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OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT

DESCENT WITH APPLICATIONS TO M-ESTIMATION

Stephan Clémençon1,*, Patrice Bertail2, Emilie Chautru3

and Guillaume Papa1

Abstract. Iterative stochastic approximation methods are widely used to solve M -estimation prob-
lems, in the context of predictive learning in particular. In certain situations that shall be undoubtedly
more and more common in the Big Data era, the datasets available are so massive that computing
statistics over the full sample is hardly feasible, if not unfeasible. A natural and popular approach
to gradient descent in this context consists in substituting the “full data” statistics with their coun-
terparts based on subsamples picked at random of manageable size. It is the main purpose of this
paper to investigate the impact of survey sampling with unequal inclusion probabilities on stochastic
gradient descent-based M -estimation methods. Precisely, we prove that, in presence of some a priori
information, one may significantly increase statistical accuracy in terms of limit variance, when choos-
ing appropriate first order inclusion probabilities. These results are described by asymptotic theorems
and are also supported by illustrative numerical experiments.
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1. Introduction

In many situations, data are collected by means of a survey technique and the related weights (the true
inclusion probabilities of the individual units forming the statistical population of interest) must be used by
the statistician to compute unbiased statistics. Such quantities may also correspond either to calibrated or
post-stratification weights, minimizing some measure of discrepancy under certain margin constraints for the
inclusion probabilities. Since the seminal contribution of [25], asymptotic analysis of Horvitz–Thompson esti-
mators based on survey data has received much attention, in the context of mean estimation and regression in
particular, refer to e.g. [3, 21, 24, 33, 34] and a functional limit theory for distribution function estimation is
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* Corresponding author: stephan.clemencon@telecom-paristech.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2019

https://doi.org/10.1051/ps/2018021
https://www.esaim-ps.org/
mailto:stephan.clemencon@telecom-paristech.fr
http://www.edpsciences.org


OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT DESCENT 311

also progressively documented, see [5, 13–15, 23, 35] for instance. At the same time, with the design of successful
algorithms such as neural networks, support vector machines or boosting methods, the practice of statistical
learning has very rapidly developed and is now supported by a sound theory based on results in the study of
empirical processes, see [12, 22, 26]. Nevertheless, our increasing capacity to gather data has improved much
faster than our capacity to process and analyze big datasets. The availability of massive information in the
Big Data era, which statistical procedures could theoretically now rely on, has motivated the recent develop-
ment of parallelized/distributed variants of certain inference techniques or statistical learning algorithms, see
[2, 7, 28, 29] among others. It also strongly suggests to use sampling techniques, as a remedy to the apparent
intractability of learning from datasets of explosive size, in order to break the current computational barri-
ers, see [16] or [17] and advocates in particular the use of stochastic gradient algorithms (SGD in abbreviated
form, see [10]) for large-scale M -estimation problems, as discussed in [11]. It is the purpose of the present
article to explore this approach further, by showing how to incorporate efficiently survey schemes into such
iterative techniques. More precisely, the variant of the SGD method we propose involves a specific estimator
of the gradient, that shall be referred to as the Horvitz–Thompson gradient estimator (HTGD estimator in
short) throughout the paper and accounts for the sampling design used to select the subsample for gradient
evaluation at each iteration. For the estimator thus produced, consistency and asymptotic normality results
describing its statistical performance are established under adequate assumptions on the first and second order
inclusion probabilities. They reveal that accuracy may significantly increase, i.e. the asymptotic variance of the
estimator produced by the HTGD procedure may be drastically reduced, when the inclusion probabilities of
the survey design are picked adequately, depending on some supposedly available extra information, compared
to a naive implementation with equal inclusion probabilities. This is thoroughly discussed in the particular
case of the Poisson survey scheme. Although it is one of the simplest sampling designs, many more general
survey schemes may be expressed as Poisson schemes conditioned upon specific events, see e.g. [4]. These the-
oretical results are also supported by strong empirical evidence. The numerical experiments we carried out
clearly show the advantages of the approach promoted in this paper. Many variants of the SGD technique,
far too numerous to be listed here, have been introduced these last few years in order to improve its scalabil-
ity/speed; attention should be paid to the fact that the analysis presented here only aims at shedding light
on the impact of survey sampling on this technique, in its most generic form. We also point out that a very
preliminary version of this work has been presented at the 2014 IEEE International Conference on Big Data,
the present article offering a much more complete theoretical study, including unconditional limit results and
a nonasymptotic rate bound analysis for the HTGD method, with detailed proofs and illustrative numerical
examples.

The rest of the paper is structured as follows. Basics in M -estimation and SGD techniques together with
key notions in survey sampling theory are briefly recalled in Section 2. Section 3 first describes the Horvitz–
Thompson variant of the SGD in the context of a general M -estimation problem. In Section 4, limit results
are established in a general framework, revealing the possible significant gain in terms of asymptotic variance
resulting from sampling with unequal probabilities in presence of extra information. They are next discussed
in more depth in the specific case of Poisson surveys. Illustrative numerical experiments, consisting in fitting a
logistic regression model (respectively, a semi-parametric shift model) with extra information, are displayed in
Section 6. Technical proofs are postponed to the Appendix section, together with a rate bound analysis of the
HTGD algorithm.

2. Theoretical background and preliminaries

As a first go, we start off with describing the mathematical setup and recalling key concepts in survey theory
involved in the subsequent analysis. Here and throughout, the indicator function of an event B is written I{B}.
The transpose of a matrix A is denoted by Aᵀ and the square root of a symmetric semi-definite positive matrix
B by B1/2.
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2.1. Iterative M-estimation and SGD methods

Set two positive integers d and q. Let Z be an Rd-valued random vector (r.v.) with unknown distribution PZ
and Θ a compact subspace of Rq equipped with the euclidean norm ‖.‖. Consider a certain smooth loss function
ψ : Rd ×Θ→ R that is square PZ-integrable for any θ ∈ Θ. Given this theoretical framework, we are interested
in solving the risk minimization problem

min
θ∈Θ

L(θ), (2.1)

where L : θ ∈ Θ 7→ E[ψ(Z, θ)] ∈ R is called the risk function. Because it is not directly accessible, it is typically
replaced in (2.1) by its empirical counterpart

LN : θ ∈ Θ 7→ 1

N

N∑
i=1

ψ(Zi, θ), (2.2)

based on the observation of N ≥ 1 independent copies Z1, . . . , ZN of Z (see Examples 2.1 and 2.2). As N → +∞,
asymptotic properties of M -estimators, i.e. minimizers of LN (θ), have been extensively investigated, see [36]
for instance.

Here and throughout, the gradient and Hessian operators with respect to θ are denoted by ∇ and ∇2,
respectively, with gradient values represented as column vectors.

Gradient descent. A very popular approach to empirical risk minimization consists in implementing variants
of the standard gradient descent method, following the iterations

θ(t+ 1) = θ(t)− γ(t)∇LN (θ(t)), t ≥ 1, (2.3)

with an initial value θ(0) arbitrarily chosen and a non-negative learning rate (step size or gain) γ(t). The latter
is taken such that

∑+∞
t=1 γ(t) = +∞ and

∑+∞
t=1 γ

2(t) < +∞, see e.g. [6]. Here, we place ourselves in a large-scale
setting, where the sample size N of the training dataset is so large that computing the gradient of LN

∇LN : θ ∈ Θ 7→ 1

N

N∑
i=1

∇ψ(Zi, θ), (2.4)

at each iteration (2.3) is too demanding regarding available memory capacity. Beyond parallel and distributed
implementation strategies (see [2]), a natural approach consists in replacing (2.4) by a counterpart computed
from a subsample S ⊂ {1, . . . , N} of reduced size n � N , so as to fulfill the computational constraints, and
drawn at random (uniformly) among all possible subsets of same size at each iteration:

`n : θ ∈ Θ 7→ 1

n

∑
i∈S
∇ψ(Zi, θ).

The convergence properties of variants of such a stochastic gradient descent, usually referred to as mini-
batch SGD, have received a good deal of attention, in particular in the case n = 1, suited to the on-line
situation where training data are progressively available. Results, mainly based on stochastic approximation
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combined with convex minimization theory under appropriate assumptions on the decay of the step size γ(t),
are well-documented in the literature. References are much too numerous to be listed exhaustively, see [27] for
instance.

Example 2.1. (Binary classification) In the usual binary classification framework, Y is a binary random
output, taking its values in {−1,+1} say, and X is an input random vector valued in a high-dimensional space X ,
modeling some (hopefully) useful observation for predicting Y . Based on training data {(X1, Y1), . . . , (XN , YN )},
the goal is to build a prediction rule sign(h(X)), where h : X → R is some measurable function that minimizes
the risk

Lϕ(h) = E [ϕ(−Y h(X))] .

