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Abstract

We propose a new sparsification method for the singular value decomposition—called the

constrained singular value decomposition (CSVD)—that can incorporate multiple con-

straints such as sparsification and orthogonality for the left and right singular vectors. The

CSVD can combine different constraints because it implements each constraint as a projec-

tion onto a convex set, and because it integrates these constraints as projections onto the

intersection of multiple convex sets. We show that, with appropriate sparsification con-

stants, the algorithm is guaranteed to converge to a stable point. We also propose and ana-

lyze the convergence of an efficient algorithm for the specific case of the projection onto the

balls defined by the norms L1 and L2. We illustrate the CSVD and compare it to the standard

singular value decomposition and to a non-orthogonal related sparsification method with: 1)

a simulated example, 2) a small set of face images (corresponding to a configuration with a

number of variables much larger than the number of observations), and 3) a psychometric

application with a large number of observations and a small number of variables. The com-

panion R-package, csvd, that implements the algorithms described in this paper, along with

reproducible examples, are available for download from https://github.com/vguillemot/csvd.

Introduction

The singular value decomposition (SVD) [1–3]—the tool “par excellence” of multivariate sta-

tistics—constitutes the core of many multivariate methods such as, to name but a few, princi-

pal component analysis [4], canonical correlation analysis [5], multiple correspondence

analysis [6], and partial least squares methods [7]. To analyze data tables whose rows typically

correspond to observations and columns to variables, these statistical methods use the SVD to

generate orthogonal optimal linear combinations of the variables—called components or factor
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scores—that extract the most important information in the original data. In most cases, only

the components that explain the largest proportion of the data variance are kept for further

investigation. The coefficients—called loadings—of the linear combination used to compute a

component are also often used to understand or “interpret” the corresponding components

and this interpretation is greatly facilitated (particularly when the number of variables is large)

when, for a given component, only a few variables have large loadings and the other variables

have negligible loadings. If this pattern does not naturally hold, several procedures can be used

to select the variables that are important for a component. The early psychometric school,

for example, would use rotations, such as VARIMAX, [8] of the components in a low dimen-

sional subspace; whereas recent approaches favor computationally based methods such as

bootstrap ratios [7], or select important variables using an explicit non-linear optimization

method such as the LASSO [9]. Closely related to the current work, in the specific case of prin-

cipal component analysis (for an extensive review of sparsification for PCA see [10]), Witten

et al. (see Section 3.2 in [11]) propose to implement either an orthogonality constraint, or a

sparsity constraint (but not both simultaneously, see also, for related ideas, [12, 13]). Along the

same lines, Benidis et al. [14] proposed, recently, an algorithm, based on Procrustes approach,

for sparse principal component analysis that includes an orthogonality constraint on the

loadings.

Unfortunately, in the more general case of having concurrently the sparsity and the

orthogonality constraints active on both left and right pseudo-singular vectors, the compo-

nents obtained from the LASSO and its derivatives are not orthogonal and this often makes

their interpretation difficult. To palliate this problem, we present and illustrate a new LASSO-

like sparsification method for the SVD, called constrained singular value decomposition
(CSVD), that incorporates orthogonality constraints on both the rows and the columns of a

matrix.

1 Notations

Matrices are denoted by uppercase bold letters (e.g., X), vectors by lowercase bold (e.g., x), and

their elements by lower case italic (e.g., xi,j). Matrices, vectors, and elements from the same

matrix all use the same letter (e.g., A, a, a). The transpose operation is denoted by the super-

script “>”, the inverse of a square matrix A is denoted by A−1. The identity matrix is denoted I,

vectors or matrices of ones are denoted by 1, matrices or vectors of zeros are denoted by 0

(when multiplied with or added to other matrices, matrices I, 1, and 0 are assumed to be con-

formable, in case of doubt their size is specified). When provided with a square matrix, the

diag(�) operator returns a vector with the diagonal elements of the matrix, and when provided

with a vector, the diag(�) operator returns a diagonal matrix with the elements of the vector

as the diagonal elements of this matrix. When provided with a square matrix, the trace(�)

operator gives the sum of the diagonal elements of this matrix. The L2 norm of vector x,

denoted kxk2 is defined as kxk
2
¼

ffiffiffiffiffiffiffiffi
x>x
p

, The L1 norm of vector x, denoted kxk1 is defined as

kxk1 = ∑(|xn|). A vector x is normalized by dividing this vector by its L2 norm (and so a nor-

malized vector has an L2 norm equal to 1). The Frobenius norm of matrix X, denoted kXkF is

defined as kXk2

F ¼ trace ðX>XÞ. The Frobenius inner product of two rectangular matrices A

and B of same dimensions, denoted hA, BiF is defined as hA;BiF ¼ trace ðAB>Þ. The concate-

nation of an I by Jmatrix X and an I by 1 vector y is the I by J + 1 matrix denoted [X, y]

obtained by the juxtaposition of y on the right side of matrix X. The orthogonal complement

of the space linearly spanned by the columns of a rectangular matrix M is denoted M?.

Two rectangular matrices A and B of same dimensions are said to be orthogonal if and only if

hA, BiF = 0.
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With x being a real scalar and γ a non-negative real number, the scalar soft-thresholding
function denoted s(x, γ) is defined as

sðx; gÞ ¼

(
xþ g if x < � g;
0 if jxij � g;
x � g if x > g;

ð1Þ

and the vector soft-thresholding function denoted S(x, γ) is defined as:

Sðx; gÞ ¼

sðx1; gÞ

..

.

sðxN ; gÞ

2

6
4

3

7
5: ð2Þ

This function shrinks all the components of x toward 0, and set the smallest components to 0.

The projection of a vector x onto a spaceS is denoted by proj(x,S ). The L2-ball of radius

ρ, denotedBL2
ðrÞ, is defined as

BL2
ðrÞ ¼ fx j kxk

2
� rg ð3Þ

and the L1-ball of radius ρ, denoted denotedBL1
ðrÞ, is defined as

BL1
ðrÞ ¼ fx j kxk

1
� rg: ð4Þ

Singular values are denoted δ, eigenvalues are denoted λ = δ2.

2 Unconstrained singular value decomposition

The SVD of a data matrix X 2 RI�J of rank L�min(I, J) gives the solution of the following

problem: Find a least-squares optimal, rank R (with R� L) approximation of X, denoted X̂ ½R�.
Specifically, the SVD solves the following optimization problem [1, 2, 15]:

arg min
X̂ ½R�2MI;J ðRÞ

1

2
kX � X̂ ½R�k

2

F ¼ arg min
X̂ ½R�2MI;J ðRÞ

1

2

(

trace ðX � X̂ ½R�Þ
> X � X̂ ½R�
� �� �

)

; ð5Þ

where MI;JðRÞ is the set of all real I × Jmatrices of rank R.

Recall that the SVD decomposes X as

X ¼ PΔQ>; ð6Þ

where P>P = Q>Q = I and Δ ¼ diagðδÞ with δ1� δ2� � � � � δL> 0, and L is the rank of X.

The matrix P 2 RI�L (respectively Q 2 RJ�L) contains the left (respectively right) singular vec-

tors of X and the diagonal matrix Δ contains the singular values of X. If pℓ (respectively qℓ)

denotes the ℓ-th column of P (respectively Q), and δℓ the ℓ-th element of δ, then, for any

R� L, the optimal matrix X̂ ½R� is obtained as:

X̂ ½R� ¼
XR

‘¼1

d‘p‘q
>

‘ ð7Þ

with p>
‘
p‘ ¼ q>

‘
q‘ ¼ 1, and q>

‘
q‘0 ¼ p>

‘
p‘0 ¼ 0, 8 ℓ 6¼ ℓ0.

