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Abstract

We first study the so-called Heat equation with two families of elliptic operators which
are fully nonlinear, and depend on some eigenvalues of the Hessian matrix. The equation
with operators including the “large” eigenvalues has strong similarities with a Heat equa-
tion in lower dimension whereas, surprisingly, for operators including “small” eigenvalues
it shares some properties with some transport equations. In particular, for these oper-
ators, the Heat equation (which is nonlinear) not only does not have the property that
“disturbances propagate with infinite speed” but may lead to quenching in finite time.
Last, based on our analysis of the Heat equations (for which we provide a large variety
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of special solutions) for these operators, we inquire on the associated Fujita blow-up phe-
nomena.

Key Words: fully nonlinear elliptic operator, Heat equation, Cauchy problem, viscosity
solutions, quenching phenomena, Fujita blow-up phenomena.

AMS Subject Classifications: 35K05 (Heat equation), 35K65 (Degenerate parabolic equa-
tions), 35L02 (First-order hyperbolic equations), 35C06 (Self similar solutions), 35D40
(Viscosity solutions).

1 Introduction

Let N ≥ 2 be given. For u : RN → R, say of the class C2, we denote by

λ1(D
2u) ≤ · · · ≤ λN (D2u)

the eigenvalues of the Hessian matrix D2u. For 1 ≤ k < N we consider the fully nonlinear
elliptic operators given by

P−
k u :=

k∑

i=1

λi(D
2u), (1)

and

P+
k u :=

N∑

i=N−k+1

λi(D
2u). (2)

Notice that the case k = N leads to the linear situation P−
Nu = P+

Nu = ∆u, hence we will
always suppose that k < N .

Our first main goal is to understand the Heat equations

∂tu = P−
k u in (0,+∞)× R

N , (3)

and
∂tu = P+

k u in (0,+∞)× R
N , (4)

together with the associated Cauchy problems. As revealed below by our analysis, naming
(3) a Heat equation is controversial but, for the moment, we adopt this denomination.

Our second main goal is to analyze the Fujita blow-up phenomena [13], [26], [21], [2], for
the Cauchy problems associated with equations

∂tu = P−
k u+ u1+p in (0,+∞) × R

N , (5)

and
∂tu = P+

k u+ u1+p in (0,+∞) × R
N , (6)

where p > 0.

Let us mention that these highly degenerate elliptic operators have been introduced in the
context of differential geometry, by Wu [27] and Sha [24], in order to solve problems related
to manifolds with partial positive curvature. In a related fashion, they appear in the analysis
of mean curvature flow in arbitrary codimension performed by Ambrosio and Soner [3].
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In the context of elliptic PDE they are already considered as an example of degenerate
fully non linear operators in the User’s guide [10], but more recently both Harvey and Lawson
in [18, 19] and Caffarelli, Li and Nirenberg [9] have studied them in a completely new light.

Finally, in the very last years, some new results have been obtained on Dirichlet problems
in bounded domains in relationship with the convexity of the domain, through the study of
the maximum principle and the so called “principal eigenvalue”, see [23] and [4, 5].

Notice also that, due to the links between the behavior of solutions to evolution equations
(Fujita blow up phenomenon) and the existence of steady states (nonlinear Liouville theo-
rems), see [16] e.g., the works of Birindelli, Galise and Leoni [6] and Galise [14] can be seen
as a starting point for the present paper focused on evolution problems.

We also wish to mention the very recent works of Blanc and Rossi that study degenerate
elliptic operators defined by Pju := λj(D

2u) for some 1 ≤ j ≤ N . In other words, instead
of considering the sum of the k smallest or k largest eigenvalues, they consider only the j-th
eigenvalue of the Hessian matrix. Even though they are different operators they share some
analogies both in the definitions and in the difficulties that arise in studying them. These
authors have considered both the steady state equation [8] and the evolution equation [7] in a
bounded domain. They mainly focus on the well-posedness of such problems (in the viscosity
sense), and their approximation by a two-player zero-sum game.

As far as we know, this work is the first analysis of evolution equations in R
N involving the

aforementioned nonlinear truncated Laplacian operators. Since we explore many directions,
and collect results that we believe to be of equal importance, we take the liberty not to present
a section with some so-called main results. Instead, we give below a rather detailed overview
of the paper.

In Section 2 we compute naive explicit solutions to the Heat equations (3) and (4). This
can be seen as a warm-up, already revealing the importance of convexity/concavity of solu-
tions.

In Section 3 we inquire on the existence of self similar solutions to (3) and (4). A key
observation is that when a solution u is “one dimensional”, its Hessian has an eigenvalue
of multiplicity (at least) N − 1 and therefore, computing P±

k u reduces to localize the last
eigenvalue, see assumption (8). The outcomes are the following: for equation (3) involving
P−
k , self similar solutions have algebraic decay as |x| → +∞; for equation (4) involving P+

k

self similar solutions are the Heat kernels in lower dimension k < N which, in particular, have

a L1(RN ) norm which is increasing in time like t
N−k

2 .
In Section 4, we quote a result of Crandall and Lions [11] to obtain the global well-

posedness, in the viscosity sense, of the Cauchy problems (3) and (4), and the local well-
posedness, of the Cauchy problems (5) and (6), which we plan to study in the end of the
paper.

