
HAL Id: hal-02078015
https://hal.science/hal-02078015

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Modelling equivalence classes of feature models with
concept lattices to assist their extraction from product

descriptions
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. Modelling equivalence classes of feature
models with concept lattices to assist their extraction from product descriptions. Journal of Systems
and Software, 2019, 152, pp.1-23. �10.1016/j.jss.2019.02.027�. �hal-02078015�

https://hal.science/hal-02078015
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Modelling Equivalence Classes of Feature Models with Concept Lattices to
assist their Extraction from Product Descriptions

Jessie Carbonnela, Marianne Hucharda, Clémentine Nebuta

aLIRMM, Université de Montpellier and CNRS, Montpellier, France

Abstract

Software product line engineering gathers a set of methods to help create, manage and maintain a collection of similar
software systems. Variability modelling is a focal point of this paradigm, where feature models (FMs) are the preva-
lent notation. Migration from single system development to software product lines is a spreading topic in software
engineering. To ease the migration, research has been done to automatically extract FMs from software descriptions,
but most of these approaches are defined in a functional manner based on an ad-hoc variability analysis. In this paper,
we propose a theoretical view on FM extraction from software descriptions based on Formal Concept Analysis (FCA).
It is a structural framework for variability representation which allows to lay down theoretical foundation to variability
extraction. We propose an original mapping between relationships expressed in FMs and the ones emphasised in FCA
conceptual structures. We show that conceptual structures represent equivalence classes of FMs that steer the user
choices during their synthesis, and propose a reverse engineering method based on them. We discuss its applicability
and show that the combinatorial explosion of concept lattices can be avoided by the use of two sub-orders embodying
the necessary information concerning variability.

Keywords: Software Product Lines, Reverse Engineering, Formal Concept Analysis, Variability Modelling, Feature
Models

1. Introduction

A software family designates a collection of software systems that are similar enough to justify their management
as a single entity (by considering their commonalities) rather than individually (by considering their specificities).
Software product line engineering (SPLE) [1] gathers a set of methods which aims to produce such a group of similar
software systems while reducing their development cost and their time to market, and increasing their quality and
their supply. It is a software development paradigm based on mass customisation and systematic reuse: rather than
individually developing each similar software, SPLE seeks to derive a set of software variants from a common set
of reusable artefacts (code, requirement, architecture...) which are structured in a generic architecture. The term
software product line (SPL) encompasses the generic architecture, the reusable artefacts and the set of derivable
software variants. Variability modelling is a focal point of SPLE, whose purpose is to document what is common
and what varies between the software variants; it aims to facilitate the management of a potentially numerous set
of variants by factorising their common parts and identifying their specific ones. Several approaches exist to model
variability, such as decision modelling [2] or feature modelling [3]. In this paper, we focus on the most prevalent
approach, feature modelling, where a feature is a distinguishable characteristic present in one or several variants,
generally representing a high level functionality. In this approach, a software variant is represented by the set of
features it owns. Such a combination of features is called a valid configuration, and represents a high level functional
description of a software variant of the SPL. Feature models (FMs) [3, 4] are the most commonly used notation to
model SPL variability in terms of features. FMs are a family of description languages which permit to describe a

Email addresses: jcarbonnel@lirmm.fr (Jessie Carbonnel), huchard@lirmm.fr (Marianne Huchard), nebut@lirmm.fr (Clémentine
Nebut)

Preprint submitted to Journal of Systems and Software January 4, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0164121219300378
Manuscript_ba1da175d3a0e767bcbc67622e89b686

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0164121219300378
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0164121219300378

set of features and relationships between them; they represent in a compact and understandable way a set of valid
configurations, thus delimiting the scope of an SPL. Aside from variability representation, FMs are also used in other
SPLE related tasks, as information retrieval, SPL evolution and maintenance [5], or product derivation [6].

However, in some legacy systems, different variants of the same system may have been individually developed
without using systematic reuse [7]. For instance, clone-and-own is a common practice in industries to build variants of
existing software systems: it consists in cloning existing softwares and arbitrarily removing or adding functionalities
to these clones in order to satisfy a new set of requirements [8]. In these cases, practitioners may be confronted to a
twofold issue. On the one hand, it is difficult to maintain and manage such a group of software variants, especially
when their number and complexity increase over time. On the other hand, migrating to SPLE is an arduous task
which implies, inter alia, to build a variability model from an existing collection of product variants [9]. Even with a
small number of variants, a manual construction of FMs from existing products is challenging. To ease the migration,
research is made about automated synthesis of FMs from product descriptions [10, 11, 12, 13, 14, 15, 16]. They
usually seek to extract correct and relevant relationships between the features present in the set of initial variants, as
a basis to build an FM. However, most of the proposed approaches are defined in a functional manner based on an
ad-hoc variability analysis through heterogeneous structures and techniques.

Formal Concept Analysis (FCA) [17] is a mathematical data analysis framework for hierarchical clustering which
has been used to support automated synthesis of FMs. As input, FCA takes a set of objects described by attributes,
and organises these objects depending on the attributes they share: the result is a canonical structure called a concept
lattice, which naturally highlights commonalities and variability of the input set of objects. FCA has successfully been
applied in SPLE to structure a set of existing software variants (as objects) described by a common set of features (as
attributes). Examples of its usage include FM reverse engineering [10, 13], organising SPL scenarios [18], locating
features in source code [19, 20], restructuring FM variability [5], and recovering SPL architecture [21].

In this paper, we argue that most existing approaches for FM reverse engineering are encompassed in FCA, which
offers a structural and reusable framework for variability extraction and representation, while being based on a solid
theoretical background. To discuss this statement, we study correlations between FCA conceptual structures and FM
semantics, and how they lay down theoretical foundations for FM reverse engineering. We first recall definitions
of FMs and FCA on which our work is founded, and discuss the prevalent challenges in FM reverse engineering
(Section 2). It leads us to two research questions: Which parts of this activity can be automated? Which parts need user
intervention? We discuss FCA-based methods for automated variability extraction in the form of logical relationships
from software variant descriptions, and we show that these methods are sound and complete (Section 3). Then, we
study the commonalities between FCA conceptual structures and FMs, and propose an original mapping between
the two formalisms. We show that a conceptual structure (namely a concept lattice, an AOC-poset or an AC-poset)
entirely includes a given FM logical semantics, and therefore represents the equivalence class of FMs representing
the same set of valid configurations, that we call an equivalence class feature diagram (ECFD for short). It allows
us to highlight the parts of the extraction that may be fully-automated. To ease the representation of the interesting
variability information present in conceptual structures, we propose a domain specific modelling language for ECFDs
(Section 4). Based on these foundations, we propose a semi-automated FM reverse engineering method. We illustrate
this process on an application on FM re-engineering borrowed from the work of Haslinger et al. [22] (Section 5).
We evaluate the applicability of the proposed method in Section 6. Section 7 discusses related work and how FCA
encompasses existing methods: we give hints about the benefits of considering FCA as an unifying framework, which
may be used for knowledge representation and information management to further assist the migration to SPLs,
without being confined to FM synthesis. Finally, Section 8 presents conclusion and future work.

This paper proposes the following contributions:

• sound and complete FCA-based methods for automated variability extraction in the form of logical relation-
ships;

• original mapping between FCA structures and FMs leading to a theoretical characterisation of equivalence
classes of FMs;

• FM reverse engineering method based on the aforementioned mapping;

• presenting FCA as a framework unifying existing FM reverse engineering methods;

2

• applicability study of FCA-based variability modelling for collections of existing software variants.

2. Background

In this section, we first present feature models, the de facto standard for variability modelling in terms of features.
Then, we give the theoretical bases of formal concept analysis, and present three of its associated conceptual structures
called concept lattices, AOC-posets and AC-posets. Finally, we recall the main challenges of FM reverse engineering.

2.1. Feature models
Feature models (FMs) [3] are a family of visual description languages which allow to define the scope of a product

line in terms of features, where a feature refers to a distinguishable characteristic that can be either possessed or not
by a product variant. By defining a set of features and relationships between them, an FM permits to describe a finite
set of valid configurations, i.e., a subset of features which satisfies all the constraints expressed by the relationships.
Each valid configuration describes a product variant by the features it owns; thus, an FM is a compact representation
of all the possible variant descriptions of a product line. There are extended versions of FMs [23, 24], but here we
focus on the basic FMs [3, 4], also called boolean FMs.

A boolean FM represents a finite set of features in a hierarchy (called the feature tree), where the most general
features are located at the top of the tree, and the most specialised ones are situated at the bottom. This hierarchy
expresses child-parent relationships: it indicates that if a feature is selected to be in a configuration then its direct
parent-feature has to be in the configuration as well. The edges of the feature tree are decorated to represent other
relationships that show how the selection of a feature may affect the selection of its child features. Figure 1 (left)
depicts the edge decorations of these relationships. A black disc requires the selection of the child feature when
the parent feature is selected (mandatory relationship), whereas a white circle indicates that the child feature can be
optionally selected (optional relationship). Several child features can be grouped, a group being depicted by an arc
which indicates the number of features that can be selected: a black-filled arc states that at least one child feature
of the group has to be selected (or-group), and a non-filled arc shows that exactly one child feature of the group has
to be selected (xor-group). Finally, relationships that cannot be represented in the hierarchy (usually binary requires
and exclude constraints) are called cross-tree constraints (CTCs), and can be added to complete the feature tree. It
is noteworthy that FMs are not canonical representations, i.e., several different FMs may represent the same set of
configurations. An example of a boolean FM about e-commerce applications is presented in Figure 1 (right).

Optional

Xor

Mandatory

Or

Requires Exclude

e_commerce (Ec)

catalogue (Ca) payment_method (Pm) basket (B)

grid (G) list (L) credit_card (Cc) check (Ch)

payment method → basket ; basket → payment method

Figure 1: (Left) Boolean FM relationships; (Right) Boolean FM about e-commerce applications

We can read in this FM that: an e-commerce application necessarily possesses a catalogue; this catalogue can
be displayed in a grid or in a list, but not both; an application can eventually possess payment methods (credit card,
check, or both); it can also optionally have a basket; the CTCs state that if the basket feature is selected, the application
must possess at least one payment method, and conversely.

The FM of our example depicts 8 valid configurations, that are displayed in Table 1. The configuration {e com-
merce, catalogue, grid, basket, payment method, credit card} satisfies all the FM constraints, and therefore de-
scribes a possible variant. However, the configuration {e commerce, catalogue, grid, basket} does not correspond to
any variant, because the constraint basket → payment method is not satisfied.

3

2.2. Formal concept analysis

Formal concept analysis (FCA) [17] is a mathematical data analysis framework structuring a set of objects O
described by a set of binary attributes A. FCA is based on a binary relation R ⊆ O × A stating “which objects are
described by which attributes”. This relation can be represented by a cross table O× A, called a formal context, where
a cross in the cell (o, a) states that (o, a) ∈ R.

Definition 2.1 (Formal context). A formal context is a triple K = (O, A,R) where O and A are two finite sets and
R ⊆ O × A is a binary relation. Elements from O are called the objects and elements from A the attributes. A pair
(o, a) from R states that “the object o possesses the attribute a”.

Table 1 represents a formal context with 8 objects (rows) and 8 attributes (columns).

Table 1: Formal context depicting the 8 valid configurations of the boolean FM of Figure 1
Ec Ca G L Pm Cc Ch B

v1 x x x
v2 x x x x x x
v3 x x x x x x
v4 x x x x x x x
v5 x x x
v6 x x x x x x
v7 x x x x x x
v8 x x x x x x x

Ec = e commerce, Ca = catalogue, G = grid, L = list,
Pm = payment method, Cc = credit card, Ch = check,

B = basket

The application of FCA on a formal context extracts a finite set of formal concepts.

Definition 2.2 (Formal concept). Given a formal context K = (O, A,R), a formal concept C is a pair (E, I) such that
E ⊆ O and I ⊆ A. It depicts a maximal set of objects that share a maximal set of common attributes. E = {o ∈
O | ∀a ∈ I, (o, a) ∈ R} is the concept’s extent, denoted by Ext(C), and I = {a ∈ A | ∀o ∈ E, (o, a) ∈ R} is the concept’s
intent, denoted by Int(C).

For instance, let us arbitrarily select the set of objects {v1, v2} in Table 1. Now, we select all the attributes shared
by this set of objects, and we obtain the following set of attributes: {e commerce, catalogue, grid}. Finally, let us
retrieve all the objects possessing this set of attributes: we obtain E = {v1, v2, v3, v4}. We have extracted the formal
concept composed of the pair E = {v1, v2, v3, v4} and I = {e commerce, catalogue, grid}.

The set of all concepts that can be extracted from a formal context K can be partially ordered by the set-inclusion
order on the concepts’ extents, also called the specialisation order ≤CL.

Definition 2.3 (Specialisation order). Given a formal context K = (O, A,R) and two concepts C1 = (E1, I1) and
C2 = (E2, I2) of K, C1 ≤CL C2 if and only if E1 ⊆ E2 and I2 ⊆ I1. Then, C1 is called a sub-concept of C2, and C2 a
super-concept of C1.

Therefore, a concept inherits all the attributes of its super-concepts, and all the objects of its sub-concepts. When
provided with the specialisation order ≤CL the set of all concepts forms a structure called a concept lattice.

Definition 2.4 (Concept lattice). Given CK the set of all concepts extracted from a formal context K, the concept
lattice associated with K, denoted by (CK ,≤CL), is the set of all concepts CK provided with the specialisation order
≤CL.