A classic, albeit non-optimal and potentially numerically unstable, algorithm (described in

Algorithm 1) to obtain the unconstrained singular value decomposition of X is based on the

“power iteration method.” This algorithm—originally developed for the eigen-decomposition

of a square matrix—provides the first singular triplet that comprises the first singular value

Constrained singular value decomposition
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and first left and right singular vectors. In order to ensure orthogonality between successive

singular vectors, the first rank one approximation of X, computed as

X̂ ½1� ¼ d1p1q>1; ð8Þ

is subtracted from X. This procedure—called deflation (see Appendix A)—gives a new matrix

Xð2Þ ¼ X � d1p1q>1; ð9Þ

which is orthogonal to X̂ ½1�. The power iteration method is then applied to the deflated matrix

X(2), giving a second rank one approximation denoted X̂ ½3� ¼ d2p2q>2. The deflation is then

applied to X(2) to give the new residual matrix X(3) orthogonal to X(2), and so on, until nothing

is left to subtract because, then, X has been completely decomposed. This way, the optimiza-

tion problem from Eq 5 can be re-expressed as:

arg min
d‘; p‘; q‘
‘¼1;. . .;R

1

2
X �
XR

‘¼1

d‘p‘q
>

‘

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

F

subject to

(
p>
‘
p‘ ¼ 1;

p>
‘
p‘0 ¼ 0;

q>
‘
q‘ ¼ 1;

q>
‘
q‘0 ¼ 0;

8‘
0
6¼ ‘:

ð10Þ

Algorithm 1: The power iteration method for the unconstrained SVD. The algorithm con-

sists in alternating the multiplication of the data matrix by the left and right vectors followed

by a normalization step. After convergence, the data matrix is deflated and the process is re-

iterated.
Data: X, ε, R
Results: SVD of X
Define X(1) = X;
for ℓ = 1, . . ., R do
p(0) and q(0) are randomly initialized;
δ(0) = 0;
δ(1) = p(0)>Xq(0);
s = 0;
while |δ(s+1) − δ(s)| � ε do
p(s+1)  normalize (Xq(s));
q(s+1)  normalize (X>p(s+1));
δ(s+1) = p(s+1)>Xq(s+1);
s  s + 1;

end
X(ℓ+1) = X(ℓ) − δ(s) p(s) q(s)>;

end
As an alternative to the deflation approach used in Algorithm 1, the orthogonality con-

straint can be eliminated and integrated into the power iteration algorithm by replacing the

normalization steps by the projection of the result of the current iteration onto the intersection

of the L2 ball and the space orthogonal to the previously found left or right singular vectors

(see Algorithm 2). This projection onto the intersection of these two spaces can be imple-

mented in a number of ways [16], we chose here to use the projection onto convex sets algo-

rithm (POCS, see, e.g., [17, Page 101])—an iterative algorithm easily implementable and

generalizable to the projection onto the intersection of more than two convex sets (see

Constrained singular value decomposition
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Algorithm 3). Recall that, when normalized, a vector x is projected onto the L2 ball and that a

vector x is projected onto V? by multiplying it by I − V> V. In POCS, these two projection

steps are iterated until convergence.

Algorithm 2 An alternative algorithm of the power iteration for the unconstrained SVD:

The deflation step is replaced by a projection onto the space orthogonal to the space defined

by the already computed lower rank version of the data matrix. Note that 0? corresponds to

the whole space, so it is eitherRI or RJ .
Data: X, ε, R
Result: SVD of X
Define P = 0;
Define Q = 0;
for ℓ = 1, . . ., R do
p(0) and q(0) are randomly initialized;
δ(0)  0;
δ(1)  p(0)>Xq(0);
s  0;
while |δ(s+1) − δ(s)| � ε do
p(s+1)  proj(Xq(s), BL2

ð1Þ \ P?);
q(s+1)  proj(X> p(s+1), BL2

ð1Þ \Q?);
δ(s+1)  p(s+1)> Xq(s+1);
s  s+1;

end
δℓ  δ(s+1);
P  [P, p(s+1)];
Q  [Q, q(s+1)];

end
Algorithm 3 Projection onto the intersection of K convex sets (POCS).

Data: x, S 1; . . . ;S K, ε

Results: Projection of x onto \
K

k¼1
S k

Define x(0) = x;
while |x(s+1) − x(s)| � ε do
x(s+1)  proj(x(s), S 1));
for k = 2, . . ., K do
x(s+1)  proj(x(s+1), S k));

end
s  s + 1

end
Algorithm 1 is obviously faster than Algorithm 2 as implemented using Algorithm 3,

because the orthogonality constraint in Algorithm 1 is performed with one operation whereas

Algorithm 2 always requires several operations. However, the main benefit of Algorithm 2 is

that it easily can be extended to include additional constraints, as illustrated below.

3 Constrained singular value decomposition

3.1 Previous work

Algorithm 4: The Algorithm of Witten et al. [11]: The penalized matrix decomposition

(PMD) approach.
Data: X, ε, R
Resulet: SVD of X
Define X(1) = X;
for ℓ = 1, . . ., R do
p(0) and q(0) are randomly initialized;
δ(0) = 0;

Constrained singular value decomposition
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δ(1) = p(0)>Xq(0);
s = 0;
while |δ(s+1) − δ(s)| � ε do
p(s+1)  normalize (S(Xq(s), λ1,ℓ)), with λ1,ℓ such that kp(s+1)k1

= c1,ℓ;
q(s+1)  normalize (S(X> p(s+1), λ2,ℓ)), with λ2,ℓ such that kq(s+1)k1
= c2,ℓ;

δ(s+1) = p(s+1)> Xq(s+1);
s  s + 1;

end
X(ℓ+1) = X(ℓ) − δ(s) p(s) q(s)>;

end
Recently, several authors have proposed sparse variants of the SVD (see e.g., [4, 11, 15, 18,

19] for reviews), or, more specifically, of PCA [14, 20]. For most of these sparse variants, the

sparsification is obtained by adding new constraints to Eq 10. For example, the penalized

matrix decomposition (PMD) approach by Witten et al. [11] solves the following optimization

problem for the first pair of left and right singular vectors:

arg min
d‘;p‘;q‘
‘¼1;. . .;R

1

2
X �

XR

‘¼1

d‘p‘q
>

‘

�
�
�
�
�

�
�
�
�
�

2

F

subject to f
p>
‘
p‘ ¼ 1;

q>
‘
q‘ ¼ 1;

C1ðp‘Þ � c1;‘;

C2ðq‘Þ � c2;‘;

ð11Þ

where C1 and C2 are convex penalty functions from RI (respectively RJ) toRþ (such as, e.g.,

the LASSO, or the fused LASSO constraints) and with c1,ℓ and c2,ℓ being positive constants.

The PMD procedure is described in Algorithm 4. In PMD, the next pseudo-singular triplet is

estimated by solving the same optimization problem where X is replaced by a deflated matrix.

In contrast to Eq 11, however, the added constraints create a nonlinear optimization problem

and this makes the deflated matrices non-orthogonal to the previous rank one optimal matrix

[21]. This lack of orthogonality makes the interpretation of the components somewhat difficult

because the conclusions about one component involve all correlated components and because

the same information is explained (to different degrees) by all correlated components. In the

specific case of PCA, Witten et al. proposed, alternatively, to impose an orthogonality con-

straint on the left singular vectors, without the sparsity constraint, and to leave the sparsity

constraint active only on the right vectors (i.e., the loadings). However, this procedure does

not solve the problem of having both constraints simultaneously active on the left and right

singular vectors (See Equation 3.17 and the subsequent algorithm in [11] for more details).

In order to eliminate the problems created by the non-orthogonality of the singular vectors,

we present below a new optimal sparsification method, called the constrained singular value
decomposition (CSVD) that implements orthogonality constraints on successive sparsified sin-

gular vectors.

3.2 Current work: The constrained SVD (CSVD)

The constrained SVD still decomposes the matrix X into singular values and vectors, but

imposes, in addition, on the singular vectors constraints that induce sparsity of the weights.

Such sparsity-inducing constraints are common in fields where the data comprise large

Constrained singular value decomposition
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numbers of variables [22] (e.g., tens of thousands, as in genomics [23], to millions, as in neuro-

imaging [24, 25]). Although the theory of sparsity-inducing constraints is well documented,

we are interested in a general formulation that could also be applied for several types of sparsi-

fication, as well as more sophisticated constraints.

Specifically, we consider the following optimization problem:

arg min
d‘;p‘;q‘
‘¼1;. . .;R

1

2
X �
XR

‘

d‘p‘q
>

‘

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

F

subject to

(
p>
‘
p‘ ¼ 1;

p>
‘
p‘0 ¼ 0;

q>
‘
q‘ ¼ 1;

q>
‘
q‘0 ¼ 0;

8‘
0
6¼ ‘;

and to

(C1ðp‘Þ � c1;‘;

C2ðq‘Þ � c2;‘;

ð12Þ

where C1 and C2 are convex penalty functions from RI (respectively RJ) toRþ, (which could

be, e.g., the LASSO, group-LASSO, or fused LASSO constraints) and with c1,ℓ and c2,ℓ being

positive constants: smaller values of c1,ℓ and c2,ℓ lead to solutions that are more sparse. See,

however, e.g., [11, 26], and, as developed in Appendix B, only some ranges of values of c1,ℓ and

c2,ℓ will lead to solutions.

