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Abstract—This paper considers a two-stage stochastic pro-
gramming problem for airport runway scheduling under the
uncertainty of arrival time on a single runway. The goal of
airport runway scheduling is to schedule a set of aircrafts in
a given time horizon and minimize a corresponding objective
while satisfying separation requirements as well as other practical
constraints. In order to boost runway elasticity and throughout,
a mess of unpredictable factors, such as weather, pilot behavior
and airport surface traffic, should be take into consideration
by airport regulator. The arrival scheduling problem at airport
can be decomposed into sequential decision problem, where the
first stage determines the sequence of aircraft weight class, while
the individual flight is assigned to positions in the weight class
sequence in the second stage. The main mission of this work
is to identify an optimal schedule involving the arrival time of
flight is stochastic under different scenarios. A stochastic aircraft
landing problem (SALP) formulation based on time-dependent
traveling salesman problem (TDTSP) is proposed. Then a sample
average approximation (SAA) algorithm is developed to solve
this stochastic programming and the efficacy is verified by
experimental result.

Index Terms—Airport runway scheduling, Stochastic program-
ming, Sample average approximation.

I. INTRODUCTION

Runway system is the most critical component of airport,
especially in major international airports, which is known
admitted as the prime reason of delay in the departure/arrival
process and contributes to the congestion in the airport termi-
nal area as a result of restricted runway capacity and inefficient
operations. The total air transportation demand is growing
steadily at a rate between three and five percent in spite
of the recent economic recession [1]. Beyond question, the
increasing traffic will causes high congestion in the terminal
areas due to the limited capacity of runway system that defined
as the number of runway operations (i.e., aircraft take-off and
landing) in a unit time. Airport capacity can be increased by
building a new runway, however, it’s a expensive investment to
the infrastructure. In contrary, improving the existed aircraft
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take-off and landing schedules is a cost-efficient method to
enlarge the capacity of the runway system rather than builds
a new one. The runway scheduling problem (RSP) can be
defined as follows. The service time on a runway for each
plane, in a given set of flights, whether arrivals, departures
or a mixed-mode, should be decided in a specified planning
horizon. Meanwhile, a predetermined time window and the
separation requirement between the front and back aircrafts
should be satisfied. In this work, the efficient scheduling
of landing aircraft on a single runway is mainly discussed.
The aircraft landing problem (ALP) is a subproblem of the
more general aircraft scheduling problem (e.g., mixed-mode
and parallel runway scheduling problem considering take-
off and departure simultaneously or respectively). The goal
of ALP is to minimize the total separation times (i.e., the
throughout of a runway) and the delay times for all the landing
aircrafts while maintaining the separation requirements, since
the arrival time for each flight realization. Table II shows a
matrix of aircraft weight class-dependent minimum separation
times, which comes from Ghoniem et al. [2].

The first mixed-integer programming (MIP) model for the
ALP on a single runway was presented by Abela et al. [3],
and a branch-and-bound (B&B) algorithm was developed to
solve the single-runway ALP. Beasley et al. [4] generalized the
single-runway to multiple runway and the extension is the most
cited MIP model of the ALP to date. The ALP formulation is
further extended by Pinol and Beasley [5], which considers
the runway-dependent time window and separation times.
Briskorn and Stolletz [6] proposed a modification of the
formulation based on [4] that explicitly takes the aircraft class
into consideration, and developed four polynomial heuristic
algorithms to solve it. A variety of ALPs have been resolved
by means of dynamic programming (DP) approach in the
literature, and many of these studies assume that the aircraft
within a weight class can be sequenced, typically by estab-
lishing that there exist an optimal solution to the ALP that



always satisfies this property. Dear and Sherif [7] as well
as Balakrishnan and Chandran [8] present a DP model for
the ALP with a constrained-position-shifting (see Psaraftis [9]
for more details) assumption and making use of the class-
dependent separation times to reduce the problem complexity.
Recently, Lieder et al. [10] develop a DP approach combined
with a state-space reduction using a dominance criterion,
which is able to create optimal landing schedules on multiple
independent runways. Bennell et al. [1] investigates DP and
local search implementation for both static and dynamic ALP.
Also, a lot of authors empoy heuristic method as a solution
approach (e.g., Bianco et al. [11], Beasley et al. [12] and
Faye [13]). Moreover, Ng et al. [15] recently consider the
robust aircraft sequencing and scheduling problem under the
uncertainty of arrival and departure delays, and a artificial bee
colony algorithm is designed to solve it based on min-max
regret approach. The literature for ALP is summarized in Table
L.