4

Concept_13

grid

v1

Concept_0

Concept_1

v8

Concept_2

v4

Concept_10

list

v5

Concept_8

Concept_14

payment_method
basket

Concept_9

Concept_4

v6

Concept_12

credit_card

Concept_7

v2

Concept_3

v7

Concept_5

Concept_11

check

Concept_6

v3

Concept_15

e_commerce
catalogue

Figure 2: Concept lattice associated with the context of Table 1

Figure 2 represents the Hasse diagram of the concept lattice associated with the formal context of Table 1, from
which 16 concepts have been extracted and then partially ordered. The construction tool used here is RCAExplore1.
A concept is represented by a three-part box displaying the name of the concept (top part), its intent (middle part),
and its extent (bottom part). An arrow between two concepts shows the specialisation order. In this representation,
intents and extents of concepts are simplified: attributes (resp. objects) appear only once in the concept lattice, in the
concept where they are introduced i.e., the greatest (resp. lowest) concept having that attribute (resp. object). In this
simplified representation, the intent and the extent of a concept can then be reconstituted by inheritance. For example,
the intent of Concept 13 is Int(Concept 13) = {e commerce, catalogue, grid}, and its extent is Ext(Concept 13) =

{v1, v2, v3, v4}.
We call object-concepts and attribute-concepts the concepts which introduce respectively at least an object or an

attribute; we call plain-concepts the ones which introduce neither attributes nor objects. In Figure 2, Concept 4 is an
object-concept introducing v6, Concept 11 an attribute-concept introducing check, Concept 13 introducing grid and
v1 is both, and Concept 9 is a plain-concept. In what follows, the set of all object-concepts of a context K is denoted
by OCK , and the set of all attribute-concepts is denoted byACK .

In some applications, it is not necessary to take into account plain-concepts. These cases generally occur when
FCA is used to organise by specialisation the elements of the input dataset, but not to emphasise clusters among them.

1http://dataqual.engees.unistra.fr/logiciels/rcaExplore

5

In such applications, one can choose to construct the concept hierarchy without the plain-concepts: the obtained
structure is a sub-order called an Attribute-Object-Concept partially ordered set (AOC-poset) [25].

Definition 2.5 (AOC-poset). Given CK the set of all concepts extracted from a formal context K, the AOC-poset is
the sub-order of (CK ,≤CL) restricted to attribute-concepts and object-concepts: (ACK ∪ OCK ,≤CL).

Figure 3 presents the AOC-poset associated with the formal context of Table 1. It represents the partial order of

Concept_11

check

Concept_14

payment_method
basket

Concept_12

credit_card

Concept_7

v2

Concept_13

grid

v1

Concept_1

v8

Concept_4

v6

Concept_3

v7

Concept_6

v3

Concept_10

list

v5

Concept_2

v4

Concept_15

e_commerce
catalogue

Figure 3: AOC-poset associated with the formal context of Table 1

the concepts of Figure 2, minus the plain-concepts Concept 0, Concept 5, Concept 8 and Concept 9. An AOC-poset
associated with a context K then possesses less concepts than the concept lattice associated with the same context, but
it preserves the hierarchy between the elements and the formal context can be fully reconstituted from it.

Another interesting sub-order is the Attribute-Concept partially ordered set (AC-poset), which retains only the
attribute-concepts.

Definition 2.6 (AC-poset). Given CK the set of all concepts extracted from a formal context K, the AC-poset is the
sub-order of (CK ,≤CL) restricted to attribute-concepts: (ACK ,≤CL).

Figure 4 shows the AC-poset of Table 1. It is the minimal conceptual structure conserving the hierarchy between
attributes, and it may be seen as a binary implication graph. As for the AOC-poset, the formal context can be fully
reconstituted from it. More details about dimensions of FCA structures are presented in Section 6.

2.3. Known challenges in FM reverse engineering

The literature identifies two main challenges in FM reverse engineering from variant descriptions.

6

Concept_12

credit_card

Concept_14

payment_method
basket

Concept_11

check

Concept_13

grid

Concept_15

e_commerce
catalogue

Concept_10

list

v2
v4
v6
v7
v8

v3
v4
v7
v8

v1
v2
v3
v4

v5
v6
v7
v8

Figure 4: AC-poset associated with the formal context of Table 1

The first challenge concerns the set of valid configurations depicted by the synthesised FM, called the FM con-
figuration semantics [4, 26]. It is known that FM as defined in the FODA report are not logically complete [27]. As
a consequence, current methods permit to obtain FMs that describe all the configurations corresponding to a set of
existing variants, but in some cases they also describe extra configurations: their configuration semantics then does not
exactly correspond to the original set of variants. This can lead to some difficulties if the FM is used to perform SPLE
tasks as product selection or product derivation. In these cases, a user can be allowed to select a subset of features
which does not correspond to any existing variant. Adding any logical formula as a cross-tree constraint to the model
can be a solution to restrict the valid configurations to the exact set of original variants. But here again, one can face
two other issues: 1) cross-tree constraints can take the form of a complex and incomprehensible propositional formula,
and 2) the number of cross-tree constraints can become overwhelming. An example of the second issue appears in
the case study of Ryssel et al. [10] where an FM with 42 features needs 1772 cross-tree constraints to describe the
exact set of original variants. However, for specific operations, such as predicting which non-existing variants may be
easily derived from the set of existing ones, representing more configurations may be desirable; this concern is out of
the scope of this paper. To synthesise FMs that most accurately represent the configuration semantics represented by
the initial set of variants, while remaining understandable for a user is thus the first challenge.

The second challenge refers to the meaning of the feature hierarchy, also called ontological semantics [26]. In
fact, the way features are related and how they are connected in the hierarchy also displays important information.
For example, in Figure 1 (right), credit card and check are sub-features of payment method because they refine the
concept represented by this feature. The meaning expressed through the hierarchy is important to maintain the SPL,
understand its architecture and, as mentioned in [28], to be used as a basis for automated procedures. Therefore,
the second main challenge of FM automated synthesis is to obtain a coherent feature hierarchy, i.e., that displays
meaningful information regarding the domain. Semi-automated FM synthesis tries to reduce incoherence of the
feature hierarchy by including users decisions in the process. A recent empirical study [15] has shown that, when
it comes to FM extraction, semi-automated approaches outperform the other solutions, and thus user decisions are
necessary at some point to avoid the extracted model to have a bad ontological semantics. This second challenge rises
two complementary research questions:

RQ1: What part of the process of FM extraction can be fully-automated without altering its semantics?
RQ2: What part of the process of FM extraction necessitates user decisions?
FCA is a method for data analysis, knowledge representation and information management, which provides a

natural hierarchical structure to any dataset composed of a set of objects and formal descriptions. It is founded

7

on a strong theoretical background while focusing on human-centered approaches [29], and has already shown its
capacity to encompass variability information and support its extraction [21, 30, 10]. Part of question 1 is answered
in the following section (Section 3) which presents a sound and complete FCA-based extraction method of feature
relationships from variant descriptions. Then, Section 4 studies commonalities between FCA conceptual structures
and FMs, which allows to complete the answer of question 1 and sketch a solution for question 2.

3. A sound and complete variability extraction method based on FCA

In the field of SPLE, FCA has been principally used to support information and logical relationship retrieval,
for FM extraction from variant descriptions [30, 10], FM re-engineering [5], recovering SPL architecture [21], or
feature identification in source code [20, 19]. The specialisation order between the attribute-concepts emphasises
relationships between features that are true for the considered set of variants. In this section, we gather the different
types of variability information which can be extracted from FCA conceptual structures. We study existing methods
in order to obtain an efficient generalised process which is proved sound and complete thanks to the properties given
by Ganter and Wille [17].

3.1. Extracting binary implications

Ganter and Wille show that all binary implications that hold in a context can be read in the associated concept
lattice, and conversely. Concept lattices thus support sound and complete extraction of binary implications [17, p.80]:

Property 1. Given two features f1 and f2 respectively introduced in concepts C1 and C2, C2 ≤s C1 ⇐⇒ f2 → f1

In other words, if C1 is a super-concept of C2, then all variants having f2 necessarily have f1, because features are
inherited from top to bottom in the structure. Therefore, to extract binary implications, only the attribute-concepts are
needed: so they can be extracted from the AOC-poset and AC-poset as well. Binary implications can be found by
following the arrows in the Hasse diagram of the conceptual structures. For instance, in Figures 2, 3 and 4, the feature
payment method is introduced in a super-concept of the concept introducing the feature check, so we can extract the
implication check→ payment method.

This extraction method is used from the concept lattice by Shatnawi et al. [21], and from the AC-poset by Al-
Msiedeen et al. [30] and Ryssel et al. [10]. We will extract binary implications from the AC-poset which is the smaller
structure and thus supports the most efficient extraction: applying this method on an AC-poset has a complexity in
O(|A|2), as |A| is the maximum number of attribute-concepts and that potentially each pair of attribute-concepts has to
be checked.

3.2. Extracting co-occurrences

Co-occurring features are a particular case of double binary implications, that may be expressed using Property 2:

Property 2. Given two features f1 and f2 introduced in the same concept C, we have f2 ↔ f1

This property is due to the double application of Property 1, with f1 and f2 introduced in C, and therefore f1 → f2
and f2 → f1. It may be easily read in attribute-concepts of the associated conceptual structures. For instance, in
Figures 2, 3 and 4, we can see that features payment method and basket are co-occurrent because they are both
introduced in Concept 14.

Co-occurring features are extracted from the concept lattice by Shatnawi et al. [21] and from the AC-poset by
Al-Msiedeen et al. [30]. They are not taken into account in the work of Ryssel et al. [10]. Here again, we will use
the AC-poset to extract this information. This process has a complexity in O(|A|), as every attribute-concept has to be
checked once to detect all co-occurrences.

8

3.3. Extracting mutual exclusions (mutex)

If two features f1 and f2 of a formal context are mutually exclusive (represented by an exclude CTC in FMs),
then they are never present together in any variant of the formal context. This means that the set of variants having f1
and the set of variants having f2 are disjoint. Because the extent of an attribute-concept represents all the variants of
the formal context possessing the attributes introduced in that concept, we can then naturally formulate the following
property:

Property 3. Given two concepts C1 and C2 respectively introducing features f1 and f2, f1 → ¬ f2 ⇐⇒ Ext(C1) ∩
Ext(C2) = ∅

Testing the intersection of the extents of each pair of attribute-concepts is a sound and complete manner to extract
all mutex. For instance in Figure 4, the intersection of Concept 13 and Concept 10 extents is empty, thus grid → ¬
list. Another way to extract this information is to compute the greatest lower-bound of the two attribute-concepts
C1 and C2. The greatest lower-bound of a pair of concepts represents a concept whose extent is the intersection
of the extents’ pair (because concept lattices are closed by intersection). Indeed, when the extent of their greatest
lower bound is empty, it means that f1 and f2 never appear together in any variant. As a consequence, if the greatest
lower-bound of two attribute-concepts is the bottom-concept, and that the bottom-concept has an empty extent, then
attributes introduced in these concepts are mutually exclusive.

Shatnawi et al. [21] extract all the mutex by checking all incomparable concepts in a concept lattice, with a
complexity in O(|V |3) with |V | ≤ 2min(|O|,|A|). Al-Msiedeen et al. define a heuristics in O(|A|2), but the extraction is
not complete. Finally, Ryssel et al. [10] add the negation of all features in a new formal context, and compute the
binary implications including the negations to obtain all mutex. The number of attributes is multiplied by 2, so the
complexity is still in O(|A|2), plus the computation of the AC-poset augmented with the negation.

As we try to extract all information from one structure to avoid computing several structures, we will test the
intersection of attribute-concepts’ extent. As intersection may be performed in O(2|O|), the complexity of the process
is in O(|O|.|A|2).

3.4. Extracting feature-groups

A group of features rooted on a parent feature means that, in any variant having the parent feature, at least one of
the features from the group is always present. An or-group does not specify the maximal number of features that may
be selected (thus representing a cardinality [1..n]), and a xor-group constrains this number to 1 (thus representing a
cardinality [1..1]). Or-groups and xor-groups thus have the following properties: 1) each feature involved in a group
implies the parent feature, and 2) in each variant, the parent feature must always be present with at least one feature of
the group. Note that in an FM configuration set, each possible combination of features involved in an or-group appears
at least in one valid configuration. However, as we work with potentially incomplete product descriptions, finding or-
groups observing this “strong” property is very unlikely. Therefore, we only seek to detect “weak” or-groups, i.e.,
respecting at least the two previous properties (which is also the case of the or-group extraction in [4]). In the rest of
the paper, the or-groups are considered “weak”. Xor-groups must also verify the fact that in each variant the parent
feature appears with at most one feature of the group; they are a particular case of or-groups. In what follows, we
show how to detect or-groups, and then how to detect xor-groups among them. We will consider a feature f0 and its
attribute-concept C0.

3.4.1. Detecting or-groups
Firstly, all features from a group imply the same parent feature. Thus, if f0 is a group parent, then the potential

features of the group are necessarily introduced in sub-concepts of C0, as they are all the features implying f0.

Property 4. Given a feature f0 introduced in a concept C0, if f0 is a parent feature then a feature fi involved in the
group is necessarily introduced in a concept Ci ∈ ACK such that Ci <CL C0 and fi → f0.

For instance in Figure 2, let us consider the feature payment method introduced in Concept 14: the potential features
of a group under this feature are only check and credit card. The feature grid is not a candidate because it is introduced
in a concept which is not a sub-concept of Concept 14.

9

Secondly, at least one feature of the group must appear with f0 in any variant of the initial formal context. In other
words, there must be no variant v having f0 without any feature introduced in a sub-concept of C0. If such a variant
exists, f0 cannot be a group parent. This information can be read in a concept lattice: if there is an object-concept
being a sub-concept of C0, and no attribute-concept exists between C0 and the object-concept, then f0 cannot be a
group parent. Moreover, C0 cannot be an object-concept for the same reason. It is easier to verify this property in an
AC-poset: if the union of the extents of the direct sub-concepts of C0 is equal to the extent of C0, then all variants
having f0 also have at least a feature introduced in a sub-concept of C0, and f0 is a group parent. Then, each subset of
sub-concepts of C0 in the AC-poset having the union of their extents equals to C0’s extent forms an or-group.

