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1. Introduction 1.1. The Boltzmann equation. We consider the Boltzmann equation ( [START_REF] Maxwell | On the dynamical theory of gases[END_REF][START_REF] Boltzmann | Weitere studien uber das wärmegleichgewicht unter gasmolekulen[END_REF])

(1.1) ∂ t f + v • ∇ x f = Q(f, f )
on a given time interval I = [0, T ], T ∈ (0, +∞], x in the flat torus T d , and v ∈ R d .

The unknown f = f (t, x, v) ≥ 0 represents the time-dependent probability density of particles in the phase space, and Q(f, f ) is the collision operator, i.e. a quadratic integral operator modelling the interaction between particles:

Q(f, f ) = R d S f (v * )f (v ) -f (v * )f (v) B(|v -v * |, cos θ) dv * dσ
where the pre-collisional velocities v * and v are given by

v = v + v * 2 + |v -v * | 2 σ and v * = v + v * 2 - |v -v * | 2 σ v v * v ′ v ′ * θ σ ω Figure 1.
The geometry of the binary collision.

and the deviation angle θ is defined by (see Figure 1)

cos θ := v -v * |v -v * | • σ and sin(θ/2) := v -v |v -v| • σ = ω • σ .
It is known since Maxwell [25] that as soon as the interaction between particles is long-range, the so-called grazing collisions are predominant, and this results in a singularity of the collision kernel B at small θ. In particular when particles interact microscopically via repulsive inverse-power law potentials, the kernel B has a non integrable singularity around θ ∼ 0, commonly known as the non-cutoff case, and has the following general product form with γ > -d and s ∈ (0, 1). In dimension d = 3 and for an inverse-power law potential Φ(r) = r -α with α ∈ (1, +∞) then the exponents in (1.2) are γ = α -4 α and s = 1 α .

In dimension d = 3, it is standard terminology to denote hard potentials the case α > 4, Maxwellian molecules the case α = 4, moderately soft potentials the case α ∈ (2, 4) and very soft potentials the case α ∈ [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF][START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF]. By analogy we denote in any dimension d ≥ 2 hard potentials the case γ > 0, Maxwellian molecules the case γ = 0, moderately soft potentials the case γ < 0 and γ + 2s ∈ [0, 2] and very soft potentials the remaining case γ < 0 and γ + 2s ∈ (-d, 0).

1.2. The program of conditional regularity. The Boltzmann equation (1.1) is the main and oldest equation of statistical mechanics. It describes the dynamics of a gas at the mesoscopic level, between the microscopic level of the many-particle (and thus very high dimension) dynamical system following the trajectories of each particle, and the macroscopic level of fluid mechanics governed by Euler and Navier-Stokes equations.

The dynamical system of Newton equations on each particle is out of reach mathematically and contains way more information than could be handled. Regarding the macroscopic level, the well-posedness and regularity of solutions to the Euler and Navier-Stokes equations are still poorly understood in dimension 3 (with or without incompressibility condition). The state of the art on the Cauchy problem for the Boltzmann equation is similar to that of the 3D incompressible Navier-Stokes equations, which is not surprising given that the Boltzmann equation "contains" the fluid mechanical equations as formal scaling limits. Faced with this difficulty, Desvillettes and Villani initiated in [START_REF] Desvillettes | On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation[END_REF] an a priori approach, where solutions with certain properties are assumed to exist and studied. We follow this approach but refine it by assuming only controls of natural local hydrodynamic quantities. This means that we focus on the specifically kinetic aspect of the well-posedness issue.

Our result in this paper is conditional to the following bounds:

0 < m 0 ≤ R d f (t, x, v) dv ≤ M 0 , (1.3) R d f (t, x, v)|v| 2 dv ≤ E 0 , (1.4) R d f (t, x, v) log f (t, x, v) dv ≤ H 0 (1.5) for some constants M 0 > m 0 > 0, E 0 > 0, H 0 > 0.
The first equation (1.3) implies that the mass density is bounded above and below on the spatial domain and that there is no vaccum. It would be desirable to relax its lower bound part to only

T d ×R d f (t, x, v) dx dv ≥ m 0 > 0, i.e
. averaged in space. The equation (1.4) implies that the energy density is bounded above on the spatial domain, and the equation (1.5) implies that the entropy density is bounded above on the spatial domain (note that the energy bound implies that it is also bounded below). These conditions are satisfied for perturbative solutions close to the Maxwellian equilibrium (see for instance the recent work [START_REF] Gualdani | Factorization for non-symmetric operators and exponential h-theorem[END_REF] and references therein in the hard spheres case and [START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF][START_REF] Alexandre | Global existence and full regularity of the Boltzmann equation without angular cutoff[END_REF][START_REF] Alexandre | The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential[END_REF][START_REF] Alexandre | The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential[END_REF][START_REF] Alexandre | Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential[END_REF] in the non-cutoff case) but it is an oustandingly difficult problem to prove them in general.

