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Abstract

The energy decomposition analysis based on block localized wave functions (BLW-

EDA) allows to gain physical insight into the nature of chemical bonding, decomposing

the interaction energy in (1) a “frozen” term, accounting for the attraction due to elec-

trostatic and dispersion interactions, modulated by Pauli repulsion, (2) the variationally

assessed polarization energy and (3) the charge-transfer. This method has so far been

applied to gas- and condensed-phase molecular systems. However, its standard version

is not compatible with fractionally occupied orbitals (i.e. electronic smearing) and,

as a consequence, cannot be applied to metallic surfaces. In this work, we propose a
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simple and practical extension of BLW-EDA to fractionally occupied orbitals, termed

Ensemble BLW-EDA. As illustrative examples, we have applied the developed method

to analyze the nature of the interaction of various adsorbates on Pt(111), ranging from

physisorbed water to strongly chemisorbed ethylene. Our results show that polarization

and charge-transfer both contribute significantly at the adsorption minimum for all

studied systems. The energy decomposition analysis provides details with respect to

competing adsorption sites (e.g., CO on atop, vs. hollow sites) and elucidates the

respective importance of polarization and charge transfer for the increased adsorption

energy of H2S compared to H2O. Our development will enable a deeper understanding

of the impact of charge transfer on catalytic processes in general.

1 Introduction

Analyzing the chemical bond in order to understand the driving force and diversity of bonding

is almost as old as quantum mechanics.1,2 Bader’s quantum theory of the atom in a molecule3

and the natural bond orbitals by Weinhold,4 are among the most popular approaches, but

since the decomposition of the chemical bond energy into different contributions is not

unique,5 a multitude of other energy decomposition analysis (EDA) schemes have been

developed.6 All these different schemes come with their advantages and weaknesses, so that

application of several tools can either bring contradicting results or provide confidence that at

least the trend is captured accurately.7 Most of these tools are developed having molecules in

mind and their application to the bonding between surfaces and adsorbates is comparatively

rare.8–11 As one of the few examples, Tonner and co-workers have demonstrated that EDAs on

semi-conducting surfaces can provide a deep understanding of coverage effects12 and elucidate

peculiar bonding mechanisms.13 Our goal is to extend the EDA based on the block-localized

wave function (BLW)14,15 to metallic surfaces. The BLW is designed to localize the electrons

in Hilbert space in the Mulliken sense, i.e., in terms of atom-centered basis functions. A

typical choice is to restrict the expansion to basis functions of atoms of a given molecule and
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thus excluding contributions from all other basis functions in the system, thus defining one

block per molecule. The BLW – also known in this context as absolutely localized molecular

orbitals (ALMO) – is variationally optimized and the different block polarize each other.

The main advantage of the BLW-EDA compared to other EDAs is that the polarization of

fragments in their mutual presence is computed fully variationaly. This allows to rigorously

separate the polarization energy from charge-transfer. The charge-transfer in BLW-EDA

includes bonding orbital interactions between the fragments, which distinguishes it from the

charge-transfer obtained by constrained density functional theory (CDFT)16,17, where the

charge-transfer is defined in real-space, rather than Hilbert space.18

The formulation of the theoretical framework exploited for optimizing the BLW goes back

to the works of Stoll and co-workers,19 who aimed at reducing the computational cost of the

self-consistent field (SCF) procedure by using ALMOs. The variational optimization of blocks

that are localized in Hilbert space has found other applications over the years, exploiting

other properties of the BLW unrelated to computational speed-ups. For instance, BLW has

been proposed to be used to remove the basis set superposition error (BSSE)20,21 and BLW-

EDA has been applied to molecular complexes at the DFT22–24 or correlated wave function

level of theory,25,26 quantifying hyperconjugation,27,28 strain energies29 and even covalent

bonds.30,31 Futhermore, ALMOs can provide transferable molecular orbitals (where they

are also called ELMOs for extremely localized molecular orbitals)32–35 or fragment densities

to be used in X-ray structure elucidations.36 Through its variational character, BLW also

provides the unique opportunity to directly assess the impact of electron delocalization on the

properties of molecules by comparing computed NMR chemical shifts37,38 and J-couplings39

for (de-)localized states, which can be seen as the comparison between a single Lewis structure

and the true, electron delocalized state. Similarly, the electronic structure of the electron

localized state can be analyzed by scalar fields such as the electron localization function (ELF)

or the localized orbital locator (LOL) in order to shed more light on the consequences of

electron delocalization on the electronic structure.40,41 Due to the variational definition of the
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polarization energy, other applications involve investigating of the impact of polarization on

the hydration shell of ionic solutes42 and comparison between the BLW polarization energy

and polarizable force fields, which has also been exploited to parametrize first principles

based force fields.43,44

Heterogeneous catalytic reactions involving metal surfaces or particles are involved in many

major industrial processes, such as selective hydrogeneations in refineries, ammonia synthesis,

steam reforming etc. Furthermore, metal catalysts are key in heterogeneous electrocatalysis,

which is promising to improve the efficiency of electrolysis, fuel cells, CO2 reduction, but also

the synthesis of fine chemicals.45 Therefore, analysis of the interaction of adsorbates with

metallic surfaces can provide valuable insights for the design of novel, more efficient catalysts.