TABLE I: Summary of representative literature of the aircraft
landing problem.

Literature Runway TDTSP  Arrival time Method
model
[3] single no deterministic ~ branch-and-bound
[4] multiple no deterministic  heuristic algorithm
[6] single no deterministic  heuristic algorithm
[8] single no deterministic ~ dynamic programming
[10] multiple no deterministic ~ dynamic programming
[15] multiple no deterministic  artificial bee colony al-
gorithm
This work single yes stochastic SAA algorithm

To our best knowledge, the deterministic, dynamic and
robust ALP have been extensively studied in runway oper-
ations. However, ALP with the consideration of uncertainty is
rarely studied. This work, motivated by above research gap,
proposes a two-stage stochastic mathematical formulation of
ALP (SALP) to incorporate the uncertain factors (i.e., arrival
times of aircraft) into the ALP. This can in favour of improving
the runway availability and reducing flight delays based on the
feature that practical aircraft arrival time is uncertain.

The contributions of this research can be summarised as
follows: First, a two-stage stochastic ALP formulation is
proposed, which incorporates the uncertainty of arrival time
into the scheduling process. In this work, minimising the total
separation times and the delay times of aircraft is considered in
the SALP model. Second, coupled with the number of aircraft
weight class and scenarios for each actual arrival time, this
poses a very large-scale problem compared with deterministic
one. this article presents a sample average approximation
algorithm, which can be used to solve this problem and provide
information on the quality of the solution. Third, Numerical
experiments are conducted to evaluate the effectiveness of the
proposed mathematical model and resolution approach.

The remainder of this article is organized as follows. in the

next section, a mathematical formulation of the SALP is given.
The solution procedure based on the SAA is introduced in
section III, In section IV, we dedicated to conduct the numer-
ical experiments to demonstrate the efficacy for the proposed
solution method. Finally, section V concludes this work and
associated directions for future research are summarized.

TABLE II: Separation Requirement (in seconds).

Trailing aircraft

Heavy Large Small
Heavy 99 133 196
Lading aircraft Large 74 107 131
Small 74 80 98

II. PROBLEM FORMULATION

In this section, we present a two-stage stochastic mixed-
integer 0-1 formulation of the single runway aircraft landing
problem based on time-dependent TSP proposed by Picard and
Queyranne [16] (see Bigras et al. [17] for more details).

A. Assumption

Before the mathematical model of stochastic aircraft landing
problem (SALP) is established, several assumptions should be
made.

1) The SALP schedules are solely focused on the aircraft
landing operation decisions without involving the ground
operations, terminal air traffic control and take-off activities.

2) The length of the single runway is long enough to
accommodated different aircraft weight class, which requires
different minimal length of the runway to landing operation.

3) Every aircraft can’t landing before a realization arrival
time, and the latest landing time for each is greater than the
given planning horizon (i.e., 30-40 minutes).

B. The SALP model

Dummy
3 source
node

Dummy
sink
node

Fig. 1: The multipartite network for a 4 flights landing
problem.