An equivalent, but more convenient, form of the problem described in Eq 12 can be derived

by considering two orthogonal matrices P, and Q, and a diagonal matrix Δ = diag{δ} such that

1

2
kX � PΔQ>k2

F ¼
1

2
kXk2

F þ
1

2

X

‘

d
2

‘
�
X

‘

d‘p
>

‘
Xq‘ : ð13Þ

The term kXk2

F is constant and
P
d

2

‘
does not depend on pℓ or qℓ, and so for a given δℓ posi-

tive, the solutions of arg maxd‘p>‘ Xq‘ are the same as the solutions of arg maxp>
‘
Xq‘. In

addition the maximum is reached when d‘ ¼ p>
‘
Xq‘ (see, e.g., [11]). Consequently, minimiz-

ing kX � PΔQ>k2

F from Eq 13 is equivalent to maximizing each term of the sum
P

p>
‘
Xq‘.

Therefore, Eq 12 is equivalent to the following 1-dimensional maximization problem for

ℓ� 1, given the previous vectors pℓ0 and qℓ0 for all 0� ℓ0 < ℓ:

arg max
p;q

fp>Xqg

subject to

(
p>p ¼ 1;

q>q ¼ 1;
and 8 ‘0 < ‘

(
p>p‘0 ¼ 0;

q>q‘0 ¼ 0;
and

(
C1ðpÞ � c1;‘;

C2ðqÞ � c2;‘;

ð14Þ

where we set (for convenience) p0 and q0 to 0 (note that for the first pseudo-singular vectors,

the orthogonality constraint is not active because all vectors are orthogonal to 0).

To facilitate the resolution of this optimization problem, the unicity constraint on the L2

norm of the singular vectors (i.e., p>p = 1 and q>q = 1) needs to be relaxed and replaced by

Constrained singular value decomposition
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an equivalent inequality. Specifically, the optimization problem in Eq 14 is reframed as

arg max
p;q

fp>Xqg

subject to

(
p>p � 1;

q>q � 1;
and 8 ‘0 < ‘

(
p>p‘0 ¼ 0;

q>q‘0 ¼ 0;
and

(
C1ðpÞ � c1;‘;

C2ðqÞ � c2;‘:

ð15Þ

Eq 15 defines a biconcave maximization problem with convex constraints. This problem

can be solved using block relaxation [27]: An iterative algorithm that consists in a series of

two-part iterations in which (Part 1) the expression in Eq 15 is maximized for p with q being

fixed, and is then (Part 2) maximized for q with p being fixed. Part 1 of the iteration can be re-

expressed as the following optimization problem:

arg min
p

(
1

2
kp � Xqk2

2

�

subject to

(
p 2 BL2

ð1Þ;

p 2 BL1
ðc1Þ;

p 2 P?:

ð16Þ

Eq 16 shows that finding the optimal value for p (i.e., Part 1 of the alternating procedure) is

equivalent to finding the projection of the vector Xq onto the subspace of RI defined by the

intersection of all the convex spaces involved by the constraints. During Part 2 of the alternat-

ing procedure, the vector p is fixed and therefore Part 2 can be expressed as the following min-

imization problem:

arg min
q

(
1

2
kq � X>pk2

2

�

subject to

( q 2 BL2
ð1Þ;

q 2 BL1
ðc2Þ;

q 2 Q?:

ð17Þ

Eqs 16 and 17 replace the L1 and L2 constraints in the minimization problem expressed in

Eq 11 by projections onto the intersection of the convex sets (POCS) defined by these con-

straints. Because the intersection of several convex sets is also a convex set [28], the block relax-

ation algorithm from Eq 15 is essentially composed of sequential series of operations applied

until convergence of the two projections onto their respective convex sets. This strategy can

obviously be extended to incorporate multiple additional constraints as long as these con-

straints define convex subspaces. As shown in Appendix D, the CSVD algorithm is guaranteed

to converge to a stable point because it is a member of the more general class of the block suc-
cessive upper-bound minimization (BSUM) algorithms.

In the specific case of the projection on the intersection of the balls L1 and L2, POCS can be

replaced by a fast and exact algorithm called PL1L2 ([26], see Appendix C for details). This

algorithm (see Algorithm 5) differs from the more general Algorithm 4 only by the specifica-

tion of the projection method onto the L1 ball which is implemented as a simple and fast algo-

rithm based on the soft-thresholding operator.

Note that, Algorithm 2—presented in Section 2 for the unconstrained SVD and using

POCS for the projection onto an intersection of convex sets—can be easily generalized to

incorporate a new sparsity constraint, by simply applying POCS to the intersection of 3 convex
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sets (instead of just 2 convex sets): the L2-ball of radius 1, an L1-ball, and the orthogonal sub-

space to the space defined by the previously found left or right pseudo-singular vectors.

Algorithm 5: General algorithm for the Constrained Singular Value Decomposition. The

projection onto the L1-ball can be replaced by another projection onto a convex set, making it

possible to adapt this algorithm to other purposes.
Data: X, ε, R, c1,ℓ and c2,ℓ for ℓ in 1, . . ., R
Results: CSVD of X
Define P = 0;
Define Q = 0;
for ℓ = 1, . . ., R do
p(0) and q(0) are randomly initialized;
δ(0)  0;
δ(1)  p(0)>Xq(0);
s  0;
while |δ(s+1) − δ(s)| � ε do
p(s+1)  proj(Xq(s), B1ðc1;‘Þ \B2ð1Þ \ P?);
q(s+1)  proj(X>p(s+1), B1ðc2;‘Þ \B2ð1Þ \Q?);
δ(s+1)  p(s+1)>Xq(s+1);
s  s + 1;

end
δℓ  δ(s+1);
P  [P, p(s+1)];
Q  [Q, q(s+1)];

end
In the following sections, we illustrate—using simulated and real data—the effect and

importance of the orthogonality constraint and show how this constraint improves the

interpretability of the analysis.

4 Empirical comparative evaluation of the CSVD

In this section, we empirically evaluate, illustrate the constrained singular value decomposition

(CSVD), and compare its performance to the performance of the plain SVD and the closely

related sparsification method of Witten et al. [11], the PMD method. To do so, we used: 1)

some simulated datasets, 2) one simulated dataset mimicking a real dataset, and 3) one real

dataset (the characteristics of these datasets are listed in Table 1).

With the first (simulated) dataset we evaluated how the SVD, PMD, and CSVD recover the

ground truth for a relatively large dataset with more variables than observations contains a

mixture of signal and Gaussian noise.

Datasets two and three were chosen to each illustrate a particular aspect of the data. The sec-

ond dataset investigates the N� P problem and comprises six face images consisting of

230 × 240 = 55, 200 pixels—with each pixel measuring light intensity on a scale going from 0

to 255. The third dataset illustrates the effects of sparsification on a dataset corresponding to a

traditional psychometric problem. This simulated has been created to match the pattern of

loadings of a real dataset that was collected from 2, 100 participants who—as part of a larger

Table 1. Characteristics of the various datasets used to assess the performance of the CSVD and related methods.

Dataset I
(# of rows)

J
(# of columns)

Rank

Simulated 150 600 149

Face Data 6 55,200 6

Memory 2,100 30 30

https://doi.org/10.1371/journal.pone.0211463.t001

Constrained singular value decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0211463 March 13, 2019 9 / 39

https://doi.org/10.1371/journal.pone.0211463.t001
https://doi.org/10.1371/journal.pone.0211463


project on memory—answered an online version of the “object-spatial imagery questionnaire”

(OSIQ, [29])—a psychometric instrument measuring mental imagery for objects and places.

Using a 5-point rating scale, participants rated their agreement for 30 items that should span a

2-dimensional space corresponding to the spatial and object imagery psychometric factors.

This dataset is used to compare sparsification and the standard traditional psychometric

approach relying on (Varimax) rotation to recover a two dimensional factor structure.

For Datasets two and three, we applied three degrees of sparsity (low, medium, and high).

As detailed in Appendix B, only some values of c1 and c2 will lead to solutions (specifically, c1

has to be chosen between 1 and
ffiffi
I
p

and c2 between 1 and
ffiffi
J
p

). Table 2 lists the values chosen

for c1 and c2 and their interpretation for PMD and the CSVD. Also, for technical reasons, the

values of c1 and c2 corresponding to the maximum sparsity for P and Q are set, respectively, to

1 + ε1 and 1 + ε2 (instead of 1) with ε1 and ε2 being two small real positive values.

4.1 Simulated data

With these simulated data, we evaluate the ability of the CSVD to recover known singular trip-

lets, their sparsity structure, and the orthogonality of the estimated left and right singular vec-

tors. These simulated data were created by adding a matrix of Gaussian noise to a 150 by 600

matrix of rank 5 built from its SVD decomposition.