Previous results of conditional regularity include, for the Boltzmann equation and under the conditions above, the proof of L ∞ bounds in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF], the proof of a weak Harnack inequality and Hölder continuity in [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], the proof of polynomially decaying upper bounds in [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF], and the proof of Schauder estimates to bootstrap higher regularity estimates in [START_REF] Imbert | The Schauder estimate for kinetic integral equations[END_REF]. In the case of the closely related Landau equation, which is a nonlinear diffusive approximation of the Boltzmann equation, the L ∞ bound was proved in [START_REF] Silvestre | Upper bounds for parabolic equations and the Landau equation[END_REF][START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF], the Harnack inequality and Hölder continuity were obtained in [START_REF] Wang | The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF], decay estimates were obtained in [START_REF] Cameron | Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials[END_REF], and Schauder estimates were established in [START_REF] Henderson | C ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF] (see also [START_REF] Imbert | A toy nonlinear model in kinetic theory[END_REF]). The interested reader is refereed to the short review [START_REF] Mouhot | Hörmander theories: new interplays[END_REF] of the conditional regularity program.

1.3. The main result. Let us define the notion of classical solutions we will use. • it is differentiable in t and x and twice differentiable in v everywhere;

• the equation (1.1) holds classically at every point in

[0, T ] × T d × R d .
The main result is then: Theorem 1.2. Assume that γ + 2s ∈ [0, 2] (hard and moderately soft potentials). Let f ≥ 0 be a solution to (1.1) according to Definition 1.1 that satisfies the hydrodynamic bounds (1.3)-(1.4)-(1.5) for all t ∈ [0, T ] and x ∈ T d . Then, there exists a(t) > 0 and b(t) > 0 depending on t, s, γ, d, m 0 , M 0 , E 0 and H 0 only so that

∀ t > 0, x ∈ T d , v ∈ R d , f (t, x, v) ≥ a(t)e -b(t)|v| 2 .
Remarks 1.3.

(1) The bound does not depend on the size domain of periodicity in x; this is due to the fact that the hydrodynamic bounds (1.3)-(1.4)-(1.5) are uniform in space. The periodicity assumption is made for technical conveniency and could most likely be removed.

(2) The requirement γ + 2s ≥ 0 could be relaxed in our proof at the expense of assuming f (t, x, v) ≤ K 0 for some constant K 0 > 0 (note that the functions a(t) and b(t) would then depend on K 0 ). However when γ + 2s < 0, this L ∞ bound is only proved when assuming more than (1.3)-(1.4)-(1.5) on the solutions, namely some L ∞ t,x L p v bounds with p > 0, see [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF].

1.4. Previous results of lower bound and comparison. The emergence and persistence of lower bounds for the Boltzmann equation is one of the most classical problems in the analysis of kinetic equations. It is a natural question: it advances the understanding of how the gas fills up the phase space, and how it relaxes towards the Maxwellian state; and such lower bounds are related to coercivity properties of the collision operator.

The study of lower bounds was initiated in the case of short-range interactions (namely hard spheres) and for spatially homogeneous solutions: Carleman [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF] proved the generation of lower bounds of the type f (t, v) ≥ C 1 e -C 2 |v| 2+ for constants C 1 , C 2 > 0 and t ≥ t 0 > 0, with > 0 as t 0 > 0 as small as wanted. He considered classical solutions with polynomial pointwise estimates of decay (such estimates are also proved in his paper) and assumed that the initial data has already a minoration over a ball in velocity. This was later significantly improved in [START_REF] Pulvirenti | A Maxwellian lower bound for solutions to the Boltzmann equation[END_REF]: the authors proved in this paper that spatially homogeneous solutions with finite mass, energy and entropy are bounded from below by a Maxwellian C 1 e -C 2 |v| 2 , where the constants depend on the mass, energy and entropy; they obtained the optimal Maxwellian decay by refining the calculations of Carleman but also got rid of the minoration assumptions on the initial data through a clever use of the iterated gain part of the collision kernel. Note that, in this spatially homogeneous setting and for hard spheres, the assumption of finite entropy could probably be relaxed in the latter statement by using the non-concentration estimate on the iterated gain part of the collision operator proved later in [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF]. Finally, still for hard spheres, the optimal Maxwelllian lower bound was extended to spatially inhomogeneous solutions in the torus satisfying the hydrodynamic bounds (1.3)-(1.4)-(1.5) in [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF], and to domains with boundaries in [START_REF] Briant | Instantaneous filling of the vacuum for the full Boltzmann equation in convex domains[END_REF][START_REF] Briant | Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions[END_REF]. The paper [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF] also proved the first lower bounds in the non-cutoff case, however they were poorer than Maxwellian (C 1 e -C 2 |v| β with β > 2 not necessarily close to 2) and required considerably stronger a priori assumptions on the solutions than (1.3)-(1.4)- (1.5). The latter point is due to the fact that the proof of the lower bound in [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF] in the non-cutoff case is based on a decomposition of the collision between grazing and non-grazing collisions and treating the former as mere error terms. Thus, Theorem 1.2 is a significant improvement over the result of [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF] in the non-cutoff case. Our proof here uses coercivity properties at grazing collisions, as pioneered by [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF], instead of treating them as error terms.