The time-dependent traveling salesman problem (TDTSP) is
a version of the classical traveling salesman problem (TSP),
where the arc costs between node ¢ and node j depends
on which time period node ¢ is visited [17]. TDTSP for-
mulations have been widely applied to a single machine
scheduling problem (SMSP) with sequence dependent set-up



time. The objective of first-stage problem in SALP aims to
find a sequence of aircraft weight class that minimizes the
total separation requirements of completing all the landing
operations. This character can be expressed as a traveling
salesman problem (TSP) as follows. Consider a direct graph
where each alternate aircraft is regarded as a node with arcs
connecting each pair of nodes (i.e., landing aircraft), and
let the arc costs define separation times between sequential
flights. It is easy to indicate that the optimal TSP tour on
this time-dependent network would correspond to a sequence
of aircraft weight class that minimizes the total separation
requirements. The second-stage problem considers assigning
individual aircraft to specific locations in the sequence, since
the actual arrival times realization. The assignment process in

second-stage problem requires explicit representation of the
location information received from the solutions of first-stagei,n+1-

problem. On account of the need request for the location
information in the second-stage, the first-stage problem can
be represented as a location-dependent TSP (LDTSP), which
is also known as time-dependent TSP. The cost of flowing
an arc rests on the aircrafts (i.e., nodes) it connects and the
location (i.e., time) in the sequence. Figure 1 represents a
multipartite network for a 4 flights landing problem, and the
goal of the LDTSP can be seen as a shortest path problem on
a multipartite network with complicating constraints that are
used to force the path to visit every node once and only once.

This problem can be addressed more formally as follows.
Let G(NV, A) be an oriented graph with the node set NV =
{nig:1=1,2,...,n;1=1,2,...,n} Ung, ny41, where a node
consists of a particular flight ¢ and location [, and the ng and
Nnnp+1 represents dummy source and sink nodes, respectively.
The set of arcs is defined as A = {(n;;,nji41) : @ =
1,2,..,n5 = 1,2,..,n;0 = 1,2,...,n} U {(no,ni1) :
1,2, nt U{(nin,nt1) i =1,2,...,n}.

Input Parameters:

7;:

K set of the weight class of the aircraft, indexed by k, and
| K| denotes the number of aircraft classes.
N: set of landing flights that can be scheduled in a given

planning time, indexed by i, 7, and n denotes the number
of flight will be scheduled in a given planning horizon.
L: set of location in the flight landing sequence, indexed by
I, where | € L, and |L| denotes the number of locations,
|L| = n.
S: set of scenarios corresponding to demand realizations,
indexed by s.

Ny the set of aircraft belong to aircraft weight class k, where
ke K.

ay: the number of landing flight belong to aircraft class k,
where k € K.

T7: the realization landing time of flight ¢ under scenario s,
where i € N, s € S.

T?: the vector of realization landing time for all flights under
scenario s, where s € S.

p®: probability for realization of scenario s, where s € S.

;. the separation requirements between weight class of front

and back aircrafts, where ¢, j € N. As in Table II, d; ; is

determined by the aircraft weight class of of the leading
and following aircraft ¢ and j.

Decision Variables:

(first-stage variable) = 1 if aircraft class & is assigned to
location [, = O otherwise, where [ € L, k € K.

c;: (first-stage variable) denotes the time of location /, where
lelL.

Xl k-

y; .+ (second-stage variable) = 1 if flight ¢ is assigned to
location [, = 0 otherwise, where 1 € N, [ € L.

28:;: (second-stage variable) = 1, if there is flow on arc, which
outflows from dummy source node ng. where j € N,
seS.

zfj (second-stage variable) = 1 if there is flow on arc

(ni,mj+1) in scenario s, where i € N, j € N, s € S.

: (second-stage variable) = 1, if there is flow on arc, which

inflows to dummy sink node n,,4;. where i € N, s € S.

t?: (second-stage variable) denotes the landing time of flight
7 in scenario s, where 1 € N, s € S.