Furthermore, when considering metal alloys, the difference between electronic and ensemble

effects is a widely discussed topic.46 BLW would allow to construct an electron localized

(neutral) state of a given secondary element, clearly resolving the electronic (charge-transfer

between the two metals) and ensemble effect.

The formulation of BLW is based on the assumption of doubly occupied orbitals, although

extensions to spin-unrestricted systems exist,47,48 where the system is assumed to have a

gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO). Metallic electronic structures are, instead, characterized by a

continuum of energy levels over the Fermi energy, leading to partially occupied states.

In this work, we propose an extension of the BLW approach based on a mean field

approximation, to which we refer as Ensemble BLW-EDA. In the following, we first present

the conventional SCF procedure for metallic systems, followed by the main notions of

BLW. Then, we combine the two, extending BLW to metallic systems. Finally, we provide

computational details and applications to the prototypical adsorption of molecules (H2O,

H2S, C2H4 and CO) on Pt(111).
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2 Methodology

2.1 Ensemble DFT

The ground-state of a metallic system, i.e., where the density of states around the Fermi level

is continuous, cannot be described by a single quantum state. Rather, an ensemble of states

is required, both for a physically sound description and for a smooth convergence of the

wave function optimization in a self-consistent field (SCF) process. The different quantum

states within the ensemble are weighted according to their probability in order to determine

observables. Let Â be an operator, and Ω is the set of all possible quantum states of a given

system. Then, the expectation value 〈A〉Ω of the ensemble is:

〈A〉Ω =
∑
χ∈Ω

〈Ψχ|Â|Ψχ〉pχ (1)

where Ψχ is the wavefunction associated with the quantum state χ. Ψχ spans the ground-

and single excited state determinants of the system. pχ is the probability that the real system

is in the quantum state χ, based on the energy of χ.

In the present context, we are interested in the reformulation of the 1-electron density

operator ρ̂. In the Hartree-Fock approximation, and in the case of orthonormal molecular

orbitals ψi, ρ̂ can be written as:

ρ̂ =
∑

occ ψi∈Ψ

|ψi〉〈ψi| (2)

Dealing explicitly with ensembles is computationally inefficient and would require dedicated

implementations. Since singly excited determinants do not overlap with the ground-state

determinant, the same set of molecular orbitals can be used to construct all the relevant

quantum states of the system. Therefore, the ensemble 1-electron density (〈ρ̂〉Ω) can be

written in a convenient manner by considering the population of the orbitals (also known as

occupation numbers, ni) instead of the probability of quantum states:
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〈ρ̂〉Ω =
∑
χ∈Ω

pχρ̂χ =
∑
χ∈Ω

pχ
∑
ψi∈Ψχ

|ψi〉〈ψi| = (3)

=
∑
i

|ψi〉〈ψi|ni =
∑
i

|
√
niψi〉〈

√
niψi| =

∑
i

|ψ′i〉〈ψ′i| (4)

where i is the sum over all molecular orbitals, i.e., solutions of the Fock equation. In Eq. 4

we have introduced the rescaled orbitals:

|ψ′i〉 =
√
ni|ψi〉 (5)

which are particularly convenient computationally. The occupation number ni is related to

the probability for the orbital ψi to be occupied. For finite temperatures, they are determined

based on the energy εi of ψi, invoking Fermi-Dirac statistics:

ni =
1

exp( εi−µ
kT

) + 1
(6)

where µ is the Fermi level, k is Boltzmann’s constant, and T is the (electronic) temperature.

With these rescaled orbitals |ψ′i〉, the mixed-state 1-electron density RΩ can be easily computed.

RΩ = CNC† (7)

where C is the molecular coefficient matrix and N is a diagonal matrix of Fermi weights ni

according to Eq. 6. Yang and co-workers have generalized this reformulation to any method

that can be reformulated based on the non-interacting Greens function, allowing to apply the

orbital scaling to virtual orbitals and thus to compute correlation energies with MP2 or RPA

for systems with fractional electrons.49 With a mild approximation, these scaled orbitals can

also be used for coupled cluster computations for systems with fractional electrons.50
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2.2 BLW formalism

The basic idea of the BLW formalism is to express the wave function of the system in terms

of blocks of localized orbitals. In the present context, the orbitals are always localized on a

subset of atoms, so that the BLW partitions the atom-centered basis functions in mutually

exclusive blocks and imposes thereby a localization of the wave function in Hilbert space.

Formally, a block Bm is defined as a set of Nm basis functions {φm1 . . . φmNm}, such that each

basis function is associated with exactly one block, i.e.
∑

mNm = N , where N is the total

number of basis functions of the system. In this work, the set of basis functions {φm1 . . . φmNm}

associated with the block Bm is the union of all Nj basis set functions {φj1 . . . φ
j
Nj
} used to

describe the jm atoms of Bm, so that
∑

m jm equals to the total number of atoms in the

system. Similarly, the electrons of the system are assigned to a given block. In our case, all

blocks are neutral.