1.5. Method of proof. The well established pattern for proving lower bounds goes back to Carleman [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF] and follows the collision process: (1) establish a minoration on a ball on the time interval considered, (2) spread iteratively this lower bound through the collision process, i.e. using coercivity properties of the collision operator. The step (1), i.e. the minoration on a ball v ∈ B 1 , is deduced here from the weak Harnack inequality as in [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], see Proposition 3.1 below (and [24, Theorem 1.3]). The spreading argument of step ( 2) is then performed in Lemma 3.4. The geometric construction in Lemma 3.4 resembles the iterative spreading of lower bounds in the cut-off case, as in [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF]. The key difference is the way we handle the singularity in the integral kernel. In [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF], a priori assumptions of smoothness of the solution are used to remove a neighbourhood around θ = 0 in the collision integral and treat it as an error term. Here instead we use coercivity and sign properties of this singular part of the collision operators, as developed and used in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | The Schauder estimate for kinetic integral equations[END_REF][START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF]; because of the fractional derivative involved we use also a barrier method to justify the argument; it is inspired from [START_REF] Silvestre | Regularity estimates for parabolic integro-differential equations and applications[END_REF], and was recently applied to the Boltzmann equation in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF]. 1.6. A note on weak solutions. No well-posedness results are known for the Boltzmann equation without perturbative conditions or special symmetry. This is true both for strong and weak notions of solutions. As far as the existence is concerned, the unconditional existence of solutions is only known for renormalized solutions with defect measure, see [START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF]. Current results on uniqueness of solutions require significant regularity assumptions (see for example [START_REF] Alexandre | Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential[END_REF]). It is thus not surprising that it is rather inconvenient to prove estimates for the inhomogeneous Boltzmann equation in any context other than that of classical solutions. Our main result in Theorem 1.2 is presented as an a priori estimate on classical solutions. The estimate does not depend quantitatively on the smoothness of the solution f . Some computations in the proof however require a qualitative smoothness assumption of f so the quantities involved make sense.

Let us be more precise, and discuss the two parts of the proof of Theorem 1.2 described in the previous section. Part [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF] is established thanks to the weak Harnack inequality from [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] (see Proposition 3.1). The qualitative conditions necessary for this step, as stated in [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], is that

f ∈ L 2 ([0, T ] × T d , L ∞ loc ∩ H s loc (R d
)) solves the equation (1.1) in the sense of distributions. Part (2) consists in expanding the lower bound from v ∈ B 1 to larger values of |v| and is based on comparison principles with certain barrier functions. The notion of solution that is compatible with these methods is that of viscosity super-solutions. In this context, it would be defined in the following way.

Denote f the lower semicontinuous envelope of f . We say a function f :

C([0, T ] × T d , L 1 2 (R d )
) is a viscosity super-solution of (1.1) if whenever there is a C 2 function ϕ for which f -ϕ attains a local minimum at some point (t 0 , x 0 , v 0 ) ∈ (0, T ] × T d × R d , then the following inequality holds

(ϕ t + v • ∇ x ϕ)(t 0 , x 0 , v 0 ) ≥ Bε(v 0 ) (ϕ(t 0 , x 0 , v ) -ϕ(t 0 , x 0 , v 0 ))K f (t 0 , x 0 , v 0 , v ) dv + R d \Bε(v 0 ) (f (t 0 , x 0 , v ) -f (t 0 , x 0 , v 0 ))K f (t 0 , x 0 , v 0 , v ) dv + Q ns (f, ϕ)(t 0 , x 0 , v 0 ).
Here K f is the Boltzmann kernel written in (2.4), Q ns is the non-singular term written below in (2.1), ε > 0 is any small number so that the minimum of f -ϕ in B ε (v 0 ) is attained at v 0 . Following the methods in [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF] or [START_REF] Silvestre | Regularity estimates for parabolic integro-differential equations and applications[END_REF] for instance, one should have no problem reproducing our proofs in this paper in the context of such viscosity solutions.

