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In this work, we study the existence of nontrivial weak solution for the following new nonlocal p(x)-Kirchhoff problem with variable exponent:

where a, b > 0 are constants, Ω ⊂ R N is a bounded smooth domain, p ∈ C(Ω) with N > p(x) > 1, λ > 0 is a real parameter and g is a continuous function. The proofs of our main results are based on variational arguments and the theory of variable exponent Sobolev spaces. We significantly extend and complement some results from the previous literature.

Introduction and statement of main result

In this paper we deal with the question of the existence of nontrivial weak solution for the following problem

           -a -b Ω 1 p(x)
|∇u| p(x) dx div(|∇u| p(x)-2 ∇u) = λ|u| p(x)-2 u + g(x, u) in Ω,

u = 0, on ∂Ω, (1.1) 
where Ω ⊂ R N is a bounded smooth domain, p ∈ C(Ω) with N > p(x) > 1, a, b > 0 are constants, g is a continuous function satisfying conditions which will be stated later, λ > 0 is a real parameter and div(|∇u| p(x)-2 ∇u) is the p(x)-Laplacian operator, that is,

∆ p(x) = div(|∇u| p(x)-2 ∇u) = N i=1
|∇u| p(x)-2 ∂u ∂x i , which is not homogeneous and related to variable exponent Lebesgue space L p(x) (Ω) and variable exponent Sobolev space W 1,p(x) (Ω). These facts imply some difficulties. For example, some classical theories and methods, including the Lagrange multiplier theorem and the theory of Sobolev space, cannot be applied. We call (1.1) a problem of Kirchhoff type because of the appearance of the term b

Ω 1 p(x)
|∇u| p(x) dx which makes the study of (1.1) interesting.

In the previous decades, the Kirchhoff type problem (1.1) with p(x) ≡ 2 has been object of intensive research as its strong relevance in applications (see [START_REF] Lei | Multiple positive solutions for nonlocal problems involving a sign-changing potential[END_REF][START_REF] Lei | Positive solutions for a nonlocal problem with singularity[END_REF][START_REF] Wang | Multiple positive solutions for a nonlocal problem involving critical exponent[END_REF]). Indeed, the study of Kirchhoff type problems, which arise in various models of physical and biological systems, have received more and more attention in recent years. More precisely, Kirchhoff established a model given by the equation

ρ ∂ 2 u ∂t 2 - p 0 h + E 2L L 0 ∂u ∂x 2 dx ∂ 2 u ∂x 2 = 0, (1.2) 
where ρ, p 0 , h, E, L are constants which represent some physical meanings respectively. Equation (1.2) extends the classical D'Alembert wave equation by considering the effects of the changes in the length of the strings during the vibrations. Since the variable exponent spaces were thoroughly studied by Kovácik and Rákosník [START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF], they have been used in the previous decades to model various phenomena. In the studies of a class of non-standard variational problems and PDEs, variable exponent spaces play an important role such as in electrorheological fluids [START_REF] Ružička | Electrorheological fluids: modeling and mathematical theory[END_REF][START_REF] Rajagopal | On the modeling of electrorheological materials[END_REF][START_REF] Rajagopal | Mathematical modeling of electrorheological materials[END_REF], thermorheological fluids [START_REF] Antontsev | On stationary thermo-rheological viscous flows[END_REF], image processing [START_REF] Aboulaich | New diffusion models in image processing[END_REF][START_REF] Chen | Variable exponent, linear growth functionals in image restoration[END_REF][START_REF] Li | Variable exponent functionals in image restoration[END_REF] and so on. In recent years, there has been a great deal work dealing with problem (1.1), specially on the existence, multiplicity, uniqueness and regularity of solutions. Some important and interesting results can be found, for example, in [START_REF] Alves | Multiple solutions for a class of quasilinear problems involving variable exponents[END_REF][START_REF] Antontsev | Uniqueness results for equations of the p(x)-Laplacian type[END_REF][START_REF] Adamowicz | Harnack's inequality and the strong p(•)-Laplacian[END_REF][START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF][START_REF] Byun | On W 1,q(•) -estimates for elliptic equations of p(x)-Laplacian type[END_REF][START_REF] Chung | Multiple solutions for a class of p(x)-Laplacian problems involving concave-convex nonlinearities[END_REF][START_REF] Chabrowski | Existence of solutions for p(x)-Laplacian problems on a bounded domain[END_REF][START_REF] Colasuonno | Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations[END_REF][START_REF] Dai | Existence of solutions for a p(x)-Kirchhoff-type equation[END_REF][START_REF] Dai | Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data[END_REF][START_REF] Fan | Existence and uniqueness for the p(x)-Laplacian-Dirichlet problems[END_REF][START_REF] Fan | On the spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF][START_REF] Fan | Existence of solutions for p(x)-Laplacian Dirichlet problem[END_REF][START_REF] Fan | Nodal solutions of p(x)-Laplacian equations[END_REF][START_REF] Hamdani | On a nonlocal asymmetric Kirchhoff problems[END_REF][START_REF] Hamdani | Existence results of the $m-$polyharmonic Kirchhoff problems[END_REF][START_REF] Kefi | On a p(x)-biharmonic problem with singular weights[END_REF][START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF][START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF][START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF][START_REF] Pan | Weak solutions for parabolic equations with p(x)-growth[END_REF][START_REF] Zhang | Gradient estimates for the strong p(x)-Laplace equation[END_REF] and references therein.