An ALMO is defined as a linear combination of basis functions associated with the same

block. Therefore, an orbital ψim pertaining to block Bm is written:

|ψim〉 =
∑
ν

Cm
ν,i|φmν 〉 (8)

where C is the orbital coefficient matrix for the entire system, while Cm is the matrix of

block Bm. We have used greek letters to label atomic orbital basis functions and im indexes

ALMOs of a given block Bm.

The global orbital coefficient matrix C, which spans all molecular orbitals and, thus, has

dimensions of N ×N , has a block-diagonal structure:

C =



C1 0 · · · 0

0 Cm · · · 0

...
... . . . ...

0 0 · · · C
∑

m


(9)
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where Cm is the orbital coefficient matrix restricted to the block Bm. The orbital coefficients

Cm
ν,i are variationally optimized according to the local diagonalisation-based SCF algorithm

developed by Stoll19 and implemented in CP2K as the first stage of the two-step “ALMO-SCF”

scheme.51

In general, locality and orthogonality constraints cannot be both satisfied simultaneously.52

Therefore, ALMOs are inherently non-orthogonal between blocks, although they can be kept

orthonormal within a block without loss of generality. In this study, we will work under this

assumption. Hence, the ALMO overlap matrix (σ) has identity-like diagonal blocks, but

non-zero entries for overlaps between blocks.

In practice, the so called reciprocal (or bi-orthogonal) occupied orbitals |ψ̃im〉 are defined

such that 〈ψ̃im|ψjl〉 = δimjl :

|ψ̃im〉 =
∑
l,j

|ψjl〉σ−1
imjl

, T̃ = Tσ−1 (10)

where l goes over all blocks and jl indexes the occupied orbitals of block Bl, T̃ is the coefficient

matrix of reciprocal occupied orbitals and T is the occupied part of Eq. 9. To be explicit,

|ψ̃im〉 is expanded in terms of all basis functions of the system and not only of block Bm.

Reciprocal orbitals enable one to rewrite the Fock equations. As Stoll has demonstrated,

the self-consistent solution of projected eigenvalue equations for each block is equivalent to

finding variationally optimal ALMOs.

F̂m|ψmi 〉 = εmi |ψmi 〉, F̂m =
(
1̂− ρ̂+ ρ̂m†

)
F̂
(
1̂− ρ̂+ ρ̂m

)
(11)

ρ̂m =
∑
i∈Bm

|ψ̃im〉〈ψim | =
∑
l,ξ,ν

Rm
ξν |φlξ〉〈φmν | (12)

where 1 is the identity matrix, F̂ is the conventional Fock operator, F̂m is the Fock operator

projected on block Bm, ρ̂ is the density operator of the entire system, ρ̂m is the non-Hermitian

operator that represents the density of the block defined by using only ALMOs of block Bm,
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and Rm is the associated block density matrix. ν is a basis function of block Bm (see Eq. 8),

while ξ indexes the atom centered basis function of blocks Bl.

At each SCF iteration, these projected Fock equations are solved independently for each

block, but coupled to each other between successive iterations due to the projection operators.

In other words, each block Bm is optimized in the environment generated by all other blocks.

Since in mixed-state theory it is common to deal with orthonormal orbitals, we briefly

discuss the connection between the use of reciprocal orbitals and a Lowdin orthonormalization:

|Lψi〉 =
∑
occ j

|ψj〉σ
− 1

2
ij ,

LT = Tσ−
1
2 (13)

where i and j are general indexes, σ−
1
2 is the square root inverse of the overlap matrix and

LT is the Lowdin orbital coefficient matrix. The 1-electron density is equivalently expressed

through the Lowdin orthonormalized molecular orbitals and the use of reciprocal orbtials,

the latter avoiding the expensive computation of σ−
1
2 :

ρ̂ =
∑
occ i

|Lψi〉〈Lψi| =
∑
occ i

|ψ̃i〉〈ψi| =
∑
occ i

∑
ν,ξ

T̃νi|φν〉〈φξ|Tξi =
∑
ν,ξ

∑
occ i

TξiT̃
†
iν |φν〉〈φξ| =

∑
ν,ξ

Rνξ|φν〉〈φξ|

(14)

R = LTLT
†

= TT̃† = T(Tσ−1)† = Tσ−1T† (15)

where R is the conventional 1-electron density matrix. R can then be fed to standard routines

to determine the electron density in real space, compute gradients and so forth.

2.3 Ensemble BLW

2.3.1 Exact Ensemble Formulation

In order to adapt the BLW formalism to an ensemble formulation, we need to adapt the

density matrices R or, equivalently, the construction of the reciprocal orbitals (Eq. 10). In

other words, we apply the general formula (Eq. 3) for the computation of an ensemble density
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matrix RΩ to non-orthogonal molecular orbitals:

RΩ =
∑
χ∈Ω

pχTχ =
∑
χ∈Ω

pχTχσ
−1
χ Rχ

† =
∑
χ∈Ω

pχTχ(Tχ
†STχ)−1Tχ

† (16)

where pχ is the probability that the real system is in the quantum state χ, Rχ is the density

matrix of this quantum state, Tχ is the occupied orbital coefficient matrix associated with

the wavefunction Ψχ, σ−1
χ is the overlap matrix of the quantum state χ, and S is the basis

set function overlap matrix which is common for all quantum states, since it is a property of

the geometry and basis set.