It is unclear how the notion of viscosity solution compares with the notion of renormalized solutions. We are not aware of any work on viscosity solutions in the context of the Boltzmann equation. If one tries to adapt the proofs in this paper to the renormalized solutions with defect measure of [START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF], it seems that one would face serious technical difficulties. In order to keep this paper cleaner, and to make it readable for the largest possible audience, we believe that it is most convenient to restrict our analysis to classical solutions. 1.7. Plan of the paper. Section 2 introduces the decomposition of the collision operator adapted to the non-cutoff setting and recalls key estimates on it. Section 3 proves the main statement: we first recall the result of [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] providing a minoration on a ball, then introduce our new argument for the spreading step, and finally complete the proof that follows readily from the two latter estimates.

1.8. Notation. We denote a b (respectively a b) for a ≤ Cb (respectively a ≥ Cb) when the constant C > 0 is independent from the parameters of the calculation; when it depends on such parameters it is indicated as an index, such as a M 0 b. We denote B R (v 0 ) the ball of R d centered at v 0 and with radius R, and we omit writing the center when it is 0, as in B R = B R (0).

Preliminaries

2.1. Decomposition of the collision operator. It is standard since the discovery of the so-called "cancellation lemma" [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF] to decompose the Bolzmann collision operator Q(f, f ) into singular and non-singular parts as follows:

Q(f 1 , f 2 )(v) = R d ×S f 1 (v * )f 2 (v ) -f 1 (v * )f 2 (v) B dv * dσ = f 1 (v * ) f 2 (v ) -f (v) B dv * dσ + f 2 (v) f 1 (v * ) -f 1 (v * ) B dv * dσ =: Q s (f 1 , f 2 ) + Q ns (f 1 , f 2 )
where "s" stands for "singular" and "ns" stands for "non-singular". The part Q ns is indeed non-singular: Given v ∈ R d , the change of variables (v * , σ) → (v * , σ) has Jacobian dv * dσ = 2 d-1 (cos θ/2) 2 dv * dσ, which yields (same calculation as [2, Lemma 1])

(2.1)

Q ns (f 1 , f 2 )(v) = f 2 (v) R d S f 1 (v * ) -f 1 (v * ) B dv * dσ =: f 2 (v)(f 1 * S)(v) with S(u) := S d-2 π 2 0 (sin θ) d-2 (cos θ/2) -d B |u| cos θ/2 , cos θ -B(|u|, cos θ) dθ = S d-2 |u| γ π 2 0 (sin θ) d-2 (cos θ/2) -d-γ -1 b(cos θ) dθ =: C S |u| γ
where we have used the precise form (1.2) of the collision kernel in the second line.

The constant C S > 0 is finite, positive and only depends on b, d, and γ. The first term Q s is an elliptic non-local integral operator of order 2s (see [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF][START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF] and the many other subsequent works revealing this fact), and the second term Q ns (f, f ) is a lower order term that happens to be nonnegative.

Observe that Q ns ≥ 0, and thus we can remove this lower order term and the function f is a supersolution of the following equation, (2.2)

f t + v • ∇ x f ≥ Q s (f, f ),
where

Q s (f, f )(v) = R d ×S d-1 f 2 (v ) -f 2 (v) f 1 (v * )b(cos θ) dv * dσ.
We change variables (Carleman representation [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF]) according to (v * , σ) → (v , v * ), with Jacobian dv 2) dv dv * (see for instance [30, Lemma A.1]) and we deduce

* dσ = 2 d-1 |v -v | -1 |v -v * | -(d-
(2.3) Q s (f 1 , f 2 )(v) = p.v. R d K f 1 (v, v ) f 2 (v ) -f 2 (v) dv ,
where

K f 1 (t, x, v, v ) := 2 d-1 |v -v| v * ∈ v+(v -v) ⊥ f 1 (t, x, v * )|v -v * | γ-(d-2) b(cos θ) dv * := 1 |v -v| d+2s v * ∈ v+(v -v) ⊥ f 1 (t, x, v * )|v -v * | γ+2s+1 b(cos θ) dv * (2.4)
and where we have used the assumption (1.2) to write

2 d-1 b(cos θ) = |v -v | -(d-1)-2s |v -v * | (d-2)-γ |v -v * | γ+2s+1 b(cos θ)
with b smooth on [0, π] and stricly positive on [0, π). The notation p.v. denotes the Cauchy principal value around the point v. It is needed only when s ∈ [1/2, 1).

Estimates on the collision operator.

We start with a simple estimate from above the kernel K f as in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF]Lemma 4.3].