Property 5. Given a feature f0 introduced in the concept C0 = (E0, I0) ∈ ACK , and the attribute-concepts Ci =

(Ei, Ii) ∈ ACK , i ∈ {1, 2, . . . , n}|Ci <CL C0 and @C j ∈ ACK , (C j <CL C0 and Ci <CL C j). f0 is a group parent feature

if and only if E0 =
n⋃

i=1
Ei.

In Figure 2, feature catalogue introduced in Concept 15 is a group parent. The extent of Concept 13 introducing grid
is {v1 − v4}

2, and the one of Concept 10 introducing list is {v5 − v8}. Their union is equal to {v1 − v8}, the extent of
Concept 15: therefore, grid and list form an or-group under catalogue.

3.4.2. Detecting xor-groups
Xor-groups are particular or-groups such that no feature of the group appears with another feature of the group in

any variant. Therefore, extents of their attribute-concepts are disjoint. To detect xor-groups, we must test or-groups
for this property. In the following property, we consider that if an attribute-concept introduces more than one feature
(i.e., co-occurrent features), then this set of features is represented by one feature.

Property 6. Given {C1 = (E1, I1),C2 = (E2, I2), . . . , Cn = (En, In)} the set of concepts from ACK respectively intro-
ducing features f1, f2, . . . , fn. The or-group composed of the feature set { f1, f2, . . . , fn} and of their parent feature f0
is a xor-group if and only if @(Ci,C j)|Ci,C j ∈ {C1,C2, . . . ,Cn} and Ei ∩ E j , ∅.

In Figure 2, Concept 13 and Concept 10 have no variants in common in their extents: the or-group previously
detected is thus a xor-group.

Shatnawi et al. [21] define two heuristics to detect feature-groups, which are neither sound nor complete. Al-
Msiedeen et al [30] propose their own heuristics but they face the same problems. On the contrary, Ryssel et al. [10]
express the problem of finding groups as finding a cover (for or-groups) and an exact cover (for xor-groups) in the
AC-poset. It is equivalent to the method discussed here, and may be performed with a complexity in O(2|A|).

3.4.3. On groups’ minimality
An or-group is minimal if it is composed of a minimal number of attribute-concepts, i.e., if no attribute-concept

may be removed without ”breaking” the aforementioned group properties. Adding a feature to a minimal or-group
thus leads to a non-minimal or-group. More specifically, all subsets of features introduced in sub-concepts of C0 may
be added to a minimal or-group to obtain non-minimal or-groups. Therefore, knowing the minimal or-groups and the
feature hierarchy is enough to represent all possible non-minimal or-groups. In what follows, we consider only the
minimal or-groups for the sake of concision.

By definition, the attribute-concepts involved in a xor-group cover exactly the extent of C0, so all xor-groups are
minimal.

3.5. Identifying core features

Features which are present in all variants [5, 30], also called core-features, give highlights on the common generic
architecture of the SPL. Core-features are not evidently represented in FMs, but they are important variability infor-
mation that can easily be identified in FMs with automated analyses. The top-concept (i.e., the only concept being the
super-concept of all other concepts) is the concept having the biggest extent in the structure, which contains all the

2{vi − v j} for i < j is a shorten notation for the set {vi, vi+1, . . . , v j}

10

variants. Therefore, the top-concept intent encompasses all features that are shared by all the considered variants. The
core-features are thus naturally introduced in the top-concept. The top-concept always exists in the concept lattice,
but not necessarily in the AOC-poset and the AC-poset. If a sub-hierarchy does not possess a top-concept, then there
are no core-features.

Property 7. Given C> ∈ CK the concept such that ∀Ci ∈ CK ,Ci ≤CL C>, then all features f introduced in C> are
inherited by all concepts of the structures and thus > → f .

For instance, we can see in Figures 2, 3 and 4 that the feature catalogue introduced in the top-concept Concept 15 is
present in all e-commerce application variants.

3.6. Identifying dead features
Dead-features are features which are not owned by any product, and then are absent of all the considered variants

[5, 30]. In concept lattices, this kind of features are thus introduced in a concept having an empty extent; if such a
concept exists, it corresponds to the bottom-concept. The bottom-concept is the only concept of the structure being
the sub-concept of all other concepts. It has the biggest intent, which contains all features from the formal context,
as it inherits features from all concepts of the structure. Therefore, the bottom-concept extent contains all variants
described by all the features. If it has an empty extent and a nonempty intent, the features introduced in its intent thus
are not shared by any variant.

Property 8. Given C⊥ = (E⊥, I⊥) ∈ CK the concept such that ∀Ci ∈ CK ,C⊥ ≤CL Ci, if E⊥ = ∅ then a feature f
introduced in C⊥ is not shared by any variant and f → ⊥.

In Figure 2, the bottom-concept (Concept 0) has an empty extent and does not introduce any feature, which means
there are no unused features in this variant set. The AOC-poset and AC-poset of Figures 3 and 4 do not have a
bottom-concept (because Concept 0 of the concept lattice is a plain-concept), which leads us to the same conclusion.

In this section, we gave an overview of what variability information may be automatically extracted using FCA,
and thus answers part of RQ1. In what follows, we study the link between boolean FMs and the extracted variability
information studied here, and show how FCA properties help to complete the answer of RQ1 and to delimit the
answer of RQ2.

4. FCA structures and equivalence classes of FMs

In this section, we first analyse the way FMs and concept lattices express feature relationships. Then, we give
details of a mapping between feature relationships which are expressed in these two different formalisms. In partic-
ular, we show that concept lattices represent equivalence classes of FMs having the same configuration semantics.
Finally, to ease the visualisation of the useful feature relationships extracted using FCA, we introduce a simplified
representation based on FCA structures, called an Equivalence Class Feature Diagram (ECFD).

It is noteworthy that the logical semantics presented in ECFDs may be computed (and have been computed) using
propositional formulas and SAT-solvers. However, the mapping between FCA and FMs shows how an FCA structure
embodies an FM logical semantics and parts of its structure, while being a compact and canonical representation
of both the propositional formula and its models. Here, we study a structural framework that naturally highlights
FMs logical semantics, contrarily to existing methods that are designed especially to extract this information. FCA
structures allow to support functions of knowledge processing such as exploring, searching, recognising, identifying,
analysing, investigating, deciding, improving, restructuring and memorising [29]. What motivates our work here is to
better understand links between FMs and FCA in order to benefit from FCA qualities in knowledge representation in
the field of SPLE.

4.1. FMs and their semantics
Configuration semantics. We have seen previously that FMs describe a finite set of valid combinations of features
(i.e., valid configurations) by defining relationships between them. This set of valid configurations represents the
configuration semantics of the FM [26]. Table 1 represents the configuration semantics of the FM of Figure 1.

11

Ontological semantics. The type of the relationship that links a subset of features (e.g., refinement, requirement,
mandatory selection, feature groups) has an ontological meaning: it gives knowledge on the feature interaction with
regard to the modelled domain. The chosen relationship types connecting features constitute the ontological semantics
of a FM [26]. In this document, we consider that both feature tree relationships and cross-tree constraints represent the
ontological semantics of an FM. Reverse engineering FMs from product configurations is a challenging task in par-
ticular because of this ontological facet. The difficulty lies in the fact that several different FMs (i.e., having different
ontological semantics) can be equivalent (i.e., having the same configuration semantics). Therefore, a domain expert
intervention is needed to identify which one represents the most meaningful modelling [15, 26]. For instance, let us
consider the FM of Figure 5. It has the same configuration semantics as the FM presented in Figure 1. However its
ontological semantics is different: in Figure 5, the feature payment method now refines basket instead of e commerce
through a mandatory relationship. This can be understood as “payment methods is a mandatory sub-feature of bas-
ket management”. On the contrary, in the FM of Figure 1, their link can be understood as “payment methods and
basket management are two independent sub-features of e-commerce applications, but they require each other”. The
challenge is to identify which FM has a more meaningful representation of e-commerce applications’ variability.

catalogue

Figure 5: Example FM with the same configuration semantics as the FM of Figure 1, but with a different ontological semantics

Logical semantics. To our knowledge, the link between FMs and first-order logic was first made by Mannion in [31].
Ever since, FMs have been represented in the form of propositional formulas, where each feature corresponds to a
propositional variable and where constraints are defined using propositional connectives. Mapping were established
between FM and logical relationships [32, 4, 33] to obtain a propositional formula based on an FM such that the
models of the formula correspond to the valid configurations of the FM. Since different propositional formulas having
the same set of models are considered equivalent, and since an FM has a unique configuration semantics, the following
proposition holds:

Proposition 1. Let us consider the set of boolean FMs with F as the feature set and vc ⊆ 2F the associated set of
valid configurations. Then, there exists a set of equivalent propositional formulas built on top of F as the set of
propositional variables, such that, given FM one of these formulas and any interpretation I : F → {true, f alse}, then
(I is a model of FM) iff (∃C ∈ vc such that ∀ f ∈ F, I(f) = true iff f ∈ C).

Each type of FM ontological relationship has an equivalence in propositional logic; thus, each ontological relation-
ship corresponds to a logical relationship, that we will call its logical semantics. The columns FMs and Propositional
formula of Tables 2, 3 and 4 present this mapping. Boolean FMs, as defined in Section 2, can depict 8 different on-
tological relationships (see Tables 2, 3 and 4): refinement relationships (1), mandatory (4) and optional (2) selection,
requires (3, 5) and exclude (6) constraints, or-groups (7) and xor-groups (8). The “FMs” column depicts these differ-
ent types of ontological relationships. Graphical relationships are illustrated by their corresponding edge decorations,
and cross-tree constraints are identified by their textual notation. The “Propositional formula” column shows their
logical semantics, as presented in [32, 4, 33]. The last column “Concept lattices” is discussed in Section 4.2.

12

Table 2: Mapping between FMs, propositional formulas, and concept lattices (except feature-groups)
FMs Prop. form. Concept lattices

1
f1

f2

f2 <FM f1

f2 → f1 C f2 ≤CL C f1
Cf2
f2

Cf1
f1

2
f1

f2

optional(f1, f2)

3 f2 → f1 f2 requires f1

4
f1

f2 or
f1

f2 mandatory(f1, f2)
or

mandatory(f2, f1) f1 ↔ f2 C f1 =CL C f2

Cf1,2
f1,f2

5 f1 → f2
f2 → f1

f1 requires f2
f2 requires f1

6 f1 → ¬ f2 exclude(f1, f2)
f1 → ¬ f2

or
f2 → ¬ f1

Ext(C f1 uC f2)
= ∅

Cf2Cf1

CBot

f2f1

In Table 2, Row (1) represents refinement relationships between features, i.e., that feature f2 is a child-feature of
f1. The notation f2 <FM f1 means that f2 is introduced in a lower level of the branch introducing f1 in the feature
tree. We recall that, during a configuration selection, child features can be selected only if their parent features are
already selected. Row (2) shows an optional relationship between a feature f1 and its direct sub-feature f2. This edge
expresses the fact that there is no constraint on this selection: when f1 is selected, its sub-feature can be selected, or
not. However, f2 still refines f1. Row (3) depicts a requires CTC, which states that “if f2 is selected, f1 also has to
be selected”. These three ontological relationships have the same logical semantics, and can be represented by the
implication f2 → f1.

Row (4) (left) represents a mandatory relationship between a feature f1 and its direct sub-feature f2: when the
parent feature is selected, the child feature is also selected. Note that f2 also refines f1. Row (5) shows the particular
case of circular requires CTCs, i.e., when f1 requires f2 and f2 requires f1. These two types of relationships have the
same logical semantics, and can be represented by a logical equivalence f1 ↔ f2.

Row (6) depicts exclude CTCs: if f1 is selected in a configuration, then f2 cannot be selected, and conversely.
This mutual exclusion can be logically expressed by f1 → ¬ f2 or f2 → ¬ f1.

Table 3 presents the mapping between or-groups and propositional logic. Let us consider F = { f1, . . . , fk} the set of
features involved in an or-group, and f0 the parent-feature of this group. All configurations having one of the features
in F also necessarily have f0, as each feature of F refines f0. Conversely, configurations having the parent-feature
necessarily have one of the feature of the or-group, thus it can be logically written by f0 → (f1 ∨ . . . ∨ fk).

Finally, Table 4 presents the mapping of xor-groups. Features involved in a xor-group have a similar behaviour
as the ones involved in an or-group. But in addition, features of F are mutually exclusive, as in exclude cross-tree
constraints. Their logical semantics is then the same as or-groups, but with mutual exclusions between each pair of
features in F: f0 → (f1 ⊕ . . . ⊕ fk).

We can see in this mapping that different types of ontological relationships have the same logical semantics;
these ontological relationships can thus be represented by the same equivalent propositional formulas. However, even
though their logical semantics is equivalent, their ontological semantics still represents different domain knowledges.
Thus, one logical relationship may correspond to several ontological ones, as illustrated in Figure 6.

13

Table 3: Mapping: or-groups (7)
FMs

f0

f1 ... fk

or(f0, F) | F = { f1, f2, ..., fk}

Propositional formula: f0 → (f1 ∨ . . . ∨ fk)
Concept lattices

Cf0
f0

Cfj

...

Cfi
fi fj

Cm

∀ f ∈ F,C f ≤CL C f0 .
Ext(C f1) ∪ ... ∪ Ext(C fk) = Ext(C f0).

∀ fi ∈ F,
Ext(C f1) ∪ ... ∪ Ext(C fk) \ Ext(C fi) , Ext(C f0).

C f0 < OC

Proposition 2. An ontological relationship can be associated to one and only one logical semantics, but a logical
relationship may correspond to several different FM ontological relationships.

