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Abstract In statistics, extreme events are often defined as excesses above a given large threshold. This
definition allows hydrologists and flood planners to apply Extreme-Value Theory (EVT) to their time series of
interest. Even in the stationary univariate context, this approach has at least two main drawbacks. First,
working with excesses implies that a lot of observations (those below the chosen threshold) are completely
disregarded. The range of precipitation is artificially shopped down into two pieces, namely large intensities
and the rest, which necessarily imposes different statistical models for each piece. Second, this strategy
raises a nontrivial and very practical difficultly: how to choose the optimal threshold which correctly discrim-
inates between low and heavy rainfall intensities. To address these issues, we propose a statistical model in
which EVT results apply not only to heavy, but also to low precipitation amounts (zeros excluded). Our
model is in compliance with EVT on both ends of the spectrum and allows a smooth transition between the
two tails, while keeping a low number of parameters. In terms of inference, we have implemented and
tested two classical methods of estimation: likelihood maximization and probability weighed moments. Last
but not least, there is no need to choose a threshold to define low and high excesses. The performance and
flexibility of this approach are illustrated on simulated and hourly precipitation recorded in Lyon, France.

1. Introduction

There exists a wide range of distribution families to statistically model rainfall intensities. For example, Katz
[1977], Vrac et al. [2007], and Wilks [2006] argued that most of the precipitation variability can be approximated
by gamma distributions. It is, however, also well known [see e.g., Katz et al., 2002] that the tail of the gamma
distribution can be too light to capture heavy rainfall intensities. This leads to underestimating return levels
and other quantities linked to high quantiles of precipitation amounts. To solve this issue, a popular approach
in hydrology [e.g., Katz et al., 2002] is to disregard small and moderate precipitation values and to focus only on
the largest rainfall amounts. The advantage of this strategy is that an elegant mathematical framework called
Extreme-Value Theory (EVT), originating from the pioneering work of Fisher and Tippett [1928] and regularly
adapted during the last decades [e.g., de Haan and Ferreira, 2006], dictates the distribution of heavy precipita-
tion. Specifically, EVT states that rainfall excesses, i.e., amounts of rain greater than a given threshold u, may be
approximated by a Generalized Pareto (GP) distribution, provided the threshold and the number of observa-
tions are large enough and some mild conditions are satisfied (see section 2 for the GP definition).

Numerous studies [see e.g., Katz et al., 2002; Cooley et al., 2007] have illustrated how the GP distribution can be
applied to climate and hydrology sciences. Finding a simple, fast and efficient threshold selection scheme that
can provide an optimal threshold remains an elusive task in the realm of hydrological applications (for details, see
Dupuis [1999] and Deidda [2010]). Another obvious drawback is that the GP only models data exceeding a given
high threshold, and one can wonder how to model the remaining observations (i.e., lower than the threshold) or
equivalently how to deal with the entire range of the data. Recently, there have been a few attempts at modeling
the full range of the observations. Carreau and her coauthors [Carreau and Bengio, 2009; Carreau et al., 2009;
Carreau and Vrac, 2011] investigated a semiparametric mixture model that combines hybrid densities built by
stitching a Gaussian density with a heavy-tailed GP density. The estimation was performed with a neural network
approach and applied in a regression context. This so-called hybrid Pareto model has many advantages, but also
two drawbacks. First, it can produce negative values because the low part of the distribution is based on a
Gaussian variable, an unwelcome feature for rainfall data. Second, the stitching between the Gaussian and the
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Pareto densities is obtained by imposing a strong constraint on the GP and Gaussian parameters. This automati-
cally links the GP shape parameter with the bulk of the distribution, see equations (7) and (8) on page 58 of Car-
reau and Bengio [2009]. In the i.i.d. case, Frigessi et al. [2002] proposed another approach based on a mixture
model of two components. The first one represents the bulk of the distribution and the second one focuses on
the upper tail, with a weight function smoothly connecting the two parts. The Frigessi model may be defined as

c½ð12pl;sðxÞÞ gcðxÞ1pl;sðxÞ hnðx=rÞ=r�;

where x> 0, c is a normalizing constant, gc corresponds to a light-tailed density with parameters c, and the
function hn represents a heavy-tailed GP density with shape parameter n> 0. One of the most interesting
aspects of this density mixture is the weight function pl,s(�) defined by

pl;sðxÞ5
1
2

1
1
p

arctan
x2l

s

� �
:

Since this weight function is nondecreasing such that it takes values in (0, 1] and tends to unity as x ! 1,
Frigessi et al. [2002] argued that it can play the role of an unsupervised threshold selection algorithm. While
Frigessi et al. [2002] chose to parametrize the light density gc as a Weibull density in their fire loss application,
gc was a gamma density in the precipitation data studied by Vrac and Naveau [2007]. Overall, Frigessi’s model
has conceptually a lot of advantages; in particular, it removes the delicate choice of a predetermined threshold.
In practice, there are important drawbacks. Frigessi’s model has a lot of parameters (six) in the simple i.i.d. con-
text and inference is not straightforward. In their simulation study under the true model, Frigessi et al. [2002]
wrote on page 227 that ‘‘for all parameters, the estimates are rather spread. Especially, s and the Weibull
parameters are difficult to estimate, and the estimators are clearly dependent.’’ In addition, their Tables 2 and 3
clearly showed that the GP shape parameter n was strongly underestimated (the true value of n was above the
75% quantile estimate). Concerning the weight function pl,s(x), Vrac and Naveau [2007] observed those difficul-
ties with rainfall data: the estimates of s were poor and very close to zero, meaning that the weight function
for their rainfall data converged to a step function with a jump at l. Hence, a discontinuity around the value l
was reintroduced, which is an undesirable feature. Another drawback resides in the constraint of having a
strictly positive GP shape parameter, owing to identifiability problems when n 5 0. In hydrology, the GP shape
parameter can tend to zero when the time scale increases, e.g., say from hourly to weekly rainfall amounts.

The research developed below attempts to address the same issues treated by authors like Frigessi et al.
[2002], Carreau et al. [2009], Tancredi et al. [2006], and Li et al. [2012], but we would like to avoid the use of
mixtures that can quickly inflate the number of parameters (for more details on nonparametric approaches,
see MacDonald et al. [2011]). A popular road in statistics to increase the flexibility of a given density, here the
GP, is to simply multiply it by a simple nonnegative function and renormalize the product to make it a valid
pdf. This simple idea is the cornerstone of the so-called skewed distributions research field [e.g., Genton, 2004].
The main difficulty resides in choosing a multiplicative function that has be to simple enough to keep compu-
tational issues at bay, and complex enough to bring a real added value in terms of flexibility. For example,
one can carefully choose an appropriate multiplicative function by taking advantage of second-order rates of
convergence for a variety of tails [see Falk et al., 2010] (see section 2). It is also important to emphasize that
this skew-based approach is not the unique way to construct GP distribution extensions.