In Section 5 we inquire on radial solutions to the Cauchy problems (3) and (4). It turns
out that the Heat equation (3) involving P−

k may not diffuse but transports. In other words,
the operator P−

k shares some similarities with some first order operators. As a by product,
we can construct a very surprising example of an initial data driving the solution to zero
everywhere in finite time, see Example 5.5, which is referred as a quenching phenomena. On
the other hand, and as already suspected since Section 3, the Heat equation (4) in dimension
N involving P+

k behaves like the Heat equation in lower dimension k < N .
Finally, Section 6 is devoted to the analysis of the Cauchy problems (5) and (6). We aim

at determining the Fujita exponent pF separating “sytematic blow-up when 0 < p < pF” from
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“existence of global solutions when p > pF ” (see Section 6 for a more precise statement). The
proofs rely on the variety of special solutions to the Heat equations (3) and (4) collected in
the previous sections. We prove that pF = 0 for (5) involving P−

k , whereas pF = 2
k for (6)

involving P+
k . These facts were highly suspected from the previous sections but the proofs

for (6) are far from trivial: the proof of Theorem 6.4 in particular requires the combination
of the comparison principle, the subtle solutions of Example 5.9 and a comparison between
P+
k u and ∆u which is available for radial and smooth solutions.
Let us mention that, from places to places, we have indicated some directions and pre-

sented some preliminary computations that lead to partial conclusions or observations, and
therefore raise some open problems. We have also tried to underline the variety of possible
behaviors of the evolution equations under consideration by providing many examples of very
different solutions.

2 Explicit solutions to the Heat equations

2.1 Convex/concave functions of one variable

If, for some 1 ≤ i ≤ N ,

u(t, x) = ϕ(xi), with ϕ a C2 convex function,

then u solves (3). Indeed D2u = Diag (0, 0, ..., ϕ′′(xi)︸ ︷︷ ︸
ith position

, ..., 0, 0). Since ϕ′′(xi) ≥ 0 the N − 1

smallest eigenvalues are 0, hence P−
k u = λ1(D

2u) + · · ·+ λk(D
2u) = 0 = ∂tu.

Similarly if, for some 1 ≤ i ≤ N ,

u(t, x) = ϕ(xi), with ϕ a C2 concave function,

then u solves (4).

2.2 One variable travelling waves

For some 1 ≤ i ≤ N , let
u(t, x) = ϕ(xi − ct), with c 6= 0.

If ϕ is convex then, again, P−
k u = 0 and thus we need −cϕ′ = 0 and ϕ = cst already found

above. On the other hand, if ϕ is concave then P−
k u(t, x) = ϕ′′(xi − ct) and thus we need

−cϕ′ = ϕ′′ that is ϕ(z) = α− βe−cz with β > 0 to get the concavity. Hence we are equipped
with

u(t, x) = α− βe−c(xi−ct), α ∈ R, β > 0, c 6= 0,

solutions to (3) that are planar travelling waves connecting α to −∞.

Similarly, we are equipped with

u(t, x) = α+ βe−c(xi−ct), α ∈ R, β > 0, c 6= 0,

solutions to (4) that are planar travelling waves connecting α to +∞.
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2.3 Polynomial solutions

For any A ∈ SN (R), any x0 ∈ R
N , any y ∈ R

N , any C ∈ R,

u(t, x) =

(
k∑

i=1

λi(A)

)
t+

1

2
A(x− x0) · (x− x0) + (x− x0) · y + C

solves (3), whereas

u(t, x) =

(
N∑

i=N−k+1

λi(A)

)
t+

1

2
A(x− x0) · (x− x0) + (x− x0) · y +C

solves (4), since in the two above cases D2u = A. Those solutions provide the sub and
supersolutions used in the proof of [11, Theorem 2.7].

3 The Heat equations: self similar solutions

If u(t, x) solves (3) or (4) so does Cu(λ2t, λx), C > 0, λ > 0. We thus look after a nonnegative
self similar solution in the form

u(t, x) :=
1

tβ
ϕ

( |x|√
t

)
, (7)

for some ϕ = ϕ(r), β ∈ R, and where |x| = (x21 + · · · + x2N )1/2. We also require ϕ(0) = 1,
ϕ′(0) = 0.

We immediately get

∂tu = − β

tβ+1
ϕ− 1

2

|x|
tβ+

3
2

ϕ′.

Next, after straightforward computations, we obtain the Hessian matrix

D2u =
1

tβ+
1
2

(
1

|x|ϕ
′IdN −

(
1

|x|ϕ
′ − 1

t
1
2

ϕ′′
)
x

|x| ⊗
x

|x|

)
.

Since x
|x| ⊗ x

|x| is a matrix of rank 1, 1

tβ+1
2 |x|

ϕ′ is an eigenvalue of D2u with multiplicity (at

least) N − 1. By considering the traces of the matrices we see that the remaining eigenvalue
has to be 1

tβ+1ϕ
′′. From now on, we assume

ϕ′′(r) ≥ 1

r
ϕ′(r), for all r > 0, (8)

which enables to compute P±
k u. Notice that other assumptions than (8) will be discussed in

subsection 3.3 and will reveal much less natural.