Motivated by the papers mentioned above, our main purpose is to consider the perturbed

problem (1.1) with a new nonlocal term a -b Ω 1 p(x)
|∇u| p(x) dx which is presents interesting difficulties. The key argument in our main result is to prove that the energy functional J (which appeared in (3.1)) of problem (1.1) possesses a Mountain Pass energy c. To deal with the difficulty caused by the noncompactness due to the Kirchhoff function term, we should estimate precisely the value of c and give a threshold value (see Lemma 3.1 below) under which the Palais-Smale condition at the level c for J is satisfied. So the variational technique for problem (1.1) becomes more delicate. We will obtain a nontrivial weak solution by using the Mountain Pass theorem. To our best knowledge, the present papers results are not covered in the literature.

Next we assume that the nonlinearity g(x, t) ∈ C(Ω × R) satisfies the following assumptions:

(g 1 ) : the subcritical growth condition:

|g(x, s)| ≤ C(1 + |s| q(x)-1 ) for all (x, s) ∈ Ω × R,
where C > 0 and p(x) < q(x) < p * (x);

(g 2 ) : lim s→0 g(x, s) |s| p(x)-2 s = 0;

(g 3 ) : there exist s A > 0 and θ

∈ (p + , 2p -2 p + ) such that 0 < θG(x, s) ≤ sg(x, s), ∀|s| ≥ s A , ∀x ∈ Ω,
where G(x, s) = s 0 g(x, t)dt.

Our main result is the following.

Theorem 1.1. Suppose that conditions (g 1 )-(g 3 ) hold and the function q ∈ C(Ω) satisfies

p -< p(x) < p + < 2p -< q -< q(x) < p * (x). (1.3)
Then, there exists λ * > 0 such that, for any λ ∈ (0, λ * ) problem (1.1) has a nontrivial weak solution.

This paper is organized as follows. In Section 2, we present some necessary preliminary knowledge on variable exponent Sobolev spaces. In Section 3, we prove Theorem 1.1. In the following, | • | denotes the Lebesgue measure in Ω and C (respectively C ) denotes always a generic positive constant independent of n and (respectively independent of n), even their value could be changed from one line to another one.

Preliminaries on variable exponent spaces

In order to discuss problem (1.1), we need some theories on spaces L p(x) (Ω) and W 1,p(x) (Ω) which we call generalized Lebesgue Sobolev spaces. Let Ω be a bounded domain of R N , denote

C + (Ω) = {p(x); p(x) ∈ C(Ω), p(x) > 1, ∀ x ∈ Ω} and p -= inf Ω p(x) ≤ p(x) ≤ p + = sup Ω p(x) < N.
For any p ∈ C + (Ω), we introduce the variable exponent Lebesgue space

L p(•) (Ω) = u : u is a measurable real-valued function such that Ω |u(x)| p(x) dx < ∞ , endowed with the so-called Luxemburg norm u L p(x) (Ω) = |u| p(.) = in f µ > 0; Ω u(x) µ p(x) dx ≤ 1 ,
which is a separable and reflexive Banach space. For basic properties of the variable exponent Lebesgue spaces we refer to [START_REF] Fan | A Knobloch-type result for p(t)-Laplacian systems[END_REF][START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF][START_REF] Yao | Solutions for Neumann boundary value problems involving p(x)-Laplace operators[END_REF].