Recently, Papastathopoulos and Tawn [2013] proposed a very interesting and general alternative to build a variety
of GP distribution extensions. As any continuous random variable can be generated by applying its inverse cdf to
uniform draws (see also the CDF-t transform used in hydrology [e.g., Kallache et al., 2011]), one can generate GP-
like random variables by replacing the uniform draws by something richer like Beta distributed draws. Again, the
main difficulty is to find the right balance between computational simplicity, added flexibility, and desirable fea-
tures, such as retaining the upper tail behavior. Papastathopoulos and Tawn [2013] proposed mainly three types of
extensions. Besides establishing the link with skewed distributions, one major difference of the present paper with
respect to Papastathopoulos and Tawn [2013] is that we take advantage of EVT to model also low rainfall intensities.
Although low precipitation amounts are bounded by zero, the lower tail should, in principle, also comply with EVT.

To finish this brief overview about extended GP distributions, we would also like to mention the work of
Beirlant et al. [2009] who introduced and studied another type of extended GP distribution. As in
Papastathopoulos and Tawn [2013], their ultimate goal was to improve the estimation of the upper tail
shape parameter, and they carefully studied how to select a suitable threshold. Our aim is different in the

Water Resources Research 10.1002/2015WR018552

NAVEAU ET AL. MODELING JOINTLY LOW, MODERATE, AND HEAVY RAINFALL 2754



sense that we want to model adequately the full range of rainfall, and not just to improve inference for
high quantiles. For example, most crop computer models require simulating low, moderate and large pre-
cipitation to explore their sensitivity. In summary, our main goal here is to offer a practical model and fast
estimation procedures to describe the full precipitation range while bypassing a threshold selection, and
not only to improve, per say, the estimation of high quantiles like in Papastathopoulos and Tawn [2013] and
Beirlant et al. [2009]. In particular, low rainfall will also be modeled using the EVT paradigm.

The paper is organized as follows. After recalling a few basic concepts used in EVT, section 2 presents several types
of extended GP models and describes a simple sampling scheme. Section 3 discusses inference procedures based
on probability weighted moments and maximum likelihood, the performance of which is assessed by an extensive
simulation study in section 3.2. Section 4 discusses an application to hourly precipitation in Lyon, France. Finally,
we summarize our results and discuss some future research directions in section 5. Before closing this section, we
would like to emphasize that we do not treat dry events, but we only focus on positive rainfall intensities.

2. A Rainfall Intensity Model

2.1. Heavy Rainfall Modeling
According to basic univariate EVT [e.g., Coles, 2001; Embrechts et al., 1997], the probability that large rainfall
amounts exceeding a well-chosen high threshold u are larger than x can be approximated by a Generalized
Pareto (GP) tail defined as

�Hn
x2u
r

� �
;

where the survival function �Hn corresponds to

�HnðxÞ5
11nxð Þ21=n

1 ; if n 6¼ 0;

exp ð2xÞ; if n50;

(
(1)

with a15max ða; 0Þ. The scalar r> 0 represents the scale parameter. The shape parameter n describes the GP
tail behavior. If n is negative, the upper tail is bounded. If n is zero, this corresponds to the case of an exponen-
tial distribution, where all moments are finite. If n is positive, the upper tail is unbounded but higher moments
eventually become infinite. These three cases are termed ‘‘short-tailed,’’ ‘‘light-tailed,’’ and ‘‘heavy-tailed,’’ respec-
tively. The flexibility of the GP distribution to describe three different types of tail behavior makes it a universal
tool for modeling excesses. In our case, we assume that heavy rainfall data have either exponential tails (n 5 0)
or heavy tails (n> 0). This condition appears to be satisfied for most heavy rainfall data [e.g., Katz et al., 2002].

Although rarely used in hydrology and climatology, a few approaches of GP distribution extensions have
been studied in theoretical statistics. For example, the third edition of the book of Falk et al. [2010]
describes different extensions of the GP density. For nonnegative GP shape parameters, these authors stud-
ied the theoretical properties of densities of the form

cst3
1
r

hnfðx2uÞ=rg 11O �Hd
nðx=rÞ

n oh i
; (2)

where d> 0 and the notation OðvÞ means that the ratio OðvÞ=v is bounded as v converges to zero; see Falk
et al. [2010, Proposition 2.2.1]. This class encompasses a broad family of densities. The main idea of equation
(2), basically multiplying a density like hn(.) by another function, has been extensively studied in the so-
called skewed distributions research field [e.g., Genton, 2004]. The archetypal example is the skew normal pdf
[e.g., Azzalini, 1985] defined by the product

2/ðxÞUðkxÞ

of /ðxÞ, the standard Gaussian pdf, with its cdf U(x). The parameter k regulates the skewness, with k 5 0
yielding the normal pdf.

2.2. Low Rainfall Modeling
Before explaining our approach to model the full precipitation range (zeros excluded), we need to address the
often overlooked question of how to model low rainfall intensities. At first sight, it may be confusing to try to
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apply EVT to low rainfall because they appear to be nonextreme in terms of intensity; they are even bounded
below by zero. The beauty of EVT resides in its capacity to also model the conditional random variable ½X2vj
X < v� given the event [X< v], even when the distribution of ½X2vjX < v� does not produce strong intensities
itself, i.e., in the case of the GP of Weibull type that applies for low rainfall data. This is possible whenever the
threshold v becomes small enough. Mathematically, this can be seen by flipping the sign of the rainfall
amounts X, i.e., defining the variable Y 5 –X. The largest negative rainfall in a sample of observations Y may be
fitted using a GP distribution with a negative shape parameter, say 21/j with j� 0, and a positive scale
parameter, say m> 0. Specifically, this means that the upper tail of Y should tend to a GP distribution, i.e.,

PðY > 2xjY > 2vÞ � �H21=j
2x1v

m

� �
;

as v approaches zero for any x such that 0< x< v. Obviously, the upper limit of Y is zero, which explains why
the shape parameter has to be negative in order to have a short-tailed GP. Furthermore, it also implies that
the threshold v has to be chosen such that �H21=j 0ð Þ50, leading to the constraint v 5 jm. Consequently,

PðY > 2xjY > 2vÞ � cst3xj:

In other words, this suggests that low rainfall intensities might be adequately described by a power law

PðX � xÞ � cst3xj; for any small x � 0:

Notice that this condition is satisfied by a gamma density f ðxÞ / xj21e2x=u; x � 0; j; u > 0.