3.1 Operator P−
k

Under assumption (8), we have

P−
k u =

k∑

i=1

λi(D
2u) =

k

tβ+
1
2 |x|

ϕ′,
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and thus the Heat equation (3) is transferred into the linear first order ODE Cauchy problem

ϕ′ = −β 2r

r2 + 2k
ϕ, ϕ(0) = 1, (9)

which is solved as

ϕ(r) =

(
2k

r2 + 2k

)β

,

which in turn does satisfy (8) if β ≤ −1 or β ≥ 0. In order to keep nonconstant and bounded
solutions, we now restrict to β > 0: going back to (7), we are equipped, for any β > 0, µ > 0,
with solutions

u(t, x) = µ

(
1

|x|2 + 2kt

)β

, (10)

and also, for any β > 0, µ > 0, ε > 0,

uε(t, x) = µ

(
1

|x|2 + 2kt+ ε

)β

. (11)

Remark 3.1. Let 1 ≤ p ≤ +∞. For any t > 0, u(t, ·) belongs to Lp(RN ) as soon as β > N
2p

and we have

‖u(t, ·)‖Lp(RN ) =
µC

t
β−N

2p

,

with C = C(β, p,N, k) > 0. In particular the L∞ norm decreases like 1
tβ
.

3.2 Operator P+
k

Under assumption (8), we have

P+
k u =

N∑

i=N−k+1

λi(D
2u) =

1

tβ+1
ϕ′′ +

k − 1

tβ+
1
2 |x|

ϕ′,

and thus the Heat equation (4) is transferred into the linear problem

ϕ′′ +
r2 + 2(k − 1)

2r
ϕ′ + βϕ = 0, ϕ(0) = 1, ϕ′(0) = 0. (12)

One recognizes the ODE arising when looking after self-similar solutions to the Heat equation

in dimension k < N . Hence, ϕ(r) := e−
r2

4 solves the above problem provided that β = k
2 ,

and does satisfy (8). Hence, going back to (7), we are equipped for any µ > 0, with solutions

u(t, x) =
µ

t
k
2

e−
|x|2

4t , t > 0, x ∈ R
N . (13)

In particular notice that, for µ = (4π)−
N
2 , we have

∫
RN u(t, x)dx = t

N−k
2 → +∞, as t→ +∞.

Remark 3.2. For the self-containedness of the argument, we briefly discuss the problem (12)
when β 6= k

2 . Using a Sturm-Liouville approach, one can recast the ODE problem (12) into an
integral equation and prove the existence and uniqueness of a local solution which moreover
always satisfies ϕ′′(0) = −β

k , and is global when β > 0, see [17, Proposition 3.1].
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If β = 0, the solution is ϕ ≡ 1.
If β < 0, we claim that ϕ ≥ 1: if not, from ϕ(0) = 1, ϕ′(0) = 0, ϕ′′(0) > 0, there must

be a point r0 > 0 where ϕ reaches a local maximum larger than 1; testing the equation at r0
yields a contradiction. We get rid of these solutions which are larger than one.

Now, for β > 0, β 6= k
2 , writing ϕ(r) = e−

r2

4 ψ( r
2

4 ), we see that ψ has to solve

zψ′′(z) +

(
k

2
− z

)
ψ′(z) +

(
β − k

2

)
ψ(z) = 0, ψ(0) = 1, ψ′(0) = 1− 2β

k
,

and thus ψ(z) = 1F1

(
k−2β

2 , k2 , z
)
, where 1F1(a, b, z) is the confluent hypergeometric function

of first kind, or Kummer’s function, see [1]. It is known that, when a is not a nonpositive
integer,

1F1(a, b, z) ∼
Γ(b)

Γ(a)

ez

zb−a
, as z → +∞.

This transfers, when 0 < β < k
2 , into ϕ(r) ∼ C

r2β
, for some C > 0, as r → +∞, and thus∫ +∞

0 rN−1ϕ(r)dr = +∞, so that these solutions are not “admissible”. When β > k
2 and k−2β

2

is not a negative integer, the conclusion is again ϕ(r) ∼ C
r2β

, for some C > 0 or C < 0, as

r → +∞, and these solutions are not “admissible”. Last, when k−2β
2 is a negative integer,

say −p, ψ(z) is the p-th generalized Laguerre polynomial, which is known [25, Section 6.31]
to change sign on (0,+∞), and thus these solutions are not “admissible”.

3.3 On assumption (8)

The goal of this short subsection is to show that assumption (8) is the one to be retained, as
claimed above.

First, assuming the reverse inequality, namely

ϕ′′(r) ≤ 1

r
ϕ′(r), for all r > 0, (14)

we can still compute P±
k u, where u(t, x) is given by the self-similar ansatz (7). But, when

dealing with operator P−
k , we now reach the second order ODE problem (12), whose solution

ϕ(r) = e−
r2

4 does not satisfy (14). Similarly, when dealing with operator P+
k , we now reach

the first order ODE problem (9), whose solutions ϕ(r) =
(

2k
r2+2k

)β
do not satisfy (14).