Specifically, the data matrix X was created as

X ¼ XM þ E; ð18Þ

where

• XM ¼ PMΔMQ
>

M is the rank 5 matrix of the ground truth with:

• ΔM a 5 × 5 the diagonal matrix of the singular values equal to ΔM = diag (δ) = diag([15, 14,

13, 12, 11])

• PM an I = 150 × 5 = 750 by 5, orthogonal matrix with P>P = I,

• QM a J = 600 × 5 = 3, 000 by 5 orthogonal matrix with Q>Q = I,

• E is an I = 150 × J = 600 matrix containing I × J = 90, 000 independent realizations of a

Gaussian variable with mean equal to 0 and standard deviation equal to 0.01.

Matrices PM and QM were designed to be both sparse and orthogonal. Specifically, matrix

PM was generated with the following model

PM ¼

p1 p2 p3 p4 p5

p0
1

0 0 0 0

0 p0
2

0 0 0

0 0 p0
3

0 0

0 0 0 p0
4

0

0 0 0 0 p0
5

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð19Þ

Table 2. The different values of the sparsity parameters for the CSVD and PMD.

c1 c2 Resulting degree of sparsity Notation

1 + ε1 1 + ε2 The sparsest level, most of the coefficients are close zero H (High)

1

3

ffiffi
I
p

1

3

ffiffi
J
p

Very sparse M (Medium)

2

3

ffiffi
I
p

2

3

ffiffi
J
p

Somewhat sparse L (Low)

ffiffi
I
p ffiffi

J
p

No sparsity, corresponds to the regular SVD N (None)

https://doi.org/10.1371/journal.pone.0211463.t002
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where 0 denotes 25 × 1 vectors of 0s, and where all p and p0 were 25 × 1 vectors with norm

equal to 2�
1
2 and such that where p>

‘
p‘0 ¼ 0;8 ‘ 6¼ ‘

0
. A similar model was used for QM which

was generated with the following model

QM ¼

q1 q2 q3 q4 q5

q0
1

0 0 0 0

0 q0
2

0 0 0

0 0 q0
3

0 0

0 0 0 q0
4

0

0 0 0 0 q0
5

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; ð20Þ

where 0 were 120 × 1 vectors of 0s, and where all q q0 vectors were 120 × 1 vectors with norm

equal to 2�
1
2 and such that q>

‘
q‘0 ¼ 0; 8 ‘ 6¼ ‘

0
.

With the structure described in Eqs 19 and 20, the low-rank matrix to recover from X is

then composed of 2 parts: 1) a common part (no sparsity) to all 5 components (i.e., the part

corresponding to the p and q vectors), and 2) one part specific to each component (i.e., the p0

and the q0 vectors) with the corresponding part in the other 4 components being sparse.

Figs 1 and 2 show heatmaps of the true left-singular vectors (PM) and right-singular vectors

(QM).

We analyzed X with the CSVD and PMD. For both methods, the L1 constraint was set to

c1 = 5 for the left-singular vectors and c2 = 11 for the right-singular vectors, based on the spar-

sity of the ground truth.

We asked each method to return 7 vectors in order to evaluate if the methods could recover

the ground truth (i.e., the 5-dimensional sub-space) but also how they would behave after this

5-dimensional subspace had been recovered. Fig 3 shows the boxplots of the distribution of

the squared difference between the estimated singular vectors and the ground truth for PMD

and the CSVD: Both methods correctly uncover the singular vectors. Fig 4 shows the correla-

tions between the first 7 estimated singular vectors compared to the ground truth: Although

the first 5 singular vectors are correctly estimated, and, roughly, orthogonal to the previous

singular vectors, the 2 last vectors estimated by PMD are correlated to some of the previously

Fig 1. Simulated data. Heatmap of P>M : the true left singular vectors (in an horizontal representation: one line equals one singular vector).

https://doi.org/10.1371/journal.pone.0211463.g001

Fig 2. Simulated data. Heatmap of Q>M : the true right singular vectors (in an horizontal representation: one line equals one singular vector).

https://doi.org/10.1371/journal.pone.0211463.g002
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computed vectors. This demonstrates the failure of the standard deflation technique to impose

the orthogonality constraint when a non-linear optimization methods is used. By contrast

with the PMD approach, the orthogonality constraint of the CSVD prevented this problem.

Fig 5 displays the computational times of the CSVD and PMD as a function of the number

of computed components: the CSVD is faster than PMD for the estimation of the first compo-

nent, but this advantage diminishes when the number of computed components increases.

This pattern indicates that the orthogonality constraint increases the computational time.

Table 3 contains the estimated singular values for the CSVD and PMD as well as the

ground-truth singular values. The estimated pseudo-singular values are comparable for both

methods and behave in a similar way compared to the ground truth and to the regular SVD:

The first singular values are slightly smaller than their ground truth values, but at some

point—which varies depending on the imposed degree of sparsity—the estimated number of

pseudo-singular values is larger than the ground truth.

Additionally, broader settings were considered for the comparison of SVD, CSVD and

PMD on simulated data. Specifically, we considered a case with a low signal to noise ratio, and

a case where the noise is structured: PMD and CSVD performed equally poorly on noisy data,

but were unaffected by a structured noise. These additional results are reported in S1 Table.

To sum up: 1) the CSVD and PMD produce highly similar estimates of the first singular

vectors; 2) the CSVD and PMD both recover the true sparsity structure of the ground-truth

data; 3) for singular vectors of an order higher than the rank of the matrix, PMD produces

singular vectors correlated with the previous ones; and 4) the CSVD is computationally more

efficient than PMD but this advantage shrinks as the number of computed components

increases.

Fig 3. Simulated data. Boxplots of the squared difference between the estimated singular vectors and the ground

truth.

https://doi.org/10.1371/journal.pone.0211463.g003
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4.2 The face data

The dataset consists in six 240 × 230 = 55, 200 gray scale digitized (range from 0 to 255) face

images (three men and three women) that were extracted from a larger face database (see [30,

31]) and are available as the dataset sixFaces from the R-package data4PCCAR (obtained

from the Github repository HerveAbdi/data4PCCAR).

Each image was unfolded (i.e., “vectorized”) into a 240 × 230 = 55, 200 element vector,

which was re-scaled to norm one. A plain SVD was then performed on the 6 × 55, 200 matrix

Fig 4. Simulated data. Heatmap of the correlations between the estimated left (P) and right (Q) singular vectors with the ground truth for the CSVD

and PMD. Each cell of the heatmap represents the correlation between one of the 7 estimated (left or right) vectors with the 5 true vectors. Each

heatmap contains 5 rows (the ground truth) and 7 columns (the estimated vectors). On the left, are the results obtained with the CSVD and on the right,

the results obtained with PMD.

https://doi.org/10.1371/journal.pone.0211463.g004
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(see Fig 6) obtained from the concatenation of the 6 face vectors. The SVD extracted 6 compo-

nents with the first one extracting a very large proportion of the total variance (i.e., λ1 = 5.616,

τ1 = 94%, see also Fig 7 left panel). This very large first eigenvalue indicates that these face

images are highly correlated (see Fig 8)—An interpretation confirmed by the very similar val-

ues of the coordinates of the six faces for the first component. But this large first eigenvalue

reflects also, in part, that the data were not centered, because, with all entries of the matrix

being positive, the first left (respectively right) singular vector (i.e., the first component) is

respectively, the 6-element long vector of a weighted mean of the pixels across the faces

(respectively the 55, 200-element long vector of a weighted mean of the faces across the pixels)

and so all elements of the first pair of singular vectors have the same sign, see Table 4 and the

picture of the first “eigen-face” [32] in the left of the top row of Fig 9). The second component

differentiates females and males (see the map of the faces for Components 1 versus 2 in Fig 9,

and the picture of the second “eigen-face” in the right of the top row of Fig 9).

We applied the CSVD and PMD to the face set using three different sparsity levels (low,

medium, and high). Fig 9 shows the plot of the first two components for these three levels of

sparsity. Both the CSVD and PMD tend to isolate the woman faces on the first dimension and

the male faces on the second dimension. The corresponding first two eigen-faces, (see Figs 10

and 11) show that both the CSVD and PMD tend to extract characteristic features of the

female faces (first eigen-face) or the male faces (second eigen-face). In contrast, the first and

second eigen-faces for the plain SVD (plotted in Fig 12) show respectively a weighted average

face (i.e., a linear combination with positive coefficients of the faces) and a mixture between

male (with positive coefficients) and female (with negative coefficients) faces. This

Fig 5. Simulated data. Computational time of PMD and the CSVD when estimating one sparse singular triplet (left)

and two sparse singular triplets (right).

https://doi.org/10.1371/journal.pone.0211463.g005

Table 3. Estimated singular values and ground truth. In the “ground truth” column, a value of 0 indicates that the

corresponding real singular value does not exist (i.e., because the underlying matrix has rank 5).