A B

B req. A

B A

2 ontological
relationships

1 logical
relationship

Figure 6: Asymmetric mapping between ontological relationships and logical relationships

4.2. Concept lattices and their semantics
Note that, in the following section, all of the properties stated for concept lattices can be extended to AOC-posets

and AC-posets, sometimes with variants which are indicated when necessary.
As the set of objects (i.e., valid configurations in our case) of formal contexts can be read in concept lattices,

they present a configuration semantics as for FMs. Also, as presented in Section 3, concept lattices highlight logical
relationships between their elements, and thus include a logical semantics as well. A formal context may be seen
as a tabular representation of all models of a set of equivalent propositional formulas; therefore, the concept lattice
associated to this formal context can be seen as a structural framework embodying both the propositional formulas
and their models. Since a unique concept lattice can be built from a formal context, and that a unique formal context
corresponds to a concept lattice [17], the following proposition holds:

Proposition 3. Let any propositional formula F on the variable set V, andMF the set of its models. There exists a
unique concept lattice LF which is built on top of the formal context K = (MF ,V,R) and (∀m ∈ MF ,∀v ∈ V, (m, v) ∈
R iff m(v) = true).
Reciprocally, let L be a concept lattice and K = (O, A,R) its associated formal context. We can associate to L a set
of equivalent propositional formulas, built on top of A as the set of propositional variables and such that their models
are in a one-to-one mapping with O, and for a model m associated with o ∈ O, ∀a ∈ A,m(a) = true iff (o, a) ∈ R.

However, concept lattices only emphasise logical relationships and do not explicitly represent any kind of onto-
logical information, therefore they do not have an ontological semantics.

14

Table 4: Mapping: xor-groups (8)
FMs

f0

f1 ... fk

xor(f0, F) | F = { f1, f2, ..., fk}

Propositional formula: f0 → (f1 ⊕ . . . ⊕ fk)
Concept lattices

Cf0
f0

CfjCfi
fi fj

CBot

∀ f ∈ F,C f ≤CL C f0 .
∀ fi, f j ∈ F | fi , f j, Ext(C fi uC f j) = ∅.

{Ext(C f1), ..., Ext(C fk)} is a partition of Ext(C f0).
C f0 < OC

The columns Propositional logic and Concept lattices of Tables 2, 3 and 4 present the mapping between logical
relationships and how they can be read/extracted from concept lattices. They summarise the theoretical analysis
presented in the first 4 subsections of Section 3; here we just discuss the patterns corresponding these relationships in
a concept lattice.

Row (1,2,3) If the concept introducing the feature f2 is a sub-concept of the concept introducing f1 (denoted by
C f2 <CL C f1), then all configurations having f2 also have f1, hence the implication f2 → f1. Note that this implication
also stands when f1 is introduced in the same concept as f2 (denoted by C f2 =CL C f1), but in this case we also have
f1 → f2.

Row (4,5) Logical equivalences can be read in concept lattices by identifying concepts introducing more than one
feature: if f1 and f2 are both introduced in the same concept (denoted C f1 =CL C f2), then f1 ↔ f2.

Row (6) Mutual exclusion can be read in a concept lattice by computing the greatest lower-bound of two concepts,
respectively introducing f1 and f2 (denoted C f1 u C f2). In AOC-posets and AC-posets, contrarily to concept lattices,
mutually exclusive features are introduced in concepts which do not have a lower bound, because the bottom-concept
is empty (it is a plain concept) and thus it is not represented in the sub-orders.

Table 3 presents the mapping of or-groups logical semantics into concept lattices. Given F the features involved in
an or-group, and f0 the parent-feature of this group. All configurations having one of the features in F also necessarily
have f0, and conversely, configurations having the parent-feature necessarily have one of the feature of the or-group;
thus, the union of the extents of concepts introducing features of F is equal to the extent of the concept introducing
f0. Finally, the concept introducing the parent-feature of an or-group is not an object-concept, as at least one feature
of F has to be selected. We denoted it by C f0 < OC, C f0 being the concept introducing the parent-feature of the group,
and OC the set of object-concepts of the concept lattice.

Finally, Table 4 presents the mapping of xor-groups logical semantics into concept lattices. Xor-groups are like
or-groups, but the greatest lower bound of concepts introducing the features of F has an empty extent. Indeed, features
involved in a xor-group and features involved in an exclude cross-tree constraint have a similar behaviour, as they are
mutually exclusive in both situations.

4.3. Mapping’s conclusions
Regarding the two previous subsections, a mapping can be established between feature relationships expressed

in FMs (having ontological semantics) and feature relationships extracted from conceptual structures (having logical
semantics). This mapping shows that the logical semantics of an FM can be represented as a conjunction of binary
implications, equivalences, mutex, or-groups and xor-groups. We have shown in Section 3 that these five types of
logical relationships can be extracted in a sound and complete manner from FCA conceptual structures. This leads us
to this statement:

15

Proposition 4. All logical relationships representing the logical semantics of boolean FMs can be read and extracted
from concept lattices, AOC-posets and AC-posets.

In the field of FM reverse engineering, such a mapping could ease the detection of potential FM relationships in
FCA structures generated from product descriptions. Altogether, it permits to steer the FM extraction, and narrow the
number of choices which can be taken by the domain expert (e.g., hierarchy, feature-groups). Moreover, it shows that
the entire logical semantics is contained in a unique structure.

Let us consider an FM (named FM) and a concept lattice (named CLFM) having the same configuration seman-
tics (i.e., the concept lattice is built from the formal context depicting the FM valid configurations). We have seen
previously that an FM has a unique set of valid configurations, and that a unique concept lattice can be built from a
given formal context, thus the following proposition holds:

Proposition 5. Given an FM and its set of configurations, there always exists one unique concept lattice associated
with the formal context representing exactly this configuration set.

The variability extraction approach using FCA is sound and complete: all logical relationships (amongst the 5
presented in the mapping) that are true for the considered set of configurations are thus extracted. Therefore, as CLFM
has the same configuration semantics as FM, the logical semantics of FM can be extracted from CLFM. More
precisely, one can establish a matching between the ontological relationships of FM and the logical relationships
extracted from CLFM. This is illustrated in Figure 7.

B

D E

Concept_ex_8

B

Concept_ex_7

D

v2

Concept_ex_6

E

v3

concept lattice

E B

List of
ontological

List of
extracted

logical

mapping

same configuration
semantics

B E|D

feature model

D B
relationships relationships

Concept_ex_5

v4

Figure 7: Some logical relationships from a concept lattice can be mapped to a corresponding FM ontological relationship

However, because of Proposition 2, one cannot associate with certainty an ontological semantics to the extracted
logical dependencies without the initial FM or domain knowledge, as several choices can be possible. As a conse-
quence, a concept lattice can be mapped to several different FMs (i.e. different ontological semantics), as long as these
FMs possess the same logical semantics. As the configuration semantics can be computed from the logical semantics
(i.e., list of models verifying the propositional formula), equivalent FMs (i.e. having the same configuration seman-
tics) have all the same logical semantics, and only their ontological semantics differs. Thus, all the FMs having the
same configuration semantics can be mapped to their equivalent concept lattice.

Proposition 6. Let FM be the set of FMs with F as the feature set and vc ⊆ 2F as the associated set of valid
configurations. There exists a unique concept lattice (resp. AOC-poset and AC-poset) LFM built on the formal context
K = (vc, F,R) such that ∀ C ∈ vc,∀ f ∈ F, (C, f) ∈ R iff f ∈ C.

16

To sum up, one can map several FMs into the same concept lattice, if they have the same configuration semantics:
each concept lattice built from a set of valid configurations represents an equivalence class of FMs (Figure 8).

A

B C

D E

A

B C

D E

B

A C

D E

Concept_ex_8

A B

Concept_ex_7

D

v2

Concept_ex_6

E

v3

equivalent feature models

B A

Concept_ex_9

C

different ontological
choices based on

the mapping

Figure 8: Concept lattices represent FM equivalence classes

4.4. A DSML for equivalence class of FMs

To ease the mapping and the analysis of FCA structures, we decided to only keep the information that is necessary
to represent the ”equivalence classes” of FMs. In fact, this information is sometimes difficult to read in the lattice
(e.g., feature-groups). We called the set of extracted information, in the form of logical relationships, an equivalence
class feature diagram (ECFD). An ECFD hence symbolises the 5 types of information extracted from concept lattices
previously introduced in Tables 2, 3 and 4. Figure 9 presents the meta-model of an ECFD.

EquivalenceClass can possess two types of Element. A VariabilityBlock groups a set of co-occurring
Features that can be manipulated as a single entity. A Group gathers at least two variability blocks, and represents a
minimal or-group, or a xor-group. An Implication from an element (premise) to a variability block (conclusion)
states that when the features of the element are present in a configuration, the features of the block are necessarily
present too. The variability blocks involved in a group cannot be the conclusion of the group. A group is always the
premise of an implication, i.e., all blocks from the group imply the same variability block. Indeed, all variability blocks
involved in a group have the same parent: an implication from a group to a variability block represents an implication
from each variability block of the group toward the same parent variability block. Finally, mutual exclusions (Mutex)
can be defined between two variability blocks. Note that the ECFD is not always a tree, and that groups can overlap.

An ECFD represents the logical semantics of a set of configurations, stemming from the information extracted
from concept lattices. Thus, it represents all the FMs having the same configuration semantics, and each one of them
matches this structure. Moreover, their construction is deterministic, i.e., a unique ECFD can be built from a set of
variant descriptions. In the following proposition, we write that a formula belongs to a configuration by notation
abuse.

Proposition 7. Let vc be the configuration semantics of a set of FMs, and F their feature set. Then, there exists a
unique ECFD E = (FE ,VBE ,ORE , XORE ,ME , ImpE) such that:

• FE = F.

17

EquivalenceClass

Element

Group VariabilityBlock

FeatureMutex

- IsXor: boolean

- name: String

0..*

0..*

0..* 2..* 2

0..*

0..*

premise

conclusion

0..*

Figure 9: Meta-Model of Equivalence Class Feature Diagrams

• VBE forms a partition of FE such that ∀ f1, f2 ∈ FE with (∀ C ∈ vc, f1 ∈ C ⇐⇒ f2 ∈ C), we have ∃b ∈ VBE

and f1 ∈ b, f2 ∈ b.

• g ∈ ORE is a pair (b0, {b1, . . . , bn}) with bi ∈ VBE , i ∈ {0, 1, . . . , n} such that ∀C ∈ vc, b0 ∈ C iff (b1∨. . .∨bn) ∈ C
and @bk |(b0, {b1, . . . , bn} \ bk) ∈ ORE .

• g ∈ XORE is a pair (b0, {b1, . . . , bn}) with bi ∈ VBE , i ∈ {0, 1, . . . , n} such that ∀C ∈ vc, b0 ∈ C iff (b1⊕ . . .⊕bn) ∈
C.

• m ∈ ME is a pair m = (b1, b2), b1, b2 ∈ VBE such that ∀ C ∈ vc, (b1 < C or b2 < C).

• i ∈ ImpE is a pair i = (b1, b2), b1, b2 ∈ VBE such that ∀ C ∈ vc, (b1 ∈ C implies b2 ∈ C).

We defined a textual and a graphical notation for the ECFD. The textual notation gathers the set of all logical
relationships extracted from the concept lattice, as presented in the left column of Table 5. The graphical notation
represents each kind of logical relationships with a graphical element close to the FM representation, as presented in
the right column of Table 5.

Let us consider the concept lattice of Figure 2. The logical semantics of its equivalent FMs is presented in
Figure 10. G, L, Ch and Cc are singleton variability blocks and are not represented. Variability blocks possessing
more than one feature are called ”composite variability blocks”.

The graphical view of this ECFD is shown in Figure 11.
The logical semantics is a part of FMs that can be automatically extracted from variant descriptions (RQ1).

Also, the ECFD allows to steer the possible choices of FM ontological semantics, and therefore the possible feature
hierarchies of the final FM: it may be used to automatically infer some choices, thus reducing the number of decisions
that have to be made by the user. The remaining choices (RQ2) are discussed in the following section.

5. Reverse engineering method

In this section, we describe the process of an FM reverse engineering method based on FM derivation from the
ECFD obtained from a set of variant configurations. It allows us to identify when the ECFD may be used to infer a
decision, and delimit the choices that remain to the user. We illustrate this process on an example about a cell phone
SPL, borrowed from the work of Haslinger et al. [22].

18

Table 5: ECFD: a DSML for logical variability modelling
Textual Graphical

f1 → f2 f 1 f2

f1 ↔ f2 f1 f2

f1 → ¬ f2
or

f2 → ¬ f1
f 1 f2

f0 → (f1 ∨ . . . ∨ fk)

f 1 f k

v

...

f0

f0 → (f1 ⊕ . . . ⊕ fk)

f 1 f k
...

f0

Composite variability blocks: Ec↔ Ca
Pm↔ B

Implications: [Pm, B]→ [Ec,Ca]
G → [Ec,Ca]
L→ [Ec,Ca]
Ch→ [Pm, B]
Cc→ [Pm, B]

Minimal or-groups: [Pm, B]→ (Ch ∨Cc)
Xor-group: [Ec,Ca]→ (G ⊕ L)

Mutex: ∅

Figure 10: Textual representation of the ECFD extracted from the concept lattice of Figure 2

5.1. Method overview

Our method consists in assisting step-by-step the association of FM ontological relationships to the logical rela-
tionships depicted in an ECFD; it is relying on the mapping between FM and concept lattice relationships, applied on
an ECFD.

Let us consider the mapping. Given the ECFD obtained from a set of variant descriptions, a user has the possibility
to browse through each logical relationship described by this ECFD (Figure 12 (1) and (2)) and to choose which
ontological semantics he wants to assign to a relationship (Figure 12 (3)). For each type of logical relationship, the
ontological ones which can be chosen by the user are restricted to the ones having the corresponding logical semantics,
as stated in the mapping. Once all ECFD relationships are associated with an ontological semantics, the user obtains a
representation corresponding to exactly one FM, as illustrated in Figure 12. Logical relationships having one possible
ontological representation do not need user intervention, and may be automatically assigned.