Next, we may only assume the existence of ε > 0 such that

ϕ′′(r) ≥ 1

r
ϕ′(r), for all 0 < r < ε. (15)

Then, dealing with P−
k , we reach ϕ(r) =

(
2k

r2+2k

)β
, say for β > 0, for which ϕ′′(r) > 1

rϕ
′(r)

holds all along (0,+∞). In other words, we are back to assumption (8). The same argument
applies when dealing with P+

k .
Last, assuming (14) only a small bounded interval (0, ε), we reach a contradiction as in

the case of assumption (14).
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4 Well-posedness of the different Cauchy problems

For A ∈ SN (R), we define F−
k (A) :=

∑k
i=1 λi(A) and F

+
k (A) :=

∑N
i=N−k+1 λi(A). From the

min-max theorem for eigenvalues of real symmetric matrices, we have that, for any A,B ∈
SN (R),

A ≥ B =⇒ λi(A) ≥ λi(B),∀1 ≤ i ≤ N =⇒ F±
k (A) ≥ F±

k (B),

and that, for any A ∈ SN (R), any c ∈ R,

F±
k (A+ cIdN )− F±

k (A) ≥ kc.

This enables to quote [11, Theorem 2.7]: for a initial data u0 ∈ UC(RN ), the Cauchy
problems associated with the Heat equations (3) and (4) admit a comparison principle and
are globally well-posed, solutions being understood in the viscosity sense, [11], [10], [12], [22].
The proof follows the three main steps: first prove a comparison principle using a dedoubling
variable method, next construct polynomial sub and supersolutions in the spirit of subsection
2.3, last conclude by the Perron’s method.

By a straightforward and classical modification of the above procedure, one can prove the
well-posedness of the Cauchy problems associated with equations (5) and (6), at least locally
in time. The main issue is then to determine if the local solution is global or blows up in
finite time, which will be discussed in Section 6.

5 The Heat equations: radial solutions of the Cauchy prob-

lems

We consider the Cauchy problem (3) or (4) starting from a radial initial data u0(x) = g(|x|),
where g : [0,+∞) → R. We suspect that u(t, ·) remains radial for t > 0 and therefore use the
ansatz

u(t, x) = ψ(t, |x|),
for some ψ = ψ(t, r). We compute the Hessian matrix and get

D2u =
1

|x|(∂rψ)IdN −
(

1

|x|∂rψ − ∂rrψ

)
x

|x| ⊗
x

|x| .

whose eigenvalues are 1
|x|∂rψ with multiplicity (at least) N−1 and ∂rrψ (see Section 3). From

now on, guided by (8) and subsection 3.3, we assume

∂rrψ(t, r) ≥
1

r
∂rψ(t, r), for all t > 0, r > 0, (16)

which enables to compute P±
k u.

5.1 Operator P−
k

Under assumption (16), we have

P−
k u =

k∑

i=1

λi(D
2u) =

k

|x|∂rψ,

8



and thus the Heat equation (3) is transferred into the linear transport equation

∂tψ =
k

r
∂rψ,

that can be solved via the method of characteristics. Indeed, for r0 > 0, we have

d

dt

[
ψ
(
t, (r20 − 2kt)

1
2

)]
= 0,

and thus ψ
(
t, (r20 − 2kt)

1
2

)
= ψ(0, r0) = g(r0) which is recast

ψ(t, r) = g
(
(2kt+ r2)

1
2

)
. (17)

Conversely, we need to check that assumption (16) is satisfied. From (17) we compute,
assuming further regularity for g,

∂rrψ(t, r)−
1

r
∂rψ(t, r) =

r2

2kt+ r2

(
g′′(s)− 1

s
g′(s)

)
,

which we want to be nonnegative, and where we have let s = (2kt+ r2)
1
2 .

As a conclusion, we have proved the following.

Theorem 5.1 (Radial solutions of the Cauchy problem (3)). If g : [0,+∞) → R is twice
differentiable on (0,+∞) and such that

g′′(s)− 1

s
g′(s) ≥ 0,∀s > 0, (18)

then the solution of the Cauchy problem (3) starting from u0(x) = g(|x|) is

u(t, x) = g
(√

2kt+ |x|2
)
. (19)

In other words, in the above situation, the so-called Heat equation (3) does not diffuse
but transports. Let us investigate a few examples, for which we always assume µ > 0 and
β > 0.

Example 5.2. Function g(s) := µe−
s2

2k satisfies (18). From (19) we get the solution

u(t, x) = µe−te−
|x|2

2k . (20)

Notice that u(t, x) = e−tv(x) where v(x) := µe−
|x|2

2k is an eigenelement for operator P−
k : as

noticed in [6], v solves P−
k v + v = 0.

Example 5.3. Function g(s) := µ
(ε+s2)β

, ε > 0, satisfies (18). From (19) we recover the

solution (11).

Example 5.4. Any function g : [0,+∞) → R, twice differentiable on (0,+∞), which is
nonincreasing and convex satisfies (18). In this framework g(s) = µe−s provides the so-

lution u(t, x) = µe−
√

2kt+|x|2 whereas g(s) = µ
(ε+s)β

, ε > 0, provides the solution u(t, x) =
µ

(

ε+
√

2kt+|x|2
)β .

9



The appearance of a transport equation implies very striking phenomena for a so-called
Heat equation: as shown by the following example, global extinction in finite time, or quench-
ing, may occur.

Example 5.5 (Quenching). Straightforward computations show that the smooth function

g(s) :=

{
e

1
s−1 if 0 ≤ s < 1

0 if s ≥ 1

does satisfy (18). Since u0(x) = g(|x|) is compactly supported in the ball of radius 1, the
associated solution (19) of the Cauchy problem vanishes everywhere as soon as t ≥ 1

2k , that
is a quenching phenomena in finite time occurs.