Proposition 2.1. [38] The space (L p(x) (Ω), |.| p(x)
) is separable, uniformly convex, reflexive and its conjugate space is (L q(x) (Ω), |.| q(x) ) where q(x) is the conjugate function of p(x) i.e

1 p(x) + 1 q(x) = 1, ∀x ∈ Ω.
For all u ∈ L p(x) (Ω) and v ∈ L q(x) (Ω) the Hölder's type inequality

Ω uvdx ≤ 1 p -+ 1 q -|u| p(x) |v| q(x)
holds true.

The inclusion between Lebesgue spaces also generalizes the classical framework, namely if 0 < |Ω| < ∞ and p 1 , p 2 are variable exponents such that p 1 ≤ p 2 in Ω then there exists a continuous embedding L p 2 (x) (Ω) → L p 1 (x) (Ω).

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the m(•)-modular of the L p(•) (Ω) space, which is the modular ρ p(•) of the space L p(•) (Ω)

ρ p(•) (u) := Ω |u| p(x) dx.
Provide a reference to Lemma 2.1. Use for example [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF] Lemma 2.1. If u n , u ∈ L p(•) and p + < +∞, then the following properties hold:

1. |u| p(•) > 1 ⇒ |u| p - p(•) ≤ ρ p(•) (u) ≤ |u| p + p(•) ; 2. |u| p(•) < 1 ⇒ |u| p + p(•) ≤ ρ p(•) (u) ≤ |u| p - p(•) ; 3. |u| p(•) < 1 (respectively = 1; > 1) ⇐⇒ ρ p(•) (u) < 1 (respectively = 1; > 1); 4. |u n | p(•) → 0 (respectively → +∞) ⇐⇒ ρ p(•) (u n ) → 0 (respectively → +∞); 5. lim n→∞ |u n -u| p(x) = 0 ⇐⇒ lim n→∞ ρ p(•) (u n -u) = 0.
The Sobolev space with variable exponent W 1,p(x) (Ω) is defined as

W 1,p(x) (Ω) := u : Ω ⊂ R N → R : u ∈ L p(x) (Ω), |∇u| ∈ L p(x) (Ω) , equipped with the norm u 1,p(x) = u p(x) + ∇u p(x) .
Then W 1,p(x) 0 (Ω) is defined as the closure of C ∞ 0 (Ω) with respect to the norm u 1,p(x) . In this way, L p(x) (Ω), W 1,p(x) 0 (Ω) and W 1,p(x) (Ω) separable and reflexive Banach spaces. For more details, we refer to [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF][START_REF] Fan | Sobolev embedding theorems for spaces W k,p(x) (Ω)[END_REF][START_REF] Fan | On the spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF]. Moreover, define

p * (x) =          N p(x) N -p(x) , if p(x) < N +∞, if p(x) ≥ N.
The following results are proved in [START_REF] Fan | On the spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF].

Proposition 2.2. (Sobolev embedding). For p, q ∈ C + (Ω) such that 1 ≤ q(x) ≤ p * (x) for all x ∈ Ω, there is a continuous embedding

W 1,p(x) (Ω) → L q(x) (Ω).
If we replace ≤ with <, the embedding is compact.

Proposition 2.3. (Poincaré inequality)

. There is a constant C > 0, such that

u L p(x) (Ω) ≤ C ∇u L p(x) (Ω) (2.1)
for all u ∈ W 1,p(x) 0 (Ω).

Remark 2.1. By Proposition 2.3, we know that ∇u L p(x) (Ω) and u W 1,p(x) (Ω) are equivalent norms on W 1,p(x) 0 (Ω).

Lemma 2.2. [START_REF] Fan | Existence of solutions for p(x)-Laplacian Dirichlet problem[END_REF] Denote

A(u) = Ω 1 p(x)
|∇u| p(x) dx, for all u ∈ W 1,p(x) 0 (Ω).