Order CSVD PMD SVD Ground Truth

1 14.77 14.77 14.97 15.00

2 13.62 13.64 13.99 14.00

3 12.53 12.59 12.99 13.00

4 11.86 11.90 11.97 12.00

5 10.34 10.45 10.93 11.00

6 0.21 2.94 0.04 0

7 0.15 2.98 0.04 0

https://doi.org/10.1371/journal.pone.0211463.t003
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Fig 6. Face data. The data matrix of the face dataset: 6 faces by 55,200 voxels. The female faces are denoted F1, F2, and F3, the male faces M1, M2, and M3.

https://doi.org/10.1371/journal.pone.0211463.g006

Fig 7. Face data. Eigenvalues and pseudo-eigenvalues per dimension. Left column: eigenvalues obtained from regular

SVD; middle column: pseudo-eigenvalues (i.e., variance of the factor scores) for the CSVD; right column: pseudo-

eigenvalues (i.e., variance of the factor scores) for the PMD. For PMD and the CSVD, each line represents a level of

sparsity: none (No), low (L), medium (M), and high (H).

https://doi.org/10.1371/journal.pone.0211463.g007
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interpretation for the plain SVD is confirmed by Fig 13 where all faces load almost identically

on Dimension 1, and where Dimension 2 separates men from women.

Overall the CSVD and PMD behave similarly and both show (compared to the plain SVD),

that introducing sparsity can make the results easier to interpret because groups of individuals

(men or women) can be identified and linked to small subset of variables (i.e., here pixels).

However CSVD and PMD differ in the number of components suggested by their scree plot as

indicated by Fig 7. The differences between the loadings estimated by both methods are also

seen in Fig 14, which depicts the cross-product between the 6 right singular vectors for three

different sparsity levels and for both methods. This figure shows that the risk of re-injecting

variability, that was already described in previous components, increases with the sparsity

parameter and the number of required components.

4.3 Psychometric example: The mental imagery questionnaire

These simulated data were created to match the loading structure of an original dataset

obtained from 2,100 participants who—as part of a larger project on memory—answered an

online version of the “object-spatial imagery questionnaire” (OSIQ, [29])—a psychometric

instrument measuring mental imagery for objects and places. Using a 5-point rating scale, par-

ticipants rated their agreement for 30 items (e.g., “I am a good Tetris player”) that should span

a 2-dimensional space corresponding to the hypothesized spatial and object imagery psycho-

metric factors.

The simulated data were obtained from an original data set by first performing a (centered

and un-scaled) PCA on the original dataset and keeping only the loadings and the eigenvalues.

Fig 8. Face data. Cosine matrix for the 6 faces of the face dataset. The female faces are denoted F1, F2, and F3, the male

faces M1, M2, and M3.

https://doi.org/10.1371/journal.pone.0211463.g008

Table 4. Face example. Left singular vectors (i.e., face loadings) and associated eigenvalues.

Dimension Faces Eigenvalue Percentage

1 2 3 4 5 6 λ τ
1 −.41 −.41 −.40 −.41 −.40 −.41 5.616 93.61

2 .14 .09 .76 −.16 −.53 −.30 0.160 2.66

3 −.40 .13 .29 −.14 .67 −.52 0.086 1.43

4 .08 −.68 .34 −.41 .27 .42 0.055 0.91

5 .45 −.54 −.04 .50 .11 −.50 0.052 0.87

6 −.66 −.25 .25 .60 −.16 .22 0.031 0.52

https://doi.org/10.1371/journal.pone.0211463.t004
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Fig 9. Face data. First two sparse left singular vectors (P) for the CSVD (left) and PMD (right) for three levels of

sparsity: low (L), medium (M), and high (H). The results for the CSVD are reported on the left, and the results for

PMD are reported on the right.

https://doi.org/10.1371/journal.pone.0211463.g009
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Fig 10. Face data. The pseudo-eigenfaces for Dimension 1 on the left column and Dimension 2 on the right column.

For this graph, only the CSVD was applied, with three different levels of sparsity: low on the top row (L), medium on

the middle row (M), and high on the bottom row (H).

https://doi.org/10.1371/journal.pone.0211463.g010
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Fig 11. Face data. The pseudo-eigenfaces for Dimension 1 on the left column and Dimension 2 on the right column.

For this graph, only PMD was applied, with three different levels of sparsity: low on the top row (L), medium on the

middle row (M), and high on the bottom row (H).

https://doi.org/10.1371/journal.pone.0211463.g011
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Fig 12. Face data. The six eigenfaces obtained from the plain SVD.

https://doi.org/10.1371/journal.pone.0211463.g012
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Random pseudo-observations were generated by randomly sampling (with a uniform proba-

bility distribution) points in the factor space and then building back the corresponding data

matrix from these random factor scores and the loadings. The final simulated data matrix was

then obtained by scaling this new data matrix so that it only contains integer values whose dis-

tribution match, as best as possible, the original data matrix. This way, the simulated data

matrix contains random values whose means, variances, and loadings roughly match the origi-

nal data matrix. The R-code used to create the simulated data can be found from the R-package

data4PCCAR (available from from the Github repository HerveAbdi/data4PCCAR; the

simulated data matrix can also be found in the same R-package.

The 2,100 (participants) by 30 (items) data matrix was pre-processed by centering and nor-

malizing each variable and was then analyzed by PCA (i.e., an SVD of the pre-processed

matrix). Fig 15 plots the loadings for the 30 items for the first two components of the PCA. In

this figure, each item is labeled by its number in the questionnaire (see [29] for details and list

of questions), and its a priori category (i.e., “object” vs “spatial”) is indicated with the first letter

Fig 13. Face data. The two first left singular vectors of the plain SVD of the non-centered data.

https://doi.org/10.1371/journal.pone.0211463.g013
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Fig 14. Face data. Cross-product matrix of the 6 right pseudo-singular vectors for three levels of sparsity: low (L), medium (M), and high (H).

The results for the CSVD are reported on the left, and the results for PMD are reported on the right.

https://doi.org/10.1371/journal.pone.0211463.g014
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Fig 15. OSIQ data. Loadings of the first two principal components.

https://doi.org/10.1371/journal.pone.0211463.g015
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(o vs s) and color (blue for “object” vs gold for “spatial”). The scree plot (see Fig 16 left) and

the plot of the loadings for the first two dimensions (Fig 15) supports a two factor model (with

the plane created by Dimensions 1 and 2 explaining 44% of the total variance). The pattern of

the loadings, however, reveals that some items load, as predicted, on only one factor (most

object items and some spatial items) but that roughly half of spatial items (i.e., s02, s03, s03,

s05, s06, s11, s20, s23, s24) and, at least, one object item (i.e., o15) load on both Dimensions 1

and 2. These items are ambiguous because they can reflect either only one of the hypothesized

factors or a combination of both factors. To simplify the interpretation, a standard psychomet-

ric approach would keep only the unambiguous items, re-run the analysis with these items,

and “prettify” the solution with an orthogonal rotation such as Varimax [33].

To evaluate the effects of sparsification, we used three levels of sparsity (in addition to the

“no sparsity” condition corresponding to the plain SVD): Low (L), Medium (M), and High

(H). As expected, and illustrated by the scree plots (see Fig 16), sparsification reduced the

amount of variance (i.e., the pseudo-eigenvalues) explained by the sparsified components.

Fig 17 plots the item loadings for Dimensions 1 and 2 for both the CSVD (left column) and

PMD (right column) as a function of the levels of sparsity (L/M/H). For the low and intermedi-

ate levels of sparsity. For the first two levels of sparsity (L and M) the CSVD and PMD give

similar results, possibly because the factor structure of the items on the first dimension is

strong enough to be recovered without the orthogonality constraints. For the highest level of

sparsity, the CSVD and PMD single out the same item (o28) on the first dimension (an unsur-

prising result because the maximized criteria are equivalent) but single out different items

(s29 vs s18) on the second dimension.

Fig 18 plots the correlations between the loadings estimated with the CSVD or PMD for all

30 dimensions and shows again that the components extracted by PMD are correlated with

other components.