Having different shape parameters for low and heavy rainfall can be justified by the fact that the physical
mechanisms associated with high and low rainfall rates are fundamentally different and, therefore, one should
not expect both ends of the distribution to exhibit similar properties, i.e., having identical shape parameters.

2.3. Full Range Modeling
According to the two previous sections, we wish that both sides of the rainfall spectrum are in compliance
with EVT. Mathematically, this desideratum translates into the following tail approximations

PðX � xÞ �
12cst3�Hn

x
r

� �
; for any ‘‘large’’ x;

cst3xj; for any ‘‘small’’ x near 0:

8<
: (3)

The widely used gamma density is in agreement with (3) for low values, but fails at representing correctly
high values, while the contrary is true for the GP distribution. The exponentially decaying tail of the gamma
density typically leads to a drastic underestimation of probabilities of extreme events. We therefore aim at
creating a gamma-like density that ressembles a GP density on both tails, while bypassing the threshold
selection problem that brings two unwelcome discontinuities between low and moderate, and moderate
and heavy rainfall. One strategy could be to create a mixture based on �HnðxÞ and xj. This approach is cer-
tainly valuable but we do not pursue it here for the following reasons. First, the function xj needs to be
defined on the compact support [0, 1] to be a valid cdf, and the end point of this interval would create a dis-
continuity in the mixture. Second, the inference might be complex (using an EM algorithm). Third, the com-
putation of return levels (high quantiles) is not explicit. Alternatively, we want to propose a single pdf with
the appropriate lower and upper tails and no hidden states. To achieve this goal, we shall follow the foot-
steps of Papastathopoulos and Tawn [2013]. Although these authors focused on the upper tail only, their
approach can be somehow adapted for modeling the full rainfall range.

Our main starting point is the classical scheme used to simulate GP distributed random draws via the for-
mula [see e.g., Robert and Casella, 2004]

r H21
n ðUÞ; (4)

where U represents a random variable uniformly distributed on [0, 1] and H21
n corresponds to the inverse

GP cdf. A simple way to add flexibility to this simulation scheme is to replace the uniform random draw U in
(4) by V 5 G21(U), where G is a continuous cdf on [0, 1]. A richer family of random variables may therefore
be spanned by defining
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X5r H21
n fG21ðUÞg: (5)

The main question is to find a class of distributions G such that the upper tail behavior with shape parame-
ter n is preserved and the cdf of X for values near zero behaves like xj. If we denote the tail of G by �G512G,
these constraints can be fulfiled whenever

A.

lim
v#0

�Gð12vÞ
v

5a; for some finite a > 0;

B.

lim
v#0

Gfv wðvÞg
GðvÞ 5b; for some finite b > 0;

where w(v) is any positive function such that wðvÞ511oðvÞ as v! 0,

C.

lim
v#0

GðvÞ
vj

5c; for some finite c > 0:

To understand these three conditions, one has to notice that equation (5) may be expressed in terms of the
cdf FðxÞ5PðX � xÞ or the tail �FðxÞ5PðX > xÞ as

FðxÞ5G Hn
x
r

� �n o
and �FðxÞ5�G Hn

x
r

� �n o
: (6)

Constraint (A) implies that the upper tail of X is equivalent to a Pareto tail in the sense that the ratio �FðxÞ=
�Hnðx=rÞ5�Gð12vÞ=v with v5�Hnðx=rÞ converges to a constant, as x!1. Similarly, the ratio FðxÞ

GðxÞ can writ-
ten as

G fx=rg fHn
x
r

� �
=ðx=rÞg

� �
Gðx=rÞ

Gðx=rÞ
GðxÞ 5

Gfv wðvÞg
GðvÞ

GðvÞ
GðrvÞ

where wðvÞ5HnðvÞ=v with v 5 x/r. The term Gfv wðvÞg
GðvÞ converges to a nonnull constant, as v! 0, because of

the constraint (B) and the Taylor expansion f12ð11nvÞ21=ng=v511oðvÞ. The ratio GðvÞ
GðrvÞ tends to the con-

stant r2j because of (C). In other terms, the constraints (B) & (C) ensure that low values are driven by G. In
addition, constraint (C) forces G to behave as a GP of Weibull type for this lower tail.

Before presenting parametric examples of the function G, we would like to emphasize two important practical
advantages of (5). This equation provides a straightforward and fast way of simulate random draws from the cdf F
whenever the G21 is available. The same is true when return levels have to be computed using the explicit formula

xp5F21ðpÞ5

r
n
f12G21ðpÞg2n

21
h i

; if n > 0;

2
r
n

log f12G21ðpÞg; if n50;

8>><
>>: (7)

0< p< 1. Practical reasons should drive our choice concerning particular parametric forms of the cdf G.

2.4. Parametric Families
We present now four possible parametric families for G(v), v � [0, 1], which satisfy the above conditions (A),
(B) and (C), namely

i. GðvÞ5vj; j > 0;
ii. GðvÞ5pvj1 1ð12pÞvj2 ; j1;j2 > 0 and p � [0, 1]. Without loss of generality, we may assume that j1� j2;

iii. GðvÞ512Qdfð12vÞdg; d > 0, where Qd is the cdf of a beta random variable with parameters 1/d and 2.
That is, the cdf Qd and corresponding pdf qd are
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QdðvÞ5
11d

d
v1=d 12

v
11d

� �
;

qdðvÞ5
11d

d2 v1=d21ð12vÞ;
(8)

iv. GðvÞ5½12Qdfð12vÞdg�j=2; j; d > 0,
with Qd defined in (8).

Model (i), with the power law distribu-
tion G(v) 5 vj, is clearly the simplest
choice and leads to a model in (6) with
only three parameters: j controls the
shape of the lower tail, r is a scale
parameter, and n controls the rate of
upper tail decay. Interestingly, this
family corresponds to the type III intro-
duced by Papastathopoulos and Tawn
[2013]. Figure 1 displays the corre-
sponding density for different lower
tail behaviors (j 5 1, 2, 5) and fixed
r 5 1 and n 5 0.5, compared with a
gamma density. The GP model (put-
ting mass 1/r at zero) is recovered
when j 5 1, and more flexibility for
low values is achieved by varying this

parameter. As expected, the gamma and extended GP densities behave similarly for small and moderate
values, but the discrepancy increases further in the tail.