5.2 Operator P+
k

Under assumption (16), we have

P+
k u =

N∑

i=N−k+1

λi(D
2u) = ∂rrψ +

k − 1

|x| ∂rψ

and thus the Heat equation (4) is transferred into the linear convection diffusion equation

∂tψ = ∂rrψ +
k − 1

r
∂rψ. (21)

We assume that g is bounded on [0,+∞). We denote by g̃ its radial extension to R
k, namely

g̃(x) := g(|x|) for x ∈ R
k. We thus select

ψ(t, r) =
1

(4πt)
k
2

∫

Rk

e−
|rω−y|2

4t g̃(y)dy = (Gk(t, ·) ∗ g̃)(rω), t > 0, r ∈ R, (22)

where ω is any unit vector in R
k. Since (21) corresponds to solving the radial Heat equation

in R
k, the restriction of ψ(t, r) to the t > 0, r > 0, solves (21) and starts from g(r).
As a conclusion, we have proved the following.

Theorem 5.6 (Radial solutions of the Cauchy problem (4)). If g : [0,+∞) → R is bounded
and such that ψ(t, r) given by (22) satisfies

∂rrψ(t, r) ≥
1

r
∂rψ(t, r), for all t > 0, r > 0, (23)

then the solution of the Cauchy problem (4) starting from u0(x) = g(|x|) is

u(t, x) = ψ(t, |x|) = 1

(4πt)
k
2

∫

Rk

e−
|(|x|ω−y)|2

4t g(|y|)dy, t > 0, x ∈ R
N , (24)

where ω is any unit vector in R
k.

Let us make a few comments. First, notice that x lives in R
N but we integrate over y ∈ R

k.
Next, observe that (24) does not provide a convolution formula for any radial solution, which
would be in contrast with the fact that the equation is fully nonlinear. Actually, (24) provides
a convolution formula under condition (23) on the initial data, which is more consistent.
Nonetheless, notice that (23) is stable by linear combination with nonnegative coefficients.
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Example 5.7. For the Gaussian initial data g(s) = 1

(4πa)
k
2
e−

s2

4a , a > 0, the convolution (22) is

straightforwardly computed as ψ(t, r) = 1

(4π(a+t))
k
2
e
− r2

4(a+t) which satisfies (23). Hence we get

the solution

u(t, x) =
1

(4π(a + t))
k
2

e
− |x|2

4(a+t) (25)

for t > 0, x ∈ R
N . Notice that, for any 1 ≤ p ≤ +∞,

‖u(t, ·)‖Lp(RN ) ∼
C

t
1
2
(k−N

p
)
, as t→ +∞.

where C = C(a, p,N, k) > 0. In particular the L∞ norm decreases like 1

t
k
2
.

Example 5.8. For the step function g(s) := 1(0,1)(s) and k = 1 (for simplicity), we use (22)

to compute (∂rrψ − 1
r∂rψ)(t, r) for t > 0, r > 0, and observe that it has the sign of

B(t, r) :=

∫ 1

−1
(r(r − y)2 − 2ty)e−

(r−y)2

4t dy.

Using a formal calculation software, we get

B(t, r) = 2te−
1+r2

4t

(
e

r
2t (−r + r2 + 2t)− e−

r
2t (r + r2 + 2t)

)
,

which fails to be nonnegative as soon as 0 < r < 1, 0 < t < r−r2

2 . Hence (23) is not satisfied.
Notice however that g 6∈ UC(RN ) so that the well-posedness of the Cauchy problem is not
obvious.

Now, we intend to provide examples of compactly supported initial data that satisfy
(23). This is more complicated than checking condition (18), which is the counterpart of
condition (23) for the Heat equation involving P−

k , since the solution ψ(t, r) is now given by
a convolution, namely (22). With additional assumptions on the initial data, we now try to
find a “local” sufficient condition for (18) to hold. Assuming that there is ε > 0 such that

g is of the class C2 on [0, ε], nonnegative, g′(0) = 0, and g ≡ 0 on [ε,+∞), (26)

the following computations are licit. Formula (22) yields

(4πt)
k
2ψ(t, r) =

∫

Rk

e−
|re1−y|2

4t g(|y|)dy =

∫

|y|<ε
e−

|re1−y|2

4t g(|y|)dy,

where e1 denotes the first vector of the canonical basis of Rk. In the sequel a generic y ∈ R
k

is recast y = (y1, y
′) with y1 ∈ R, y′ ∈ R

k−1. We differentiate with respect to r and get, using
the shortcut z = z(y) := re1 − y,

(4πt)
k
2ψr(t, r) =

∫

|y|<ε

−2(r − y1)

4t
e−

|z|2

4t g(|y|)dy = −
∫

|y|<ε

∂

∂y1
[e−

|z|2

4t ]g(|y|)dy

=

∫

|y|<ε
e−

|z|2

4t
y1
|y|g

′(|y|)dy,

11



using integration by part over y1, noticing that the boundary terms vanishes since g(ε) =
0. Again we differentiate with respect to r, write

∫
|y|<ε fdy =

∫
|y′|<ε

∫ α
−α fdy1dy

′ with the

shortcut α = α(y′) :=
√
ε2 − |y′|2, use integration by part over y1 and reach

(4πt)
k
2ψrr(t, r) =

∫

|y′|<ε
e−

|y′|2

4t
−αg′(ε)

ε

(
e−

(r−α)2

4t + e−
(r+α)2

4t

)
dy′

+

∫

|y|<ε
e−

|z|2

4t

(
1

|y|g
′(|y|)− y21

|y|3 g
′(|y|) + y21

|y|2 g
′′(|y|)

)
dy.