Then, A(u) ∈ C 1 (W 1,p(x) 0 (Ω), R) and the derivative operator A of A is A (u), v = Ω |∇u| p(x)-2 ∇u∇vdx for all u, v ∈ W 1,p(x) 0 (Ω),
and we have

1. A is a convex functional; 2. A : W 1,p(x) 0 (Ω) → (W -1,p (x) (Ω)) = W 1,p(x) 0 (Ω) *
is a bounded homeomorphism and strictly monotone operator and the conjugate exponent satisfies

1 p(x) + 1 p (x) = 1;
3. A is a mapping of type S + , namely: u n u and lim sup A (u n ), u nu ≤ 0, imply u n → u (strongly) in W 1,p(x) 0 (Ω).

Proof of Theorem 1.1

In this section we will prove Theorem 1.1. The energy functional J : W 1,p(x) 0 (Ω) → R associated with problem (1.1)

J(u) = a Ω 1 p(x) |∇u| p(x) dx - b 2 Ω 1 p(x) |∇u| p(x) dx 2 -λ Ω 1 p(x) |u| p(x) dx - Ω G(x, u)dx, (3.1) 
for all u ∈ W 1,p(x) 0 (Ω) is well defined and of C 1 class on W 1,p(x) 0 (Ω). Moreover, we have

J (u), ϕ = a -b Ω 1 p(x) |∇u| p(x) dx Ω |∇u| p(x)-2 ∇u∇ϕdx -λ Ω |u| p(x)-2 uϕdx - Ω g(x, u)ϕdx, (3.2) 
for all u, ϕ ∈ W 1,p(x) 0 (Ω). Hence, we can notice that the critical points of the functional J are the weak solutions for problem (1.1). In order to simplify the presentation we will denote the norm of W 1,p(x) 0 (Ω) by . instead of

• W 1,p(x) 0 (Ω) .
Recall now the definition of the Palais-Smale compactness condition. Definition 3.2. Let (W 1,p(x) 0 (Ω), ||.||) be a Banach space and J ∈ C 1 (W 1,p(x) 0 (Ω)), given c ∈ R, we say that J satisfies the Palais-Smale condition at the level c ∈ R ("(PS ) c condition" for short) if any sequence

{u n } ∈ W 1,p(x) 0 (Ω) satisfying J(u n ) → c and J (u n ) → 0 in W -1,p (x) (Ω) as n → ∞, (3.3) 
has a convergent subsequence.

Next, we investigate the compactness conditions for the functional J.

Lemma 3.1. Assume (g 1 )-(g 3 ) hold. The functional J satisfies the (PS ) c condition where precisely c < a 2 2b .

Proof. We proceed by two steps.

Step 1. We prove that

{u n } is bounded in W 1,p(x) 0 (Ω). Let {u n } ⊂ W 1,p(x) 0 (Ω) be a (PS ) c sequence such that c < a 2 2b
. Arguing by contradiction we assume that, passing eventually to a subsequence, still denote by {u n }, we have u n → +∞ as n → +∞. By (3.3) and (g 3 ), for n large enough, we have

C + u n ≥ θJ(u n ) -J (u n ), u n ≥ θ        a Ω 1 p(x) |∇u n | p(x) dx - b 2 Ω 1 p(x) |∇u n | p(x) dx 2 -λ Ω 1 p(x) |u n | p(x) dx - Ω G(x, u n )dx        -a -b Ω 1 p(x) |∇u n | p(x) dx Ω |∇u n | p(x) dx -λ Ω |u n | p(x) dx - Ω g(x, u n )u n dx ≥ a( θ p + -1) Ω |∇u n | p(x) dx + b( -θ 2p -2 + 1 p + ) Ω |∇u n | p(x) dx 2 -λ( θ p --1) Ω |u n | p(x) dx -C 0 |Ω|,
where |Ω| = Ω dx. Thus, the last inequality together with (2.1) imply

C + u n + λC( θ p --1) u n p + ≥ a( θ p + -1) u n p -+ b( -θ 2p -2 + 1 p + ) u n 2p --C 0 |Ω|.
Dividing the above inequality by u n p + , taking into account (1.3) holds true and passing to the limit as n → ∞, we obtain a contradiction. It follows that {u n } is bounded in W 1,p(x) 0 (Ω).