A way to increase the flexibility of this fairly simple model is to consider Model (ii), which is a mixture of
power laws with GðvÞ5pvj1 1ð12pÞvj2 . This model again satisfies the three conditions (A), (B) and (C), with
the latter holding true by setting j 5 j1 (using the convention that j1� j2). This means that the lower tail
behavior is controlled by j1, whereas j2 modifies the shape of the density in its central part. With this speci-
fication, Model (6) has five parameters (p, j1, j2, r, n). Figure 2 illustrates the flexibility of this model with
p 5 0.5, j1 5 2 and different values of j2, by comparison with a gamma density.

Model (iii), with GðvÞ512Qdfð12vÞdg, describes another nontrivial and interesting choice for G(v), which
makes a link with the work of Falk et al. [2010]. This fairly complex choice of G(v) corresponds in fact to the
very simple case where OðvÞ52v and u 5 0 in (2), i.e.,

f ðx; n; r; dÞ5 11d
d

1
r

hnðx=rÞ 12�Hd
nðx=rÞ

n o
; (9)

which is illustrated in Figure 3. It is possible to check that the constraints (A)–(C) are satisfied with j 5 2. As
d increases to infinity, f(x; n, r, d) becomes closer to the GP density. Moreover, as explained in section 2.3,
the tail behaviors of f(x; n, r, d) and the GP density r21hnðx=rÞ are equivalent for large x: very heavy rainfall
is captured in the same fashion for both densities, i.e., through the shape parameter n. This can also be justi-
fied for this model by noticing that

�Fðx; n; r; dÞ5 11d
d

�Hnðx=rÞ 12
1

11d
�Hd

nðx=rÞ
� 	

: (10)

Consequently, since �HnðxÞ converges to zero as x tends to infinity, the upper tail behavior of X is asymptoti-
cally equivalent to that of a GP distribution, i.e., for large x,

�Fðx; n; r; dÞ � 11d
d

�Hnðx=rÞ; 5 �Hn
x2ud

rd

� �
;

where rd5rcn
d and ud5rðcn

d21Þ=n. In other words, the extra term f12�Hd

nðx=rÞg in (9) does not affect the
extremal index n representing the main driver of very extreme events. The parameter d rather increases
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Model (i): Case G(v) = vκ
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Figure 1. Density function corresponding to Model (6) with GðvÞ5vj , for r 5 1,
n 5 0.5 and lower tail shape parameters j 5 1, 2, 5 (dashed, dotted, dashed-dotted
black curves, respectively). The case j 5 1 corresponds to the exact GP density. The
solid blue curve represents a gamma density with parameters (1.4, 1.4).
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modeling flexibility for the central part
of the distribution. This parameter
could be interpreted as a ‘‘threshold
tuning parameter’’ that has to be esti-
mated from the data at hand.

Regarding the behavior of f(x; n, r, d)
near zero, we can immediately notice
from (9) that f(0; n, r, d) 5 0. A draw-
back of (9) resides in the fact that the
Taylor expansion ð11xÞa � 11ax (for
small x) implies that the lower tail
behavior of f(x; n, r, d) is

f ðx; n; r; dÞ � 11d
r2

x; for x near zero:

This means that the lower tail F(x; n, r,
d) is of type x2 (i.e., j 5 2 in condition
(C)) and consequently, the lower tail
behavior is not estimated from the data
but imposed by the choice of Model (9).

Model (iv), with GðvÞ5½12Qdfð12

vÞdg�j=2, remedies this problem by
adding an extra parameter, j> 0, con-
trolling the lower tail behavior. This
leads to the cdf

FðxÞ5 12Qd �Hd
n

x
r

� �n oh ij=2
; (11)

where j, d, n describe the low, moderate and upper parts of the distribution, respectively, and r is a scale
parameter. In particular, the lower and upper tails are, by construction, GP with shape parameters j and n,
respectively.

The inverse function G21ðuÞ is available in closed-form for Model (i), may be easily computed using numeri-
cal inversion for Model (ii), and is based on the quantile function Q21

d ðuÞ of the Beta distribution with
parameters 1/d and 2 for Models (iii) and (iv). When combined with the formula (7), this makes the simula-
tion and the computation of return levels straightforward and fast, which is important from a hydrological
point of view. To simulate from Model (6), one simply needs to randomly draw a uniform variable U in [0, 1],
and then to apply the quantile function (7) as X5F21ðUÞ.

It is worth mentioning that all models described in this section are eligible as valid parametric families fulfil-
ing (3), though Model (iii) has restricted flexibility in its lower tail. The choice of the most appropriate model
depends on the application at hand and classical devices like quantile-quantile plots, histograms, AIC and
so on, can guide the hydrologist to opt for a specific model.

3. Inference

3.1. Estimation of Unknown Parameters
A variety of inference methods exists and, for heavy rainfall analysis, two options are popular among hydrol-
ogists: maximum likelihood (ML) estimation and a method of moments based on probability weighted
moments (PWMs). In this paper, we investigate how these two classical inference techniques can be imple-
mented within our framework.

Concerning the ML approach, the likelihood function may be easily obtained from (6) whenever the func-
tion G(v) is easily differentiable. This is the case for the parametric families introduced in section 2.4, and
more details are given in Appendix A.
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Figure 2. Density function corresponding to Model (6) combined with GðvÞ5ðvj1

1vj2 Þ=2 (a special case of Model (ii) with p 5 0.5), for r 5 1, n 5 0.5 and parame-
ters j1 5 2, and j2 5 2, 5, 10 (dashed-dotted, dotted, dashed black curves, respec-
tively). The solid blue curve represents a gamma density with parameters (1.4,
1.4).

Water Resources Research 10.1002/2015WR018552

NAVEAU ET AL. MODELING JOINTLY LOW, MODERATE, AND HEAVY RAINFALL 2759



As for the PWMs approach, it has a
long tradition in statistical hydrology
[e.g., Landwehr et al., 1979; Hosking
and Wallis, 1987]. It has been recently
revisited by statisticians [e.g., Ferreira
and de Haan, 2014] and applied in vari-
ous settings [e.g., Naveau et al., 2014].
A recent study of Caeiro and Gomes
[2011] theoretically compares different
estimation methods for the shape
parameter n. Besides its simplicity, the
PWMs approach usually performs rea-
sonably well compared to other esti-
mation procedures. Additional
arguments in favor of PWMs are that
they are typically quickly computed,
even in nonstationary contexts [e.g.,
Naveau et al., 2014], and relatively
robust against model misspecification.