Notice that the first integral term, over |y′| < ε, is the boundary term. Putting all together
we see that the sign of ψrr(t, r)− 1

rψr(t, r) is that of

I(t, r) :=

∫

|y|<ε
e−

|z|2

4t
y21
|y|2

(
g′′(|y|)− 1

|y|g
′(|y|)

)
dy +

∫

|y|<ε
e−

|z|2

4t
r − y1
r|y| g

′(|y|)dy

+

∫

|y′|<ε
e−

|y′|2

4t
−αg′(ε)

ε

(
e−

(r−α)2

4t + e−
(r+α)2

4t

)
dy′ =: (I1 + I2 + I3)(t, r).

Using again integration by part over y1 we get

I2(t, r) =

∫

|y′|<ε
e−

|y′|2

4t
2t

r

(
e−

(r−α)2

4t
g′(ε)
ε

− e−
(r+α)2

4t
g′(ε)
ε

)
dy′

−2t

r

∫

|y|<ε
e−

|z|2

4t
y1
|y|2

(
g′′(|y|)− 1

|y|g
′(|y|)

)
dy.

Putting all together we arrive at

I(t, r) =

∫

|y|<ε
e−

|z|2

4t
y1(y1 − 2t

r )

|y|2
(
g′′(|y|)− 1

|y|g
′(|y|)

)
dy

+

∫

|y′|<ε
e−

|y′|2

4t
t

r

−g′(ε)
ε

e−
(r+α)2

4t

(
eαrt

−1
(αrt−1 − 2) + αrt−1 + 2

)
dy′

=: (J1 + J2)(t, r).

We easily see that eλ(λ−2)+λ+2 ≥ 0 for all λ ≥ 0 and, since g′(ε) ≤ 0, we have J2(t, r) ≥ 0
for all t > 0, r > 0. Nonetheless even if we assume

g′′(s)− 1

s
g′(s) ≥ 0, for all 0 < s < ε, (27)

we cannot hope the term J1(t, r) to remain nonegative for all t > 0, r > 0 — unless it
vanishes— because of the term y1(y1 − 2t

r ). This is a strong indication that the nonnegative
initial data for which (23) holds are rather “rare” or, in other words and roughly speak-
ing, condition (23) seems to be very “unstable”. In particular for k = 1 or g′(ε) = 0, the
nonnegative favorable term J2(t, r) vanishes.

Nevertheless, assuming equality in (27) obviously saves the day and provides the following
example, which is an important tool for the proof of Theorem 6.4 on the Fujta blow-up
phenomena.

Example 5.9. Let ε > 0 be given. Function g(s) := (ε2 − s2)+ clearly satisfies (26) and the
equality in (27), so that the solution of the Cauchy problem (4) starting from u0(x) = g(|x|)
is given by the convolution formula (24).
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Remark 5.10. From Example 5.7, Example 5.9 and the comparison principle we deduce that,
for any nonnegative and nontrivial initial data u0 (not necessarily radial) having tails that
can be dominated by a Gaussian tail, the solution u(t, x) of the Heat equation (4) starting
from u0 satisfies

C1

(1 + t)
k
2

≤ ‖u(t, ·)‖L∞(RN ) ≤
C2

(1 + t)
k
2

, for all t ≥ 0,

for some positive constants C1 = C1(u0), C2 = C2(u0).

Remark 5.11. Assume that the initial data u0(x) = g(|x|) is such that the conclusion of
Theorem 5.6 holds, and that gi :=

∫
Rk |x|ig(|x|)dx < +∞ for i = 0, 1. Then the solution

becomes asymptotically self-similar in the sense that,

∥∥∥∥∥u(t, ·)− g0
1

(4πt)
k
2

e−
| · |2

4t

∥∥∥∥∥
L∞(RN )

= o
(
t−

k
2

)
as t→ +∞.

This can be proved from the convolution formula (24) by reproducing the standard argument
for the (classical) Heat equation, see for instance the monograph of Giga, Giga and Saal [15,
subsection 1.1.5].

6 Global vs blow-up solutions for the doubly nonlinear Cauchy
problems

In this section, as explained in Section 4, we wonder if the local solution to the Cauchy
problem associated with equations (5) or (6) is global or not.

Let us recall that, in his seminal work [13], Fujita considered solutions u(t, x) to the
nonlinear (p > 0) Heat equation

∂tu = ∆u+ u1+p in (0,∞)× R
N , (28)

supplemented with a nonnegative and nontrivial initial data and proved the following: when
0 < p < 2

N , any solution blows up in finite time whereas, when p > 2
N some solutions with

small initial data are global in time. Hence, for equation (28), pF := 2
N is the so-called Fujita

exponent. Let us observe that, as well-known, solutions to the Heat equation ∂tu = ∆u tend

to zero as t→ ∞ like O
(
t−

N
2

)
, which is a formal argument to guess pF = 2

N .