Visual inspection of the plain PCA analysis suggests that the items are roughly clustered

into three groups (pure object, pure spatial, and mixed spatial/objects). To better characterize

these three groups of items, we ran an additional analysis in which we set the sparsity parame-

ters to values (specifically c1 � 0:55
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ¼ 2; 100

p
� 25:31 and c2 � 0:47

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ¼ 30
p

� 2:56 for,

respectively the left and right singular vectors) that would generate three pure dimensions for

the item loadings (see Fig 19). With this analysis, the first two dimensions isolate the pure

items and the third dimension extracts the mixed items. To confirm this interpretation, we ran

a plain PCA on the pure items (see Fig 20 left) followed by a Varimax rotation for two dimen-

sions (see Fig 20 right). The Varimax rotated space recovered a solution equivalent to the

Fig 16. OSIQ data. Scree plots for SVD, the CSVD and PMD for different values of the sparsity parameter.

https://doi.org/10.1371/journal.pone.0211463.g016

Constrained singular value decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0211463 March 13, 2019 24 / 39

https://doi.org/10.1371/journal.pone.0211463.g016
https://doi.org/10.1371/journal.pone.0211463


Fig 17. OSIQ data. Loadings of Dimensions 1 and 2 with an increasing degree of sparsity for both the CSVD (left

column) and PMD (right column).

https://doi.org/10.1371/journal.pone.0211463.g017
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Fig 18. OSIQ data. Plot of the cross-product between the loadings obtained for up to 30 dimensions. Left: CSVD. Right: PMD. Top to bottom:

the three different levels of sparsity.

https://doi.org/10.1371/journal.pone.0211463.g018
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CSVD with, however, the caveat, that Varimax required the a priori knowledge of the

dimensionality of the space whereas the CSVD did not require this information.

Discussion

The constrained singular value decomposition is a computationally efficient new method that

sparsifies the SVD while preserving the orthogonality of the singular vectors. To do so, the

CSVD expresses each constraint as a projection onto a convex set and integrates multiple con-

straints as the projection onto the intersection of the convex sets expressing the constraints

(POCS). As shown in Appendix D, the CSVD algorithm is guaranteed to converge to a stable

point because it is a member of the more general class of the block successive upper-bound min-
imization (BSUM) algorithms. The CSVD can easily be extended to incorporate additional

constraints (e.g., group LASSO, metrics constraints of the rows or columns, spatial constraints)

as long as these constraints can be expressed as projections onto convex sets.

To evaluate the relevance of the orthogonality constraints, we compared, on three examples,

the plain SVD, the penalized matrix decomposition [11], and the CSVD. We found that, as

could be expected, without the orthogonality constraint, higher singular vectors shared infor-

mation with the earlier singular vectors—a problem likely to hinder the interpretation of these

later components. The example using face images shows that the CSVD could extract, from

the images, characteristic features defining clusters of observations (e.g., men vs women). The

psychometric example illustrates how the CSVD can be used in lieu of rotation (e.g., Varimax)

  λ =   τ =

  λ
=

  τ
=

  λ =   τ =
 λ

=
  τ

=

Fig 19. OSIQ data. Loadings for Dimensions 1, 2, and 3 with sparsity parameters set to c1� 15.11 and c2� 2.50. The sparsity parameters were

empirically determined visually to create “pure” dimensions.

https://doi.org/10.1371/journal.pone.0211463.g019
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to identify psychometrically “pure” components without having to choose a priori the

dimensionality of the space.

Of course, some questions remain open. For example, the choice of the sparsification con-

stant is left to the user but this choice could be helped with some cross-validation schemes

such as the one suggested by Witten et al. (see Algorithm 5 in [11]). In practice, this choice is

likely to involve some trade-off between the interpretability of the pseudo singular vectors and

the number of non-zeros loadings for a few of the first singular vectors. Along the same lines,

and just like for the plain SVD, the number of (sparse) singular vectors to examine remains, in

part, a subjective decision. Finally, the problem of the reliability of the sparsification, although

a topic of great interest for sparse methods of prediction [34], remains open for sparse SVD or

PCA and should be a topic for future research. Future directions should also include the inte-

gration of the CSVD into other methods that are traditionally based on the regular SVD—such

as canonical correlation, or partial least squares correlation—or on the generalized SVD—such

as correspondence analysis (see, e.g., [15] for previous relevant work along these lines).

The R package csvd implementing the constrained singular value decomposition is avail-

able for download from https://github.com/vguillemot/csvd.

Fig 20. OSIQ data. PCA with the reduced set of 14 items from the OSIQ. Left: Dimensions 1 and 2 for plain PCA; Right: Dimensions 1 and 2 after a two-dimensional

Varimax rotation.

https://doi.org/10.1371/journal.pone.0211463.g020
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A The deflation operation generates orthogonal singular vectors

In this section, we show that repeatedly using the deflation operation will generate a set of left

(respectively right) orthogonal singular vectors ordered by their singular value.

Theorem 1 (Deflation). The first singular triplet of the (k + 1)th deflated matrix is the (k + 1)

th singular triplet of the original matrix.

Proof. Assume that the k� 1, singular values, left and right singular vectors of a given

matrix X have been estimated and stored in matrices Δk, Pk and Qk.

Let

Xðkþ1Þ ¼ X � PkΔkQ
>

k; ð21Þ

be the (k + 1)th deflated matrix with:

P>kPk ¼ I and Q>kQk ¼ I: ð22Þ

Additionally, let δ, p and q be (respectively) the first singular value, left and right singular vec-

tors of X(k+1).

To prove Theorem 1, we show that δ, p and q are the (k + 1)th singular triplet of X.

First, because δ, p and q are a singular triplet of X(k+1), we have:

dq ¼ Xðkþ1Þ>p ð23Þ

and

dp ¼ Xðkþ1Þq: ð24Þ

Second, to prove that q is orthogonal to each column of Qk, we consider the quantity Q>kq.

By multiplying both sides of Eq 23 by Q>k, developing, and simplifying we obtain

dQ>kq ¼ Q>kX
ðkþ1Þ>p

¼ Q>kðX
> � QkΔkP

>

kÞp ðCf : Equation 21Þ

¼ Q>kX
>

|ffl{zffl}
ΔkP>k

p � Q>kQk
|fflffl{zfflffl}

I

ΔkP
>

kp

¼ ΔkP
>

kp � ΔkP
>

kp

¼ 0:

ð25Þ

Therefore, when δ is not null, q is orthogonal to each column of Qk. A similar proof shows that

p is orthogonal to each column of Pk.

Third, because p (respectively, q) is orthogonal to each column of Pk (respectively Qk), we

have

Xðkþ1Þ>p ¼ dq; andXðkþ1Þq ¼ dp; ð26Þ

which, combined with Eqs (23) and (24), implies that

X>p ¼ dq; andXq ¼ dp; ð27Þ

which, in turn, shows that δ, p, and q are a singular triplet of X. This proof also shows (mutatis
mutandis) that any singular triplet of X(k+1) is a singular triplet of X.

Finally, from the definition of X(k+1), and because X(k+1) is orthogonal to Pk Δk Qk, the rank

of X is equal to the rank of X(k+1) plus the rank of PkΔkQ
>

k, which, in run, implies that all the

Constrained singular value decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0211463 March 13, 2019 29 / 39

https://doi.org/10.1371/journal.pone.0211463


singular values of X(k+1) are the remaining singular values of X and that the first singular value

of X(k+1) is the (k + 1)th singular value of X.

B Only some values of the constraints lead to solutions

As stated by Witten et al. ([11], page 519 ff.) the constraint parameters c1 and c2 lead to solu-

tions only when they are in the range:

1 � c1 �
ffiffi
I
p

and 1 � c2 �
ffiffi
J
p
: ð28Þ

Fig 1 in [11] describes the geometric intuition behind this range inR2.

In this appendix, we provide a proof of Statement 28. First, we prove Lemma 1 (that directly

implies Statement 28).