Proposition 2.1 (Upper bounds for the kernel). For any r > 0, the following inequality holds

∀ t ∈ [0, ∞), x ∈ T d , v ∈ R d ,        Br(v) |v -v | 2 K f (t, x, v, v ) dv Λ(t, x, v)r 2-2s , R d \Br(v) K f (t, x, v, v ) dv Λ(t, x, v)r -2s
where

Λ(t, x, v) = R d f (t, x, v * )|v -v * | γ+2s dv * . Remark 2.2. Note that if γ + 2s ∈ [0, 2] and (1.3-1.5) hold, then Λ(t, x, v) M 0 ,E 0 (1 + |v|) γ+2s .
Proof of Proposition 2.1. To prove the first inequality we write (omitting t, x)

Br(v) |v -v | 2 K f (v, v ) dv = Br(v) |v -v | 2-d-2s v * ∈ v+(v -v) ⊥ f (v * )|v -v * | γ+2s+1 b(cos θ) dv * dv = ω∈S d-1 r u=0 u 1-2s du v * ∈ v+(v -v) ⊥ f (v * )|v -v * | γ+2s+1 b(cos θ) dv * dv r 2-2s ω∈S d-1 ω∈S d-1 δ 0 (ω • ω) +∞ ũ=0
ũd-1+γ+2s f (ũω) dũ dω dω

r 2-2s v * ∈R d f (v * )|v -v * | γ+2s dv * .
The proof of the second inequality is similar:

R d \Br(v) K f (v, v ) dv = R d \Br(v) |v -v | -d-2s v * ∈ v+(v -v) ⊥ f (v * )|v -v * | γ+2s+1 b(cos θ) dv * dv = ω∈S d-1 +∞ u=r u -1-2s du v * ∈ v+(v -v) ⊥ f (v * )|v -v * | γ+2s+1 b(cos θ) dv * dv r -2s ω∈S d-1 ω∈S d-1 δ 0 (ω • ω) +∞ ũ=0 ũd-1+γ+2s f (ũω) dũ dω dω r -2s v * ∈R d f (v * )|v -v * | γ+2s dv * .
This concludes the proof.

The latter bounds are useful to estimate Q s (f, ϕ) for a C 2 barrier function ϕ. 

|Q s (f, ϕ)| = p.v. R d ϕ(v ) -ϕ(v) K f (t, x, v, v ) dv ≤ Λ(t, x, v) ϕ 1-s L ∞ (R d ) [ϕ] s Ċ2 (R d )
where Λ(t, x, v) is the same quantity as in Proposition 2.1 and

[ϕ] Ċ2 (R d ) := sup v =v |ϕ(v ) -ϕ(v) -(v -v) • ∇ϕ(v)| |v -v| 2 ∇ 2 ϕ L ∞ (R d ) .
Proof. We decompose the domain of integration in Q s (f, ϕ) between B r (v) and R d \ B r (v), for an arbitrary radius r > 0 to be specified later. Due to the symmetry of the kernel

K f (t, x, v, v + w) = K f (t, x, v, v -w), we have that p.v. Br(v) (v -v) • ∇ϕ(v)K f (t, x, v, v ) dv = 0. Therefore p.v. Br(v) [ϕ(v ) -ϕ(v)]K f (t, x, v, v ) dv = Br(v) [ϕ(v ) -ϕ(v) -(v -v) • ∇ϕ(v)]K f (t, x, v, v ) dv , ≤ [ϕ] Ċ2 (R d ) Br(v) |v -v| 2 K f (t, x, v, v ) dv , [ϕ] Ċ2 (R d ) Λ(t, x, v)r 2-2s ,
where we have used Proposition 2.1 in the last line.

Regarding the rest of the domain R d \ B r (v), we have

R d \Br(v) [ϕ(v ) -ϕ(v)]K f (t, x, v, v ) dv ≤ 2 ϕ L ∞ R d \Br(v) K f (t, x, v, v ) dv , ϕ L ∞ Λ(t, x, v)r -2s .
Adding both inequalities above, we get

Q 1 (f, ϕ) Λ(t, x, v) [ϕ] C 2 (v) r 2-2s + ϕ L ∞ r -2s .
We conclude the proof choosing

r := ϕ L ∞ (R d ) /[ϕ] Ċ2 (R d ) 1/2 . 2.3.
Pointwise upper bound on the solution. The following L ∞ bound is one of the main results in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF]. We state the slightly refined version in [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF]Theorem 4.1], which includes in particular the limit case γ + 2s = 0.