This method has two advantages that motivated our work. On the one hand, by defining a mapping which does
not change the logical semantics of the ECFD, derived FMs have similar configuration semantics. Configurations
semantics may be slightly different, as the user may not retain all or-groups: thus, features involved in the discarded
groups are linked by optional relationships instead, resulting in a broader set of configurations. A complex proposi-
tional formula may be added at the end to restrict the configuration semantics of the derived FM, as presented by She

19

Ec Ca

G L
Pm B

Ch Cc
v

Figure 11: Graphical representation of the ECFD extracted from Figure 2

et al. [26] and Ryssel et al. [10]. On the other hand, the obtained FM has, by construction, an ontological semantics
validated by the user, that we assume more meaningful than the one obtained with fully automated synthesis methods.

Concept_ex_8

A

Concept_ex_7

C

v2

Concept_ex_6

B

v1

A

B C

v1
v2

A B C ...

...

x
x

x

x

x y

A

B C

D E

equivalence-class
feature diagram

domain expert

mapping

concept lattice

Formal
Concept
Analysis

feature model

(1)
browse

ECFD

(2)
select
log.
rel.

(3) choose ontological
semantics

step-by-step
ontological

 selection
on ECFD

extraction
of logical

relationships

formal context
variant descriptions

SCENARIO 1

SCENARIO 2

Figure 12: FM extraction method based on a step-by-step ontological semantics selection on an ECFD

We identified two scenarios which can benefit from the mapping and the ECFD:
Scenario 1: deriving a FM from a set of product descriptions.
Scenario 2: editing an FM with a correct configuration semantics, but which lacks consistency (i.e., with an

incorrect ontological semantics). In fact, given an inconsistent FM, one can compute its corresponding ECFD (i.e.,
representing the logical semantics of the FM) and see what modifications may be done on the FM without altering
its configuration semantics. This ECFD can be computed from the set of valid configurations of the FM; existing
FM re-engineering is thus similar to extracting an FM from variant descriptions. However, in this scenario, the user
may compare its choices in the ECFD with the existing FM ontological semantics. If the considered FM possesses too
many valid configurations for them to be listed efficiently, hints about representing FM variability with FCA structures
while avoiding combinatorial explosion are given in [34]. Similar process may be applied to derive the ECFD directly
from the FM, therefore avoiding listing all its valid configurations.

5.2. Deriving FMs from an ECFD
In what follows, we define some rules to ensure a correct FM derivation from an ECFD. Each rule is illustrated on

the example of Figure 11.

1. First, the user has to indicate the root feature. He has to choose among the features depicted in variability blocks
which are not premises of an implication. For example, in Figure 11, only the block containing e commerce

20

(Ec) and catalogue (Ca) corresponds to this description. Therefore, the user has to choose between these two
features. If the user chooses for example catalogue (Ca) as a root, this choice can lead to the feature models of
Figure 16.

2. Also, we have seen before that different groups may overlap in the ECFD. Thus, the user has to choose which
groups to keep in the final FM, while making sure a feature does not belong to more than one feature-group to
respect FM semantics. In Figure 11, no group overlap, so they can be kept as is. We give two examples of ECFD
having overlaping groups. Let us take as a first example an excerpt of an ECFD for another cell phone SPL,
shown in the l.h.s of Figure 13. In this example, two groups overlap: the or-group keyboard∨Touchscreen and
the or-group Touchscreen ∨ S peaker. In this case, both groups are relevant so that to obtain a feature tree, the
only solution is to clone the feature Touchscreen and to make it appear twice in the resulting FM. If we now
study another example, i.e., the excerpt of ECFD on the r.h.s of Figure 13, the same two groups overlap, but
this time the group Touchscreen ∨ S peaker has for parent Audiodevice, and thus seems rather accidental. So
that in this second case, the or-group keyboard ∨ Touchscreen can be kept, as shown in Figure 14.

Keyboard Touch screen

v

Input device

v

Output device

...

Speaker

...

Keyboard Touch screen

v

Input device

v

Audio device

...

Speaker

...

Figure 13: Two examples of ECFD with overlapping groups

Keyboard Touch screen

Input device Audio device

...

Speaker

...

Figure 14: An excerpt of feature model from the ECFD of the r.h.s of Figure 13

3. Then, in order not to affect the logical semantics, logical relationships having only one ontological matching
have priority on other ontological choices. As an example, let us slightly modify the ECFD of Figure 11, adding
an arrow from L towards Cc. We obtain the ECFD of Figure 15.
Then, one cannot choose to assign Cc as the parent feature of L, because L is already involved in a feature-
group with G, and this a relevant way to express the ontological semantics of the group. Therefore, the group
has priority on the implication between L and Cc, which can also be represented by a requires CTC.

4. Finally, when choosing the ontological semantics, the user has to care about assigning to each feature exactly
one parent feature among the ones from the “super-blocks” (conclusions of the implications), or the ones sharing
the same block. When a super-block contains one feature, it must be the parent of at least one feature of each
sub-block. When a super-block contains more than one feature, one of these features must be the parent of
at least one feature of each sub-block. Features of a sub-block have not necessarily the same parent. When
several features are involved in the same feature-group, all the features from the group have the same parent
feature. These rules permit to preserve the feature hierarchy of the FM. For instance, let us consider features
payment method (Pm) and basket (B) in the ECFD of Fig. 11. Let us suppose that we choose to assign Ca as

21

Ec Ca

G L
Pm B

Ch Cc
v

Figure 15: A modified version of the ECFD of Figure 11

the parent feature of Pm, and Ec as the parent feature of B (meaning that payment method refines catalogue
and that basket refines payment method), as shown in Figure 16. Now, because Pm and B share the same box,
we know from the mapping that they can be bound by a mandatory relationship (i.e., one of the two features
refines the other) or a circular requires CTC (i.e., the two features are independent but require each other). Yet,
a mandatory relationship cannot be chosen in this case, as it implies to designate a parent feature for Pm or B,
whereas both of them already have a parent feature; in this case, a circular requires CTC is the only possible
choice.

These rules allow to answer RQ2. To sum up, deriving FMs from an ECFD necessitates user’s decisions for
1) selecting the feature-groups when necessary, 2) choosing a feature tree among the proposed ones (this includes
choosing the root feature). Indeed, once the feature-groups have been selected, all the ontological choices concern
the hierarchy. The ECFD already gives a partial hierarchy, i.e., it narrows the possible choices. Then, the user has
to choose parent-feature among ”super-blocks”, and how to connect co-occurrent features from the same block with
mandatory relationships, optional relationships and double requires CTCs. A feature ranking method as presented in
[26] or in [16] may be put in place to assist the user to choose the best parent feature or even just to ease this activity.
The mentioned methods use feature descriptions to compute similarity between features, and propose a ranking of
the potential parent features of a given one. These methods, as they are based on external feature descriptions,
allow to estimate some ontological semantics in an automated way; but, if no external information is provided, they
cannot be applied. In these cases, some metrics may be computed anyway based on the information included in FCA
conceptual structures. For instance, each concept can be associated with a frequency and a support, that may be used
to characterise both features and feature relationships. Moreover, FCA provides a set of interestingness measures [35]
that may be used to assist the user during the hierarchy choices when no ontological information is available. This is
left as future work.

It is noteworthy that several works have already discussed the fact that ontological semantics of FMs resides in the
hierarchy and the feature-groups [4, 26]. It is also important to state that FCA offers a theoretical background for RQ1
and RQ2 answers. Also, FCA allows to document the possible choices for the hierarchy and the feature-groups in a
unique structure; Thus, some choices may be inferred automatically, and the ECFD permits to steer the user decisions
through a graphical representation close to FMs. Here again, FCA’s contribution here is to unify previous work in the
same framework.

5.3. Examples of ontological semantics selections
Figure 16 presents two possible ontological semantics selections of the ECFD of Figure 11. To represent the

chosen ontological semantics on ECFDs, we reuse the edge decoration of FMs to represent mandatory and optional
selection, and the textual notations to represent requires relationships (→). To depict the chosen feature hierarchy,
an arrow starts from each feature or feature-group and points towards its selected parent-feature. We highlight the
selected root feature in the ECFD with an underline. The modifications added to the ECFD to show the chosen
ontological semantics correspond to the aforementioned users’ decisions. Feature-groups and exclude constraints
keep the same notation we used in ECFD.

In the selection of the left-hand side, Ec is designated as the root feature. Ca shares the same block as Ec: they
have to be linked by either a circular requires cross-tree constraint or a mandatory relationship. However, Ca cannot

22

Ec Ca

G L
Pm B

Ch Cc
v

Pm↔ B

Ec Ca

G L
Pm B

Ch Cc
v

Figure 16: Two different ontological semantics selections, applied on the ECFD of Figure 11. Choices of the left-hand side correspond to the FM
of Figure 1, and the right-hand side to the FM of Figure 5

have another parent than Ec (because it has no “super-block”), and thus it is designated as a child-feature of Ec, linked
by a mandatory relationship. The chosen parent-feature of the xor-group composed of L and G is Ca (but could have
been Ec). Pm and B have the same parent-feature (Ec, but could have been Ca) and are linked by a circular requires
CTC. Finally, the parent-feature of the or-group {Ch,Cc} is Pm (but could have been B). These choices correspond to
the FM of Figure 1.

The selection of the right-hand side shows an alternative where the user chooses to link Pm and B not by a circular
requires CTC, but by a mandatory relationship from B (parent) to Pm (child). In this case, Pm can no longer be the
child-feature of Ec, as it already has another parent-feature. These choices correspond to the FM of Figure 5.

5.4. Application: re-engineering FMs with ECFD
Here we show how to use our method to edit an FM previously obtained with a reverse engineering method,

in order to improve its ontological semantics (scenario 2). First, we present the input reverse engineered FM and
its ontological issues. Then, we show how our method may help to steer the practitioners’ choices during the FM
re-engineering.

5.4.1. Running example: cell phone product line

Cell Phone (C)

Wireless (W) Display (D) Games (G) Accu Cell (A)

Infrared (I) Bluetooth (B) Multi Player (Mu) Single Player (Si) Strong (S) Medium (M) Weak (We)

Artificial Opponent (Ar)

MultiPlayer → Wireless ; Bluetooth→ S trong

MultiPlayer = Weak

C W I B A S M We D G Mu S i Ar
1 x x x x x x x
2 x x x x x x x
3 x x x x x x x
4 x x x x x x x x x
5 x x x x x x x x
6 x x x x x x x x x x
7 x x x x x x x x x
8 x x x x x x x x
9 x x x x x x x x x x
10 x x x x x x x x x
11 x x x x x x x x
12 x x x x x x x x x x
13 x x x x x x x x x
14 x x x x x x x x x x
15 x x x x x x x x x
16 x x x x x x x x x x x

Figure 17: FM about cell phones taken from [22] and its 16 valid configurations

In what follows, we illustrate our method by applying it on a given reverse engineered FM in order to improve its
ontological semantics. We use the example SPL about cell phones proposed by Haslinger et al. in [22].

In their paper, Haslinger et al. [22] propose algorithms to synthesise boolean FMs from a list of variants, organised
in the form of a formal context that they called a feature set table. To illustrate their method, they choose to extract
their input feature set table from an existing FM from SPLOT [36], which provides a reference with which they can
compare their output FM. In what follows, we rely on this reference FM and its feature set table (i.e. list of valid
configurations) to construct a conceptual structure with FCA. The FM used as reference is presented in Figure 17
(left).

23

In this SPL, each cell phone variant can eventually possess a Wireless feature, such as Infrared or Bluetooth. Both
are possible. All variants own a Display feature and Games. The proposed games can be Multi Player or Single
Player, a single player game always proposing to compete against an Artificial Opponent. Finally, each variant of this
SPL possesses an Accu Cell, which can be either Strong, Medium or Weak. A variant supporting multi player games
has to possess one of the wireless features and an accu cell cannot be weak. If bluetooth is available, the type of accu
cell has to be strong. This FM displays 16 valid variant configurations; they are listed in the formal context presented
in Figure 17 (right), analogous to the feature set table of [22].

In their paper, Haslinger et al. propose a set of algorithms to automate the synthesis of FMs from feature combina-
tions. It is a fully automated method which produces FMs with the same configuration semantics as the original set of
variants. However, the understandability and meaningfulness of the reverse engineered FMs still need to be assessed.

Figure 18 presents the output FM obtained when applying their method. Even though the reverse engineered FM

Cell Phone

Wireless Display Games Accu Cell Strong Medium Weak Multi Player Single Player

Infrared Bluetooth Artificial Opponent

MultiPlayer → Wireless ; Bluetooth→ S trong

MultiPlayer → ¬Weak ; Weak → S inglePlayer

Figure 18: Extracted FM from [22]

presents the same configuration semantics as Figure 17 (right), it differs in some points from the reference FM. Some
of its ontological semantics is lost in the process, as, for example, the or-group {S trong,Medium,Weak} does not
refine Accu Cell any more, and the connection between the group and the feature does not even appear in the model.
However, a good part of this semantics is still expressed in the FM: In f rared and Bluetooth refining Wireless,
mandatory Arti f icial Opponent with Single Player feature. It should be pointed out that feature groups are accurate
and meaningful in this example: S trong, Medium and Weak are mutually exclusive features, but are still part of
the same group; Multi Player and Weak are also mutually exclusive, but they do not form a xor-group and so their
exclusion is expressed by an exclude cross-tree constraint. But, the FM of Figure 18 also reveals a relationship which
is true for the considered set of variants, but not expressed in the original FM: it appears in the form of the cross-tree
constraint Weak → S ingle Player, stating that variants with weak accu cells always support single player games. It is
noteworthy that this kind of information can be difficult to read when one does not possess a reference FM as in this
case, but only a reverse engineered one which lacks some refinement relationships.