Step 2. Here, we will prove that {u n } has a convergent subsequence in W 1,p(x) 0 (Ω). It follows from Proposition 2.2 that the embedding

W 1,p(x) 0 (Ω) → L s(x) (Ω)
is compact, where 1 ≤ s(x) < p(x) * . Going if necessary to a subsequence, there exists u ∈ W 1,p(x) 0 (Ω) such that

u n u in W 1,p(x) 0 (Ω), u n → u in L s(x) (Ω), u n (x) → u(x), a.e. in Ω. (3.4)
By Hölder's inequality and (3.4), we have

Ω |u n | p(x)-2 u n (u n -u)dx ≤ Ω |u n | p(x)-1 |u n -u|dx ≤ |u n | p(x)-1 p(x) p(x)-1 |u n -u| p(x) → 0 as n → ∞ and thus, lim n→∞ Ω |u n | p(x)-2 u n (u n -u)dx = 0. (3.5)
By virtue of conditions (g 1 ) and (g 2 ), one has for every ∈ (0, 1) there exists C > 0 such that

|g(x, u n )| ≤ |u n | p(x)-1 + C |u n | q(x)-1 . (3.6)
By (3.6) and Proposition 2.2, it follows

Ω g(x, u n )(u n -u)dx ≤ Ω |u n | p(x)-1 |u n -u| + C |u n | q(x)-1 |u n -u|dx ≤ |u n | p(x)-1 p(x) p(x)-1 |u n -u| p(x) + C |u n | q(x)-1 q(x) q(x)-1 |u n -u| q(x) → 0 as n → ∞ which shows that lim n→∞ Ω g(x, u n )(u n -u)dx = 0. (3.7)
From (3.3), we have

J (u n ), u n -u → 0.
Thus,

J (u n ), u n -u = a -b Ω 1 p(x) |∇u n | p(x) dx Ω |∇u n | p(x)-2 ∇u n (∇u n -∇u)dx -λ Ω |u n | p(x)-2 u n (u n -u)dx - Ω g(x, u n )(u n -u)dx → 0.
So, we deduce from (3.5) and (3.7) that

a -b Ω 1 p(x) |∇u n | p(x) dx Ω |∇u n | p(x)-2 ∇u n (∇u n -∇u)dx → 0. (3.8) Since {u n } is bounded in W 1,p(x) 0
(Ω), passing to a subsequence, if necessary, we may assume that

Ω 1 p(x) |∇u n | p(x) dx → t 0 ≥ 0 as n → ∞. Case 1. If t 0 = 0 then {u n } converges strongly to u = 0 in W 1,p (x) 0 
(Ω) and the proof is finished. Case 2. If t 0 > 0 we obtain two subcases:

Subcase 1. If t 0 a b then a -b Ω 1 p(x)
|∇u n | p(x) dx → 0 is not true and any subsequence of

{a -b Ω 1 p(x)
|∇u n | p(x) dx → 0} does not converge to zero. Therefore, there exists δ > 0 such that

a -b Ω 1 p(x) |∇u n | p(x) dx > δ > 0 when n is large enough. So, it is clear that {a -b Ω 1 p(x) |∇u n | p(x) dx → 0} is bounded. (3.9) Subcase 2. 1 If t 0 = a b then a -b Ω 1 p(x) |∇u n | p(x) dx → 0.
We define

ϕ(u) = λ Ω 1 p(x) |u| p(x) dx + Ω G(x, u)dx, ∀u ∈ W 1,p(x) 0 (Ω).
Then,

ϕ (u), v = λ Ω |u| p(x)-2 uvdx + Ω g(x, u)vdx, ∀u, v ∈ W 1,p(x) 0 (Ω).
It follows that

ϕ (u n ) -ϕ (u), v = λ Ω (|u n | p(x)-2 u n -|u| p(x)-2 u)vdx + Ω (g(x, u n ) -g(x, u))vdx.
To complete this proof we need the following lemma.