Here, the expectation is taken over the unknown distribution of the random vector (X,Y ) and ϕ : R→ [0,+∞)
denotes a cost function, i.e. a measurable function such that ϕ(u) ≥ I{u ≥ 0} for any u ∈ R. For example, when
ϕ is chosen as the convex function u ∈ R 7→ (u+ 1)2/2 ∈ R+, then the optimal decision function is given by h∗ :
x ∈ X 7→ 2P{Y = +1 | X = x} − 1 ∈ [−1, 1] and the classification rule H∗ : x ∈ X 7→ sign(h∗(x)) ∈ {−1,+1}
coincides with the naive Bayes classifier. For simplicity, assume that ϕ is differentiable and that the decision
function candidates h(x) belong to the parametric set {h(., θ) : θ ∈ Θ} of square integrable functions (with
respect to the distribution of X) indexed by Θ ⊂ Rq, q ≥ 1, such that θ 7→ h(., θ) is differentiable. Finding the
prediction rule with minimum risk amounts to solving (2.1) with Z = (X,Y ) and ψ(Z, θ) = ϕ(−Y h(X, θ)) for all
θ ∈ Θ. In the ideal case where a standard gradient descent could be applied, a sequence θ(t) = (θ1(t), · · · , θq(t)),
t ≥ 1, would be iteratively generated using the update equation

θ(t+ 1) = θ(t) + γ(t)E [Y ∇h(X, θ(t))ϕ′(−Y h(X, θ(t)))] ,

with learning rate γ(t) > 0. Naturally, as the distribution of (X,Y ) is unknown, the expectation involved in the
tth iteration cannot be computed and must be replaced by a statistical version:

1

N

N∑
i=1

Yi∇h(Xi, θ(t))ϕ
′(−Yi h(Xi, θ(t))),

in accordance with the Empirical Risk Minimization paradigm.

Example 2.2. (Logistic regression) Consider the same probabilistic model as above, except that the
goal pursued is to find θ ∈ Θ so as to minimize LN (θ) in (2.2) with Zi = (Xi, Yi) and ψ(Zi, θ) defined as

−
{
Yi + 1

2
log

(
exp(h(Xi, θ))

1 + exp(h(Xi, θ))

)
+

1− Yi
2

log

(
1

1 + exp(h(Xi, θ))

)}
,

for all i ∈ {1, . . . , N} and θ ∈ Θ. This is equivalent to maximizing the conditional log-likelihood given the Xi’s
related to the parametric logistic regression model:

Pθ{Y = +1 | X} = exp(h(X, θ))/(1 + exp(h(X, θ))), θ ∈ Θ.

2.2. Survey sampling and Horvitz–Thompson estimation

Let (Ω,A,P) be a probability space and N a positive integer. In the framework we consider throughout the
article, it is assumed that Z1, . . . , ZN is a sample of i.i.d. random vectors defined on (Ω,A,P) and taking their
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values in Rd. They are interpreted as independent copies of a generic r.v. Z observed on a finite population
UN = {1, . . . , N}. A survey sample of the population is defined as a non-empty subset S ⊂ UN with cardinality
n = n(S) less that N , selected at random according to a probability distribution RN on P(UN ), the power set
of UN . The latter is called a sampling scheme/design/plan without replacement. We shall consider RN as a
conditional distribution given the statistical population UN and the possible observations assigned to each of
its units. In this setting, for any i ∈ UN , the probability that the unit i belongs to a random sample S drawn
from such a RN is called the (first order) inclusion probability :

πi(RN ) = PRN {i ∈ S}.

We set π(RN ) = (π1(RN ), . . . , πN (RN )). The second order inclusion probabilities are

πi,j(RN ) = PRN {i ∈ S, j ∈ S},

for any (i, j) in U2
N . In particular, πi,i(RN ) = πi(RN ). When no confusion is possible, we shall omit to mention the

dependence in RN when writing the first/second order probabilities of inclusion. The information related to the
random sample S ⊂ UN is fully enclosed in the random vector εN = (ε1, . . . , εN ) with components εi = I{i ∈ S},
i ∈ UN . Given the statistical population, the conditional 1-d marginal distributions of the sampling scheme εN
are the Bernoulli distributions B(πi) = πiδ1 + (1− πi)δ0, i ∈ UN , with δx the Dirac mass at point x ∈ R. The

conditional covariance matrix of the r.v. εN is given by ΓN = {πi,j − πiπj}1≤i,j≤N . Observe that
∑N
i=1 εi = n(S),

which can be fixed or random depending on RN . From this point forward, only sampling plans with positive
first order inclusion probabilities shall be considered.

Poisson schemes. One of the simplest survey designs is the Poisson scheme (without replacement), denoted
by PN . For such a plan, conditioned upon the statistical population of interest, the εis are independent Bernoulli
random variables with parameters p1, . . . , pN in (0, 1]. Thus, the first order inclusion probabilities πi(PN ) = pi,

i ∈ UN , fully characterize PN . The size n(S) of a sample S generated this way is random with mean
∑N
i=1 pi

and goes to infinity as N → +∞ with probability one, provided that min1≤i≤N pi remains bounded away from
zero. In addition to its simplicity (regarding the procedure to select a sample thus distributed), the Poisson
design plays a crucial role in sampling theory, insofar as it can be used to build a wide range of survey plans
by conditioning arguments [24]. For instance, a rejective sampling plan of fixed size n ≤ N corresponds to the

distribution of a Poisson scheme εN conditioned upon the event
{∑N

i=1 εi = n
}

. One may refer to [18, 20] for
accounts of survey sampling techniques and examples of designs to which the subsequent analysis applies.

Horvitz–Thompson estimators. Suppose that independent random vectors Q1, . . . , QN are observed on
the population UN . They are viewed as copies of a generic r.v. Q taking its values in Rq. A natural approach
to estimate the total QN =

∑N
i=1Qi based on a sample S ⊂ UN generated from a survey design RN with

positive (first order) inclusion probabilities {πi}1≤i≤N consists in computing the Horvitz–Thompson estimator
(HT estimator in abbreviated form)

QRN =
∑
i∈S

1

πi
Qi =

N∑
i=1

εi
πi
Qi.

Given the whole statistical population Q1, . . . , QN , the HT estimator is an unbiased estimate of the total:

E [QRN | Q1, . . . , QN ] = QN almost-surely.
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Its conditional variance is given by

V (QRN | Q1, . . . , QN ) =

N∑
i,j=1

πi,j − πi πj
πi πj

QiQ
ᵀ
j .

In particular, when the survey design is a Poisson plan PN with positive probabilities p1, . . . , pN , this turns into

V (QPN | Q1, . . . , QN ) =

N∑
i=1

1− pi
pi

QiQ
ᵀ
i . (2.5)

Remark 2.3. (Auxiliary information) In practice, the first order inclusion probabilities are defined as
a function of an auxiliary variable, say W taking its values in Rd′ , d′ ≥ 1, which is observed on the entire
population. Specifically, a link function π : Rd′ → (0, 1] is chosen so that πi = π(Wi) for all i ∈ UN . When π(W )
and Q are dependent, proceeding this way may help us select more informative samples and consequently yield
estimators with reduced variance. A more detailed discussion on the use of auxiliary information in the present
context can be found in Section 4.1.

Going back to the SGD problem, the Horvitz–Thompson estimator of the gradient ∇LN (θ) based on a survey
sample S drawn within the population UN = {1, . . . , N} from a design RN with vector of (first order) inclusion
probabilities πN = (π1, . . . , πN ) and inclusion vector εN = (ε1, . . . , εN ) is

`RN (θ) =
1

N

∑
i∈S

1

πi
∇ψ(Zi, θ) =

1

N

N∑
i=1

εi
πi
∇ψ(Zi, θ), θ ∈ Θ. (2.6)

As pointed out in Remark 2.3, this estimator would be most efficient if each πi was strongly correlated with the
corresponding ∇ψ(Zi, θ), i ∈ UN . This suggests to devise a procedure where the survey design used to estimate
the gradient may change at each step, as in the HTGD algorithm described in the next section. For instance,
one could stipulate the availability of extra information W1, . . . ,WN and assume the existence of a link function
π :W ×Θ→ (0, 1] such that πi = π(Wi, θ) for all i ∈ UN .

Of course, such an approach would be beneficial only if the cost of the computation of the weight π(Wi, θ) is
smaller than that of the gradient ∇ψ(Zi, θ). As shall be seen in Section 6, this happens to be the case in many
situations encountered in practice.

3. The Horvitz–Thompson gradient descent

This section presents, in full generality, the variant of the SGD method we promote in this article. It can
be implemented in particular when some extra information about the target (the gradient vector field in the
present case) is available, allowing hopefully for picking a sample yielding a more accurate estimation of the
(true) gradient than that obtained by means of a sample chosen completely at random. Several tuning parameters
must be picked by the user, including the parameter n0 which controls the number of terms involved in the
empirical gradient estimation at each iteration.
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Horvitz–Thompson Gradient Descent Algorithm (HTGD)

(Input.) Datasets {Z1, . . . , ZN} and {W1, . . . ,WN}. Maximum (expected) sample size n0 ≤
N . Collection of sampling plans RN (θ) with positive first order inclusion probabilities πi(θ)
for 1 ≤ i ≤ N , indexed by θ ∈ Θ with (expected) sample sizes less than n0. Learning rate
γ(t) > 0. Number of iterations T ≥ 1.

1. (Initialization.) Choose θN (0) in Θ.

2. (Iterations.) For t = 0, . . . , T

(a) Draw a survey sample from UN = {1, . . . , N}, described by the inclusion vector ε
(t)
N =(

ε
(t)
1 , . . . , ε

(t)
N

)
, according to RN = RN (θN (t)) with inclusion probabilities πi(θN (t)) for

i ∈ UN .
(b) Compute the HT gradient estimate at θN (t)

`RN (θN (t)) :=
1

N

N∑
i=1

ε
(t)
i

πi(θN (t))
∇ψ(Zi, θN (t)).