In the sequel we prove that pF = 0 for equation (5) involving P−
k , whereas pF = 2

k for
equation (6) involving P+

k .

6.1 Operator P−
k

As seen in Example 5.2, the L∞ norm of some solutions to the Heat equation (3) decrease
exponentially fast to zero at large times. This is a strong indication that the Fujita exponent
is pF = 0.

Proposition 6.1 (Some global solutions with light tails). Let p > 0 be given. Assume

0 ≤ u0(x) ≤ Ce−
|x|2

2k for some 0 < C ≤ 1. Then the solution to (5) starting from u0 is global
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in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤
{

C
(1−Cp)1/p

e−t if 0 < C < 1

C if C = 1.

Proof. We define v(t, x) := Ce−te−
|x|2

2k which is the solution of the Heat equation (3) starting

from v0(x) = Ce−
|x|2

2k . We look after a supersolution to (5) in the form

u(t, x) = f(t)v(t, x),

with f to be chosen and starting from f(0) = 1. We compute

(∂tu− P−
k u− u1+p)(t, x) = f ′(t)v(t, x) − f1+p(t)v1+p(t, x)

which is nonnegative provided

f ′(t)
f1+p(t)

≥ ‖v(t, ·)‖pL∞ = Cpe−pt.

Since C ≤ 1 the Cauchy problem f ′(t)
f1+p(t) = Cpe−pt, f(0) = 1 is globally solved as

f(t) =
1

(1 + Cp(e−pt − 1))1/p
≤
{

1
(1−Cp)1/p

if 0 < C < 1

et if C = 1.

From the comparison principle, we deduce 0 ≤ u(t, x) ≤ u(t, x) for all t > 0, x ∈ R
N , which

provides the result.

The solutions (11) to the Heat equation (3) provide examples of global solutions to (5)
with initial heavy tails, provided p is large enough.

Proposition 6.2 (Some global solutions with heavy tails). Let β > 0 be given. Let p > 1
β be

given. Assume 0 ≤ u0(x) ≤ C
(|x|2+ε)β

for some C > 0, ε > 0 satisfying

Cp

εpβ−1
≤ 2k

pβ − 1

p
.

Then the solution to (5) starting from u0 is global in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤





C′

tβ
if Cp

εpβ−1 < 2k pβ−1
p

C′

t1/p
if Cp

εpβ−1 = 2k pβ−1
p ,

for some C ′ = C ′(β, p, k, ε, C) > 0.

Proof. We define v(t, x) := C
(|x|2+2kt+ε)β

which is the solution of the Heat equation starting

from v0(x) =
C

(|x|2+ε)β
. Next, the proof is similar as the previous one.

From any of the two above propositions, we thus conclude that we do have pF = 0. Notice
also that pF = 0 also follows from the following observation from [6]: for any p > 0, equation
(5) admits the stationary solutions

(
2k

p(µ+ |x|2)

) 1
p

,

which corresponds to the critical case p = 1
β of the above proposition.
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6.2 Operator P+
k

As seen in Example 5.7, the L∞ norm of some solutions to the Heat equation (4) decrease

like t−
k
2 at large times. This is an indication that the Fujita exponent pF is smaller than 2

k .
This is confirmed by the following construction of global solutions when p > 2

k .

Proposition 6.3 (Some global solutions when p > 2
k ). Assume p > 2

k . Let a > 0 be given.

Assume 0 ≤ u0(x) ≤ C

(4πa)
k
2
e−

|x|2

4a for some C > 0. Then, if C > 0 is small enough, the

solution to (6) starting from u0 is global in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤
C ′

(a+ t)
k
2

for some C ′ = C ′(p, k, a, C) > 0.

Proof. We define v(t, x) := C

(4π(a+t))
k
2
e
− |x|2

4(a+t) which is the solution of the Heat equation (4)

starting from v0(x) =
C

(4πa)
k
2
e−

|x|2

4a . We look after a supersolution to (6) in the form

u(t, x) = f(t)v(t, x),

with f to be chosen and starting from f(0) = 1. We compute

(∂tu− P+
k u− u1+p)(t, x) = f ′(t)v(t, x) − f1+p(t)v1+p(t, x)

which is nonnegative provided

f ′(t)
f1+p(t)

≥ ‖v(t, ·)‖pL∞ =
Cp

(4π(a + t))
pk
2

.

If C > 0 is sufficiently small, the Cauchy problem f ′(t)
f1+p(t)

= Cp

(4π(a+t))
pk
2

, f(0) = 1 is globally

solved as

f(t) =
1

(
1 + pCp

(4π)
pk
2 (pk

2
−1)

(
1

(a+t)
pk
2 −1

− 1

a
pk
2 −1

)) 1
p

≤ 1
(
1− pCp

(4π)
pk
2 (pk

2
−1)a

pk
2 −1

) 1
p

.

From the comparison principle, we deduce 0 ≤ u(t, x) ≤ u(t, x) for all t > 0, x ∈ R
N , which

provides the result.

Our last main result shows that pF = 2
k .