Lemma 3.2. Let u n , u ∈ W 1,p (x) 0 
(Ω) such that (3.4) holds. Passing to a subsequence if necessary, we have:

(i) Ω (|u n | p(x)-2 u n -|u| p(x)-2 u)vdx = 0. (ii) lim n→∞ Ω |g(x, u n ) -g(x, u)||v|dx = 0. (iii) ϕ (u n ) -ϕ (u), v → 0, v ∈ W 1,p(x) 0 (Ω).
Proof. From (3.4) we have u n → u in L p(x) (Ω) which implies that

|u n | p(x)-2 u n → |u| p(x)-2 u in L p(x) p(x)-1 (Ω). (3.10) 
Due to Hölder's inequality, we have

Ω (|u n | p(x)-2 u n -|u| p(x)-2 u)vdx ≤ Ω ||u n | p(x)-2 u n -|u| p(x)-2 u||v|dx ≤ |u n | p(x)-2 u n -|u| p(x)-2 u p(x) p(x)-1 |v| p(x) ≤ C |u n | p(x)-2 u n -|u| p(x)-2 u p(x) p(x)-1 v → 0. (3.11)
1 This case doesn't exist if the Kirchhoff function is given by a + b

Ω 1 p(x) |∇u n | p(x) dx.
By a exactly slight modification of the proof above, we can prove part (ii) so we omit proof details.

Ω |g(x, u n ) -g(x, u)||v|dx ≤ Ω [ (|u n | p(x)-2 u n -|u| p(x)-2 u) + C (|u n | q(x)-1 -|u| q(x)-1 )]|v|dx → 0.
Therefore, part (iii) follows by combining parts (i) and (ii). Consequently, ϕ (u n )-ϕ (u) W -1,p (x) → 0 and ϕ (u n ) → ϕ (u).

We now return to the proof of Subcase 2:

According to Lemma 3.2 and while J (u), u = ab

Ω 1 p(x) |∇u| p(x) dx Ω |∇u| p(x)-2 ∇u∇ϕdx- ϕ (u), v , J (u), u → 0 and a -b Ω 1 p(x) |∇u| p(x) dx → 0, hence ϕ (u n ) → 0 (n → ∞), i.e., ϕ (u), v = λ Ω |u| p(x)-2 uvdx + Ω g(x, u)vdx, ∀v ∈ W 1,p(x) 0 (Ω),
and then we have λ|u(x)| p(x)-2 u(x) + g(x, u(x)) = 0 for a.e.x ∈ Ω by the fundamental lemma of the variational method (see [START_REF] Willem | Minimax theorems[END_REF]). It follows from that u = 0. So

ϕ(u n ) = λ Ω 1 p(x) |u n | p(x) dx + Ω G(x, u n )dx → λ Ω 1 p(x) |u| p(x) dx + Ω G(x, u)dx = 0.
Hence, we see if

t 0 = a b that J(u n ) = a Ω 1 p(x) |∇u n | p(x) dx- b 2 Ω 1 p(x) |∇u n | p(x) dx 2 -λ Ω 1 p(x) |u n | p(x) dx- Ω G(x, u n )dx → a 2 2b .
This is a contradiction since

J(u n ) → c < a 2 2b , then a -b Ω 1 p(x)
|∇u n | p(x) dx → 0 is not true and similarly to subcase 1 we have

{a -b Ω 1 p(x) |∇u n | p(x) dx → 0} is bounded. (3.12)
So, it follows from the two cases above that

Ω |∇u n | p(x)-2 ∇u n (∇u n -∇u)dx → 0.
Invoking now the S + condition (see lemma 2.2) we deduce that u n → u as n → ∞ which means that J satisfies the (PS ) c condition.

Remark 3.1. The (PS ) c condition is not satisfied for c > a 2 2b . Indeed,

J(u) ≤ a Ω 1 p(x) |∇u| p(x) dx - b 2 Ω 1 p(x) |∇u| p(x) dx 2 ≤ a 2 2b
and so if {u n } is a (PS ) c sequence of J, then we have c ≤ a 2 2b , which is a contradiction.

Lemma 3.3. [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] Consider the following Rayleigh quotients:

λ m = inf u∈W 1,p(x) 0 (Ω)\{0} Ω 1 p(x) |∇u| p(x) dx Ω 1 p(x) |u| p(x) dx and λ m = inf u∈W 1,p(x) 0 (Ω)\{0} Ω |∇u| p(x) dx Ω |u| p(x) dx
.