(c) Update the estimator

θN (t+ 1) = θN (t)− γ(t) `RN (θN (t)).

(Output.) The HTGD estimator θN (T ).

Conditioned upon the data (Z1,W1), . . . , (ZN ,WN ), the asymptotic accuracy of the estimator or decision
rule produced by the algorithm above as the number of iterations T tends to infinity is investigated in the
next section under specific assumptions. Beyond consistency, special attention is paid to the issue of choosing
properly the sampling plans RN (θ) so as to minimize the asymptotic variance of the estimator θN (T ) or that
of its empirical risk.

Remark 3.1. (Balance between accuracy and computational cost) We point out that the com-
plexity of any Poisson sampling algorithm is O(N), just as in the usual case where the data involved in SGD are
uniformly drawn with(out) replacement. However, even if it can be straightforwardly parallelized, the numerical
computation of the inclusion probabilities at each step naturally induces a certain amount of additional latency.
Hence, although HTGD may largely outperform SGD for a fixed number of iterations, this should be taken into
consideration for optimizing computation time.

4. Conditional asymptotic analysis – main results

This section is dedicated to the analysis of the performance of the HTGD method, conditioned upon the
observed population and under adequate constraints related to the (expected) size of the survey samples. We
first discuss the case of Poisson survey schemes and next investigate how to establish limit results in a more
general framework.
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4.1. Poisson schemes with unequal inclusion probabilities

Fix θ ∈ Θ and n0 ≤ N . Given Z1, . . . , ZN , consider a Poisson scheme PN on the population UN = {1, . . . , N}
with positive parameter pN = (p1, . . . , pN ). Then, equation (2.5) implies

E
[
‖`PN (θ)− `N (θ)‖2 | Z1, . . . , ZN

]
=

1

N2

N∑
i=1

1− pi
pi

‖∇ψ(Zi, θ)‖2 .

Searching for the parameter p̃N such that the L2 distance between the empirical gradient evaluated at θ and
the HT version given Z1, . . . , ZN is minimum under the constraint that the expected sample size is equal to
n0 ≤ N yields the optimization problem

min
pN∈(0,1]N

N∑
i=1

1− pi
pi
‖∇ψ(Zi, θ)‖2 subject to

N∑
i=1

pi = n0. (4.1)

Suppose that P{∇ψ(Z, θ) = 0} = 0 for all θ ∈ Θ; this is true in particular when the set {z ∈ Rd : ∇ψ(z, θ) = 0}
has finite cardinality and the distribution of Z is absolutely continuous with respect to the Lebesgue measure.
Then we have ‖∇ψ(Zi, θ)‖ > 0 with probability one for all i ∈ UN and θ ∈ Θ. As can be shown by means of
the Lagrange multipliers method, in this setting the solution corresponds to weights being proportional to the
values taken by the norm of the gradient

p̃i(θ) := n0
‖∇ψ(Zi, θ)‖∑N
j=1 ‖∇ψ(Zj , θ)‖

,

provided that the following condition is fulfilled:

p̃i(θ) ≤ 1 for all i ∈ UN . (4.2)

A straightforward application of Hoeffding’s inequality shows that if

ε :=
E [‖∇ψ(Z, θ)‖]
sup
z∈Rd
‖∇ψ(z, θ)‖

− n0

N
∈

0,
E [‖∇ψ(Z, θ)‖]
sup
z∈Rd
‖∇ψ(z, θ)‖

 ,

then condition (4.2) is satisfied with probability larger than 1− exp
(
−2Nε2

)
.

Remark 4.1. (On the saturation of the linear constraints) When the latter condition is not
satisfied, some of the conditions p̃i(θ) ≤ 1 are saturated and the solution of (4.1) is given by the Karush–Kuhn–
Tucker method. Since the objective function is strictly convex and the constraints are affine, the following
conditions, related to the Lagrangian

N∑
i=1

1− pi
pi
‖∇ψ(Zi, θ)‖2 + λ

(
N∑
i=1

pi − n0

)
+

N∑
i=1

µi(pi − 1),
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are necessary and sufficient: (i)

N∑
i=1

pi = n0 and for all i ∈ UN (ii) 0 < pi ≤ 1,

(iii)
‖∇ψ(Zi, θ)‖2

p2
i

= λ+ µi, (iv) µi ≥ 0, (v) µi(pi − 1) = 0.

Denoting by m < n0 the number of components of the solution p̃N that are equal to 1 and by σ a permutation
of UN such that ‖∇ψ(Zσ(1), θ)‖ ≤ . . . ≤ ‖∇ψ(Zσ(N), θ)‖, the constraint (i) can be rewritten as n0 = m +∑N−m
i=1 ‖∇ψ(Zσ(i), θ)‖/

√
λ, so that pσ(i) = (n0 −m)‖∇ψ(Zσ(i), θ)‖/

∑N−m
j=1 ‖∇ψ(Zσ(j), θ)‖ for i ≤ N −m and

pσ(i) = 1 for i ≥ N −m+ 1.

However, selecting a sample distributed this way requires to know the full statistical population ∇ψ(Zi, θ).
In practice, one may consider situations where the weights are defined by means of a link function π(W, θ) and
auxiliary variables W1, . . . ,WN such that the inclusion probabilities are correlated with their corresponding
gradient, as suggested previously. Observe in addition that the goal pursued here is not to estimate the gradient
but to implement a stochastic gradient descent involving an expected number of terms fixed in advance, while
yielding results close to those that would be obtained by means of a gradient descent algorithm with mean field
(1/N)

∑N
i=1∇ψ(Zi, θ) based on the whole dataset. However, as shall be seen in the subsequent analysis (see

Prop. 4.8), in general these two problems do not share the same solution from the angle embraced in this article.
In the next subsection, assumptions on the survey design under which the HTGD method yields accu-

rate asymptotic results, surpassing (in terms of asymptotic covariance) those obtained with all equal inclusion
probabilities (i.e. πi = n0/N for all i ∈ UN ), are exhibited.

4.2. Limit theorems – conditional consistency and asymptotic normality

We now consider a collection of general (i.e. not necessarily Poisson) sampling schemes {RN (θ)}θ∈Θ with
positive first order inclusion probabilities {πN (θ)}θ∈Θ. Conditioned upon the data DN = {Z1, . . . , ZN} (or
DN = {(Z1,W1), . . . , (ZN ,WN )} in the presence of extra variables, cf. Rem. 2.3) available in the population
UN = {1, . . . , N}, we study the asymptotic properties of the M -estimator produced by the HTGD algorithm.
The limit results stated below essentially rely on the fact that the HT estimator (2.6) of the gradient of the
empirical risk is unbiased. Reduction of the asymptotic variance of θN (T ) and LN (θN (T )) will be investigated
in the Poisson case in the next subsection. The asymptotic analysis also involves the regularity conditions listed
below, which are classically required in stochastic approximation.

Assumption 4.2. The conditions below hold true.

(i) For any z ∈ Rd, the mapping θ ∈ Θ 7→ ψ(z, θ) is of class C1.
(ii) For any compact set K ⊂ Θ, we have with probability one:

∀i ∈ UN , sup
θ∈K

‖∇ψ(Zi, θ)‖
πi(θ)

< +∞.

(iii) The set of stationary points LN = {θ ∈ Θ : `N (θ) = 0} is of finite cardinality.

We point out that Assumption 4.2 is essentially a mild envelope condition on the class of functions, necessary
to ensure uniform convergence, that is required to establish the following theorem.

Theorem 4.3. (Conditional consistency) Suppose that Assumption 4.2 is fulfilled and that

• the learning rate decays to 0 so that
∑
t≥1 γ(t) = +∞ and

∑
t≥0 γ

2(t) < +∞,
• the HTGD algorithm is stable, i.e. there exists a compact set K0 ⊂ Rq such that θN (t) ∈ K0 for all t ≥ 0.
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Then, conditioned upon the data DN , the sequence {θN (t)}t≥0 almost-surely converges to an element of the set
LN as t→ +∞.

The stability condition is automatically fulfilled when Θ is compact, which encompasses many M -estimation
problems in practice, but can be generally difficult to check otherwise: we point out that the existence of a
compact set K0 is linked to the so-called stability condition frequently used in the stochastic approximation
community, see [32] for instance. In practice, one may guarantee it by confining the sequence to a compact set
fixed in advance and using a projected version of the algorithm above, refer to [27] or [9] (see Sect. 5.4 therein)
for further details. The goal of the subsequent analysis is to show how the choice of appropriate weights in the
mini-batch sampling procedure can favourably impact the limiting variance in presence of auxiliary information.
In order to avoid technicalities unnecessary to the understanding of this remarkable phenomenon, the present
study is restricted to the simplest framework for stochastic gradient descent.

Consider a stationary point θ∗N ∈ LN . The following local assumptions are also required to establish asymp-
totic normality results conditioned upon the event composed of outcomes such that θN (t) converges (in the
usual sense) to θ∗N as t→∞:

E(θ∗N ) =

{
lim

t→+∞
θN (t) = θ∗N

}
.