Proposition 2.4 (Global upper bound - [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF]). Assume γ + 2s ∈ [0, 2]. Let f ≥ 0 be a solution to (1.1) according to Definition 1.1 that satisfies the hydrodynamic bounds (1.3-1.4-1.5) for all t ∈ [0, T ] and x ∈ T d .

Then, there exists a non-increasing function b(t) > 0 on (0, T ] depending on m 0 , M 0 , E 0 and H 0 only so that

∀ t ∈ (0, T ], x ∈ T d , v ∈ R d , f (t, x, v) ≤ b(t).

Lower bounds

Recall that we prove the appearance of a lower bound on a ball thanks to a weak Harnack inequality, then spread it iteratively using the mixing properties of the geometry of collision and coercivity estimates on the collision operator.

3.1. Weak Harnack inequality and initial plateau. In [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], two of the authors obtain a weak Harnack inequality for the linear Boltzmann equation. This weak Harnack inequality implies a local lower bound for the nonlinear Boltzmann equation. It is stated in the following proposition. Note that Proposition 2.4 gives us control of f L ∞ in terms of the other parameters. Then, for any R > 0, there is a nondecreasing function a : (0, ∞) → (0, ∞) depending on s, γ, d, m 0 , M 0 , E 0 and H 0 and R only, such that

∀ v ∈ B R (0), f (t, x, v) ≥ a(t).
Remark 3.2. Note that this result implies, in particular, that any solutions as in the statement satisfies f (t, x, v) > 0 for every (t, x, v) ∈ (0, T ] × T d × R d . Remark 3.3. Note that this result holds for γ + 2s < 0 conditionally to the L ∞ bound. However this L ∞ bound is proved only when γ + 2s ∈ [0, 2] (see [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF]).

3.2. Spreading lemma around zero. Lemma 3.4 (Spreading around zero). Consider T 0 ∈ (0, 1). Let f ≥ 0 be a supersolution of (2.2) so that (1.3-1.4) hold, and such that f ≥ 1 v∈B R on [0, T 0 ] for some > 0 and R ≥ 1. Then, there is a constant c s > 0 depending only on d, s, M 0 , E 0 (but not on m 0 or H 0 ) such that for any ξ ∈ (0, 1-2 -1/2 ) so that ξ q R d+γ < 1/2 with q = d+2(γ +2s+1), one has

∀ t ∈ [0, T 0 ], x ∈ T d , v ∈ B √ 2(1-ξ)R , f (t, x, v) ≥ c s ξ q R d+γ 2 min t, R -γ ξ 2s
. The proof of Lemma 3.4 combines, at its core, the spreading argument of the cut-off case that goes back to Carleman [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF], used here in the form developed in [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF], coercivity estimates on the collision operator at grazing collisions developed in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF], and finally a barrier argument similar to [START_REF] Silvestre | Regularity estimates for parabolic integro-differential equations and applications[END_REF]Theorem 5.1].

Proof of Lemma 3.4. Given ξ ∈ (0, 1 -2 -1/2 ) as in the statement, consider a smooth function ϕ ξ valued in [0, 1] so that

ϕ ξ = 1 in B √ 2(1-ξ) and ϕ ξ = 0 outside B √ 2(1-ξ/2)
and

D 2 ϕ ξ L ∞ (R d ) ξ -2 . Define ϕ R,ξ (v) := ϕ ξ (v/R). Observe that ϕ R,ξ L ∞ (R d ) = 1 and D 2 ϕ R,ξ L ∞ (R d ) (Rξ) -2 .
Apply Lemma 2.3 and Remark 2.2 to get

(3.1) |Q 1 (f, ϕ R,ξ )| Λ(t, x, v)(Rξ) -2s M 0 ,E 0 R γ+2s (Rξ) -2s M 0 ,E 0 R γ ξ -2s . Define the following barrier function ˜ (t) := αξ q R d+γ 2 1 -e -CR γ ξ -2s t CR γ ξ -2s
for some α ∈ (0, 1) to be chosen small enough later and where C ≥ 1 is the constant in (3.1) depending on M 0 , E 0 . Our goal is to prove that

∀ t ∈ [0, T 0 ], x ∈ T d , v ∈ R d , f ≥ ˜ (t)ϕ R,ξ .
Thanks to Remark 3.2 we can assume that f > 0 everywhere on [0, T 0 ] × T d × R d : it is true for any t ∈ (0, T 0 ] and we can shift the solution f in time by f (t + ε, x, v) and prove the lower bound independently of ε > 0.