Then, we have λ m > 0 ⇐⇒ λ m > 0.

To prove the conditions of the Mountain Pass theorem (see e.g., [START_REF] Willem | Minimax theorems[END_REF]), we need to verify the following lemmas. Lemma 3.4. Assume that g satisfies (g 1 ) and (g 2 ). Then there exist ρ > 0 and α > 0 such that J(u) ≥ α > 0, for any u ∈ W 1,p(x) 0 (Ω) with u = ρ.

Proof. Let > 0 be small enough such that 1 2p + (a -λ λ m ) = λ m p -. By assumptions (g 1 ) and

(g 2 ), we have

|G(x, u)| ≤ p(x) |u| p(x) + C q(x) |u| q(x) . (3.13) 
Let ρ ∈ (0, 1) and u ∈ W 1,p(x) 0 (Ω) be such that u = ρ. By considering Lemma 2.1, Proposition 2.2 and (1.3), we deduce that

J(u) = a Ω 1 p(x) |∇u| p(x) dx - b 2 Ω 1 p(x) |∇u| p(x) dx 2 -λ Ω 1 p(x) |u| p(x) dx - Ω G(x, u)dx ≥ a Ω 1 p(x) |∇u| p(x) dx - b 2 Ω 1 p(x) |∇u| p(x) dx 2 - λ λ m Ω 1 p(x) |∇u| p(x) dx - Ω |u| p(x) p(x) dx -C Ω |u| q(x) q(x) dx ≥ (a - λ λ m ) Ω 1 p(x) |∇u| p(x) dx - b 2 Ω 1 p(x) |∇u| p(x) dx 2 -λ m Ω 1 p(x)
|∇u| p(x) dx -CC q -Ω |∇u| q(x) dx

≥ ( 1 p + (a - λ λ m
)λ m p -)ρ p(x) (∇u) -b 2p -2 (ρ p(x) (∇u)) 2 -CC q -ρ q(x) (∇u)

≥ ( 1 p + (a - λ λ m ) -λ m p -) u p + - b 2p -2 u 2p -- CC q -u q - ≥ 1 2p + (a - λ λ m ) - b 2p -2 u 2p --p + - CC q -u q --p + u p + . Set λ * =
qp -2 λ m abp + q -ρ 2p --p + -2CC p -2 ρ q --p + q -p -2 and α = λ * ρ p + .

(3.14)

Then, we conclude that for any λ ∈ (0, λ * ), there exists α > 0 such that for any u ∈ W 1,p(x) 0 (Ω) with u = ρ we have J(u) ≥ α > 0.

Lemma 3.5. Assume that g satisfies (g 3 ). Then there exists e ∈ W 1,p(x) 0 (Ω) with e > ρ (where ρ is given in Lemma 3.4) such that J(e) < 0.

Proof. In view of (g 3 ) we have for all A > 0, there is C A > 0 such that G(x, u) ≥ A|u| θ -C A , ∀(x, u) ∈ Ω × R. Since θ > 2p -> p + > p -we obtain J(tψ) → -∞ (t → +∞). then for t > 1 large enough, we can take e = tψ such that e > ρ and J(e) < 0.

Proof of Theorem 1.1.

From Lemmas 3.1-3.5 and the fact that J(0) = 0, J satisfies the Mountain Pass theorem (see e.g., [START_REF] Willem | Minimax theorems[END_REF]). Therefore, problem (1.1) has a nontrivial weak solution.

Definition 3 . 1 .

 31 We call that u ∈ W 1,p(x) 0 (Ω) is a weak solution of (1.1), if a -

(3. 15 ) 2 Ω

 152 Let ψ ∈ C ∞ 0 (Ω), ψ ≥ 0 and ψ 0 and t > 1. By (3.15) we haveJ(tψ) = a |tψ| p(x) dx -At θ Ω |tψ| θ dx + C A |Ω| ≤ at p + p -Ω |∇ψ| p(x) dx -bt 2p - 2p + |∇ψ| p(x) dx 2 -λ p + t p - Ω |ψ| p(x) dx -At θ Ω |ψ| θ dx + C A |Ω|.
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