Assumption 4.4. The conditions below hold true.

(i) There exists a neighborhood V of θ∗N such that for all z ∈ Rd, the mapping θ ∈ Θ 7→ ψ(z, θ) is of class
C2 on V.

(ii) The Hessian matrix HN = ∇2LN (θ∗N ) is a stable q×q positive-definite matrix, i.e. its smallest eigenvalue
l is positive.

(iii) For all (i, j) ∈ U2
N , the mapping θ ∈ V 7→ πi,j(θ) is continuous.

We underline that L2 regularization is very often incorporated into the optimization problems, which auto-
matically makes them strongly convex and also provides a lower bound on the strong convexity constant, lower
bound that can be used to choose the constant γ0 involved in the step size considered in the result stated below.

Theorem 4.5. (Conditional Central Limit Theorem) Suppose that Assumptions 4.2–4.4 are fulfilled
and that γ(t) = γ0 t

−α for some constants α ∈ (1/2, 1] and γ0 > 0. When α = 1, take γ0 > 1/(2l) and set
η := 1/(2γ0); set η := 0 otherwise. Given the observations DN and conditioned upon the event E(θ∗N ), we have
the convergence in distribution as t→ +∞√

1/γ(t) (θN (t)− θ∗N )⇒ N (0,ΣπN ),

where the asymptotic covariance matrix ΣπN is the unique solution of the Lyapunov equation

HNΣ + ΣHN + 2ηΣ = Γ∗N , (4.3)

with Γ∗N = ΓN (θ∗N ) and, for all θ ∈ Θ,

ΓN (θ) =
1

N2

N∑
i,j=1

(
πi,j(θ)

πi(θ)πj(θ)
− 1

)
∇ψ(Zi, θ)∇ψ(Zj , θ)

ᵀ. (4.4)

The result stated below provides the asymptotic conditional distribution of the error. Because it is a direct
application of the second order delta method, the proof is omitted.

Corollary 4.6. (Error rate) Under the hypotheses of Theorem 4.5, given the observations DN and con-
ditioned upon the event E(θ∗N ), as t → +∞ we have the convergence in distribution towards a non-central
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chi-square distribution:

1/γ(t) (LN (θN (t))− LN (θ∗N ))⇒ 1

2
Uᵀ Σ1/2

πN HN Σ1/2
πN U,

where U is a q-dimensional standard Gaussian random vector.

Before showing how the results above can be used to understand how specific sampling designs may improve
statistical analysis, a few comments are in order.

Remark 4.7. (Asymptotic covariance estimation) An estimate of ΣπN could be obtained by solving
the equation ΣHN +HNΣ+2ηΣ = ΓN (θN (T )), replacing in (4.4) the (unknown) target value θ∗N by the estimate
θN (T ) produced by the HTGD algorithm after T iterations. Alternatively, a percentile Bootstrap method could
also be used for this purpose, repeating B ≥ 1 times the HTGD algorithm based on replicates of the original
sample DN .

4.3. Asymptotic covariance optimization in the Poisson case

Now that the limit behavior of the solution produced by the HTGD algorithm has been described for
general collections of survey designs R = {RN (θ)}θ∈Θ of fixed expected sample size, we turn to the problem of
finding survey plans yielding estimates with best accuracy. Formulating this objective in a quantitative manner,

this boils down to finding R so as to minimize the asymptotic covariance matrix summary ‖Σ1/2
πN ‖, for an

appropriately chosen norm ‖.‖ on the space Mq(R) of q × q matrices with real entries for instance, when it
comes to estimate θ∗N . In order to get a natural summary of the asymptotic variability, we consider here the

Frobenius (Hilbert–Schmidt) norm, i.e. ‖A‖◦F =
√

Tr(AᵀA) = (
∑
i,j a

2
i,j)

1/2 for any A = (ai,j) ∈Mq(R) where
Tr(.) denotes the Trace operator. For simplicity’s sake, we focus on Poisson schemes and consider the case
where η = 0 in Theorem 4.5. Notice that the cross terms (i 6= j) in equation (4.4), i.e. the U -statistic part
of the conditional asymptotic variance, vanish in the Poisson case. The following result exhibits an optimal
collection of Poisson schemes among those with n0 as expected sizes, in the sense that it yields an HTGD
estimator with an asymptotic covariance of square root with minimum Frobenius norm. We point out that it is
generally different from that considered in Section 4.1, revealing the difference between the issue of estimating
the empirical gradient accurately by means of a Poisson Scheme and that of optimizing the HTGD procedure.

Proposition 4.8. (Optimality) Consider the same assumptions as in Theorem 4.4 in the case where η = 0
and suppose that

n0 ≤ inf
θ∈Θ

∑N
i=1 ‖GN∇ψ(Zi, θ)‖

max
1≤i≤N

‖GN∇ψ(Zi, θ)‖
, (4.5)

with GN := H
−1/2
N . Then, the collection of Poisson schemes with positive inclusion probabilities {p∗N (θ)}θ∈Θ

defined for all θ ∈ Θ and i ∈ UN by

p∗i (θ) = n0
‖GN∇ψ(Zi, θ)‖∑N
j=1 ‖GN∇ψ(Zj , θ)‖

,

is a solution of the minimization problem

min
pN={pN (θ)}θ∈Θ

∥∥∥Σ1/2
pN

∥∥∥
◦F

subject to

N∑
i=1

pi(θ) = n0.
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In addition, we have

∥∥∥Σ
1/2
p∗N

∥∥∥2

◦F
=

1

2

 1

n0

(
1

N

N∑
i=1

‖GN ∇ψ(Zi, θ
∗
N )‖

)2

− 1

N2

N∑
i=1

‖GN ∇ψ(Zi, θ
∗
N )‖2

 .

Of course, the optimal solution exhibited in the result stated above is completely useless from a practical
perspective, since the matrix HN is unknown in general and the computation of the values taken by the
gradient at each point Zi is precisely what we are trying to avoid in order to reduce the computational cost
of the GD (deterministic Gradient Descent) procedure. However, we show in the next section that choosing
inclusion probabilities positively correlated with the p∗i (θ)’s is actually sufficient to reduce asymptotic variability
(compared to the situation where equal inclusion probabilities are used). In addition, as illustrated by the two
easily generalizable examples described in Section 6, such a sampling strategy can be implemented in many
situations.

Notice finally that, if we consider the asymptotic excess of empirical risk of the estimate LN (θN (T ))−LN (θ∗N )
rather than the asymptotic variance of the estimate itself, the survey design R must be picked in order to
minimize the quantity

E
[
Uᵀ Σ1/2

πN HN Σ1/2
πN U | DN

]
= E

[(
H

1/2
N Σ1/2

πN U
)ᵀ (

H
1/2
N Σ1/2

πN U
)
| DN

]
= Tr (HNΣπN ) ,

using the fact that U ∼ N (0, Iq) is chosen independent from DN here. Observing that HNΣπN + ΣπNHN = Γ∗N
in the case η = 0, we have

Tr (HNΣπN ) =
1

2
Tr(Γ∗N ).

Now, since we have in the Poisson case

Tr(Γ∗N ) =
1

N2

N∑
i=1

(
1

pi(θ∗N )
− 1

)
‖∇ψ(Zi, θ

∗
N )‖2,

the optimal Poisson scheme regarding this alternative criterion generally differs from that involved in
Proposition 4.8 and boils down to that introduced in Section 4.1 for optimal Horvitz–Thompson estimation
of the gradient.

4.4. Extensions to more general Poisson survey designs

In this subsection, we still consider Poisson schemes and the case η = 0 for simplicity and now place
ourselves in the situation where the information at disposal consists of a collection of i.i.d. random pairs
(Z1,W1), . . . , (ZN ,WN ) valued in Rd × Rd′ . Take a link function p : Rd′ ×Θ→ R∗+ such that θ ∈ Θ 7→ p(w, θ)

is continuous for all w ∈ Rd′ , then choose an expected sample size n0 ∈ {1, . . . , N} that satisfies

n0 ≤ inf
θ∈Θ

∑N
i=1 p(Wi, θ)

max
1≤i≤N

p(Wi, θ)
,

and define

pi(θ) = n0
p(Wi, θ)∑N
j=1 p(Wj , θ)

, for all (i, θ) ∈ UN ×Θ. (4.6)
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Observe that for all θ ∈ Θ we have
∑N
i=1 pi(θ) = n0 and pi(θ) ∈ (0, 1] for all i ∈ UN . The computational cost

of the inclusion probability p(Wi, θ) is assumed to be much smaller than that of ∇ψ(Zi, θ) (see the examples
in Sect. 6) for all (i, θ) ∈ UN × Θ. The assumption introduced below involves the empirical covariance cN (θ)
between ‖GN∇ψ(Z, θ)‖2/p(W, θ) and p(W, θ), for θ ∈ Θ:

cN (θ) =
1

N

N∑
i=1

‖GN∇ψ(Zi, θ)‖2
(

1− 1

N

∑N
j=1 p(Wj , θ)

p(Wi, θ)

)
.

Assumption 4.9. The link function p(w, θ) fulfills the following condition:

cN (θ∗N ) > 0.