For conciseness, we use bold notations to denote the corre-
sponding vectors of parameters or variables in the remainder.
Given the above notation, a compact representation of the
corresponding deterministic equivalent formulation of the two-
stage stochastic integer problem (MIP) based on a LDTSP
model can be described as follows. The objective function of
the first-stage problem reads as

mlnE(X,UJ) :C’fb_'_zps ,QS(X’TS) (1)
ses
subject to
Z T, = 1, leL (2
keK

S o=, ke 3)

leL
x € {0, 1} KIxIL (4)

In the second-stage problem, for each scenario s € S, the
objective (also known as recourse function) is written as

Q°(x,T*) = minth - ZTZ»S

lelL i€EN

&)

subject to

SN =gy, leLil#nkeKseS (6)

1€ENE jJEN
> A =akm, keK,seS 7)
1€ N
Zzg;;:L ses (8)
JEN
ZZ;;;:Z&;’ jJEN,seS )
i€EN



Zz = ZHS, l=1,..,n

—2,jeN,s€S (10)

iEN iEN
o =2, JENsES (11)
ieEN
iy > At=1 jeENseS (12
iEN l€L\{n}
doas =y, ieNIeLiltnses (13
JEN
zn:ﬂ_ym, i€ N,s€S (14)
Zis Yiit1, JENJIELl#n,seS (15)
1EN
Z(()):]S = yjs‘,lv jE N,se S (16)
do;-z; <e1, i€N,s€S (17)
ity D digezg <, 1eLi#LseS (18)
i€EN jEN
do,j'zg,’fétu i€ N,seS (19)
B+ DD dig ;" <t LeLi#1ses Q0)
iEN jEN
DTyl <tf, leLses 1)
iEN
c,t*,y® > 0,2° € {0, 1}/NXILI s e 22)

In this model, the objective function (1) minimizes the total
separation requirement and delay time for each aircraft. The
first-stage constraints (2), (3) and 0-1 requirements (4) ensure
that each location in sequence is covered by one aircraft
weight class. Constraints (6) and (7) allow the determina-
tion of the corresponding sequence for a given flow. Note
that ¢; = 0, constraints (8) determine the time of location
[. Constraints (8) force flow out of the source node, and
constraints (9)-(11) assure that at each node n;; the network
flow is conserved. Each aircraft is traversed exactly once is
guaranteed by constraints (12). The arc variables are linked
to the assignment variables through constraints (13)-(16). The
cumulative separation time in the aircraft wight class sequence
at each location is determined by constraints (18) and (19).
Constraints (19), (20) and (21) capture the realistic of landing
time of aircraft at location /. The last constraints (22) are the
nonnegativity and integrality constraints. Notice that not only
the integrality constraints of second-stage variables y;, but
also of the first-stage variables xj; can be relaxed, because

the aircraft weight class and aircraft-to-location assignment
can be captured in the flow variables.

ITII. SOLUTION METHODOLOGY

Solving the problem directly (e.g., employing a state-and-
off commercial solver such as CPLEX and Gurobi) is difficult
for most practical problem, as large numbers of scenarios can
yield extremely large-scale mixed-integer programs. Real-life
situations involve a large number of scenarios which make it
extremely difficult to solve SALP. To overcome this challenge,
the SAA algorithm was applied. The main advantage of
using the SAA algorithm is its ability to find near-optimal
solutions while considering samples comprising a smaller
number of scenarios. The SAA is a Monte Carlo simulation-
based approach to solve stochastic programming problems (see
Kleywegt et al. [18] for more details). The basic idea is simple
indeed, i.e, a random sample is generated and the expected
value function is approximated by the corresponding sample
average function. It is used to compute lower and upper bounds
of the expected recourse cost function. Therefore, the optimal-
ity gap and statistical confidence intervals on the quality of
the approximate solutions can be evaluated simultaneously. In
order to obtain a preestablished optimality gap, the procedure
is repeated several times until the stopping criterion is satisfied.

The detailed steps involved in solving a SALP using SAA
are described below.

The SAA algorithm

Step 1. Generate M independent random samples each of
size N and solve the corresponding SAA problem:

N
) 1
o = min e + Zl Q(x, T") (23)
n=
Let v} and X%} be the corresponding optimal objective and
optimal solutions, respectively; m =1,2,3,..., M.
Step 2. Compute a lower bound and calculate the corre-
sponding variance of this estimator.