The idea of the PWMs approach is sim-
ple: for a pdf specified by s parameters,
we need to find the explicit expres-
sions of s (weighted) moments that are
function of these parameters. Having s
empirical moments and s theoretical

moments (depending on s unknown parameters), we can pursue a method-of-moments by equating these
quantities and solving the resulting system of equations [e.g., Diebolt et al., 2008, 2007].

For the model proposed in (6), it is convenient to work with PWMs of the form

ls5E X�F sðXÞ
� �

; s50; 1; . . . : (12)

Appendix B provides the explicit PWMs for the parametric families (i), (ii) and (iii) defined by GðvÞ5vj; GðvÞ
5pvj1 1ð12pÞvj2 and GðvÞ512Qdfð12vÞdg, respectively. Although PWMs are available in closed form for
these cases, estimated parameters cannot be expressed as functions of PWMs in general. In practice, this
limitation does not cause any particular problem because statistical softwares like the R package gmm
[Chauss�e, 2010] provides numerical solutions to such method-of-moments nonlinear systems of equations.
Confidence intervals can also be obtained from this R package. The extension to the case GðvÞ5
½12Qdfð12vÞdg�j=2 with Model (iv) is, however, more complicated and PWMs have to be computed by
Monte Carlo simulations using a large number of replicates. For Model (ii), the estimation of the five param-
eters r, n, p, j1 and j2 requires PWMs of orders s 5 0, 1, 2, 3, 4, while for Model (iv), only the first four
moments can be used to estimate r, n, j and d. For Models (i) and (iii), only the first three moments are
needed.

The following section illustrates how the inference performs.

3.2. Simulation Study
In this section, we assess the performance of the PWMs and ML estimators by simulation. All results pre-
sented here are based on the following setting. The scale parameter in Model (6) is always set to one
(r 5 1). The shape upper tail parameters can take three values, n 5 0.1, 0.2, 0.3, classical values for precipita-
tion data. The sample size is fixed to n 5 300, and 105 replicates are used to compute basic statistical met-
rics like root mean squared errors (RMSEs). Different settings provide similar conclusions. We explore the
four proposed models, precisely using the following parameter values

1. GðvÞ5vj, with lower tail parameter j � {1, 2, 5, 10};
2. GðvÞ5pvj1 1ð12pÞvj2 , with p 5 0.4, j1 � {1, 2, 5, 10} and j2 � {2, 5, 10, 20},
3. GðvÞ512Qdfð12uÞdg, with skewness parameter d � {0.5, 1,2, 5},
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Figure 3. Density function corresponding to Model (6) combined with
GðvÞ512Qdfð12vÞdg, for r 5 1, n 5 0.5 and parameters d 5 1, 5,1 (dashed-dot-
ted, dotted, dashed black curves, respectively). The limiting case d 51 corre-
sponds to the exact GP density. The solid blue curve represents a gamma density
with parameters (1.4, 1.4).
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4. GðvÞ5½12Qdfð12vÞdg�j=2, with d � {0.5, 1, 2, 5}, and j � {1, 2, 5, 10},

with starting values for the numerical solvers fixed arbitrarily to r 5 2, n 5 0.15, j 5 3, d 5 1.5, p 5 0.5,
j1 5 3 and j2 5 4.

To summarize the performance of the ML and PWMs estimators, Figure 4 displays boxplots of estimated
parameters and 99%-quantiles (i.e., 1/100 return levels) for representative cases, see the caption for the
exact parameters values (Model (iv) gives similar results). Skewness parameters like d or j2 are difficult to
estimate by ML, as it was noticed by Sartori [2006] for the skew-normal case and Ribereau et al. [2015] for
the extended GEV case. Figure 4 also shows generally higher variability of PWMs estimators compared to
ML estimators, especially for tail decay parameters (n or j) and high quantiles. More importantly, both infer-
ential methods provide reasonable estimates for a moderate sample size of n 5 300, even with a five-
parameter model like Model (ii) (though the ML estimation of j2 5 5 is quite poor).

To fine tune our comparison between these two classical estimation approaches, Table 1 reports the ratio
of RMSEs of PWMs and ML estimators for the four models. The ratio of RMSEs for the estimated 99%-
quantile is reported in bold. Values lower than unity indicate that PWMs estimators perform better, and vice
versa.

Overall, PWMs and ML estimators have a similar performance, though the latter are generally slightly better.
This is especially the case for Model (i) with large j� 5, although high quantiles may still be reasonably well
estimated by PWMs (see the case j 5 10, n 5 0.1). The case of Model (ii) exacerbates that five parameters
imply a much higher instability, especially for j2 5 2 by ML and for j1 5 10 by PWMs. Model (iii) emphasizes
one more time that PWMs perform well for the skewness parameter d, but interestingly, high quantiles
seem to be better estimated using the ML approach. Similar conclusions apply for 98% and 99.5%-quantiles.
For Model (iv), ML estimators slightly but constantly outperform PWMs in terms of RMSE for high quantiles.
This is surprising because the skewness parameter d has much higher variability with the ML approach.

One may wonder if imposing a parametric model on the whole data set ‘‘deteriorates’’ the fit of the largest
values that could be obtained by a classical GP approach based on a small fraction of extreme data. To
assess this, we simulated data from Model (i) with r 5 1, n 5 0.2, j 5 2 (based on the same setting as
before), and estimated the upper tail parameter n and the 99%-quantile (i.e., the 1/100 return level), either
by fitting the true model to the whole data set by ML or by fitting the GP distribution to excesses above the
95%-quantile. In a nutshell, the full range modeling approach improves the estimate of n, the ratio of RMSEs
being equal to 3.22, while this ratio is only 1.12 for the 99%-quantile, indicating that the gain is weaker for
high (though not extremely high) quantiles. This simple experiment suggests that the bulk of the distribu-
tion may help to estimate upper (respectively lower) tail parameters or high (respectively low) quantiles,
provided that the assumed model is, at best, the correct one or, at least, flexible enough to adapt itself to
the data at hand.