The result stated below reveals to which extent sampling with inclusion probabilities defined by some appro-
priate link function may improve upon sampling with equal inclusion probabilities, p̌i = n0/N for 1 ≤ i ≤ n,
when implementing stochastic gradient descent (see Eq. (4.7)). Namely, the accuracy of the HTGD gets closer
and closer to the optimum, as the empirical covariance cN (θ∗) increases to its maximum (see Eq. (4.8)). Notice
that in the case where inclusion probabilities are all equal, we have cN ≡ 0.

Proposition 4.10. Let n0 be fixed. Suppose that the collection of Poisson designs p with expected sizes n0 is
defined by a link function p(w, θ) satisfying Assumption 4.9. Then, when Theorem 4.5 applies, we have∥∥∥Σ1/2

pN

∥∥∥
◦F
<
∥∥∥Σ

1/2
p̌N

∥∥∥
◦F
, (4.7)

as well as

0 ≤
∥∥∥Σ1/2

pN

∥∥∥2

◦F
−
∥∥∥Σ

1/2
p∗N

∥∥∥2

◦F
=

1

2n0

{
σ2
N (θ∗N )− cN (θ∗N )

}
, (4.8)

where

σ2
N (θ) =

1

N

N∑
i=1

‖GN ∇ψ(Zi, θ)‖2 −

(
1

N

N∑
i=1

‖GN ∇ψ(Zi, θ)‖

)2

,

denotes the empirical variance of the r.v.
∥∥∥E [∇2ψ(Z, θ)

]−1/2 ∇ψ(Z, θ)
∥∥∥, θ ∈ Θ.

As illustrated by the easily generalizable examples provided in Section 6, one may generally find link functions
fulfilling Assumption 4.9 without great effort, permitting to gain in accuracy from the implementation of the
HTGD algorithm.

5. Unconditional asymptotic analysis

Building upon the results of the previous section, we now investigate the behavior of the HTGD estimator
as N,n0 and t simultaneously tend to +∞ at appropriate rates. For the sake of simplicity we assume in this
section that the minimizer θ∗ of the theoretical risk function over the supposedly compact parameter space Θ
is unique (see Eq. (2.1)), as well as the empirical minimizer θ∗N with probability one. All the results stated in
this section can be directly extended to more general cases.

The assumption below, related to the asymptotic behavior of (4.4), is involved in the subsequent unconditional
analysis.



OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT DESCENT 323

Assumption 5.1. As both N and n0 tend to∞, n0Γ∗N converges in probability toward a positive semi-definite
matrix Γ∗.

Although this condition may seem strong at first glance, one may easily prove that it is actually fulfilled
in several important situations. In particular, the following proposition, established in the Appendix section,
shows it holds true in the Poisson case under weak conditions.

Proposition 5.2. Suppose that the survey schemes are of Poisson type with link functions p(., θ) : Rd′ →
R∗+, θ ∈ Θ, based on the auxiliary information W observed on the statistical population. Assume also that
Assumption 4.2-(i) is fulfilled, together with the following conditions.

(i) We have θ∗N → θ∗ with probability one, as N → +∞.

(ii) The expected size n0 tend to infinity as N →∞, so that
n0

N
→ c0 ∈ [0, 1].

(iii) For all θ ∈ Θ:

E
[
sup
θ∈Θ

1

p(W, θ)
∇ψ(Z, θ)∇ψ(Z, θ)ᵀ

]
< +∞.

(iv) We have: p = infw,θ p(w, θ) > 0 and p̄ = supw,θ p(w, θ) <∞.

Then, the quantities (4.6) define the inclusion probabilities of a Poisson scheme with probability one, as soon
as n0 ≤ Np/p̄. In addition, Assumption 5.1 is fulfilled with

Γ∗ = E [p(W, θ∗)]E
[

1

p(W, θ∗)
∇ψ(Z, θ∗)∇ψ(Z, θ∗)ᵀ

]
.

We are now ready to state the main result of this section, which illustrates the trade-off between (asymptotic)
generalization and optimization errors, ruled by the limit behavior of Nγ(t)/n0.

Theorem 5.3. Suppose that Assumptions 4.2, 4.4, 5.1 are fulfilled and that the rate γ(t) satisfies the condition
of Theorem 4.5 with α < 1 (and thus η = 0). Assume that the symmetric positive semi-definite matrix H∗ =
E[∇2

θψ(Z, θ∗)] is invertible, set

Λ∗ = (H∗)−1E[∇ψ(Z, θ∗)∇ψ(Z, θ∗)ᵀ](H∗)−1

and denote by Σ∗ the unique solution of the Lyapunov equation: H∗Σ + ΣH∗ = Γ∗. The assertions below hold
true.

(i) If lim
N,n0,t→+∞

N
n0
γ(t) = +∞, then we have the convergence in distribution:

lim
N,n0→∞

{
lim
t→∞

√
n0/γ(t) (θN (t)− θ∗)

}
= N (0,Σ∗).

(ii) If lim
N,n0,t→+∞

N
n0
γ(t) = 0, then we have the convergence in distribution:

lim
N,n0,t→+∞

√
N (θN (t)− θ∗) = N (0, Λ∗).

(iii) If lim
N,n0,t→+∞

N
n0
γ(t) = c > 0, then we have the convergence in distribution:

lim
N,n0→∞

{
lim
t→∞

√
N (θN (t)− θ∗)

}
= N (0, Λ∗ + cΣ∗).
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We first point out that, in contrast to case (ii) where they can be swapped, the limits involved in cases (i) and
(iii) must be taken sequentially: assertion (i) (respectively, assertion (ii)) describes that for large values of N
and n0, the number t of HTGD iterations is such that 1/γ(t)� N/n0 (respectively, such that 1/γ(t) ∼ N/n0).
In the asymptotic regime (i), corresponding to the ‘Big Data’ setup, the optimization error rules the limit
behavior of the HTGD estimator, whereas the estimation error determines the asymptotic covariance structure
in case (ii). Case (iii) corresponds to the situation where both terms impact the limit distribution. The proof is
given in the Appendix. Just like in Corollary 4.6 for the conditional analysis, the asymptotic distribution of the
error can be straightforwardly deduced from the Central Limit Theorem above by means of the delta method;
technical details are omitted.

Corollary 5.4. Suppose that the assumptions of Theorem 5.3 are fulfilled. Let U be a d-dimensional Gaussian
centered r.v. with the identity as covariance matrix. The assertions below hold true.

(i) If lim
N,n0,t→+∞

N
n0
γ(t) = +∞, then we have the convergence in distribution:

lim
N,n0→∞

{
lim
t→∞

n0

γ(t)
(L(θN (t))− L(θ∗))

}
=

1

2
UᵀΣ∗1/2H∗Σ∗1/2U.

(ii) If lim
N,n0,t→+∞

N
n0
γ(t) = 0, then we have the convergence in distribution:

lim
N,n0,t→+∞

N (L(θN (t))− L(θ∗)) =
1

2
UᵀΛ∗1/2H∗Λ∗1/2U.

(iii) If lim
N,t→+∞

N
n0
γ(t) = c > 0, then we have the convergence in distribution:

lim
N,n0→∞

{
lim
t→∞

N (L(θN (t))− L(θ∗))
}

=
1

2
Uᵀ(Λ∗ + cΣ∗)1/2H∗(Λ∗ + cΣ∗)1/2U.

6. Illustrative numerical experiments

For illustration purpose, this section shows how the results previously established apply to two problems by
means of simulation experiments. For both examples, the performance of the HTGD algorithm is compared
with that of a basic SGD strategy with the same (mean) sample size.

6.1. Linear logistic regression

Consider the linear logistic regression model corresponding to Example 2.2 with θ = (α, β) ∈ R × Rd and
h(x, θ) = α + βᵀx for all x ∈ Rd. Take K ⊂ {1, . . . , d} with cardinal d′ � d and complementary set Kc :=
{1, . . . , d}\K. Now let XK be a low dimensional marginal vector of the input r.v. X, so that one may write
X = (XK , XKc) as well as β = (βK , βKc) in a similar manner. The problem of fitting the parameter θ through
conditional MLE corresponds to the case

ψ((x, y), θ) = − log

(
eα+βᵀx(y + 1)/2 + (1− y)/2

1 + eα+βᵀx

)
.

We propose to implement the HTGD using a Poisson sampling plan with link function p̌((x′, y), θ) ∝
‖∇ψK((X,Y ), θ)‖, where

ψK((x, y), θ) = − log

(
eα+βK

ᵀxK (y + 1)/2 + (1− y)/2

1 + eα+βKᵀxK

)
.



OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT DESCENT 325

0 500 1000 1500 2000 2500 3000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0 500 1000 1500 2000 2500 3000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Figure 1. Mean squared errors of the estimators of θ with the number of iterations for
n0 = 10 (left) and n0 = 100 (right), based on the 100 repetitions of HTGD (solid light grey)
and SGD (dashed black); the corresponding 90% dispersion bands are displayed in dark and
light grey, respectively, and the squared error of the GD (dotted black) is indicated as a point
of comparison.

In order to illustrate the advantages of the HTGD technique for logistic regression, we considered the toy
numerical model with parameters d = 10 and θ = (α, β1, . . . , β10) = (0,−2, 0,−9, 1, 0,−9, 11, 0,−8,−14), the 10
input variables being generated from a centered multivariate Gaussian distribution with all variance terms equal
to 1 and all correlation coefficients set to 0.5. The maximum likelihood estimators of θ were computed using
the HTGD, SGD (mini-batch) and GD algorithms. In order to compare them, the same number of iterations
was chosen in each situation. The learning rate was taken as fixed for the deterministic gradient descent, but
proportional to 1/t for both HTGD and SD.