Lemma 1. Let x 2 RN , then

kxk
2
� kxk

1
�

ffiffiffiffi
N
p
kxk

2
ð29Þ

Proof. Assume that x belongs toRN and is different from 0. The left side of the inequality is a

consequence of Hölder’s inequality, which states that if 0< p< +1, and q is a positive real

number such that
1

p
þ

1

q
¼ 1, then

kxk2

2
� kxkpkxkq: ð30Þ

With p = 1, this version of Hölder’s inequality becomes

kxk2

2
� kxk

1
kxk

1
: ð31Þ

Since kxk1 � kxk2, we have

kxk2 � kxk1: ð32Þ

The right hand side of Eq 29 can be seen as a consequence of Cauchy-Schwarz inequality,

which, in our case, would be formulated as follows:

8a; b 2 RN ; jha; bij � kak2kbk2: ð33Þ

If we set a to [|x1|, . . ., |xn|]> and b to 1, we obtain

XN

i¼1

jxij

�
�
�
�
�

�
�
�
�
�
� kxk2k1k2; ð34Þ

which is equivalent to

kxk1 �
ffiffiffiffi
N
p
kxk2: ð35Þ

Putting together Eqs 32 and 35 gives:

kxk2 � kxk1 �
ffiffiffiffi
N
p
kxk2 : ð36Þ

Lemma 1 implies that the constraints on the L2 and L1 norm of the left and right pseudo-

singular vectors can be both active at the same time only if the sparsity parameter is chosen

such that: (i) the L1-ball of radius ρ (i.e.,BL1
ðrÞ) is entirely included in the L2-ball of radius 1

(i.e.,BL2
ð1Þ) when ρ� 1, and so that fulfilling the sparsity constraint implies that the L2 con-

straint is also fulfilled; and (ii)BL2
ð1Þ is entirely included inBL1

ðrÞ when r �
ffiffiffiffi
N
p

, and so
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fulfilling the normalization constraint implies that the sparsity constraint is also fulfilled. To

fulfill the constraints on both rows and columns of the CSVD gives the following range for the

values of c1 and c2:

1 � c1 �
ffiffi
I
p

and 1 � c2 �
ffiffi
J
p
; ð37Þ

which proves the assertion.

C A fast and exact algorithm for the projection onto the intersection

of an L1 and L2 ball

In this section we describe a fast and exact algorithm for the projection onto the intersection of

the L1-ball of radius c (i.e.,BL1
ðcÞ) and the L2-ball of radius 1 (i.e.,BL2

ð1Þ). This projection is

defined by the following equation:

proj ðx;BL1
ðcÞ \BL2

ð1ÞÞ ¼

( arg min
y2RN

ky � xk2

2
;

s:t: y 2 BL1
ðcÞ \BL2

ð1Þ

ð38Þ

where x 2 RN , N is the number of variables of the dimension of interest (i.e., I or J), and c is

the sparsity parameter (i.e., c1 or c2) with 1 � c �
ffiffiffiffi
N
p

.

In [11], the solution of Eq 38 is computed using a binary search algorithm (BiSe). In the

main part of our artcie, we propose to use the more general POCS algorithm. BiSe and POCS

are iterative algorithms that give an approximate solution to Eq 38. In the case of the projection

on the intersection of the L1 and L2 balls, the general POCS algorithm can be replaced by a fast

and exact algorithm (see [26, 35]), that we call PL1L2 and detail in this appendix.

Projection onto the L1-ball

The proposed approach implements an efficient algorithm for projecting a vector onto the L1-

ball [35].

Let ~x be the vector containing the absolute value of the components of x with its elements

sorted in decreasing order. Additionally, we define the function φ(λ) = kS(x, λ)k1. This func-

tion is continuous, piecewise linear and decreasing from φð0Þ ¼ k~xk1 to φð~x1Þ ¼ 0. Therefore,

if kxk1� c, since φ is continuous, there is a positive number λ such that φ(λ) = c. From this, we

can deduce the algorithm of the projection onto the L1-ball of radius c that narrows down to 4

steps.

Algorithm 6: Fast projection onto the L1-ball.
Data: x, c
Result: projBL1

ðcÞðxÞ
1. Take the absolute value of the components of x and sort them in
decreasing order into a new vector ~x;

2. Find i such that φð~xiÞ � c < φð~xiþ1Þ;

3. Find δ such that φð~xi � dÞ ¼ c. Since φð~xi � dÞ ¼
Xi

k¼1

~xk � ið~xi � dÞ ¼ φð~xiÞ þ id,

then d ¼
c � φð~xiÞ

i
;

4. Compute S(x, λ) with l ¼ ~xi � d;
At the end of the algorithm, we obtain S(x, λ) which is now the projection of x ontoBL1

ðcÞ.
A similar algorithm was proposed in [36], [37], and [38].
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Projection onto the intersection of the L1 and L2-balls

In order to solve the optimization problem from Eq 38, we extend Algorithm 6 to the function

cðlÞ ¼
kSð~x; lÞk1

kSð~x; lÞk2

: ð39Þ

We have the following Lemma:

Lemma 2. Let x be a vector ofRN , composed of n� N non-zero elements. Then

kxk1 �
ffiffiffi
n
p
kxk2 : ð40Þ

Proof. The proof of this Lemma is very similar to the proof given in Appendix B. Recall that as

a consequence of the Cauchy-Schwarz inequality:

8 a; b 2 RN ; jha; bij � kak
2
kbk

2
: ð41Þ

With a = [|x1|, . . ., |xN|] and b a vector such that

bi ¼

(
1 if xi 6¼ 0;

0 if xi ¼ 0;
ð42Þ

the previous inequality becomes

XN

i¼1

bijxij � kxk2kbk2; ð43Þ

which is equivalent to

kxk
1
�

ffiffiffi
n
p
kxk

2
: ð44Þ

Proposition 1. For l 2 ½0; ~x1½,

cðlÞ ¼
kSð~x; lÞk1

kSð~x; lÞk2

ð45Þ

verifies the 3 following properties:

1. ψ is continuous and decreasing.

2. There exist an integer i and a positive real number δ, smaller than ~xi � ~xiþ1, such that
cð~xi � dÞ ¼ c.

3. δ is the solution of a second degree polynomial equation.

Proof. (i). The numerator and denominator of ψ are continuous because there are composi-

tions of continuous functions. Moreover, for any λ strictly smaller than ~x1, kSð~x; lÞk2 6¼ 0.

Therefore, ψ is continuous because it is the ratio of a continuous function and a non-zero con-

tinuous function.

Assuming ~xNþ1 ¼ 0, for l 2 ½0; ~x1½ there exists k 2 1, . . ., N such that ~xkþ1 � l < ~xk. For

this specific λ, we have:

kSð~x; lÞk
1
¼

Xk

j¼1

~xj

 !

� kl ð46Þ
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and

kSð~x; lÞk2

2
¼
Xk

j¼1

ð~xj � lÞ
2
¼

Xk

j¼1

~x2

j

 !

� 2l
Xk

j¼1

~xj

 !

þ kl2
: ð47Þ

Together, Eqs 46 and 47 imply that the derivative of ψ has the form:

c
0
ðlÞ ¼

1

kSð~x; lÞk2

2

kSð~x; lÞk2

1

kSð~x; lÞk2

� kkS ~x; lð Þk2

� �

¼
1

kSð~x; lÞk2

ðcðlÞ
2
� kÞ : ð48Þ

Moreover, because the number of non-zero elements of vector Sð~x; lÞ is equal to k, Lemma 2

implies that kSð~x; lÞk
1
�

ffiffiffi
k
p
kSð~x; lÞk

2
, and therefore ψ(λ)2� k. As a consequence, ψ0(λ)� 0,

which, in turn, implies that ψ, being a continuous function with a negative derivative, is a

decreasing function.

(ii). Let Nmax be the number of elements of x equal to ~x1 (the maximum of ~x) and

n 2 ½~x2; ~x1½. Then

cðnÞ ¼
Nmaxð~x1 � nÞffiffiffiffiffiffiffiffiffi
Nmax
p

ð~x1 � nÞ
¼

ffiffiffiffiffiffiffiffiffi
Nmax

p
: ð49Þ

Thus, ψ is decreasing from cð0Þ ¼ kxk
1
=kxk

2
�

ffiffiffiffi
N
p

(Lemma 2) to cðnÞ ¼
ffiffiffiffiffiffiffiffiffi
Nmax
p

. This

implies that for c 2 ½
ffiffiffiffiffiffiffiffiffi
Nmax
p

;
ffiffiffiffi
N
p
�, there is an integer i 2 1, . . ., N such that

cð~xiÞ � c < cð~xiþ1Þ. Finally, because ψ is continuous, there is a real number δ in ½0; ~xi � ~xiþ1½

such that cð~xi � dÞ ¼ c.
(iii). Using the notations ‘1 ¼ kSð~x; ~xiÞk1 and ‘2 ¼ kSð~x; ~xiÞk2, with i (and δ) defined as

previously stated in (ii), we have:

kSð~x; ~xi � dÞk1
¼
Xi

j¼1

ð~xj � ð~xi � dÞÞ

¼
Xi

j¼1

ð~xj � ~xiÞ þ id

¼ kSð~x; ~xiÞk1
þ id

¼ ‘1 þ id

ð50Þ

and

kSð~x; ~xi � dÞk
2

2
¼
Xi

j¼1

ð~xj � ð~xi � dÞÞ
2

¼
Xi

j¼1

ðð~xj � ~xiÞ
2
þ 2dð~xj � ~xiÞ þ d

2
Þ

¼ ‘
2

2
þ 2d‘1 þ id

2
:

ð51Þ

Moreover, since

cð~xi � dÞ ¼ c ¼
kSð~x; ~xi � dÞk1

kSð~x; ~xi � dÞk2

; ð52Þ
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the following equality holds:

kSð~x; ~xi � dÞk
2

1
¼ c2kSð~x; ~xi � dÞk

2

2
: ð53Þ

Incorporating Eqs 50 and 51 into Eq 53 gives:

d
2
ði2 � ic2Þ þ 2d‘1ði � c2Þ þ ‘

2

1
� c2‘

2

2
¼ 0 : ð54Þ

The goal is now to find the positive root of this second degree polynomial equation. The dis-

criminant Δ is equal to 4c2ðc2 � iÞð‘2

1
� i‘2

2
Þ. It remains to show that Δ is positive.