4. Hourly Rainfall in Lyon (France)

As an illustrative example, we analyze hourly precipitation from 1996 to 2011 recorded at the French
weather station of Lyon. There is a clear seasonal signal in terms of cumulative precipitation in which Fall
(September–October–November) is very wet, as well as Spring (March–April–May) but to a lesser degree.
Summer (June–July–August) is much drier and Winter (December–January–February) has low cumulative
rainfall but can experience strong and short length episodes. For this reason, we treat the seasons as indi-
vidual data sets.

The four different extended GP models described in section 2 were separately fitted to rainfall intensities
for each season using ML and PWMs, as outlined in section 3. To reduce temporal short-term dependence,
every third observation was retained for the analysis of each time series. After removing the dry events (i.e.,
zero values), the sample sizes are equal to 945 (Spring), 715 (Summer), 1073 (Fall) and 925 (Winter); see the
histograms in Figure 5. According to the Akaike information criterion (AIC) and simple graphical diagnostics,
Model (i) with GðvÞ5vj in (6) performs best overall. The fit of Model (ii) with GðvÞ5pvj1 1ð12pÞvj2 is usually
quite reasonable, too, but this model adds two parameters (i.e., it has five parameters in total) and the AIC is
thus often in favor of Model (i). As for Model (iii) with GðvÞ512Qdfð12vÞdg, it lacks flexibility in the lower
tail and thus constantly appears to be the worst. Model (iv) with GðvÞ5½12Qdfð12vÞdg�j=2 is often
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Figure 4. Boxplots of estimated parameters and 0.99-quantiles (i.e., 1/100 return levels) using (left) PWMs and (right) ML, for Model (i) with
r 5 1, n 5 0.2, j 5 2, model (ii) with p 5 0.4, j1 5 2, j2 5 5, r 5 1 and n 5 0.2, and Model (iii) with r 5 1, n 5 0.2, d 5 2. Boxplots are based
on 105 independent replicates, and true values are represented by horizontal red lines.
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comparable to Model (i), though the estimation of the skewness parameter d is sometimes quite poor. For
these reasons, Figure 5 and Table 2 report the results of Model (i) only.

In the simulation study in section 3.2, the ML approach was found to have generally lower RMSEs than
PWMs. However, these results were based on the assumption that the models fitted were well-specified.
When dealing with real data, however, this strong assumption is no longer valid, and we have found that
PWMs are (much) more robust against model misspecification since they are based on useful summary sta-
tistics, rather than the exact values of observations. This is especially important when a model is fitted to
the full range of hourly rainfall data, because the discretization due to instrumental precision (see Figure 6)
strongly affects low values, and consequently the estimation of parameters if this feature is not properly
taken into account. In particular, the upper tail shape parameter n is constantly over-estimated using the
classical ML approach, and the effect of the discretization increases as the distribution becomes more con-
centrated around zero. To counteract this undesirable effect, one might consider two possibilities:

a. one may treat the data as being left-censored. For example, by censoring data below the threshold
xL 5 0.5 mm, the effective sample size fully contributing to the likelihood becomes 448, 383, 585 and 391
for Spring, Summer, Fall and Winter, respectively;

Table 1. Ratio of Root Mean Squared Errors (RMSEs) of PWMs and MLE Based on Estimates Obtained From 105 Independent Data Sets
of Size n 5 300a

Model (i) G(v) 5 vj

j n

0.1 0.2 0.3

1 1.06/1.02/1.17 1.06/0.98/1.19 1.11/1.00/1.27
1.01 0.98 0.98

2 1.05/1.02/1.13 1.07/1.00/1.18 1.15/1.05/1.33
1.01 0.99 1.02

5 1.74/1.39/1.29 1.68/1.49/1.31 1.19/1.09/1.34
1.00 1.14 1.04

10 2.40/1.70/1.41 4.21/2.82/1.32 1.39/1.26/0.69
0.76 1.26 1.06

Model (iii) GðvÞ512Qdfð12vÞdg

d n

0.1 0.2 0.3

0.5 1.00/1.03/0.98 0.91/0.90/0.91 0.92/0.92/0.91
1.02 1.02 1.05

1 0.95/0.99/0.94 0.89/0.90/0.90 0.90/0.92/0.90
1.03 1.02 1.05

2 1.02/1.00/0.95 0.95/0.93/0.91 0.93/0.94/0.92
1.03 1.01 1.04

5 1.06/1.05/0.95 0.99/0.97/0.98 0.98/0.97/1.07
1.02 0.98 0.99

Model (ii) GðvÞ5pvj1 1ð12pÞvj2

j1 j2

2 5 10 20

1 0.57 0.96 0.68 0.74
2 0.95 0.98 0.71
5 1.29 1.04
10 1.38

Model (iv) GðvÞ5½12Qdfð12vÞdg�j=2

j d

0.5 1 2 5

1 1.13 1.13 1.09 1.02
2 1.09 1.09 1.06 1.01
5 1.10 1.09 1.07 1.04
10 1.02 1.13 1.03 1.07

aEach cell in bold represents the ratio of RMSEs for the 99%-quantile. Nonbold cells correspond to ratios for each parameter, i.e., r/n/j
for Model (i), and r/n/d for Model (iii). Numbers lower than one indicate that the PWMs estimator performs better, and vice versa.
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b. one may assume that data observed in the interval [x, x 1 0.1) have been rounded to x and modify the
likelihood function accordingly.

A combination of (a) and (b) is also possible. Details about the implementation of these censored likelihoods are
given in Appendix A. Here, the left-censoring approach in (a) provides the best results. To compare censored and
noncensored approaches, we also provide in Appendix B the explicit expressions of censored PWMs of the form

ls;xL ;xU
5E X�F sðXÞjxL < X < xU
� �

; s50; 1; . . . : (13)

for Models (i), (ii) and (iii). Similarly to noncensored PWMs in (12), explicit expressions are not available for
Model (iv) and simulations are needed in this case to calculate (13). Of course, the expectation in (13) boils
down to (12) as xL! 0 and xU!1.

Table 2 reports the estimated parameters obtained by ML and PWMs, based on the naive and left-censored
approaches (with suffix ‘‘-c’’), with 95%-confidence intervals constructed from 500 nonparametric bootstrap repli-
cates. One can clearly see the improvement when data are censored below 0.5 mm for ML estimation: censoring
significantly improves the inference, and corrects the estimation of the shape parameters and return levels. By
contrast with ML, the approach based on PWMs is much less sensitive to departures from the assumed model.
Indeed, the difference between censored and noncensored PWMs estimates is mild (except perhaps for the Win-
ter data, where the estimated shape parameter is underestimated for the noncensored approach). This illustrates
the robustness of PWMs in misspecified settings and the sensitivity of ML to the discretization of low rainfall val-
ues. Furthermore, there is an overall good agreement between censored likelihood and PWMs, though the ML-c
approach has a tendency to slightly overestimate the shape parameters (j and n) with respect to PWMs-c.