We drew a single sample of size N = 5000 on which the three algorithms were performed for 3000 iterations.
Both HTGD and SGD were repeated 100 times so as to account for the randomness due to their respective
sampling phases. Two expected sub-sample sizes were considered : n0 = 10 and n0 = 100. As can be seen in
Figure 1, while virtually equivalent in terms of computation time, thus taking a larger sample improves the
efficiency of the HTGD. It also appears to reach a better level of precision regarding the estimation than both
competitors.
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As clearly appears in Figure 1 and can be observed in a similar fashion with larger sample sizes in our
experience (e.g. N = 50 000), a significantly lower number of iterations is required for our algorithm to obtain
satisfactory estimates of the parameters of interest. However, adapting this approach to real Big datasets
requires to combine the statistical principles investigated in this paper with the use of computing infrastructures
dedicated to large-scale problems. This will be the subject of a future work.

6.2. The symmetric model

Consider now an i.i.d. sample (X1, X2, . . . , XN ) drawn from an unknown probability distribution on Rd,
supposed to belong to the semi-parametric collection {Pθ,f , θ ∈ Θ}, Θ ⊂ Rq, dominated by some σ-finite measure
λ. The related densities are denoted by f(x − θ), where θ ∈ Θ is a location parameter and f(x) a (twice
differentiable) density, symmetric about 0, i.e.f(x) = f(−x). The density f is unknown in practice and may be
multimodal. For simplicity, we assume here that Θ ⊂ R but similar arguments can be developed when q > 1.
For such a general semi-parametric model, it is well-known that neither the sample mean nor the median (if,
for instance, the distribution does not weight the singleton {0}) are good candidates for estimating the location
parameter θ. In the semiparametric literature this model is referred to as the symmetric model, see [8]. It is
known that the tangent space (i.e. the set of scores) with respect to the parameter of interest θ and that with
respect to the nuisance parameter are orthogonal. The global tangent space at Pθ,f is given by

TL [Pθ,f ,P] =

{
c
f ′ (x− θ)
f (x− θ)

+ h(x− θ); c ∈ R, h ∈ Ṗ2

}
,

where Ṗ2 is the tangent space with respect to the nuisance parameter:

Ṗ2 =
{
h : EPθ,f [h(X)] = 0, h(x) = h(−x) and EPθ,f [h2(X)] <∞

}
.

Orthogonality simply results from the fact that f ′(x) is an odd function and implies that the parameter θ can
be adaptively estimated, as if the density f(x) was known, refer to [8] for more details. In practice f(x) is
estimated by means of some symmetrized kernel density estimator. Given a Parzen–Rosenblatt kernel K(x)
(e.g. a Gaussian kernel) for instance, consider the estimate

f̃θ,N (x) =
1

NhN

N∑
i=1

K

(
x− (Xi − θ)

hN

)
,

where hN > 0 is the smoothing bandwidth, and form its symetrized version (which is an even function)

f̂θ,N (x) =
1

2

(
f̃θ,N (x) + f̃θ,N (−x)

)
.

The related score is given by

ŝN (x, θ) =
d

dθ
f̂θ,N (x)/f̂θ,N (x).

In order to perform maximum likelihood estimation approximately, one can try to implement a gradient descent
method to get an efficient estimator of θ. For instance, for a reasonable sample size N , it is possible to show
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Figure 2. Evolution of the estimator of the location parameter θ = 0 of the balanced Gaussian
mixture with the number of iterations in the HTGD (solid red), mini-batch SGD (dashed green)
and GD (dotted blue) algorithms.

that, starting for instance from the empirical median θ0 with an adequate choice of the rate γ(t), the sequence

θN (t) = θ̂(t− 1) + γ(t)
1

N

N∑
j=1

ŝN (Xj − θ̂(t− 1), θ̂(t− 1))

converges to the true MLE. The complexity of this algorithm is typically of order 2T ×N2 if T ≥ 1 is the number
of iterations, due the tedious computations to evaluate the kernel density estimator (and its derivatives) at all

points Xi − θ̂(t− 1). It is thus relevant in this case to try to reduce it by means of (Poisson) survey sampling.
The iterations of such an algorithm would be then of the form

θN (t) = θ̂(t− 1) + γ(t)
1

N

N∑
j=1

εj
pj
ŝN (Xj − θ̂(t− 1), θ̂(t− 1)),

N∑
j=1

pj = n0.

As shown in Section 4.3, the optimal choice would be to choose pj proportional to |ŝN (Xj − θ̂(t− 1), θ̂(t− 1))|
at the tth iteration:

p∗j

(
θ̂(t− 1)

)
=

n0 |ŝN (Xj − θ̂(t− 1), θ̂(t− 1))|∑N
i=1 |ŝN (Xj − θ̂(t− 1), θ̂(t− 1))|

. (6.1)

Unfortunately this is not possible because s is unknown and replacing s(x− θ) by ŝN (x− θ̂(t− 1), θ̂(t− 1)) in
(6.1) yields obvious computational difficulties. For this reason, we suggest to use the (much simpler) Poisson
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Figure 3. Evolution of the estimator of the location parameter θ = 0 of the balanced Gaussian
mixture with the number of iterations in the HTGD (solid blue) and mini-batch SGD (dashed
red) algorithms over 50 populations.

Table 1. Statistics on the global behavior of the final estimates of the location parameter θ
across the 50 simulations.

Min. Median Max. Mean S.D.

HTGD
−0.35 0.006 0.29 0.014 0.16

SGD
−0.38 −0.036 0.42 0.025 0.22

GD
−0.52 −0.162 0.70 0.20 0.45

weights:

pj(θ) = n0
|Xj − θ|∑N
j=1 |Xj − θ|

.

Figures 2 and 3 depict the performance of the HTGD algorithm when θ = 0 and f(x) is a balanced mixture
of two Gaussian densities with means 4 and −4 respectively and same variance σ2 = 1, compared to that of
the usual SGD method. Based on a population sample of size N = 1000, the HTGD and SGD methods have
been implemented with n0 = 10 and T = 3000 iterations, whereas 30 iterations have been made for the basic
GD procedure (with n0 = N = 1000) so that the number of gradient computations is of the same order for each
method. For each instance of the algorithms we took θ0 equal to the median of the population, used a step-size
γ(t) = γ0

t for the HTGD and the SGD, and a constant step-size γ1 for the GD, see Table 1.
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7. Conclusion

In this article, we have shown how survey sampling can be used in order to improve the accuracy of the
stochastic gradient descent method in M -estimation, while preserving the complexity of the procedure. Beyond
theoretical limit results, the approach we promote is illustrated by promising numerical experiments. Whereas
massively parallelized/distributed approaches combined with random data splitting are now receiving much
attention in the Big Data context, the present paper explores a possible alternative way of scaling up statistical
learning methods, based on gradient descent techniques. It hopefully lays a first stone in efficient incorporation
of survey techniques into machine-learning algorithms.

Appendix A – Technical proofs

A.1 Proof of Theorem 4.3

The conditional consistency of the HTGD algorithm described in Section 3 is obtained by applying Theorem
13 in [19] (or Thm. 2.2 in Chap. 5 of [27] among other references). Specifically, it states that if the following
conditions are fulfilled, then θN (θ) converges as t→ +∞ to some θ∗N ∈ LN with probability 1:

•
∑
t≥1 γ(t) = +∞ and

∑
t≥0 γ

2(t) = +∞, which was assumed,
• θN (t) remains in a compact subset of Θ for all t ≥ 0, which was also assumed,
• θ ∈ Θ 7→ −LN (θ) and θ ∈ Θ 7→ ∇LN (θ) are continuous, which is guaranteed by Assumption 4.2-(i),
• LN is finite, which corresponds to Assumption 4.2-(iii),
• for any compact subset K ⊂ Θ we have that sup

θ∈K
E
(
‖`RN (θ)‖2 | DN

)
< +∞ with probability 1, which we

shall now check.

Let K be a compact subset of Θ, then

sup
θ∈K

E
[
‖`RN (θ)‖2 | DN

]
= sup
θ∈K

1

N2

N∑
i,j=1

πi,j(θ)

πi(θ)πj(θ)
∇ψ(Zi, θ)

ᵀ∇ψ(Zj , θ)

≤

(
1

N

N∑
i=1

sup
θ∈K

‖∇ψ(Zi, θ)‖
πi(θ)

)2

<∞ a.s.

which is finite with probability 1 by virtue of Assumption 4.2-(ii).

A.2 Proof of Theorem 4.5

Our conditional Central Limit Theorem results from Theorem 1 in [32], the applicability of which needs to
be checked.