First, the number of non-zero elements of Sð~x; ~xiþ1Þ is equal to i and Lemma 2 yields

kSð~x; ~xiþ1Þk1 �
ffiffi
i
p
kSð~x; ~xiþ1Þk2. Second, cð~xiþ1Þ ¼

kSð~x; ~xiþ1Þk1

kSð~x; ~xiþ1Þk2

> c so

kSð~x; ~xiþ1Þk1 > ckSð~x; ~xiþ1Þk2. Combining the two previous inequalities yields

ði � c2ÞkSð~x; ~xiþ1Þk
2

2
> 0 which implies that i−c2 > 0. Third, from cð~xiÞ ¼ ‘1=‘2 � c <

ffiffi
i
p

, we

deduce that ‘
2

1
� i‘2

2
� 0 which ensures that Δ is positive.

To conclude, the sign of
‘

2

1
� c2‘

2

2

i2 � ic2
corresponds to the sign of the product of the 2 roots. As

this term is negative, the 2 roots have opposite signs. The single solution of cð~xi � dÞ ¼ c is:

d ¼
� 2‘1ði � c2Þ þ

ffiffiffiffi
D
p

2iði � c2Þ

¼
� 2‘1ði � c2Þ þ 2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½c2 � i�½‘2

1
� i‘2

2
�

q

2iði � c2Þ

¼ �
‘1

i
þ
c
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i‘2

2
� ‘

2

1

i � c2

s

:

ð55Þ

Using the fact that cð~xiÞ ¼ ‘1=‘2, the previous equation can be simplified as

d ¼
kSð~x; ~xiÞk2

i
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i � cð~xiÞ
2

i � c2

s

� cð~xiÞ

0

@

1

A: ð56Þ

We deduce from this a four step algorithm, called PL1L2, for the projection onto the inter-

section of the L1-ball of radius c and the L2-ball of radius 1.

Algorithm 7: PL1L2: an algorithm for a fast and exact projection ontoBL1
ðcÞ \BL2

ð1Þ.

Data: x, c
Result: projBL1

ðcÞ\BL2
ð1Þ
ðxÞ

1. Take the absolute value of x and sort its elements in decreasing
order to get ~x;
2. Find i such that cð~xiþ1Þ � c < cð~xiÞ;

3. Let d ¼
kSð~x; ~xiÞk2

i
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i � cð~xiÞ
2

i � c2

s

� cð~xiÞ

0

@

1

A;

4. Compute S(x, λ) with l ¼ ~xi � d;

D Convergence of the CSVD algorithm

In this appendix we prove the convergence of the CSVD. To do so, we show that the CSVD is

an instance of the block successive upper-bound minimization (BSUM) algorithm (introduced

in [27]) and, as such, converges to a stationary point.
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D.1 Definitions and notations

Define f, which is the negative of the objective function from Eq 15

f ð½pq�Þ ¼ � p
>Xq: ð57Þ

The functions u1 and u2 are two “approximations” of f, defined as

u1ð~p; ½
p
q�Þ ¼ f ð½

~p
q �Þ ¼ � ~p>Xq ð58Þ

and

u2ð~q; ½
p
q�Þ ¼ f ð½

p
~q �Þ ¼ � p

>X~q ð59Þ

These two functions depend on the fixed given vectors p and q and vary according to ~p 2 RI

and ~q 2 RJ .
In the BSUM framework, f is minimized by iteratively minimizing u1 over a convex set

P � RI and u2 over a convex setQ � RJ .
Definition 1 (BSUM algorithm [27]). The BSUM algorithm (in the present setting) is defined

as:

1. Minimize u1 overP with q fixed, and update p with the solution;

2. Minimize u2 overQ with p fixed, and update q with the solution,

and iterate until convergence.
Recall the following definitions.

Definition 2 (Directional derivative). Let g be a function with gradient at x denotedrx g.
The directional derivative of g in a direction d is

g 0ðx j dÞ ¼ hrxg j di: ð60Þ

Definition 3 (Regularity). Let f be a differentiable function defined overP �Q. Assume
that

f 0ð½pq�j½
d1
0 �Þ � 0 ð61Þ

and

f 0ð½pq�j½
0
d2
�Þ � 0 ; ð62Þ

with d1 2 R
I and d2 2 R

J . If this implies that

f 0ð½pq�j½
d1
d2
�Þ � 0 ; ð63Þ

then f is regular.

D.2 Equivalence of the BSUM algorithm and the CSVD

Algorithm 5 is equivalent to the BSUM algorithm because:

1. Minimizing f is the same as maximizing the objective function in Eq 15.

2. Minimizing u1 overP is equivalent to the left projection step.

3. Similarly, minimizing u2 is equivalent to the right projection step.
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D.3 Convergence of the BSUM algorithm

In order to converge to a stationary point, the BSUM algorithm needs to meet a few key

assumptions that are specified in the following theorem (adapted from Theorem 2 in [27]).

Theorem 2 (Convergence). The BSUM algorithm converges to a stationary point under the
following conditions:

1. f is regular,

2. u1, u2 and f coincide (condition (B1) in [27])

u1ðp; ½
p

q
�Þ ¼ u2ðq; ½

p

q
�Þ ¼ f ð½p

q
�Þ; 8p 2P;q 2 Q ð64Þ

3. u1, u2 are upper bounds of f (condition (B2) in [27]), 8~p; p 2P, and 8~q; q 2 Q

u1ð~p; ½
p
q�Þ � f ð½

~p
q �Þ and u2ð~q; ½

p
q�Þ � f ð½

p
~q �Þ; ð65Þ

4. the directional derivatives of u1, u2 and f coincide (condition (B3) in [27])

u0
1
ð~p; ½

p

q
�jd1Þj~p¼p

¼ f 0ð½p
q
�j½

d1
0
�Þ; s:t:pþ d1 2P; ð66Þ

and

u0
2
ð~q; ½

p

q
�jd2Þj~q¼p

¼ f 0ð½p
q
�j½

0

d2
�Þ; s:t:qþ d2 2 Q; ð67Þ

5. u1 and u2 are continuous functions (condition (B4) in [27]).

D.3.1 Regularity. We show in this section that f is regular. The gradient of f with respect

to its arguments, p and q, is defined as

rf ð½p
q
�Þ ¼

� xq

� x>p

" #

: ð68Þ

Thus, the directional derivative of f in the direction d ¼ ½d1

d2
�, with d1 2 R

I
and d2 2 R

J
is equal

to

f 0ð½pq�jdÞ ¼ rf ð½
p
q�Þ
>d ¼ � d>

1
Xq

|fflfflfflffl{zfflfflfflffl}
f 0ð½pq �j½

d1
0 �Þ

þ � d>
2
X>p

|fflfflfflfflffl{zfflfflfflfflffl}
f 0ð½pq �j½

0
d2
�Þ

:
ð69Þ

Hence, if f 0ð½pq�j½½
d1
0 �Þ � 0 and f 0ð½pq�j½½

0
d2
�Þ � 0, then the directional derivative of f in the direc-

tion of d is also positive, which proves that f is regular.

D.3.2 (B1), (B2), and (B3) in Razaviyayn et al., 2013. Because u1 and u2 are equal to the

function f with either p or q fixed, u1 and u2 coincide with f, which proves (B1). Necessarily, so

do their directional derivatives, which proves (B3). Finally because they coincide, u1 and u2 are

upper bounds of f [in the sense of the condition (B2) in [27]].

D.3.3 Continuity: (B4) in Razaviyayn et al., 2013. Being compositions of linear opera-

tions, the functions u1 and u2 are both continuous.
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D.4 Conclusion

It follows from these properties that the CSVD method, as described in Algorithm 5 being

based on alternating between applying the projected power method with respect to p and to q,

is a particular instance of the block successive upper-bound minimization (BSUM) algorithm
([27]). Therefore, any limit point of the CSVD method is a stationary point and so the CSVD

converges to a stationary solution of Eq 15.
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