Let us prove that f (t, x, v) > ˜ (t)ϕ R,ξ (v) for all t ∈ [0, T 0 ] × T d × R d . This inequality holds at t = 0 since ˜ (0) = 0. If the inequality was not true, then there would be a first crossing point (t 0 , x 0 , v 0 ) ∈ [0, T 0 ] × T d × supp ϕ (the crossing point cannot be outside the support of ϕ since f > 0) so that f (t 0 , x 0 , v 0 ) = ˜ (t 0 )ϕ R,ξ (v 0 ) and

f (t, x, v) ≥ ˜ (t)ϕ R,ξ (v) for all t ∈ [0, t 0 ], x ∈ T d , v ∈ R d .
The smallness condition imposed on ξ in the statement implies that ˜ (t) ≤ /2 for all t ∈ [0, T 0 ], and thus

v 0 / ∈ B R since ϕ ≡ 1 and f ≥ in B R . Moreover v 0 ∈ B √ 2R(1-ξ/2
) since ϕ = 0 outside the latter ball. The contact point also satisfies the extremality and monotonocity (in time) conditions ∇ x f (t 0 , x 0 , v 0 ) = 0 and ˜ (t 0 )ϕ R,ξ (v 0 ) ≥ ∂ t f (t 0 , x 0 , v 0 ).

Using the fact that f is a supersolution of (2.2), we thus get

(3.2) ˜ (t 0 )ϕ R,ξ (v 0 ) ≥ Q s (f, f )(t 0 , x 0 , v 0 ). We decompose Q s (f, f ) as Q s (f, f )(t 0 , x 0 , v 0 ) = Q s f, f -˜ (t)ϕ R,ξ (t 0 , x 0 , v 0 ) + ˜ (t)Q s (f, ϕ R,ξ ) (t 0 , x 0 , v 0 ), = R d f (t 0 , x 0 , v ) -˜ (t 0 )ϕ R,ξ (v ) K f (t 0 , x 0 , v 0 , v ) dv + ˜ (t 0 )Q s (f, ϕ R,ξ ) (t 0 , x 0 , v 0 ).
We omit t 0 , x 0 in f and K f from now on to unclutter equations. The barrier satisfies

˜ (t) = αξ q R d+γ 2 -CR γ ξ -2s ˜ (t),
and plugging the last equation into (3.2), and using (3.1), gives

αξ q R d+γ 2 -Cξ -2s R γ ˜ (t 0 ) ≥ R d f (v ) -˜ (t 0 )ϕ R,ξ (v ) K f (v 0 , v ) dv -Cξ -2s R γ ˜ (t 0 ).
We cancel out the last term and obtain

αξ q R d+γ 2 R d v * ∈ v 0 +(v -v 0 ) ⊥ f (v ) -˜ (t 0 )ϕ R,ξ (v ) f (v * ) |v -v * | γ+2s+1 |v 0 -v | d+2s b(cos θ) dv * dv .
Since the integrand is non-negative, we bound the integral from below by restricting the domain of integration to v ∈ B R and v * ∈ B R (balls centered at zero):

αξ q R d+γ 2 v ∈B R v * ∈ v 0 +(v -v 0 ) ⊥ 1 B R (v * ) f (v ) -˜ (t 0 )ϕ R,ξ (v ) f (v * ) |v -v * | γ+2s+1 |v 0 -v | d+2s b(cos θ) dv * dv .
On this domain of integration, we have f (v * ) ≥ , and the assumption

ξ q R d+γ < 1/2 implies that f (v ) -˜ (t 0 )ϕ R,ξ (v ) ≥ -˜ ≥ /2, thus αξ q R d+γ 2 2 R -d-2s v ∈B R v * ∈ v 0 +(v -v 0 ) ⊥ 1 B R (v * )|v -v * | γ+2s+1 b(cos θ) dv * dv . Observe that since |v 0 | ∈ [R, √ 2R(1 -ξ/2)], the volume of v ∈ B R such that the distance between 0 and the line (vv ) is more than R(1 -ξ/2), is O(R d ξ (d+1)/2 ). For v in this region C R (see shaded region in Figure 2) the (d -1)-dimensional volume of v * ∈ B R such that (v * -v 0 ) ⊥ (v -v 0 ) is O(R d-1 ξ (d-1)/2 ). Finally removing the v ∈ B ξ 2 R (v 0 ) (which does not change the volume estimates above) ensures that |v -v * | ≥ ξ 2 R. Therefore, αξ q R d+γ 2 2 R -d-2s v ∈C R v ∈C * R |v -v * | γ+2s+1 b(cos θ) dv * dv ξ q R d+γ 2
with q = d + 2(γ + 2s + 1), and where we have used the deviation angles θ ∼ π/2 (non-grazing collisions) for which b is positive.

v v * v 0 B R B √ 2R ≈ Rξ √ 2Rξ ≈ R √ ξ ≈ R √ ξ Figure 2.
The binary collisions spreading the lower bound.