Let us consider a general orbital coefficient matrix C containing all the localized orbitals

used to construct every Tχ, the occupied orbital matrix of quantum state χ. Therefore, one

can construct any Tχ from C:

Tχ = C∆χ = C



δ1χ 0 · · · 0

0 δ2χ · · · 0

...
... . . . ...

0 0 · · · δn+kχ


, δiχ =


1 if ψi ∈ Ψχ,

0 otherwise.
(17)

where ∆χ can be seen as a rescaling matrix with a dimension of N ×N .

Combining Eq. 17 with Eq. 16, we obtain the following reformulation:

R =
∑
χ∈Ω

pχRχ =
∑
χ∈Ω

pχTχσ
−1
χ Tχ

† =
∑
χ∈Ω

pχC∆χσ
−1
χ ∆χC

† = C

(∑
χ∈Ω

pχ∆χσ
−1
χ ∆χ

)
C† = CΩσ−1C†

(18)

where Ωσ−1 =
∑
χ∈Ω

pχ∆χσ
−1
χ ∆χ.

Equation 18 requires σ−1
χ to be computed for each state involved separately, i.e., it is not

an efficient reformulation of Eq. 16. This contrasts with the canonical case, where Eq. 4

provides an efficient reformulation of Eq. 3, since the different quantum states involved are

orthonormal among each other.
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If we have k orbitals in addition to the n formally doubly occupied orbitals, then the

maximum number |Ω| of quantum states to evaluate Eq. 17 is:

|Ω| =

n+ k

n

 =
(n+ k)!

n! k!
(19)

In the worst case, k = n, |Ω| ≈ 22n√
πn

, i.e., the number of states to be considered is exponential

in n. Hence, such a method is not applicable to sizable systems (e.g. a little more than

7× 10201 states for the Pt(111) surface investigated in the later sections).

Why can there not be a simple reformulation of ensemble BLW, just like in the canonical

case? Considering Eq. 14, we can understand that ALMOs are treated as if they would

be orthonormalized when computing the density matrix. Therefore, scaling them by their

occupation number is not an option, since this lack of normalization will simply be offset by

the corresponding σ−1. A second point of interference when aiming at a simplified ensemble

description comes from the interdependence of blocks. Let us consider a two block system.

According to Eq. 10, the reciprocal orbitals of block 1 depend on the occupied orbitals of

all blocks. Hence, in general (i.e., when the orbitals between blocks overlap) varying the

occupations in block 2, enters as a varying environment for block 1 (and vice versa). In

other words, the different quantum states in block 1 are subjected to different environments,

depending on the quantum states of block 2. To put this in mathematical terms, let us

consider two quantum states χ and χ′, with associated wave-function Ψχ and Ψχ′ and three

different orbitals ψ1, ψ2 and ψ3 (considered doubly occupied) such that {ψ1, ψ2} ⊆ Ψχ and

{ψ1, ψ3} ⊆ Ψχ′ , but ψ3 /∈ Ψχ and ψ2 /∈ Ψχ′ . If we would like to use the same set of ALMOs

for describing Ψχ and Ψχ′ , then we would like ψ̃1 to be equal to ψ̃1
′
(respectively the reciprocal

orbital of ψ1 computed in the quantum state χ and χ′) so that Eq. 18 can be simplified in

full analogy with the situation when using orthonormalized orbitals. However the reciprocal

orbital ψ̃1 in the quantum state χ does not change by replacing the orbital ψ2 by ψ3, if and

only if ψ1 do not overlap with neither ψ2 nor ψ3, and there exists no ψi /∈ {ψ1, ψ2, ψ3} in
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any quantum state χj ∈ Ω such that both ψ1 and ψ2 (or ψ3) overlap with ψi:

|ψ̃1〉 = |ψ̃1
′〉 ⇔


〈ψ1|ψ2〉 = 0

∧ (∀χ ∈ Ω, @ψi ∈ Ψχ\{ψ1, ψ2}, ψ1 ∈ Ψχ → (〈ψ1|ψi〉 6= 0 ∧ 〈ψ2|ψi〉 6= 0))

∧ (idem for ψ3 instead of ψ2)
(20)

Therefore, the occupation-state dependency of the orthonormalized orbitals is always present,

except when the added or removed orbitals does not overlap with the rest of the system. Due

to this occupation-state dependency of the orthonormalized orbitals, they cannot be used to

construct an ensemble density matrix by rescaling them, in contrast to the canonical case.

As a conclusion, since the orbitals are non-orthogonal, when an orbital occupation is

modified the whole system has to re-adapt. Note that this conclusion applies to the use of

any non-orthogonal orbitals and not only to ALMOs.