Theorem 6.4 (Systematic blow-up when p < 2
k ). Assume 0 < p < 2

k . Then for any u0 ∈
UC(RN ) nonnegative and nontrivial, the solution to (6) starting from u0 blows up in finite
time.
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Proof. Since the equation is invariant by translation in space and in view of the comparison
principle, it is enough to consider the case of the compactly supported initial data

u0(x) = g(|x|) := (ε2 − |x|2)+, x ∈ R
N ,

for a arbitrary small ε > 0. We assume that the solution u(t, x) (t > 0, x ∈ R
N ) to (6)

starting from u0 is global in time and look after a contradiction. To start with, we make
the additional assumption (to be removed in the end of the proof) that the viscosity solution
is radial and smooth, in the sense that u(t, x) = ϕ(t, |x|) for some ϕ = ϕ(t, r) smooth on
(0,+∞)× [0,+∞).

In some related proofs of blow-up phenomena, see [20], [13], [2], the fundamental solution
of the underlying linear Heat equation is used. We are not equipped with such a tool but
it turns out that the solution of Example 5.9 has enough good properties for a modification
of the argument to apply. Hence, we denote by v(t, x) (t > 0, x ∈ R

N ) the solution to
(4) starting from u0, as provided by Theorem 5.6 and Example 5.9. In particular we have
v(t, x) = ψ(t, |x|) for ψ = ψ(t, r) provided by the convolution formula (22) and smooth on
(0,+∞)× [0,+∞).

We define the quantity (notice that we integrate over z ∈ R
k)

f(t) :=

∫

Rk

v(t, |z|e1)u0(|z|e1)dz =

∫

Rk

ψ(t, |z|)g(|z|)dz,

where e1 is the first unit vector of the canonical basis of RN . We aim at finding estimates of
f(t) from below and above which are incompatible as t→ +∞.

From the expression of the initial data, we have

f(t) ≥ ε2

2

∫

|z|<ε/
√
2
v(t, |z|e1)dz.

Since v(t, x) is given by the convolution formula (24) we see, from the expression of the initial
data, that, for any |x| < ε/

√
2 and t ≥ 1, v(t, x) ≥ C

t
k
2
for some C = C(ε) > 0. As a result,

we reach the estimate from below

f(t) ≥ C1

t
k
2

, ∀t ≥ 1, (29)

for some C1 = C1(ε) > 0.
Next, for a given t > 0 and any small α > 0, we let

g(s) :=

∫

Rk

v(t− s+ α, |z|e1)u(s, |z|e1)dz, 0 ≤ s ≤ t.

We differentiate with respect to s and use the equations satisfied by v and u to reach

g′(s) =

∫

Rk

(
−P+

k v(t− s+ α, |z|e1)u(s, |z|e1) + v(t− s+ α, |z|e1)P+
k u(s, |z|e1)

)
dz

+

∫

Rk

v(t− s+ α, |z|e1)u1+p(s, |z|e1)dz =: h1(s) + h2(s).

A first key point is that, as understood in Section 5 and roughly speaking, P+
k v corresponds to

the Laplacian in dimension k < N . Another crucial point is that, for a radial fonction u, P+
k u
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is always larger than the Laplacian in dimension k < N , this following from the beginning of
Section 5. Precisely, denoting |Sk−1| the area of the unit hypersphere of Rk, we have

h1(s) ≥ |Sk−1|
∫ +∞

0

(
(−ψrr −

k − 1

r
ψr)(t− s+ α, r)ϕ(s, r)

+ψ(s, r)(ϕrr +
k − 1

r
ϕr)(t− s+ α, r)

)
rk−1dr

which is nonnegative as seen by integrating by parts. Next, from the convolution formula
(24) and Fubini-Tonelli theorem, we see that, for all τ > 0,

∫

Rk

v(τ, |z|e1)dz = ‖g(| · |)‖L1(Rk) =: C(ε, k)
1
p = C

1
p > 0.

Therefore we have, from Jensen inequality,

g′(s) ≥ h2(s) ≥ C

(∫

Rk

v(t− s+ α, |z|e1)u(s, |z|e1)dz
)1+p

= Cg1+p(s).

Integrating this differential inequality from 0 to t, we get Ct ≤ −1
p

(
1

gp(t) −
1

gp(0)

)
≤ 1

pgp(0) .

Now letting α→ 0, this is recast

f(t) ≤ C2

t
1
p

, ∀t ≥ 1, (30)

for some C2 = C2(p, k, ε) > 0. As announced, letting t → +∞ into (29) and (30) contradicts
0 < p < 2

k .
It remains to remove the assumption that u is radial and smooth, which can be done

thanks to the comparison principle and the crucial point mentioned above concerning radial
solutions. Indeed, let us denote by w(t, x) the solution to

∂tw = ∆w + w1+p in (0,+∞)× R
k,

starting from w0(x) = u0(x) = g(|x|), for which we know that w(t, x) = θ(t, |x|) for some
θ = θ(t, r) smooth on (0,+∞)× [0,+∞). We switch to R

N by letting

w(t, x) := θ(t, |x|e1), t > 0, x ∈ R
N .

Since ∆w ≤ P+
k w, we deduce from the comparison principle that w ≤ u, and it suffices to

prove the blow-up of w. Since w possesses all the necessary properties, we can reproduce the
above argument with w playing the role of u. This concludes the proof of Theorem 6.4.
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