First of all, rewrite the algorithm sequence as

θN (t+ 1) = θN (t)− γ(t)∇LN (θN (t)) + γ(t) ξN (t+ 1),

where ξN (t+ 1) := ∇LN (θN (t))− `RN (θN (t)). This way, −∇LN (θN (t)) appears as the mean field of the algo-
rithm and ξN (t + 1) as a noise term. Now consider the filtration F = {Ft}t≥1 where for each t ≥ 1, Ft is the

σ-field generated by the indicator vectors ε
(1)
N . . . , ε

(t−1)
N and by DN . Then Assumption 4.2-(ii) guarantees that

{ξN (t)}t≥1 is a sequence of increments of a q-dimensional square integrable martingale adapted to the filtration
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F : For all t ≥ 1, we have both E[ξN (t+ 1) | Ft] = 0 and

E
[
‖ξN (t+ 1)‖2 | Ft

]
=

1

N2

N∑
i,j=1

(
πi,j(θN (t))

πi(θN (t))πj(θN (t))
− 1

)
∇ψ(Zi, θN (t))ᵀ∇ψ(Zj , θN (t))

≤

(
1

N

N∑
i=1

sup
θ∈K

‖∇ψ(Zi, θ)‖
πi(θ)

)2

< +∞.

Given this representation, our result is assured by Theorem 1 in [32] provided that the following conditions
hold true:

• ∇LN (θ∗N ) = 0, which was assumed,
• on a neighborhood V of θ∗N we have ∇LN (θ) = HN (θ− θ∗N ) +O(‖θ− θ∗N‖2), which results from a simple

Taylor expansion made possible by Assumption 4.4-(i),
• −HN is a stable q × q matrix (the largest real part of its eigenvalues is negative), which corresponds to

Assumption 4.4-(ii),
• γ is regularly varying with index −α ∈ (−1, 0] or γ(t) = γ0/t with γ0 > 1/(2l) for all t ≥ 1, which was

also assumed,
• (A) sup

t≥0
E
[
‖ξN (t+ 1)‖b | Ft

]
I {θN (t) ∈ V} < +∞ almost-surely for any b > 2, which we shall verify,

• (B) E [ξN (t+ 1) ξN (t+ 1)ᵀ | Ft] → Γ almost-surely on E(θ∗N ) as t → +∞, with Γ a positive-definite
deterministic matrix, which also needs to be checked.

Let us start with condition (A). Since we have with probability one

0 ≤ ‖ξN (t+ 1)‖ ≤ 1

N

N∑
i=1

‖∇ψ(Zi, θN (t))‖
πi(θN (t))

,

for all t ≥ 0, then for any b > 2, we almost-surely have

sup
t≥0

E
[
‖ξN (t+ 1)‖b | Ft

]
I {θN (t) ∈ V} ≤ 1

N

N∑
i=1

(
sup
θ∈V

‖∇ψ(Zi, θ)‖
πi(θ)

)b
< +∞,

by Assumption 4.2-(ii).

Regarding condition (B), we have E[ξN (t+ 1) ξN (t+ 1)ᵀ | Ft] = ΓN (θN (t)) for all t ≥ 1, where for any θ ∈ Θ,

ΓN (θ) =
1

N2

N∑
i,j=1

(
πi,j(θ)

πi(θ)πj(θ)
− 1

)
∇ψ(Zi, θ)∇ψ(Zj , θ)

ᵀ.

By virtue of the continuity assumptions of the inclusion probabilities (Assumption 4.4-(iii)) and of the gra-
dient (Assumption 4.2-(i)), given the population data DN we have the almost-sure convergence ΓN (θN (t)) →
Γ∗N = ΓN (θ∗N ) on the event E(θ∗N ) as t→ +∞. The limit matrix is, indeed, positive-definite and deterministic
(given DN ).

A.3 Proof of Proposition 4.8

Let us start by calculating ‖Σ1/2
pN ‖2◦F for some collection of positive Poisson inclusion probabilities pN =

{pN (θ)}θ∈Θ. In the case where η = 0, since HN is invertible by Assumption 4.4-(ii), the Lyapunov equation
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(4.3) can be rewritten as

ΣpN +H−1
N ΣpNHN = H−1

N Γ∗N ,

which implies that
∥∥∥Σ1/2

pN

∥∥∥2

◦F
=

1

2
Tr
(
H−1
N Γ∗N

)
=

1

2
Tr (GN Γ∗N G

ᵀ
N ). Now recall that θ∗N is a stationary point,

i.e. ∇LN (θ∗N ) = 0, and that we are considering a Poisson scheme (with independent inclusion variables). Thus,

Γ∗N =
1

N2

N∑
i=1

(
1

pi(θ∗N )
− 1

)
∇ψ(Zi, θ

∗
N )∇ψ(Zi, θ

∗
N )ᵀ

and then

∥∥∥Σ1/2
pN

∥∥∥2

◦F
=

1

2

1

N2

N∑
i=1

(
1

pi(θ∗N )
− 1

)
‖GN ∇ψ(Zi, θ

∗
N )‖2 . (A.1)

Let us now turn to the definition of an optimal collection of Poisson plans. Using the Lagrange multiplier
method like in Section 4.1, we find that any pN minimizing (A.1) must satisfy the equalities

pi(θ
∗
N ) = n0

‖GN ∇ψ(Zi, θ
∗
N )‖∑N

j=1 ‖GN ∇ψ(Zj , θ∗N )‖
, i ∈ UN .

This is the case, in particular, of the collection p∗N defined in Proposition 4.8. Condition (4.5) and the
positive-definiteness of HN (Assumption 4.4-(ii)) ensure that p∗i (θ) is almost-surely in (0, 1] for all θ ∈ Θ
and i ∈ UN .

A.4 Proof of Proposition 4.10

Let us start by proving the first assertion. Using equation (A.1) with the corresponding inclusion probabilities,
we immediately obtain

∥∥∥Σ
1/2
p̌N

∥∥∥2

◦F
−
∥∥∥Σ1/2

pN

∥∥∥2

◦F
=
cN (θ∗N )

2n0
,

which is positive by Assumption 4.9.
Turning to the second assertion, observe that

∥∥∥Σ1/2
pN

∥∥∥2

◦F
−
∥∥∥Σ

1/2
p∗N

∥∥∥2

◦F
=
∥∥∥Σ1/2

pN

∥∥∥2

◦F
−
∥∥∥Σ

1/2
p̌N

∥∥∥2

◦F
+
∥∥∥Σ

1/2
p̌N

∥∥∥2

◦F
−
∥∥∥Σ

1/2
p∗N

∥∥∥2

◦F
=

1

2n0

{
σ2
N (θ∗N )− cN (θ∗N )

}
.

By definition of p∗N (see Prop. 4.8), this quantity is always nonnegative.

A.5 Proof of Proposition 5.2

Consider a Poisson sampling plan with inclusion probabilities as in (4.6). We shall prove that Assumption 5.1
is fulfilled by establishing the asymptotic convergences (as N,n0 → +∞) of the three averages in brackets that
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appear in the following decomposition:

n0 Γ∗N =

[
1

N

N∑
i=1

p(Wi, θ
∗
N )

]
×

[
1

N

N∑
i=1

1

p(Wi, θ∗N )
∇ψ(Zi, θ

∗
N )∇ψ(Zi, θ

∗
N )ᵀ

]

− n0

N

[
1

N

N∑
i=1

∇ψ(Zi, θ
∗
N )∇ψ(Zi, θ

∗
N )ᵀ

]
.

Recall that (Z1,W1), . . . , (ZN ,WN ) were taken as independent copies of some generic r.v. (Z,W ), which is thus
independent from θ∗N , for any N ∈ N∗. The respective distributions of Z, W and (Z,W ) are denoted by PZ ,
PW and PZ,W .

First average. We verify that the first term in brackets tends to E [p(W, θ∗)] almost-surely as N → +∞. For
any N ∈ N∗ we have∣∣∣∣∣ 1

N

N∑
i=1

p(Wi, θ
∗
N )− E[p(W, θ∗)]

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

p(Wi, θ)− E[p(W, θ)]

∣∣∣∣∣+ |E[p(W, θ∗N )]− E[p(W, θ∗)]| .

Thus, it suffices to check that both the supremum and the difference of expectations above (almost-surely)
vanish as N grows.

The supremum can be controlled using Lemma 3.10 in [36]. The parameter space Θ is assumed to be a compact
metric space and the map θ ∈ Θ 7→ p(w, θ) is supposed to be continuous for all w ∈ Rd′ . In addition, since the link
function p was chosen to be bounded by some finite positive constant p̄, the envelope w ∈ Rd′ 7→ supθ∈Θ |p(w, θ)|
is PW -integrable. By virtue of the aforementioned Lemma, these conditions are sufficient to obtain the uniform
law of large numbers: as N → +∞, with probability one,

sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

p(Wi, θ)− E[p(W, θ)]

∣∣∣∣∣→ 0.

Let us now turn to the difference of expectations. Fix some w ∈ Rd′ . The empirical risk minimizer θ∗N is
assumed to be strongly consistent (condition (i)) and the mapping θ ∈ Θ 7→ p(w, θ) to be continuous. Thus, by
the continuous mapping theorem, p(w, θ∗N ) converges almost-surely to p(w, θ∗), as N → +∞. Then, because p is
a bounded function, by the dominated convergence theorem we also have E[p(w, θ∗N )]→ p(w, θ∗) as N → +∞.
Next, for any N ∈ N∗, the independence between W and θ∗N implies E[p(W, θ∗N )] =

∫
Rd′ E[p(w, θ∗N )]PW (dw).