2.3.2 Mean-field approximation to Ensemble BLW

The condition to formulate a computationally tractable approximation to ensemble BLW is

that the contribution of each orbital to the ensemble density can be computed only once

per SCF iteration and can then be weighted by the probability that the real system is in

a quantum state containing this orbital (or equivalently, the probability that this orbital is

occupied in the real system). In other words, we need to devise a scheme in which we have

a common overlap matrix σ for all quantum states involved, i.e., we generate an average

interaction field (over all quantum states) that is applied to every quantum state. Furthermore,

we require that the scheme is equivalent to standard ensemble theory for a single block.

This implies that Eq. 6 is applied to each block separately (with the block specific chemical

potential µm), so that the total number of electrons in each block remains an integer. With

these two requirements, we arrive at a mean-field approximation to the overlap matrix (ασ):

The interaction (i.e., overlap) between |ψim〉 and |ψjl〉 from any block, is rescaled by
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√
ni
√
nj, while the self-overlap remains unmodified. This rescaling provides an approximate

overlap matrix ασ:

ασij =


〈ψim|ψim〉 = 1

〈ψim|ψjl〉
√
ni
√
nj

(21)

Hence, the density matrix αRΩ can be written:

αRΩ = T′ ασ−1T′
† (22)

where T′ is the rescaled orbital coefficient matrix, in close analogy to Eq. 5, for the canonical

case.

We use |sψim〉 to denote the presence of fractionally occupied ALMOs, i.e., the ones that

necessitate the use of ασ. |sψim〉 have rescaled interactions (overlap), except with themselves.

Therefore, we call them “selfish orbitals”. Unlike the canonical rescaled orbitals, selfish orbitals

cannot be considered “shrunk”, they just interact less with their environment:

∀j 6= i 〈sψim|sψjl〉 =
√
ni
√
nj〈ψim|ψjl〉 ; but 〈sψim|sψim〉 = 〈ψim|ψim〉 (23)

where j goes over ALMOs of all blocks.

In practice, at each SCF iteration the orbital coefficients T are scaled according to the

(updated) occupation number, yielding T′. With these scaled coefficients, the overlap matrix

σ is computed. Then, the diagonal of σ is set to unity to obtain ασ. The density matrix is

computed using Eq. 22 In brief, except for the use of T′ and ασ, the SCF procedure by Stoll

is not modified.

Please note that for non-interacting systems (blocks that are far apart), the mean-field

approximation reverts back to the canonical answer. Similarly, if the orbital occupations are

either 0 or 2 (0 K limit of a system with a non-vanishing gap), our approximation provides

the regular BLW result.
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In our implementation in CP2K, we exploit the eigenvalue based optimization by Stoll15,19,

which has been implemented in CP2K51,53 and allows a variational optimization of the

ensemble BLW. The computational cost of the extension to partially occupied orbitals is

negligible thanks to the use of selfish orbitals and the additional storage used is limited to an

array containing the orbital energies.

As discussed in the SI, the error introduced by the mean-field approximation turns out to

lead to losses of electrons in the Ensemble BLW. For example, for H2O up to 0.005 electrons

are lost when the molecule is closest to the metal surface. The energetic consequence on the

polarization energy of this electron loss can be estimated to be up to 0.5 kcal mol-1 assuming

a metallic system with a typical workfunction around 5 eV. As a result, the charge-transfer

energy, which does not suffer from this electron loss, is slightly overestimated compared to the

polarization energy. Given that water, which is the least strongly adsorbed molecule studied

herein, has an adsorption energy of -9.7 kcal mol-1, such an error is deemed acceptable. In all

cases no, or a small loss of electrons is encountered, never a gain in electrons. This is can be

rationalized in analogy to Hartree-Fock, where the average electron repulsion overestimates

the actual electron repulsion. Hence, our mean-field approximation is an upper bound to exact

ensemble BLW. Since ensemble DFT formulation is variational with respect to the electronic

free energy (i.e., when accounting for the entropy related to the fractionally occupied orbitals),

our Ensemble BLW-EDA defines the charge-transfer through a variational principle for the

interaction of adsorbates with metallic surfaces.

3 Computational Details

The adsorbed structures were optimized with VASP 5.4.154,55 using periodic boundary

conditions applying the re-optimized Perdew, Burke and Ernzerhofer (PBE) functional to

make it compatibles with the non-local van der Waals (vdW) functional, in short optPBE-

vdW56 functional which is has been found to be, together with PBE-dDsC57, an other

14



dispersion corrected density functional, most accurate for adsorption energies on Pt(111)58,

and is available in CP2K, the code that is used for all Ensemble BLW-EDA computations.

An energy cutoff of 400 eV is chosen for the expansion of the plane-wave basis set. The

electron–ion interactions are described by the PAW formalism.59,60 The p(6×6) unit cell

is built from bulk platinum (2.821 Å nearest neighbor distance) with four metallic layers.