Table 2. Estimated Parameters for Model (i) With GðvÞ5vj in (5) Fitted to the Hourly Rainfall Data by Maximum Likelihood (ML) and by
Probability Weighted Moments (PWMs); Estimators Censoring Observations Below 0.5 mm Have the Suffix ‘‘-c’’a

Spring Data

Method Estimated Parameters

j r n

ML 1(0.6,2) 3 103 0.00(0.00,0.00) 0.81(0.78,0.85)

ML-c 0.59(0.51,0.73) 1.44(1.09,1.65) 0.03(0.00,0.14)

PWMs 0.61(0.56,0.67) 1.47(1.27,1.61) 0.03(0.00,0.11)

PWMs-c 0.50(0.44,0.57) 1.55(1.31,1.73) 0.00(0.00,0.08)

Full Data

Method Estimated Parameters

j r n

ML 1(0.5,2) 3 103 0.00(0.00,0.00) 0.85(0.81,0.88)

ML-c 0.80(0.64,1.02) 1.00(0.73,1.34) 0.29(0.16,0.40)

PWMs 0.66(0.60,0.72) 1.32(1.11,1.53) 0.20(0.11,0.28)

PWMs-c 0.62(0.52,0.75) 1.22(0.93,1.48) 0.22(0.12,0.31)

Summer Data

Method Estimated Parameters

j r n

ML 0.7(0.4,2) 3 103 0.00(0.00,0.00) 0.91(0.87,0.96)

ML-c 0.51(0.41,0.64) 1.94(1.36,2.65) 0.18(0.03,0.33)

PWMs 0.56(0.51,0.63) 1.82(1.46,2.16) 0.20(0.11,0.30)

PWMs-c 0.43(0.37,0.53) 2.16(1.61,2.66) 0.12(0.01,0.25)

Winter Data

Method Estimated Parameters

j r n

ML 3(2,8) 3 103 0.00(0.00,0.00) 0.67(0.63,0.70)

ML-c 0.84(0.64,1.14) 0.63(0.45,0.84) 0.23(0.09,0.34)

PWMs 0.59(0.54,0.65) 1.07(0.92,1.17) 0.04(0.00,0.18)

PWMs-c 0.63(0.46,0.82) 0.73(0.52,1.04) 0.20(0.00,0.33)

a95%-confidence intervals (subscripts) are obtained from 500 nonparametric bootstrap replicates.
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Figure 5 displays the fitted densities for ML-c and PWMs-c approaches, as well as quantile-quantile plots represent-
ing the quality of the fit. For the Spring, Summer, and Fall data, the fits appear to be very good, whereas there is
some discrepancy at extreme levels for the Winter data. This suggests that there is a need for models that are more
flexible in the bulk of the distribution (e.g., mixture models), which could better account for different weather types.

Figure 5. Hourly precipitation (1996–2011, Lyon, France). For each season ((a) Spring, (b) Summer, (c) Fall and (d) Winter), (left) the empirical histogram (grey) for the data. A kernel-
based density (black) and fitted extended GP densities (by ML-c in solid blue, by PWMs-c in dashed red) are superimposed; data below 0.5 mm (shaded areas) were censored in the
estimation procedure. (right) The corresponding quantile-quantile plots with associated (pointwise) 95% confidence intervals based on 500 bootstrap replicates.
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Figure 6. Quantile-quantile plots, zoomed in the lower left region corresponding to low rainfall values (less than 1.5 mm), for the fit of Model (i) (by MLE-c, blue, and by PWMs-c, red,
with censoring applied on the shaded area) and the GP distribution (black) to the (left) Spring and (right) Summer rainfall data recorded in Lyon. The fit of Model (i) (with 3 parameters)
was performed on the entire data set (censored below 0.5 mm), while the fit of the GP distribution (with three parameters 1 threshold) used only the rainfall data not exceeding 0.7 mm.
The black and red dots have been slightly off-set for better readability.
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To visualize the fit on small rainfall, Figure 6 zooms on the Spring and Summer QQ-plots of Figure 5 and
compares Model (i) fitted to the entire data set with a classical GP distribution fitted exclusively on low rain-
fall data not exceeding 0.7 mm. The blue color corresponds to the 95% confidence intervals obtained by
ML-c, while the red color represents the confidence intervals by PWMs-c. The three different fits appear to
capture well small rainfall extremes, despite the obvious and intrinsic discrete nature of small rainfall obser-
vations due to the instrumental rounding at 0.1 mm. The close agreement between the GP model and
Model (i) suggests that our approach has the same capacity at representing small rainfall than a GP fit, but
with the advantage to also model well moderate and heavy rainfall (see Figure 5).

5. Conclusions and Perspectives

In this work, we attempt to show that it may be possible to model jointly low, moderate and heavy rainfall
intensities, without having to fix a threshold. Such a strategy coupled with two classical inference approaches
has many practical advantages. It is fast to implement, simple to interpret with only a few parameters and in
compliance with EVT for both the upper and lower tails. Concerning the inference, PWMs and ML approaches
perform adequately on simulated data, with a slight advantage for ML for high quantiles inference. PWMs
seem to be better for skewness. With observed rainfall recordings, the PWMs method appears to be more
straightforward and robust, the ML estimator having to be fine-tuned to handle the censoring at 0.5 mm due
to precision errors. In any case, both approaches are fast and we advice to use both and compare estimates. It
would be of interest to implement a penalized likelihood or a Bayesian approach: putting an informative prior
on d and n could certainly improve the analysis for these two parameters that are never simple to infer.

Our object of study was rainfall and consequently, we limit our GP distribution shape parameter to be nonnegative.
For other applications, it would be interesting to relax this hypothesis. Regarding precipitation data, obvious exten-
sions could be explored. In this work, we did not address the important issue of modeling rainfall occurrences (i.e.,
wet or dry events). This leads to the question of how to couple Bernoulli type events with continuous intensities
[see e.g., Koch and Naveau, 2015]. In the same vein, the modeling of rainfall amounts at multisites remains a statisti-
cal challenge and it would be of interest to develop a multivariate version of our proposed distributions.