Applying the dominated convergence theorem to this last integral, we finally obtain that E[p(W, θ∗N )] →
E[p(W, θ∗)] as N → +∞.

Second average. The second term in brackets is a q × q matrix, the convergence of which shall be estab-
lished element-wise. Let (k, h) ∈ {1, . . . , q}2 and define the function Ψk,h : (z, θ) ∈ Rd ×Θ 7→ (∂ψ/∂θk)(z, θ)×
(∂ψ/∂θh)(z, θ). The element at the intersection of the kth row and hth column of this matrix is

1

N

N∑
i=1

1

p(Wi, θ∗N )
Ψk,h(Zi, θ

∗
N ).

Using the same reasoning as before, this quantity can be shown to converge almost-surely to
E
[
p(W, θ∗)−1 Ψk,h(Z, θ∗)

]
, as N,n0 → +∞. We only need to check that

(a) the map θ ∈ Θ 7→ p(w, θ)−1 Ψk,h(z, θ) is continuous for any (z, w) in Rd × Rd′ ,
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(b) the envelope (z, w) ∈ Rd × Rd′ 7→ E[sup
θ∈Θ
|p(w, θ)−1 Ψk,h(z, θ)|] is PZ,W -integrable,

(c) the class of random variables {p(W, θ∗N )−1 Ψk,h(Z, θ∗N )} is uniformly PZ,W -integrable.

Condition (a) is guaranteed by the construction of p and by Assumption 4.2-(i). Condition (b) and (c) are direct
consequences of conditions (iii).

Third average. The convergence of the third term in bracket is easily deduced from the convergence of the
second average, it is therefore omitted.

A.6 An intermediary result

Before tackling the proof of Theorem 5.3, we first establish the following lemma. It describes the limit behavior
of the solution of the Lyapunov equation (4.3) as N,n0 → +∞.

Lemma A.1. Suppose that the assumptions of Theorem 5.3 are fulfilled. Then as N,n0 tend to +∞, we have:

n0ΣπN → Σ∗ in probability.

Proof. Observe first that it follows from HNΣπN + ΣπNHN = Γ∗N that

‖Γ∗N‖2◦F = 2‖HNΣπN ‖2◦F + 2Tr(HNΣπNHNΣπN )︸ ︷︷ ︸
>0

,

Hence, we have:

‖Γ∗N‖◦F >
√

2‖HNΣπN ‖◦F.

We deduce from this inequality combined with assumptions 5.1 and the fact that H−1
N = OP(1) as N → ∞

(this can be deduced from the LLN HN → H∗ and the hypothesis that the Hessian matrices HN and H∗ are
invertible) that

ΣπN = OP(1/n0) as N →∞. (A.2)

Since H∗Σ∗ + Σ∗H∗ = Γ∗ and HNΣπN + ΣπNHN = Γ∗N , we have:

Γ∗ − n0Γ∗N = H∗(Σ∗ − n0ΣπN ) + (Σ∗ − n0ΣπN )H∗ + n0(HN −H∗)ΣπN + n0ΣπN (HN −H∗). (A.3)

Combining (A.3) with

‖H∗(Σ∗ − n0ΣπN )‖◦F = ‖(Σ∗ − n0ΣπN )H∗‖◦F 6
1√
2
‖H∗(Σ∗ − n0ΣπN ) + (Σ∗ − n0ΣπN )H∗‖◦F (A.4)

we easily get

‖H∗(Σ∗ − n0ΣπN )‖◦F 6
1√
2
‖Γ∗ − n0Γ∗N‖◦F +

√
2‖n0ΣπN (HN −H∗)‖◦F. (A.5)

By virtue of the LLN, we have HN − H∗ → 0 almost surely as N → ∞. Combining this with (A.2) and
Assumption 5.1 we see that the term on the right hand side of (A.5) converges toward 0 in probability as
N →∞. Combined with the invertibility of H∗, this establishes the desired result.
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A.7 Proof of Theorem 5.3

Consider the decomposition:

θN (t)− θ∗ = θN (t)− θ∗N + θ∗N − θ∗

=

√
γ(t)

n0

√
n0/γ(t) (θN (t)− θ∗N ) +

1√
N

√
N (θ∗N − θ∗)

=

√
γ(t)

n0

√
n0/γ(t) (θN (t)− θ∗N )︸ ︷︷ ︸

(1)

+
1√
N

√
N (θ∗N − θ∗)︸ ︷︷ ︸

(2)

.

The term (2) above is asymptotically normal. By virtue of the classical Central Limit Theorem for M -estimators,
see Theorem 5.23 in [37] for instance, we have:

√
N (θ∗N − θ∗)⇒ N (0, Λ∗) as N →∞. (A.6)

This suffices to establish assertion (ii) since the parameter space Θ is assumed to be compact here. Turning to
term (1), holding N and n0 fixed, Theorem 4.5 claims that, in probability along the sequence X (respectively,
the sequence (X,W )): √

1/γ(t)Σ−1/2
πN (θN (t)− θ∗N )⇒ Z as t→∞, (A.7)

where Z denotes a q-dimensional centered Gaussian random vector with the identity as covariance, independent
from the sequence X (from the sequence (X,W ) respectively). Now it follows from Lemma A.1 combined with
the continuity of the application that maps any symmetric positive semi-definite matrix to its square root that

(n0ΣπN )1/2 → Σ∗1/2 in probability, as N,n0 →∞. (A.8)

Given that one may write√
n0

γ(t)
(θN (t)− θ∗N ) = (n0ΣπN )

1/2
√

1/γ(t)Σ−1/2
πN (θN (t)− θ∗N ) ,

it results from (A.7) and (A.8) that the following convergence in distribution holds true:

lim
N,n0→∞

lim
t→∞

√
n0

γ(t)
(θN (t)− θ∗N ) = Σ∗1/2Z. (A.9)

Assertions (i) and (iii) can be then deduced from (A.9) and (A.6) in a straightforward fashion (using the
independence of the limits, regarding (iii)).

Appendix B – Rate bound analysis

Here, we establish a rate bound for the HTGD algorithm under the additional assumption that the mapping
θ 7→ ψ(z, θ) is convex, referred to as 5th assumption. Note that Assumptions 4.4 and the 5th imply that θ∗N is
unique and LN is `-strongly convex on V. For simplicity’s sake, we suppose that the strong convexity property
holds true on Rd. The following result relies on standard arguments in stochastic approximation, see [1, 30]
or [31].
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Theorem B.2. Under the Assumptions of Theorem 4.5 & 5th assumption, and for a stepsize γ(t) = γ0t
−α

with some constants γ0 > 0 and α ∈ (1/2, 1] (when α = 1, take γ0 > 1/(2`)), there exists a constant C̃α < +∞
such that:

∀t ≥ 1, E[‖θN (t)− θ∗N‖2] ≤ C̃α
tα
. (B.1)

Proof. We restrict ourselves to the case α = 1 and follow the proof of [1]. By construction, we have

‖θN (t+ 1)− θ∗N‖2 = ‖θN (t)− θ∗N‖2 − 2γ(t)`RN (θN (t))ᵀ(θN (t)− θ∗N ) + ‖γ(t)`RN (θN (t))‖2.

Since

E[`RN (θN (t))|Ft] = ∇LN (θN (t)),

we get

E[|θN (t+1)−θ∗N |2 | θN (t)] = ‖θN (t)−θ∗N‖2−2γ(t)∇F (θN (t))ᵀ(θN (t)−θ∗N )+γ(t)2E[‖`RN (θN (t))‖2 | θN (t)].

The strong convexity property gives

LN (θN (t))− LN (θ∗N ) ≤ ∇LN (θN (t))T (θN (t)− θ∗N )−
2
‖θN (t)− θ∗N‖2

and

LN (θ∗N )− LN (θN (t)) ≤ −
2
‖θN (t)− θ∗N‖2,

so that

l‖θN (t)− θ∗N‖2 6 ∇LN (θN (t))T (θN (t)− θ∗N ).

Combining this inequality with the previous one and taking the expectation, we obtain

E[‖θN (t+ 1)− θ∗N‖2] ≤ E[‖θN (t)− θ∗N‖2](1− 2γ(t)l) + γ(t)2E[‖`RN (θN (t))‖2].

Under Assumption 4.2, we have E[‖`RN (θN (t))‖2] ≤ D for some constant D > 0. Using this bound and iterating
the recursion, we finally obtain

E[‖θN (t+ 1)− θ∗N‖2] 6 E[‖θ̂(1)− θ∗N‖2]

t∏
j=1

(1− 2lγ(j)) +D

t∑
j=1

γ(t)2
t∏

k=j+1

(1− 2lγ(k))

with the convention
∏t
k=t+1(1− 2lγ(k)) = 1. We now substitute the expression of γ(t) and, using the following

classical inequalities

1 + x 6 ex
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and

log(t+ 1)− log(j + 1) 6
t∑

k=j+1

1

k
,

we get

E‖θN (t+ 1)− θ∗N‖2 6

(E‖θN (1)− θ∗N‖2 + D̃
t∑

j=1

1

j2−2lγ0
)

(t+ 1)
2lγ0

,

where D̃ is a positive constant. Since γ0 > 1/(2l), we have

t∑
j=1

1

j2−2lγ0
6

t2lγ0−1

2lγ0 − 1

and we finally obtain the desired bound.
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