Additional tests regarding the need for K-point sampling reveal that the Γ-point optimized

geometries are very close to the ones obtained with a 3× 3× 1 K-point mesh. The adsorption

energy at the Γ-point is overestimated by 1-5 kcal mol-1, corresponding to up to 10% at

the equilibrium distance (see Table S2). This accuracy is deemed acceptable for the current

purpose, where the relative importance of different interaction energy components and their

evolution as a function of the surface – adsorbate distance is analyzed.The out-of-plane vector

of the unit cell was chosen to be ∼ 23 Å to achieve a negligible interaction between periodic

images.

The molecular orbitals were represented by a double-ζ Gaussian basis set with one set

of polarization functions, called DZVP-MOLOPT-SR-GTH for both BLW-EDA and BSSE

corrected SCF DFT simulations.61 A cutoff of 400 Ry was used to describe the electron density.

The exchange-correlation (XC) energy was approximated with the optPBE-vdW56 functional.

The Brillouin zone was described at the Γ-point. Goedecker, Teter and Hutter (GTH) pseudo-

potentials62 based on the PBE functional were used to describe the interactions between the

valence electrons and the ionic cores, and the electronic smearing was approximated by a

Fermi-Dirac distribution at 300 K, applied to all computations.

Figure S1 provides a comparison between the total interaction energy (∆Eint, vide infra,

Eq. 24) as computed by standard KS-DFT with VASP and CP2K. In both codes, we compare

a 10 and a 18 valence electron pseudopotential. The 18 valence electron potential of CP2K

gives interaction energies very close to the one provided by VASP, independently if the latter

uses 10 or a 18 valence electrons.
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3.1 Energy Decomposition Analysis

The newly extended EDA scheme is now applied to charge transfer analysis of adsorption at

a metallic surface. We select three prototypical couples of systems (see Figure 1), aiming at

describing different types of bonding. The first couple is H2O and H2S, for which no strong

bond formation is expected, although H2S is interacting more strongly with Pt(111) than

water. The second couple compares the di-σ and π adsorption modes of ethylene, while the

third couple investigates the difference between CO adsorbed on fcc and top sites.

For all these systems, we have computed the interaction energy as a function of the

distance between the surface and the adsorbate. All coordinates are fully optimized, except

the z-coordinate of the heavy atoms closest to the surface and the two bottom layers that are

kept fixed in their bulk position. We define the total interaction energy ∆Etot as:

∆Etot = Esystem − Efrag1,opt − Efrag2,opt −∆EBSSE (24)

Where Esystem is the standard KS-SCF energy of the full system, Efrag,opt are the corresponding

energies of the freely optimized fragments. Since the BLW is only defined in a localized basis

set, we have to correct for the basis set superposition error (BSSE), which we do according

to the counterpoise procedure of Boys and Bernardi63, giving rise to the energy correction

∆EBSSE. Note, however, that BSSE only affects the charge-transfer term, as all other terms

are evaluated using exclusively the fragment basis set.

For the energy decomposition analysis, each system is divided into two blocks: a metallic

block containing the metal surface, and an adsorbate block containing the adsorbed molecule.

As common in BLW-EDA,22,23,64 we decompose the total interaction energy ∆Etot into the

following terms: preparation or deformation (∆Edeform), the frozen energy term (∆Efrozen)

that describes the interaction of the two isolated fragment densities brought together and

covers electrostatic interaction and Pauli repulsion22 as well as dispersion interactions64,

polarization (∆Epol) energy, obtained by variationally optimizing the BLW, and, finally, the
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Figure 1: Top: H2O (left) and H2S (right) top adsorption on Pt(111). Middle: Ethylene
adsorption in a di-σ (left) and π adsorption mode. Bottom: CO on fcc (left) and top (right)
adsorption sites. All images refer to the equilibrium distance with respect to the surface.
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charge transfer (∆ECT ) interaction that includes covalent bond formation.

∆Etot = ∆Edeform + ∆Efrozen + ∆Epol + ∆ECT (25)

These terms can be expressed as:

∆Edeform = Efrag1,sys − Efrag1,opt + Efrag2,sys − Efrag2,opt (26a)

∆Efrozen = Eguess − Efrag1,sys − Efrag2,sys (26b)

∆Epol = EBLW − Eguess (26c)

∆ECT = Esystem − EBLW −∆EBSSE (26d)

where Efrag,sys corresponds to the energy of a fragment in its final geometry adopted in the

presence of the other fragment. Eguess is the systems energy obtained by a superposition of

the fragment density matrices, which corresponds to the “frozen” density interaction energy

approximation. EBLW is the energy obtained by Ensemble BLW.