5.4.2. Re-engineering FMs with ECFDs
To guide the user into modifying the initial FM and improving its ontological semantics, the ECFD corresponding

to the re-engineered FM must be extracted. Here, the set of valid configurations of the initial FM is small, so we can
compute the associated AC-poset and extract the corresponding ECFD. As said previously, if the initial FM represents
too much valid configurations to be listed, it is possible to 1) derive the logical semantics from the FM and 2) build
the corresponding ECFD.

In this section, we follow the steps a user has to follow to edit the FM from Figure 18 and obtain the FM of
Figure 17 (left). Figure 19 presents the AC-poset generated from the formal context of Figure 17 (right), and Figure 20
the corresponding ECFD.

Computing this ECFD reveals that 5 different minimal or-groups are possible, but most of them overlap:

1. {S , {S i, Ar}, I}
2. {S , {S i, Ar},M}
3. {B, I}
4. {W, {S i, Ar}}

24

Concept_0

Weak (We)

v3
v13

Concept_6

Single Player (Si)
Artificial Opponent (Ar)

v1
v2
v4
v6
v7
v9
v10
v12
v14
v16

Concept_1

Medium (M)

v2
v10
v11
v12

Concept_8

Cell Phone (C)
Accu Cell (A)
Display (D)
Games (G)

Concept_2

Bluetooth (B)

v4
v5
v6
v14
v15
v16

Concept_5

Strong (S)

v1
v7
v8
v9

Concept_7

Wireless (W)

Concept_3

Multi Player (Mu)

v5
v6
v8
v9
v11
v12
v15
v16

Concept_4

Infrared (I)

v7
v8
v9
v10
v11
v12
v13
v14
v15
v16

Figure 19: AC-poset associated with the formal context of Figure 17 (right)

5. {Mu, {S i, Ar}}

To ease the visualisation of the manipulated structure, the first choice we illustrate consists in choosing the feature
groups to retain in the final FM. The user has to choose the feature-groups that seem the most consistent to him, while
taking care that these groups do not overlap. To obtain the FM of Figure 17 (left), the user needs to select the two
feature-groups {Mu, {S i, Ar}} and {B, I}. The Figure 21 shows the previous ECFD minus the 3 or-groups not retained;
it is therefore not the same ECFD as before, but an intermediate step between the first ECFD and the final FM.

Despite its apparent complexity, this diagram offers strong guidelines to the user as it retains a lot of choices:

1. the three feature-groups and the exclude constraint dependency We → ¬Mu have only one ontological seman-
tics;

2. as seen before, the or-group {I, B} has priority on the implication B → S , the last one is thus necessarily
represented by a requires CTC;

3. same conclusion can be made for Mu→ W.

Therefore, the user choices are reduced to:

1. select a root feature
2. the designation of a parent-feature for the feature W, the or-group {Mu, {S i, Ar}} and the xor-group {We,M, S };
3. select We→ S i or We→ Ar;
4. how to express the co-occurrence of S i and Ar;
5. how to express the co-occurrence of C, G, D and A.

Figure 22 shows the ontological semantics of the extracted FM obtained with Haslinger reverse engineering method.
Let us see what kind of modifications our method permits to make, and select the meaningful ones, i.e., the ones

corresponding to the reference FM. We have seen previously that the reverse engineered FM of Figure 18 lacks coher-
ence regarding the parent-feature of the or-group {Multi player, S ingle player} and the xor-group {Weak,Medium, S trong},
which is the root Cell phone for both of them. Though, one can see in the ECFD that Cell phone is not the only pos-
sible parent-feature for these groups, and that they can also refine either Games, Display or Accu cell. Features

25

C G D A

I B

Mu Si Ar We M SW

v

vv

v

v

Figure 20: Equivalence class feature diagram of the SPL about cell phones

C G D A

I B

Mu Si Ar We M SW

v

v

Figure 21: Equivalence class feature diagram of the SPL about cell phones without the non-consistent feature groups

Multi player and Single player refer to video game options, and thus the feature Games is more coherent as a parent-
feature. Besides, the features Weak, Medium and S trong refer to a cell phone battery, and therefore refine the feature
Accu cell. With these two modifications, we obtain the ontological semantics selection of Figure 23, corresponding to
the initial FM depicted in Figure 17.

6. Applicability study of FCA on product descriptions

In previous sections, we have defined formal concept analysis and showed how two of its associated structures
can be used to assist consistent feature models extraction from product descriptions. In what follows, we study their
applicability in the software product line reverse engineering context. We discuss two aspects: 1) the size of these
structures when generated from product descriptions, and 2) the viability of their generation and management with
existing algorithms. Finally, we study sizes and characteristics of ECFDs corresponding to existing FMs taken from
the SPLOT repository.

6.1. Dimensions of the conceptual structures
FCA is known to produce structures which exponentially grow with the size of the input. They can be difficult

to generate and to exploit when their size is too important. In what follows, we define the size of a structure by its
number of concepts. The size of a concept lattice and an AOC-poset depends on the number of attributes and of
objects, and the form of the formal context. Let |O| be the number of objects (here the variants) in a formal context,
and |A| the number of attributes (here the features). In a concept lattice, the number of generated concepts can reach
2min(|O|,|A|). However, in an AOC-poset, this number cannot exceed |O| + |A|, and |A| for an AC-poset.

Here, we present an experiment to determine an order of magnitude of the size of these two structures when they
are used to organise a set of existing variants. Product descriptions can be found abundantly on the internet in the
form of tabular data, called Product Comparison Matrices (PCMs). PCMs permit to compare a set of similar products
depending on a set of features. They have been studied in the context of SPLE as product descriptions [37, 38].
Websites as Wikipedia propose numerous PCMs, including ones about software systems.

26

C G D A

I B

Mu Si We M SW

v

v

Ar

B→ S ; Mu→ W; We→ S i

Figure 22: Ontological semantics of the extracted FM obtained with the Haslingers reverse engineering method presented in Figure 18

C G D A

I B

Mu Si We M SW

v

v

Ar

B→ S ; Mu→ W ; We→ S i

Figure 23: Ontological semantics choices, corresponding to the initial FM of Figure 17

For this experiment, we took 40 Wikipedia’s PCMs about software systems, and we converted them into formal
contexts3. Because features displayed in PCMs can be multi-valued, we applied binary scaling on them to obtain
binary attributes: a feature with n different values in the PCM thus produces n binary attributes (one attribute per
possible value) in the formal context. These 40 PCMs were chosen randomly among all the PCMs present in the
software comparison category of Wikipedia4. In the selected PCMs, the number of displayed products varies from 9
to 90, and the number of features from 6 to 21. Formal contexts converted from these PCMs possess from 10 to 239
binary attributes. From the obtained formal contexts, we built both concept lattices and AOC-posets, and gathered
their number of concepts in Figure 24.

In this figure, we can see that most of the concept lattices possess from 50 to 300 concepts. In rare cases, they
can reach about 1000 or 4500 concepts. The size of an AOC-poset is naturally smaller than the size of its associated
concept lattice, but in the case of data obtained from product descriptions, the gap is very wide. In fact, with the
same set of formal contexts, most of the produced AOC-posets possess from 30 to 60 concepts. Moreover, the largest
obtained AOC-poset does not exceed 165 concepts. In our experiments, on average, AOC-posets are about 10 times
smaller than concept lattices with the same data.

As a conclusion, despite the exponential growth of concept lattices, their dimension when structuring existing
variant descriptions remains practicable even for the worst cases. Yet, AOC-posets are a recommended alternative
to concept lattices in our approach, as they also permit to represent feature model equivalence classes but with a
significantly smaller structure.

3http://www.lirmm.fr/recherche/equipes/marel/datasets/fca-and-pcm
4https://en.wikipedia.org/wiki/Category:Software comparisons, last access in January 2018

27

Concept lattices AOC-posets
Mean 427.37 50.3
Median 174 50
Minimum 21 16
Maximum 4551 161
First Quartile 49 29.25
Third Quartile 282.5 61.25

Figure 24: Number of computed concepts with data from 40 Wikipedia’s product comparison matrices

6.2. Complexity and performance

We discuss in this section existing algorithms which permit to generate FCA structures from formal contexts and
to perform operations on these structures. We study their complexity and their performance to compute structures of
similar sizes as the one shown in Section 6.1.

In [39], Kuznetsov and Obiedkov compare the complexity and the performance of several algorithms generating
concept lattices (i.e. computing the set of all concepts and ordering them). In their study, the authors take into account
the number of attributes |A|, the number of objects |O| and the density of the formal context ((|R| / (|O||A|))× 100, with
|R| the size of the relation). In our experiments with Wikipedia’s PCMs, contexts possess on average 60 attributes,
36 objects and a density of 1. Among all algorithms studied in [39], and with formal contexts which possess 100
attributes, 500 objects and a density of 4, the Bordat algorithm is the fastest to generate the concept lattice. Time
complexity of Bordat algorithm is in O(|O||A|2|L|) (with L the number of generated concepts), and it takes less than
one second to compute the concept lattice associated with this kind of formal contexts.

Concerning AOC-posets, Berry et al. compare in [40] four algorithms generating Galois sub-hierarchy (as AOC-
posets) from formal contexts. This study takes into account the same three formal context aspects as in [39]. From
formal contexts possessing 100 attributes, 500 objects and a density of 1, the four presented algorithms generate
AOC-posets in less than 50 ms. All these algorithms have a time complexity in O(n3).

The studied product descriptions extracted from PCMs of Wikipedia produce sparse formal contexts with a num-
ber of attributes and objects generally inferior to 100. The presented studies show that it is possible to generate concept
lattices and AOC-posets in less than one second from this type of input. Moreover, dimensions of the generated struc-
tures permit to perform important operations rapidly. Therefore, the generation and manipulation of FCA structures
are thus practicable when modelling variability of a set of existing variants.

6.3. Computing ECFDs from SPLOT repository FMs

In this section, we seek to evaluate 1) if ECFDs can be entirely computed for small and large sets of valid config-
urations, 2) if extracted feature-groups are consistent, and 3) the number of choices proposed by an ECFD compared
to the number of possible FMs it represents. To assess their consistency, tested sets of valid configurations are de-
rived from existing FMs to compare the extracted relationships with the initial FMs. We conduct an experiment

28

on FMs gathered from the SPLOT repository, from which we compute the ECFDs associated with their set of valid
configurations. To compute ECFDs from existing FMs, we established the process presented in Figure 25.

SPLOT

FM.xml conf.txt

FAMILIAR

context.rcft

conf2Rcft

ECFD.txt

ECFDgroups

repository

Figure 25: Process to compute ECFDs from FMs taken from the SPLOT repository

During this process, we first use two existing tools: SPLOT [36] and Familiar [41]. SPLOT proposes, aside
from SPLE tools, a repository of about 700 feature models5 created by the community. It permits to retrieve these
feature models in the form of xml files. Feature models in xml format can be processed by Familiar, a tool for
FM analysis which permits, among other operations, to compute the set of all valid configurations. Then, we used
two programs that we developed for this process. The first one, conf2RCFT, takes a text file containing a list of
configurations obtained with Familiar and translates it in a formal context in RCFT format. RCFT is a file format
to represent formal contexts, that are used by the tool RCAExplore to build FCA structures. The second program,
ECFDgroups, takes an RCFT file as input and computes the feature-groups and mutex of the ECFD, following the
mapping of Section 4. We applied this process on 10 different feature models from SPLOT, which are presented on
Table 6. The selected FMs possess from 10 features to 36 features, and from 8 valid configurations (small SPL)
to 8480 valid configurations (large SPL). For each feature model, we give the number of features, configurations,
mandatory relationships, optional relationships, xor-groups, or-groups and cross-tree constraints in the first part of the
table. We then compute the ECFD and indicate the number of obtained xor-groups, or-groups, and mutex. For this
experiment, we compute only groups and mutex, as the complexity to compute implications and co-occurrences is
trivial in comparison. To characterise the extracted ECFD, we display the number of overlapping groups, cases where
variability blocks possess more than one parent (# multi-parents), and composite variability blocks (i.e., having
more than one feature). We retrieve the number of composite variability blocks and their size: (1:4) in the table states
that there is 1 composite block of size 4. We have seen that the choices given by an ECFD are reduced 1) to choose
a parent for each feature when necessary and 2) choose the feature groups to retain. In the worst case, the number of
choices is thus:

features + # multi-parents + # groups

To be compared to the number of choices, we give a lower bound of the number of possible FMs that may be derived
from the ECFD. Composites variability blocks of size n may have n(n − 1) possible combinations of mandatory
relationships, and n(n−1)

2 possible cases where two features are optional but linked by a double requires relationship.
Number of different combinations of retained feature groups is equal to 2m, m being the number of extracted groups.
We thus consider the following formula to compute a lower bound of number of possible FMs:∏

b∈VBE

(3|b|(|b|−1)
2) × 2|xor|+|or|

It is noteworthy that all ECFDs have been computed despite the complexity of feature-groups detection algorithm
and the size of large SPLs, which can reach around 9000 configurations. Our results show that the number of groups
may vary between the FM and its ECFD. For example, one xor-group of the ECFD may combine several xor-groups
of the FM when there are additional constraints (it is the case for Online-book-shopping). Smart Home is another
interesting case: we extract the same number of or-groups than in the initial FM, but we detect that two of them
overlap in the ECFD. Therefore, the user can only select at most 4 of them. It is possible that cross-tree constraints
involving feature belonging to feature-groups “break” the logical semantics of the feature-groups, and therefore these
groups are not detected in the ECFD. This is left as future work. 3 of the 10 studied FMs have one case of multi-
parents, they seem to be occasional. Overlapping groups are more common but not too numerous. On average, 30%

5Last accessed on January 2018

29

Table 6: Characteristics of ECFDs for FMs from SPLOT

Feature Model #
fe

at
ur

es

#
op

t.
re

l.

#
m

an
d.

re
l.