7}N = M E UN (24)
1 M
2 - m _ =M\2
TN T M —1) Tzﬂzl(v” o) 2

The expected value of 4/ is less than or equal to the optimal
value v* of the original problem. Since ©3! is an unbiased
estimator of E[vy] and E[o3/] < v*. So we mean that 94/ is
a lower statistical bound for v* of the original problem and

o2 oM is an estimate of the variance of this estimator.

Step 3. Choose a feasible first-stage solution x € X of
the original problem, e.g., one of the solutions from X%} and
estimate the objective function value of the original problem
using a different sample N'. The true objective function value
is given as:



N
one(R) = en + Ni > QT (26)
n=1

Especially, N’ is chosen to be much larger than N (N’ >
N). The estimator vy~ (X) is an unbiased estimator of ¢, +
E[Q(x,T™)]. Since X is a feasible solution to the true problem.
The value vy/(X) is updated in each iteration if the obtained
value is less than the value of the previous iteration. The
variance of this estimate can be expressed as

1 ol o )
Th ) = m;(cn + Q& T™) —uni (X)) (27)

Step 4. Compute an estimate of the optimality gap of the
solution z using the lower and upper bounds calculated in
Steps 2 and 3, respectively, as follows:

&\ mM
“ UN/\X) — U
gap v (%) = W (28)
The estimated variance of the gap is given by
2 ng'\”f
Tgap = (on (%))? (29)

The confidence interval for the optimality gap can be
calculated as

2
vy (

N (X) = 5N + 2o {0 s T U?}]]\\/fj 305 (30)

with z, = ® (1 — «), where ®(2) is the cumulative
distribution of the standard normal distribution.

IV. NUMERICAL EXPERIMENTS

In this section, we present computational experiments using
a random-generation instance. The primary goal of these
experiments is to study how stochastic arrival time influences
the solutions. Another intention is to analyze the performance
of the SAA algorithm. The SAA algorithm is fulfilled in
Matlab 2014b and ILOG CPLEX 12.6 is utilized to solve
the stochastic problem on a PC with Intel(R) Core(TM) i5-
6500 CPU 3.20GHz and 8GB RAM. The input parameters
used in this problem, the performance of the SAA method,
and the analysis of computational results are presented in the
following subsections.

A. Scenario generation and data description

Poisson arrival process (i.e., exponentially distributed inter-
arrival times) is a realistic approximation of the inbound traffic
of an airport. We choose an average inter-arrival time of 90
seconds. The separation times between leading and trailing
aircrafts show in Table II. The weight class is generated
according to it’s probability distribution, we assure there are
three aircraft weight classes (i.e., Heavy, Large and Small)
and their probability distribution is identical. The resulting
expected arrival times and aircraft classes for all 8 aircrafts are
shown in Table III, where abbreviations H, L. and S represent

the weight class Heavy, Large and Small respectively. Given
the expected arrival times (i.e., mean values p), a realization
sample arrival time for each aircraft can be generated accord-
ing to it’s probability distribution (e.g., normal distribution
N(u,0)), all of the realization arrival time for each aircraft
consist of a particular scenario. We generate |S| scenarios
using the normal distribution N(u, o), where p = ETA and
o = au, where « is a given parameter in the interval [0, 1].
In this instance, we set o = 0.2.

TABLE III: Expected arrival times (EAT, in seconds) and
weight classes (WC) of 10 aircrafts.

