |U2111| sin (θ − arg (U2111)) +
√

(1− z2) (1− z) |U2221| sin (θ − arg (U2221)) (5)

θ̇ =
[
E0

1 − E0
2 + (U1111 − U2222) /2 +Nz (U1111 + U2222) /2− 2z< [U1212]

]
− z|U1122| cos (2θ + arg (U1122))

+2K cos (θ)
z√

(1− z2)
+
√

(1− z2) [(|U1121| cos (θ + arg (U1121))− |U2122| cos (θ + arg (U2122)))]

+
z√

(1− z2)
[(z − 1) |U1222| cos (θ + arg (U1222))− (z + 1) |U2111| cos (θ + arg (U2111))] (6)

with z and θ corresponding to the relative population
of the positive/negative angular momentum states and
their relative phase respectively. This new phase-space
representation is defined from the probability amplitudes
φi =

√
Ni(t)e

iθi(t) and the parameters of the model are
given by:

Ui,j,k,l = g1D

∫ L

0

dxϕ∗iϕ
∗
jϕkϕl,

K = −
∫ L

0

dx

[
~2

2m
ϕ∗1∂

2
xϕ2 + V (x)ϕ∗1ϕ2

]
,

E0
i =

∫ L

0

dx

[
~2

2m
ϕ∗i ∂

2
xϕi + V (x)|ϕi|2

]
.

Mode-mode excitations

Here we discuss in detail the specific procedure fol-
lowed when calculating the excitations generated in

the system after the angular momentum quench in the
strongly interacting limit. In particular, we recall that
Eq. (3) shows the current after a phase imprinting has
been performed onto the ground state of the ring in the
presence of the barrier.

In order to address each particular excitation of the
system and its role in the dynamics we first rewrite
Eq. (3) in its full form:

J =
~
Nm

Im

[ ∞∑
k

∞∑
j

Aj,ke
−i(εj−εk)t/~

]
, (7)

where χn(x) = e−2πilx/Lψn(x) with ψn being the eigen-
functions of the Schrödinger equation at initial time be-
fore the phase imprinting, and the amplitude of the ex-
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citations is

Aj,k =
~
m

Im

[ ∞∑
n

f(εn)〈χn|ψk〉 (8)

〈ψj |χn〉
∫ L

0

dx

L
ψ∗k(x)∂xψj(x)

]
, (9)

with frequency of oscillation given by ωj,k =
εj−εk

~ .
The excitations present in the system (shown in

Fig. 3(c) of the main text) are produced during the
quench protocol. In particular, we use a phase imprint-
ing procedure that produces a highly excited state with
respect to the system at rest, as all the particles start
moving along the ring, going from a state with zero cur-
rent to a circulating one.

As discussed previously, in the TG regime bosons are
mapped to noninteracting fermions. Consequently, in
order to excite particles to a circulating state, the sys-
tem produces an excited state, for each individual initial
non-moving state in the initial Fermi sphere, formed by
a superposition of doublet states with an energy split-
ting proportional to the gap opened by the barrier (other
excited states are also populated for larger barrier with
increasing probability as the barrier strength increases).
Therefore, the excitations observed in our system go be-
yond the usual single-particle excitation studied through
the dynamical structure factor as multiple single-particle
hole excitations occur.

Indeed, we identified multiple single particle-hole ex-

citations created at the same time (see for instance the
number of curves for a given value of λTG in Fig. 3(c)).
As an example, we identify that the excitation with
higher amplitude, Eq. (9), corresponds to the lowest en-
ergy single particle-hole excitation that can be created in
our system, which in our particular case with an odd
number of particles corresponds to a frequency of os-
cillation ωN+2,N+1. However, we observe that in fact,
many excitations with lower associated energy are also
excited. The existence of those excitations is possible
because of the form of our state just after the quench,
which consists in a superposition of excited states of the
unperturbed system, and not of a completely filled Fermi
sphere. Note also that for weak barriers all relevant fre-
quencies, have a very similar frequency of oscillations,
ωi,j ≈ ωk,l ∀i, j, k, l, and thus, the envelope over the
main oscillation has a very long period.

We can conclude that the effective damping observed in
our system goes to zero in the limit of an infinitely small
barrier and on the contrary, for large barrier strengths,
many excitations with different associated frequencies are
present in the system producing an effective damping as
the one shown in this work (see for instance inset of
Fig. 3(a) of the main text). Moreover, when tempera-
ture is present the coherent processes of each individual
particle, labeled by n in Eq. (9), are mixed by the Fermi
distribution f(εn), giving rise to, as is also known in pre-
vious works, incoherent phase slips.
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