#
or

-g
ro

up
s

#
xo

r-
gr

ou
ps

#
C

T
C

s

#
co

nfi
gu

ra
tio

ns

#
or

(E
C

FD
)

#
xo

r(
E

C
FD

)

#
m

ut
ex

(E
C

FD
)

#
ov

er
la

pp
in

g
gr

ou
ps

#
m

ul
ti-

pa
re

nt
s

#
co

m
po

si
te

bl
oc

ks

#
E

C
FD

ch
oi

ce
s

lo
w

er
bo

un
d

#
FM

s

Tang Eshop 10 2 3 1 1 2 13 2 1 1 2 1 (1:4) 14 144
Martini Eshop 11 1 5 1 1 1 8 2 1 1 2 0 (1:6) 14 360
Toacy Eshop 12 1 3 2 1 0 48 2 1 0 0 0 (1:4) 15 144

Mobile Games 16 10 1 1 0 1 3645 1 0 0 0 0 (1:2) 17 6
Web Game 16 5 6 2 0 2 84 3 0 0 0 0 (1:6)(1:2) 19 1080

Smart Home 22 5 3 5 0 2 8480 5 0 0 2 1 (1:2)(1:3) 28 864
Bicycle 27 6 5 0 5 2 1152 1 5 14 0 0 (1:6) 33 2880

Automotive system 31 3 8 1 7 9 1344 9 7 9 8 1 (1:7)(2:2) 48 1.2E7
Robot Calibration 33 0 10 1 7 11 648 2 7 3 3 0 (1:14) 42 1.4E5

Online-book-shopping 36 2 21 0 5 3 90 1 4 1 0 0 (1:18)(2:4) 41 2.6E5

of the extracted groups overlap. Sometimes, a more consequent number of groups may overlap, for instance for
Automotive system, from which 16 groups are extracted but 8 of them overlap. Heuristics to propose maximal subsets
of groups that do not overlap for the user may be useful to guide him during its choices. The comparison between
the number of choices proposed by an ECFD and the number of FMs that may be derived from it (two last columns
of Table 6) highlights how much the use of ECFD allows to steer the user decisions. For instance, in the case of Web
Game, the ECFD proposes at most 19 choices to the user, who then derive one FM amongst 1080. It is noteworthy
that in all studied cases, the number of choices proposed by ECFDs are practicable and manageable by an end-user
compared to the lower bound of the number of potential FMs, which is in some cases impossible to be handled by a
human being.

7. Related Work

It is usually possible to distinguish two sub-processes in FM extraction approaches from variant descriptions: the
first one consists in extracting variability information, i.e., relationships between features and the second one seeks to
synthesise an FM from these extracted relationships. In the literature, some authors start the extraction process from
variant descriptions (i.e., on the form of collections of feature sets), and others work directly from feature relationships
(i.e., on the form of propositional formulas). Here, we focus on the approaches starting from variant descriptions, but
first we introduce two methods of variability extraction from feature relationships, as they are widely reused in the
other approaches.

7.1. Extracting variability from feature relationships

In [4], Czarnecki and Wasowski consider feature relationships in the form of a propositional formula, and they
propose a fully automated method to synthesise an FM from the formula. The extracted FM corresponds to a ”gen-
eralised notation” where groups may overlap and where the feature tree may be a directed acyclic graph (DAG),
thus being different from the one introduced in the FODA report. They first compute an implication graph from the
propositional formula to extract a feature hierarchy in the form of a DAG, then compute feature groups and combine
them with the previous DAG to obtain a FM. Their method is based on Binary Decision Diagrams (BDD) to perform
operations on propositional formulas. Their method successfully identifies all binary implications and co-occurrences
that are true in the considered propositional formula: it is sound and complete. Their feature group extraction relies
on the computation of prime implicants, that allow to extract all minimal or-groups. All xor-groups are then identified

30

among the extracted or-groups by checking if the features are mutually exclusive. Because they extract all minimal
or-groups, and that they construct aside an implication graph, non-minimal or-groups may be derived by combining
these two structures. Even though our approach produces the same results, FCA embodies this information in a unique
knowledge representation, including mutually exclusive features, which are not considered in this work. Their method
is deterministic because they rely on a generalised notation of FM, which avoids user intervention for group and hier-
archy choices. Their generalised notation is thus similar to our ECFD, except that we extract all mutex relationships,
and that our method is able to derive a final FM respecting the revisited FODA’s notation in [4].

She et al. [42] revisit the BDD-based method of [4], and complete it to extract mutex. In addition to the binary
implication graph, they compute a mutex graph, i.e., a graph where nodes represent features and edges represent
mutual exclusion between features. The mutex graph documents all existing mutex. They also use this graph to detect
xor-groups, which are or-groups where the features form a clique in the mutex graph. Thus, they extract all logical
relationships of the logical semantics of a FM. All their extracting methods are sound and complete. They represent the
extracted logical semantics in the form of a feature graph, which is a symbolic representation of all FMs compatible
with the initial feature relationships. The ECFD may be seen as a full graphical representation of a feature graph.
Also, they design two algorithms: one to extract feature graphs from Conjunctive Normal Form, and the other from
Disjunctive Normal Form. The derivation of feature hierarchies from a feature graph is not studied in their paper. In
comparison, our approach relies on a mathematical framework for knowledge representation, which provides a unique
structure encompassing the ones used here by She et al. Moreover, FCA structures and their correlations with FM
variability delimit the possible derivable FMs and permit to guide the user during this task.

In [26], She et al. extract FMs from both feature relationships and feature descriptions. Their approach is based
on the work of Czarnecki and Wasowski [4], but the construction of the feature hierarchy and the allocation of feature
groups are not fully automated and depend on user decisions. More specifically, the extraction of the FM logical
semantics relies on the propositional formula representing feature relationships, and they use feature descriptions to
approximate the ontological semantics and assist the user into his decisions. In fact, they propose heuristics to identify
best candidates to be the parent feature of a given feature by relying on their descriptions, and thus assist users in the
construction of the feature hierarchy. First, all the candidate features are retrieved based on the propositional formula
by computing the binary implication graph. Then, for each feature, the heuristics rank the other features depending
on their similarity with the given one, thanks to a similarity function which takes into account the words in feature
descriptions. Xor-groups are then automatically computed by using a mutex graph, but once again it is the user who
chooses which groups are retained in the final model. This time, no heuristics is defined: all the xor-groups are
presented to the user who chooses which one to keep in the hierarchy. Or-groups and co-occurrences are not studied
in this paper. Partially automated strategies and Natural Language Processing techniques permit here to obtain more
consistent FMs than with a fully automated method. Our work is similar to theirs, because we also propose a method
relying on user decisions to build the final FM hierarchy. In comparison, we did not define any heuristics to guide
the user choice as they do, because we do not consider feature descriptions in our input dataset. But our method may
greatly benefit from the usage of their method to further assist the user into building the hierarchy. However, we rely
on a unique AC-poset to extract FM logical semantics: our method covers all the necessary logical relationships and
extract them in a sound and complete manner. Also, they propose to add a propositional formula φ in the cross tree
constraints to make the final FM sound: we may be inspired by this aspect to make the configuration semantics of the
ECFD and the derived FM sound. As FCA conceptual structures capture the logical semantics, we may be able to
derive a formula φ representing the missing constraints to make the ECFD sound: this is left as future work.

7.2. Extracting variability from variant descriptions
Acher et al. [11] work on extracting FMs from matrices representing variant descriptions. They construct the

feature hierarchy by producing one FM for each variant, and then merging all these FMs into one. Each FM is built
depending on variant descriptions and a collection of specifications defined in a dedicated language by practitioners.
This parametrisation seeks to breath some ontological semantics into the feature hierarchy. Then, they compute the
propositional formula representing the set of variant descriptions and use the BDD-based method from [4]. Their
method then combines the hierarchy obtained after merging and the extracted logical relationships to obtain an FM.
Contrarily to the work of [4], their final FMs may have mutex, although they do not specify how they compute them. In
[28], the authors assess the necessity for a FM to have a meaningful hierarchy, feature groups and constraints. Because
several different FMs can be extracted from the same set of configurations, they propose to configure the procedure of

31

extraction with a set of expected properties for the output FM. The extraction method combines their previous work
[11] with the expected properties, which allows to make decisions during the synthesis. These two papers consider
user choices in the FM extraction, but contrary to our method based on interactions during the synthesis process, these
choices are made before the extraction through a dedicated language. The importance of FM meaning has been more
recently discussed by Becan et al. in [15]. They propose a hybrid method relying on both logical heuristics that are
fully automated, and ontological heuristics that need user decisions. Logical heuristics extract co-occurring features,
minimal feature groups and a representation of all possible feature trees. Then, ontological heuristics help the user
into choosing a feature tree by ranking for each feature their potential parent-features, and to detect if a group of
features are siblings. They show empirically that hybrid FM extractions relying on user intervention outperform the
other approaches. As for the work of [26], our method does not propose any ranking method to help the user choose
the hierarchy and the feature groups, and could benefit from being combined with the techniques exposed here. In
[14], Haslinger et al. propose a recursive algorithm to build FMs from a collection of feature sets (i.e., configurations).
This algorithm first constructs the basis of the FM by identifying a root feature and features which are common to
all products. Then, the rest of the FM is generated recursively from top to bottom: for each feature in the current
hierarchy, it computes its direct descendants, then identify xor, or and optional relationships among them and add
them in the feature tree. Mutex are not considered in this paper. Evaluations conducted by the authors reveal that the
obtained FMs represent the same configurations as the original collection of feature sets. It is debatable as 1) they do
not compute cross-tree constraints, and 2) FMs are known to not be logically complete. Also, the FM meaning still
needs to be assessed, as well as the soundness and completeness of the feature relationship identification. They extend
this method in [22] to synthesise FMs with requires and exclude cross-tree constraints, but do not cover the cases of
circular requires cross-tree constraints.

Davril et al. [16] present an automated approach to deal with FM generation when variant configurations are
not formally documented. The first step of their approach consists in mining relevant features from a collection of
informal documents found in public repositories: they extract feature descriptors as they appear in input documents
and group them using clustering algorithms to identify a final set of features, from which they create a product-
by-feature matrix. Then, their approach is similar to [26] in the sense that they base the FM extraction both on
the product-by-feature matrix and feature descriptions. First, they mine frequent itemsets to extract a set of binary
implications from this matrix and to construct a binary implication graph: it is then used as a support to extract a
feature hierarchy. This extraction is neither sound nor complete as they use a threshold to parametrised the extraction.
Co-occurrences are detected based on the obtained binary implication graph. They also mine disjunctive rules by
computing prime implicants, in order to obtain or-groups. They do not compute mutex: they argue that their variant
descriptions are incomplete, and that detecting mutually exclusive features in the matrix does not necessarily mean
that the features are actually mutually exclusive with regard to the domain. Xor-groups are not computed either. They
use text-mining techniques and co-occurrence between features to help identify a relevant hierarchy; it provides good
results even though it does not reach the meaningfulness of a manually built feature hierarchy.

Some authors study search-based techniques to build FMs from product descriptions. In [43], Linsbauer et al.
use genetic programming to synthesise FMs. First, a population of FMs is randomly generated based on the set of
existing features. From this population, FMs are selected to go through a phase of crossovers and mutations from
which results a set of new FMs. These FMs are then evaluated, the best candidates being the ones describing the set
of configurations which are most similar to the initial set. The best candidates are added to the initial population and
the procedure is repeated. Lopez-Herrejon et al. [12] propose two functions to evaluate three search-based techniques
to synthesise FMs: evolutionary algorithm, hill climbing and random search. The FMs built with these methods may
depict less configurations, or more configurations than the original set. Moreover, the ontological semantics is not
studied in these methods. Contrary to search-based techniques, FCA-based methods are deterministic and provide the
user with a structure describing how the ECFD have been constructed and why.

Formal concept analysis is first used for reverse engineering FMs by Ryssel et al. in [10]. From a formal context
representing the set of configurations, they build a graph with attribute-concepts as nodes (i.e., an AC-poset), from
which they extract a feature hierarchy. As the AC-poset is not necessarily a tree, they remove some features considered
redundant until they obtain a hierarchy where all edges represent optional relationships. Thus, the final FM may
not possess all features displayed in the descriptions. In our approach, we keep all existing features, and rely on
user decision to build a correct hierarchy. Feature-groups and other relationships are then derived from the extent of
attribute-concepts. The authors compute additional textual constraints, in the form of complex implications, to restrain

32

valid configurations depicted by the FMs and obtain a set of valid configurations equivalent to the one depicted in
the formal context. Extraction methods of all relationships are sound and complete, but they do not compute co-
occurrences. In [13], Al-Msie’deen et al. propose algorithms to extract different kinds of feature groups from
an AOC-poset associated with a formal context displaying product descriptions. However, the extracted FMs only
possess two levels of hierarchy and exclusively depict logical relationships. Morever, their feature-group extraction
relies on heuristics and is not sound nor complete.

In comparison with what can be found in the literature, our method is based on a unique structure embodying all
relationships depicting FM logical semantics, which supports a sound and complete extraction of these relationships.
Therefore, it encompasses most of the extractive methods presented here, along with their intermediate structures (e.g.,
implication graph, mutex graph, feature diagram) used for variability analysis. FCA is a structural framework which,
contrary to most of the existing approaches for FM synthesis, supports this process without being only designed for
this specific task. Therefore, it is a reusable and extensible framework supporting numerous knowledge processing
functions [29], which can help in the migration towards SPLs, aside from FM synthesis, and consistently with it. This
unique knowledge representation structure, along with its mapping with FMs relationships, guides in few steps a user
into choosing a feature hierarchy without relying on external information as feature descriptions.

Table 7: Synthesis of existing methods for FM extraction

Ref. In
pu

t

Sy
nt

he
si

s

C
on

f.
se

m
.

O
nt

o.
se

m
.

B
in

.I
m

pl
.

C
o-

oc
c.