4 Results and Discussion

As a first application of Ensemble BLW-EDA to metal surfaces, we compare the adsorption

of H2O and H2S on Pt(111). As shown Figure 1 for both molecules the most favorable

adsorption configuration is atop, with the molecular plane approximately parallel to the

surface. The total interaction energy as a function of the Pt–O or Pt–S distance shows that

despite the nominally larger non-covalent radius of sulfur with respect to oxygen (1.8 and

1.5 Å according to Bondi65), the minimum is found around 2.4 Å in both cases. This can

be rationalized by the overall stronger interaction of Pt–H2S (29 kcal mol-1) compared to

Pt–H2O (9 kcal mol-1), which allows S to approach the surface more closely than O with

respect to its size. The BSSE contribution to the interaction energy is similar for H2O and

H2S (roughly 10% of the total interaction energy). Therefore, the comparison between the two
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Figure 2: Energy decomposition analysis for H2O (full lines, right y axis) and H2S (broken
lines, left y-axis). The total interaction energy is compared to the BSSE and the deformation
energy on the left, while the right quantifies the frozen monomers, polarization and charge
transfer interaction energy. Note that the y-scales are aligned in such a way that the
equilibrium interaction energy and the zero interaction energy are aligned for both systems,
see SI for separated Figures.
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systems could be performed with a 10% accuracy without the BSSE correction, for instance

for molecular dynamics simulations of H2S dissolved in water. The deformation energy of

the two systems show different patterns. While the energetic cost to deform water/Pt(111)

to its optimal geometry is very small (at most 0.5 kcal mol-1), H2S/Pt(111) undergoes a

deformation up to 7 kcal mol-1 at a distance that is only slightly longer than the equilibrium

distance, while it drops at shorter distances to about 1 kcal mol-1. Analyzing the origin

of the deformation energy, we identify the deformation of the metal surface as the major

contributor. As shown in Figure S2, the Pt atom on which the adsorbate is adsorbed, is

“pulled out” of the surface at intermediate distances. After a certain elongation, it goes back

to the original position, almost as if the spring had been overstretched and thus broken.

Moving to the interaction energy components of the fragments after paying the preparation

(deformation) energy (right hand graph of Figure 2), we first observe that the “frozen” term,

i.e., the energy cost (or gain) of putting the fragments together without electronic density

changes, follows the expected increase in atomic size when replacing oxygen by sulfur: The

energy of assembly becomes positive for distances below 2.8 and 3.2 Å for H2O and H2S,

respectively. At larger distances, the interaction energy is already negative without any

further electronic relaxation. This is due to the subtle balance between Pauli repulsion and

attraction by dispersion interactions. Note, that electrostatic interactions are also included at

this stage, but since the isolated metal surfaces do not have significant electrostatic moments

(dipole, quadrupole etc.), it barely contributes in the present systems. Allowing the electron

density to relax in the presence of the other fragment, but prohibiting any charge transfer (or

direct orbital interaction), affords the stabilizing polarization energy Epol. H2S has a 2.7 times

larger polarizability than H2O (26.7 and 9.8 a.u.3, respectively,66). Indeed, there is roughly a

factor of three between Epol for H2S compared to H2O at all relevant distances (> 2.3 Å), in

close agreement with the corresponding factor for the total interaction energy. The charge

transfer between the metal surface and the adsorbate, is, however, much more important

for H2S than for H2O. This contrasting energy decomposition can be rationalized recalling
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that sulfides are softer bases than oxides and that platinum is a soft acid. Furthermore,

interactions with sulfur can benefit from stabilization through hypervalence by increasing the

ionic character of bonds.67

As a conclusion, the stabilizing interaction of a single water molecule with Pt(111) is due

to equal amounts to polarization and to charge transfer. In other words, even in this case

of rather weak physisorption, the use of a polarizable force field is unlikely to be enough to

capture the physics of the interaction energy accurately. However, a good approximation can

be obtained since the two components are well correlated, i.e., counting the polarization energy

twice, BLW could capture a reasonable approximation of the total interaction energy. This

insight might help the development of more accurate Pt/H2O force fields.68,69 The situation

for H2S is more challenging to approximate: charge-transfer dominates the interaction energy,

which also induces significant deformations of the surface. Hence, already for H2S adsorption,

explicit terms to mimic orbital/charge-transfer interactions are required. The situation can

be simplified by excluding surface deformation. Given the scarcity of accurate force fields for

the deformation of metal surfaces, this is the preferred setup anyway. Figure S3 shows that on

an ideal surface the deformation energy is negligible and the charge-transfer and polarization

energies are now as smooth as for water. Furthermore, on an ideal surface, a very similar

relative importance of the various contributions is obtained for H2O and H2S. Since Etot

is not very different when using an ideal Pt(111) surface, H2S adsorption can be described

without taking into account the surface deformation with only a small loss in accuracy. Given

that ECT is most strongly affected, this analysis also identifies the charge-transfer as the

origin of the deformation.

On a more technical level, we have also investigated the influence of the electronic smearing

temperature on the results. In Figure S4 we show that increasing the electronic temperature

from 300 K to 1000 K does not visibly affect the results. Even at 2000 K only changes of

3-4 kcal mol-1 are observed, leaving the relative importance of different terms unchanged.