N 1 2 3 4 5 6 7 8

EAT 268 342 658 729 768 884 920 968
WwC L H S L H H S S

B. Impact of stochastic arrival time on schedules

TABLE IV: Computational results under different number of
scenario

Scenarios Obj  Time(s) Aircraft class sequence
5 1872 9.94 L-S-H-S-S-L-H-H
6 1691  14.62 L-S-S-L-S-H-H-H
7 1631 15.05 L-S-S-L-H-H-H-S
8 1783  72.33 L-S-H-H-L-S-S-H
9 1572 16.09 L-S-H-L-S-S-H-H
10 1614  132.22 L-S-H-L-S-S-H-H
12 1531  90.38 L-S-H-L-S-S-H-H
15 1719 506.91 L-S-H-L-S-S-H-H

Table IV shows the computational results of this instance
solved by CPLEX directly. Obj indicates the total separation
and delay times of 8 aircrafts. It can be observed from Table
IV that as the number of scenario increases, the objective in
general decreases and the running time increases in a non-
linear way. Moreover, it often makes better sense to assign
a heavy class aircraft after the large and small. This can
be explained by the fact that the separation time matrix is
asymmetrical. For example, the separation time is 74 seconds
between the small and the following heavy, however, 196
seconds of separation time have to be satisfied vice versa. The
objective can reduce, only if the increased total delay time,
which as a result of individual landing sequence shifting, can
be offset by the decreased total separation time of the weight
class order after exchanged.

C. Numerical results of SAA algorithm

In this subsection, the numerical experiments are conducted
based on the above base case to illustrate the efficacy of the
SAA algorithm and analyze the impact of sample size N and
replication M. The number of N is progressively increased
from 5 to 30 under M = 5 and M = 10, respectively. Table



V details the results of numerical experiments, the first column
shows the simple size (i.e., number of scenarios), columns two
and three represent the statistical lower and upper bounds and
their standard deviation (as percentage of the average value),
last two columns indicate the optimality gap (in percentage)
and the standard deviation of the gap.

It can be observed from Table V that as the sample size
N increases while M is fixed, the optimality gap generally
decreases and the standard deviation associated with lower,
upper bounds and optimality generally drop as well. From
Table V, it can be found that as the replication M increases
while N is fixed, the the statistical lower and upper bounds
and their standard deviation generally decreases as well as
a tighter optimality gap and a smaller corresponding standard
deviation. On account of the lower and upper bounds obtained
by the SAA algorithm are statistical in their nature, there is
a chance that some lower bound values exceed those of the
upper bounds. This results in a negative optimality gap (e.g.,
When M =5, N = 20).

TABLE V: Statistical lower bound and upper bound obtained
with M = {5,10} and N’ = 500.

N LB UB gap
E S.d(%) E S.d(%) E(%) S.d

(M =5)

5  1584.04 7.65 1782.88 7.78 11.15  40.17

10 180424 1459  1827.02 14.01 1.25 3438

20 1690.86  10.19  1644.97 9.28 -2.79  60.32

30 1492.43 7.64 1498.96 7.66 044 1559
(M =10)

5 1812.10 6.72 1872.34 6.44 322 19.60

10 1912.00 5.25 1949.17 5.05 191 2145

20 1645.76 7.07 1663.57 6.63 1.07  15.62

30 1571.01 4.87 1585.24 4.70 0.88 11.04

V. CONCLUSION

This article presents a two-stage stochastic mixed-integer
programming model for the aircraft landing problem, which
considers the uncertain of arrival time of aircraft. The objective
of first-stage is to determine the best landing sequence of
aircraft weight class (i.e., maximizing the throughput of run-
way). Given the solutions of first-stage, the individual aircraft
will be assigned to the specific locations in the second-stage,
which aims to minimize the total delay time of all aircrafts.
In order to solve this stochastic problem, a SAA algorithm
is developed. Statistical bounds on the optimal value and a
near-optimal solution (with an optimality gap of less than
1%) can be obtained for the SALP using the proposed SAA
algorithm with 30 scenarios. In the future, there are several
lines of work could be utilized to extend on this work. First,
this stochastic formulation can be extend to multi-runways
and mixed-mode runway. Second, the ground operations (e.g.,
taxing process), terminal air traffic control and gate assignment
decision can be integrated. Third, the priority of flight and
other objectives, such as total cost of operations and the

fairness of schedules should be considered. Last, a more exact
efficient algorithm can be developed to obtain solution in a
reasonable computational time.
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