M
ut

ex

O
r-

gr
ou

ps

X
or

-g
ro

up
s

Cza-07 [4] Rel. Auto. More or equal Not assessed s+c s+c / s+c s+c
She-14 [42] Rel. Auto. More or equal Not assessed s+c s+c s+c s+c s+c
She-11 [26] Rel. Semi auto. Equal Assessed s+c / s+c / s+c
Ach-12 [11] Desc. Semi auto. More or equal Assessed s+c s+c ? s+c s+c
Ach-13 [28] Desc. Semi auto. More or equal Assessed s+c s+c ? s+c s+c
Bec-16 [15] Desc. Semi auto. More or equal Assessed s+c s+c ? s+c s+c
Has-11 [14] Desc. Auto. More or equal Not assessed ? ? / ? ?
Has-13 [22] Desc. Auto. More or equal Not assessed ? ? ? ? ?
Dav-13 [16] Desc. Auto. ? Not assessed ∅ ∅ / s /

Lin-14 [43] Desc. Auto. ? Not assessed ? ? ? ? ?
Lop-15 [12] Desc. Auto. More or less Not assessed ? ? ? ? ?
Rys-11 [10] Desc. Auto. Equal Not assessed s+c / s+c s+c s+c
AlM-14 [13] Desc. Auto. More Not assessed s+c s+c s ∅ ∅
Proposed Desc. Auto. More or equal Assessed s+c s+c s+c s+c s+c

Table 7 gathers some information relative to all the presented methods. Column Input states if the method uses
variant descriptions as input (Desc.), or feature relationships (Rel.). Column Synthesis specifies if the method is fully
automated (Auto.) or semi-automated (Semi.). Then, column Conf. sem. determines if the method produces FMs
depicting more, less or same valid configurations than the input set. Column Onto. sem. tells if the consistency of
the FM is assessed or not. The five last columns represent the five relationships of the FMs logical semantics. The
letter ”s” indicates that the extracting method is sound, and the letter ”c” that it is complete. When the method is
neither sound nor complete, the cell contains the symbol ”∅”. A ”/” is used when the relationship is not studied in the
corresponding paper. A ”?” is used when the relationship is studied, but not its soundness and completeness.

8. Conclusion and future work

In this paper, we studied FCA as a structural and reusable framework for variability extraction and representation,
in the context of migration from single system development towards software product line approaches. We studied

33

the different semantics of boolean features models and three FCA conceptual structures, as well as some of their
properties. More specifically, we focused on the matching between feature dependencies expressed in feature models
and the ones that can be extracted from FCA conceptual structures. We showed that conceptual structures include the
logical semantics of their equivalent FMs, and therefore represent equivalence classes of FMs describing the same set
of valid configurations. To ease the representation of the useful logical information extracted from conceptual struc-
tures to represent these equivalence classes, we introduce a diagrammatic representation of this information that we
called an equivalence class feature diagram (ECFD). Also, we established a mapping between features relationships
found in the two models, that permits to match FM relationships in the conceptual structures built on top of the FM
configurations. We then proposed a process based on ECFDs and the established mapping to assist feature model
extraction from product descriptions, while preserving the configuration semantics and allowing domain experts to
assign step-by-step the chosen ontological semantics to the feature model. We argued that most existing approaches
for FM reverse engineering are encompassed in FCA, which thus represents an unifying framework that lays down
theoretical foundations for FM reverse engineering. We assessed the applicability of our method depending on the size
of the generated structures and the complexity of the applied operations. Conceptual structures generated from prod-
uct descriptions are easily computed with existing algorithms, and their size is practicable, especially for AOC-posets.
Among operations applied on these structures to extract ECFDs, computing feature-groups is the only one with an
exponential complexity with the size of the problem; however, it scales well in practice, even with large collections
of product descriptions. We implement ECFD extraction to compare their characteristics against the corresponding
feature models, notably concerning the feature-groups as their number may vary between the two representations.
Indeed, we found out that combinations of several feature relationships in a feature model (e.g., requires constraint
between features involved in a xor-group) may “alter” the extracted logical relationships, and therefore some feature-
groups are not detected in the ECFD. Also, we computed the number of choices given by ECFDs and compared them
to the number of different FMs that may be derived from the same ECFDs: these experiments showed that in practice,
ECFDs are strong guides for FM reverse engineering.

In the future, we plan to study the possible combinations of feature relationships to be able to detect and extract
all feature-groups from product descriptions and conceptual structures. We would like to complete the mapping to
take into account these singularities and therefore improve our method. Also, combining our approach with feature
descriptions and natural language processing techniques to provide metrics and rankings to help the user during his
decisions could strongly improve the FM derivation process from an ECFD. Deriving a propositional formula φ from a
conceptual structure in order to characterise constraints not supported by FMs and ECFDs is also considered, as it may
be useful in some applications. A full implementation of the proposed approach to conduct qualitative evaluations is
also considered. Finally, we would like to expand this work to take into account feature model extensions, as UML-
like cardinalities, multi-valued attributes or references between several FMs. We plan to study some FCA extensions
that may be useful to extract logical relationships from complex data (i.e., not only binary features).

References

[1] K. Pohl, G. Böckle, F. J. van der Linden, Software Product Line Engineering: Foundations, Principles, and Techniques, Springer Science &
Business Media, 2005.

[2] K. Schmid, R. Rabiser, P. Grünbacher, A comparison of decision modeling approaches in product lines, in: Proceedings of the 5th Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS’11), ACM, 2011, pp. 119–126.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility Study, Tech. rep.,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst (1990).

[4] K. Czarnecki, A. Wasowski, Feature diagrams and logics: There and back again, in: Proceedings of the 11th International Conference on
Software Product Lines (SPLC’07), 2007, pp. 23–34.

[5] F. Loesch, E. Ploedereder, Restructuring Variability in Software Product Lines using Concept Analysis of Product Configurations, in: Pro-
ceedings of the 11th European Conference on Software Maintenance and Reengineering (CSMR’07), 2007, pp. 159–170.

[6] A. Jansen, R. Smedinga, J. van Gurp, J. Bosch, First class feature abstractions for product derivation, IEE Proceedings - Software 151 (4)
(2004) 187–198.

[7] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, A. Wasowski, A survey of variability modeling in industrial practice,
in: Proc. of the 7th Int. Workshop on Variability Modelling of Software-intensive Systems (VaMoS’13), 2013, pp. 7:1–7:8.

[8] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K. Czarnecki, An exploratory study of cloning in industrial software product
lines, in: 17th European Conference on Software Maintenance and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013, 2013, pp.
25–34.

[9] C. W. Krueger, Easing the transition to software mass customization, in: Proceedings of the 4th International Workshop on Software Product-
Family Engineering (PFE’01), 2001, pp. 282–293.

34

[10] U. Ryssel, J. Ploennigs, K. Kabitzsch, Extraction of feature models from formal contexts, in: Workshop Proceedings of the 15th International
Conference on Software Product Lines (SPLC’11), 2011, p. 4.

[11] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, P. Lahire, On extracting feature models from product descriptions,
in: Proceedings of the 6th International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’12), 2012, pp. 45–54.

[12] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Benavides, S. Segura, A. Egyed, An assessment of search-based techniques
for reverse engineering feature models, Journal of Systems and Software 103 (2015) 353–369.

[13] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier, Reverse Engineering Feature Models from Software Configurations using
Formal Concept Analysis, in: Proceedings of the 11th International Conference on Concept Lattices and Their Applications (CLA’14), 2014,
pp. 95–106.

[14] E. N. Haslinger, R. E. Lopez-Herrejon, A. Egyed, Reverse Engineering Feature Models from Programs’ Feature Sets, in: Proceedings of the
18th Working Conference on Reverse Engineering (WCRE’11), 2011, pp. 308–312.

[15] G. Bécan, M. Acher, B. Baudry, S. B. Nasr, Breathing ontological knowledge into feature model synthesis: an empirical study, Empirical
Software Engineering 21 (4) (2016) 1794–1841.

[16] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Heymans, Feature model extraction from large collections of informal product
descriptions, in: Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, (ESEC/FSE’13), 2013, pp. 290–300.

[17] B. Ganter, R. Wille, Formal concept analysis - mathematical foundations, Springer, 1999.
[18] N. Niu, S. M. Easterbrook, Concept analysis for product line requirements, in: Proceedings of the 8th International Conference on Aspect-

Oriented Software Development (AOSD’09), 2009, pp. 137–148.
[19] Y. Xue, Z. Xing, S. Jarzabek, Feature location in a collection of product variants, in: Proceedings of the 19th Working Conference on Reverse

Engineering (WCRE’12), 2012, pp. 145–154.
[20] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. E. Salman, Mining Features from the Object-Oriented Source Code of

a Collection of Software Variants Using Formal Concept Analysis and Latent Semantic Indexing, in: Proceedings of the 25th International
Conference on Software Engineering and Knowledge Engineering (SEKE’13), 2013, pp. 244–249.

[21] A. Shatnawi, A. Seriai, H. A. Sahraoui, Recovering software product line architecture of a family of object-oriented product variants, Journal
of Systems and Software 131 (2017) 325–346.

[22] E. N. Haslinger, R. E. Lopez-Herrejon, A. Egyed, On Extracting Feature Models from Sets of Valid Feature Combinations, in: Proceedings
of the 16th International Conference on Fundamental Approaches to Software Engineering (FASE’13), 2013, pp. 53–67.

[23] K. Czarnecki, S. Helsen, U. W. Eisenecker, Staged Configuration Using Feature Models, in: Proceedings of the 3rd International Conference
on Software Product Lines (SPLC’04), 2004, pp. 266–283.

[24] K. Czarnecki, S. Helsen, U. W. Eisenecker, Formalizing cardinality-based feature models and their specialization, Software Process: Im-
provement and Practice 10 (1) (2005) 7–29.

[25] W. Petersen, A Set-Theoretical Approach for the Induction of Inheritance Hierarchies, Electronic Notes in Theoretical Computer Science 53
(2001) 296–308.

[26] S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki, Reverse engineering feature models, in: Proceedings of the 33rd International
Conference on Software Engineering, (ICSE’11), 2011, pp. 461–470.

[27] P. Schobbens, P. Heymans, J. Trigaux, Y. Bontemps, Generic semantics of feature diagrams, Computer Networks 51 (2) (2007) 456–479.
[28] M. Acher, B. Baudry, P. Heymans, A. Cleve, J. Hainaut, Support for reverse engineering and maintaining feature models, in: Proceedings of

the 7th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’13), 2013, pp. 20:1–20:8.
[29] U. Priss, Formal concept analysis in information science, ARIST 40 (1) (2006) 521–543.
[30] R. Al-Msie’Deen, M. Huchard, A.-D. Seriai, C. Urtado, S. Vauttier, A. Al-Khlifat, Concept lattices: a representation space to structure

software variability, in: Proceedings of the 5th International Conference on Information and Communication Systems (ICICS’14), IEEE,
2014, pp. 1–6.

[31] M. Mannion, Using First-Order Logic for Product Line Model Validation, in: Proceedings of the 2nd International Conference on Software
Product Lines (SPLC’02), 2002, pp. 176–187.

[32] D. S. Batory, Feature models, grammars, and propositional formulas, in: Proceedings of the 9th International Conference on Software Product
Lines (SPLC’05), 2005, pp. 7–20.

[33] C. Wende, K. Siegemund, E. Thomas, Y. Zhao, J. Z. Pan, F. S. Parreiras, T. Walter, K. Miksa, P. Sabina, U. Aßmann, Ontology reasoning
for consistency-preserving structural modelling, in: J. Z. Pan, S. Staab, U. Aßmann, J. Ebert, Y. Zhao (Eds.), Ontology-Driven Software
Development, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, Ch. 9, pp. 193–218.

[34] J. Carbonnel, K. Bertet, M. Huchard, C. Nebut, FCA for software product lines representation: Mixing product and characteristic relationships
in a unique canonical representation, in: Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications,
Moscow, Russia, July 18-22, 2016., 2016, pp. 109–122.

[35] S. O. Kuznetsov, T. P. Makhalova, On interestingness measures of formal concepts, Inf. Sci. 442-443 (2018) 202–219.
[36] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: Software Product Lines Online Tools, in: Proceedings of the 24th ACM SIGPLAN

Conference Companion on Object Oriented Programming Systems Languages and Applications (OOPSLA ’09), 2009, pp. 761–762.
[37] N. Sannier, M. Acher, B. Baudry, From comparison matrix to Variability Model: The Wikipedia case study, in: Proceedings of the 28th

International Conference on Automated Software Engineering (ASE’13), 2013, pp. 580–585.
[38] S. B. Nasr, G. Bécan, M. Acher, J. B. F. Filho, N. Sannier, B. Baudry, J. Davril, Automated extraction of product comparison matrices from

informal product descriptions, Journal of Systems and Software 124 (2017) 82–103.
[39] S. O. Kuznetsov, S. A. Obiedkov, Comparing performance of algorithms for generating concept lattices, Journal of Experimental & Theoret-

ical Artificial Intelligence 14 (2-3) (2002) 189–216.
[40] A. Berry, A. Gutierrez, M. Huchard, A. Napoli, A. Sigayret, Hermes: a simple and efficient algorithm for building the AOC-poset of a binary

relation, Annals of Mathematics and Artificial Intelligence 72 (1-2) (2014) 45–71.
[41] M. Acher, P. Collet, P. Lahire, R. B. France, Familiar: A domain-specific language for large scale management of feature models, Science of

35

Computer Programming 78 (6) (2013) 657–681.
[42] S. She, U. Ryssel, N. Andersen, A. Wasowski, K. Czarnecki, Efficient synthesis of feature models, Information & Software Technology 56 (9)

(2014) 1122–1143.
[43] L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Feature model synthesis with genetic programming, in: Proceedings of the 6th International

Symposium on Search-Based Software Engineering (SSBSE’14), 2014, pp. 153–167.

36