One drawback could be that we impose a specific form for moderate precipitation. In cases for which this
limitation is too stringent, it is always possible to couple our method with a weather-type approach, i.e., by
assuming that daily rainfall has to belong to a weather type driven by some specific atmospheric pattern
[see e.g., Ailliot et al., 2015]. Hence, our distributions could be fitted for each weather type and conse-
quently, a mixture of pdfs would represent the whole rainfall spectrum. One could even impose the
weather-type mixture on the distribution G(v); see Model (iii) in section 3.2.

Appendix A: Likelihood and Censored Likelihood Estimation for Model (6)

From (6), it can be deduced that if G(v) is differentiable and has density g(v), then
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where hn is the GP density with shape parameter n defined in (1). Therefore, for a data set x1; . . . ; xn~iid F, the
likelihood function may be written as
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where w denotes the vector of unknown parameters. The left-censoring approach (a) described and applied
in section 4 consists in using instead the censored likelihood
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where C is the censoring threshold. If needed, right censoring may be dealt with similarly. The second cen-
soring approach (b) which treats the data as being rounded to the closest 0.1 mm may be based on the fol-
lowing piecewise-censored likelihood function
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To obtain estimated parameters ŵ, one may maximize LðwÞ; L1
c ðwÞ or L2

c ðwÞ.

Appendix B: PWMs of the Different Parametric Families Defined in Section 2.4

In this section, we use the notation B(a, b) and IB(x; a, b), x � [0, 1], to denote the beta and incomplete beta
functions with parameters a and b, respectively, i.e.,

Bða; bÞ5
ð1

0
ua21ð12uÞb21du; IBðx; a; bÞ5

ðx

0
ua21ð12uÞb21du:

For simplicity, we shall also write for 0 � x � y � 1; IBðx; y; a; bÞ5IBðy; a; bÞ2IBðx; a; bÞ5
Ð y

x ua21ð12uÞb21du.

Let FL5FðxLÞ; FU5FðxUÞ; DF5FU2FL; HL5Hn
xL
r

� �
, and HU5Hn

xU
r

� �
. From (7), it can easily be deduced that for

s 5 0, 1, 2,. . ., censored PWMs of the form (13) for Model (6) with F(x) 5 G{Hn(x/r)} may be written equiva-
lently as
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h i
2
ð12FLÞs11

2ð12FUÞs11

ðs11ÞDF

 !

5
r
n

E 12Vð Þ2nf12GðVÞgsjHL < V < HU

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Es

2
ð12FLÞs11

2ð12FUÞs11

ðs11ÞDF

0
BB@

1
CCA;

where U � Unif(0, 1) and V � G. Notice that without censoring, the conditional expectation Es in the above
expression reduces to E½ 12Vð Þ2nf12GðVÞgs� and FL 5 0, FU 5 1, DF 5 1. Thus, noncensored PWMs ls in (12)
can easily be obtained from these expressions. In particular, when G(v) 5 v (i.e., F is the GP distribution), one
has

Es5E½ 12Vð Þs2n�5 1
s2n11

) ls5
r

ðs2n11Þðs11Þ ; (B1)

from which we get n 5 (l0 – 4l1)/(l0 – 2l1) and r 5 l0(1 – n). In this case, PWMs estimates of r and n can
be obtained explicitly, but this is no longer possible for the models described below. We next compute the
conditional expectation Es explicitly for Models (i), (ii) and (iii).

For Model (i) with GðvÞ5vj, one has for any nonnegative integer s

Es5
Xs

j50

s

j

0
@

1
Að21ÞjE ð12VÞ2nVjjjHL < V < HU

n o

5
j
DF

Xs

j50

s

j

0
@

1
Að21Þj IB HL;HU; ðj11Þj; 12nf g:

(B2)

It follows that the first three noncensored PWMs are equal to

l05
r
n

jBðj; 12nÞ21f g; l1 5
r
n

j Bðj; 12nÞ2Bð2j; 12nÞf g2 1
2

� 	
;

l25
r
n

j Bðj; 12nÞ22Bð2j; 12nÞ1Bð3j; 12nÞf g2 1
3

� 	
:

From (B2), similar expressions may be obtained for censored PWMs.

For Model (ii) with GðvÞ5pvj1 1ð12pÞvj2 , one can follow the same lines and obtain that for any nonnega-
tive integer s
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Es5
1
DF

Xs

j50

Xj

k50

s

j

 !
j

k

 !
ð21Þjpkð12pÞj2k Aj;k ;

where the coefficients Aj,k may be expressed in terms of the incomplete beta function as

Aj;k5pj1 IBfHL;HU; j1ðk11Þ1j2ðj2kÞ; 12ng1ð12pÞj2 IBfHL;HU; j1k1j2ðj2k11Þ; 12ng:

For Model (iii) with GðvÞ512Qdfð12vÞdg, one has for any nonnegative integer s

Es5E ð12VÞ2nQdfð12VÞdgsjHL < V < HU

n o

5
11d

d

� �s

E ð12VÞs2n 12
ð12VÞd

11d

 !s

jHL < V < HU

( )

5
1
ds

Xs

j50

s

j

0
@

1
Að21Þjð11dÞs2j

E ð12VÞs2n1dj jHL < V < HU

n o
:

5
1

ds11DF

Xs

j50

s

j

0
@

1
Að21Þjð11dÞs2j11 Bj

ðs2n1dj11Þðs2n1dðj11Þ11Þ ;

where the coefficients Bj are available in closed form as

Bj5ðs2n1dj11Þ ð12HUÞs2n1dðj11Þ11
2ð12HLÞs2n1dðj11Þ11

n o
2ðs2n1dðj11Þ11Þ ð12HUÞs2n1dj11

2ð12HLÞs2n1dj11
n o

:

In particular, for noncensored PWMs (HL 5 0, HU 5 1), one has Bj 5 d. Thus, one gets

l05
r

12n
3

21d2n
11d2n

;

l15
r

2ð22nÞ3
2ð11dÞ2

ndð21d2nÞ2
2ð22nÞð11dÞ

ndð21d2nÞð212d2nÞ2
22n

n

( )
;

l25
r

3ð32nÞ3
3ð11dÞ3

nd2ð31d2nÞ
2

6ð32nÞð11dÞ2

nd2ð31d2nÞð312d2nÞ
1

3ð32nÞð11dÞ
nd2ð312d2nÞð313d2nÞ

2
ð32nÞ

n

( )
;

which can be compared to (B1). As expected, one recovers (B1) as d!1.
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