We have hence finally obtained the inequality

αξ q R d+γ 2 ≥ βξ q R d+γ 2
for some β > 0 independent of the free parameter α ∈ (0, 1), which is absurd.

The resulting lower bound is

∀ t ∈ [0, T 0 ], x ∈ T d , v ∈ B √ 2(1-ξ)R , f (t, x, v) ≥ ˜ (t)ϕ R,ξ (v) ≥ αξ q R d+γ 2 1 -e -CR γ ξ -2s t/2 CR γ ξ -2s ≥ cξ q R d+γ 2 min t, R -γ ξ 2s
which concludes the proof.

Remark 3.5. The estimate in Lemma 3.4 is most likely not optimal in terms of the power of ξ, as one could estimate better the factor |v -v * | γ+2s+1 |v 0 -v | -d-2s . However we do not search for optimality here since the power in ξ plays no role in the proof of Proposition 3.6 below. Then there are a, b > 0 depending on d, s, m 0 , M 0 , E 0 , H 0 and T 0 so that

∀ x ∈ T d , v ∈ R d , f (T 0 , x, v) ≥ ae -b|v| 2 .
Proof. Define the following sequences:

         T n := 1 -1 2 n T 0 , n ≥ 1, ξ n = 1 2 n+1 , n ≥ 1, R n+1 = √ 2(1 -ξ n )R n , n ≥ 1, R 0 = 1.
Observe that 2 n/2 R n ≤ 2 n/2 since Π +∞ n=1 (1 -2 -n ) < +∞. Proposition 3.1 implies that f ≥ 0 for t ∈ [T 0 /2, T 0 ] = [T 1 , T 0 ], x ∈ T d , v ∈ B 1 = B R 0 , and for some 0 > 0, which initialises our induction.

We then construct inductively a sequence of lower bounds n > 0 so that f ≥ n for t ∈ [T n+1 , T 0 ], x ∈ T d and v ∈ B Rn . We apply Lemma 3.4 repeatedly to obtain the successive values of n . Observe that ξ q n R d+γ n n < (2 -n ) q-(d+γ)/2 < 1/2, so the smallness assumption on ξ of Lemma 3.4 holds through the iteration. The sequence of lower bounds n satisfies the induction

n+1 = c s ξ q n R d+γ n 2 n min T n+1 -T n , R -γ n ξ 2s n , = c s ξ q n R d+γ n 2
n min 2 -n-1 T 0 , R -γ n ξ 2s n ≥ c2 -Cn 2 n T 0 for some constants c, C > 0, which results in n ≥ u 2 n for some u ∈ (0, 1). This implies the Gaussian decay. Remark 3.7. Note that the proof of Lemma 3.4 applies just as well in the cut-off case when b is integrable, and covers actually all physical interactions. This is a manifestation of the fact that the collisions used to spread the lower bound are those with non-grazing angles θ ∼ π/2. In our notation, the short-range interactions correspond to s < 0. The most important such short-range interaction is that of hard spheres in dimension d = 3, corresponds to γ = 1 and s = -1. Proposition 3.1 is taken from [START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], which applies exclusively to the non-cutoff case. In the proof of Theorem 1.2, we used Proposition 3.1 to establish the lower bound in the initial ball B 1 . This initial step would be different in the cut-off case. The estimates in the rest of the iteration carry through and the conclusion does not depend on s being positive.

(1. 2 )

 2 B(r, cos θ) = r γ b(cos θ) with b(cos θ) ≈ θ∼0 |θ| -(d-1)-2s

Definition 1 . 1 (

 11 Classical solutions to the Boltzmann equation). Given T ∈ (0, +∞], we say that a function f : [0, T ] × T d × R d → [0, +∞) is a classical solution to the Boltzmann equation (1.1) if

Lemma 2 . 3 (

 23 Upper bound for the linear Boltzmann operator). Let ϕ be a bounded, C 2 function in R d . The following inequality holds

Proposition 3 . 1 (

 31 Local minoration -[24, Theorem 1.3]). Let f ≥ 0 be a solution to (1.1) according to Definition 1.1 that is L ∞ and satisfies the hydrodynamic bounds (1.3-1.4-1.5) for all t ∈ [0, T ] and x ∈ T d .

3. 3 .

 3 Proof of the Gaussian lower bound. Theorem 1.2 is a direct consequence of the following proposition.Proposition 3.6 (Gaussian lower bound). Consider T 0 ∈ (0, 1). Assume that f : [0, T 0 ] × T d × R d → [0, +∞)is a solution to (1.1) according to Definition 1.1 that satisfies the hydrodynamic bounds (1.3-1.4-1.5) for all t ∈ [0, T 0 ] and x ∈ T d .
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