As detailed in the SI, the small changes observed can be rationalized keeping in mind that
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higher electronic temperatures lead to the occupation of orbitals lying above the Fermi level.
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The deformation energy observed for H2S is small compared to the one obtained for

ethylene adsorption (see Figure 3). This does not come as a surprise, given that the adsorbed

geometry (Figure 1) suggests a re-hybridization of the sp2 carbon atoms. This significant

geometric rearrangement is best associated with a “state crossing”: sp2 at long distances but ∼

sp3 at short distances. This state-crossing is non-continuous, as best seen in the deformation

energy, although other interaction energy components show a similar discontinuity. As

mentioned above, the deformation is mainly due to the deformation of the metal surface,

where the Pt atom is partially lifted out of the surface (see Figure S2). The BSSE is again in

the order of 10% of the total interaction energy around the minimum and the total interaction

energy is, with 30 and 37 kcal mol-1 for π and di-σ, respectively, similar. Furthermore, the

larger geometric deformation (H-C-C-H dihedral angles of 132 and 156◦) for the di-σ mode

compared to the π mode is nicely captured by the deformation energy. Similar to H2S, the

maximum deformation energy is obtained when the molecule is close enough to the surface
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to actually “feel” it, but not close enough to form strong covalent bonds. The deformation

and the total interaction energy reflect quite well that the π mode approaches the surface

less closely than the di-σ mode (Pt–C distance of 2.20 Å in π and 2.13 Å in di-σ). The right

hand side of the graph provides a rationalization: the Pauli repulsion (contained in Efrozen)

is longer-ranged for the π bond at the top of a Pt atom, than between the bridge site and

carbon atoms that are not strictly on top of Pt atoms. The same observation also applies to

the polarization and charge-transfer energy. However, the relative importance of repulsion,

polarization and charge-transfer is surprisingly similar for both modes, demonstrating that

the nature of the bonding interaction is the same. Nevertheless, the di-σ mode maximizes this

bonding type which is characterized by ∼ 40% polarization energy and ∼ 60% charge-transfer,

very similar to the interaction of H2S with the same surface.
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The last example we are discussing here is the classic case of CO adsorption on Pt(111).

One of the challenging questions is whether CO is adsorbed on top or on bridge/hollow sites

and how this evolves as a function of the surface charge.70 The following analysis investigates
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exclusively the bonding patterns at the respective adsorption sites, without drawing any

conclusions, neither on the reliability of the chosen density functional, nor on the actual site

preference of CO on Pt(111).

In Figure 4 the data for CO adsorption on top and fcc sites is compared. At our level of

theory, the fcc adsorption site is slightly preferred (-52 vs -49 kcal mol-1). However, these

graphs show very clearly the contrasting behavior of CO on these two sites: The top site

experiences a significantly stronger Pauli repulsion, resulting in a longer equilibrium distance

(2 Å compared to 1.5 Å). The deformation energy, on the other hand, is slightly lower at

the equilibrium distance on the top site than on the fcc site, although the barrier for the

state-crossing is roughly equal (∼30 kcal mol-1), shifted by 0.75 Å to longer distances for the

top mode. Regarding the decomposition of the interaction energy we can first note that the

Pauli repulsion at long distances is lower for the fcc mode compared to the top adsorption

mode, but at shorter distances rises more quickly for the fcc site. Second, in contrast to the

case of C2H4, the ratio of polarization and charge-transfer energy is quite different for the

two adsorption modes. Somewhat surprisingly, the fcc mode shows a similar pattern as H2O

adsorption, with Epol and ECT being roughly equal over the entire range of distances. In

other words, polarization contributes more to the total binding than for the adsorption of

C2H4. While charge-transfer is relatively more important for the top adsorption mode, it is

still far from reaching the importance it takes for ethylene adsorption. We suggest that this

“lower than expected” importance of charge-transfer for the adsorption of CO on Pt(111) is

due to the intricate donation and back-donation involved in CO adsorption, which can be

seen as a particularly strong polarization effect. In other words, it is the polarization which is

particularly strong for CO adsorption, not the charge-transfer that is small: this dative bond

is the strongest bond investigated herein and orbital interactions are without any doubt key

for its accurate description. However, our analysis demonstrates that the top site is more

sensitive to charge-transfer than adsorption on the hollow site. This is in good agreement

with previous reports,70 but it is the first time that such a difference is clearly traced back to

24



charge-transfer and disentangled from polarization effects.

5 Conclusions

In this work, we have presented the extension of the BLW formalism to systems that require

fractionally occupied orbitals such as metals at finite temperature. Since the computational

cost of the rigorous combinatorial formulation is unpractical, our extension relies on a

mean-field approximation to ensemble BLW in the context of mixed-state theory. This

approximation is based on a new concept: selfish orbitals. Selfish orbitals are normalized, but

their interactions with other orbitals are scaled down according to their occupation number.

This mean-field approximation is exact in the case of infinitesimal smearing (i.e. BLW with a

gap) and/or 1-block systems (i.e. ensemble KS-DFT). Furthermore, in numerical examples

studied, the estimated error in the polarization energy is roughly 0.5 kcal mol-1.

The method has been implemented in CP2K and numerical applications have shown that

H2S is much more strongly bound to Pt(111) due to charge-transfer, while the contribution

of polarization is on a similar level as for H2O. The chemisorption of ethylene on Pt(111)

is, however, dominated by the charge-transfer and the two modes (di-σ and π) show the

same type of bonding, with proportions of different interaction energy components close to

the ones of H2S. CO adsorption, on the other hand, is shown to depend significantly on

the adsorption site: although the bond is five times stronger than for H2O, the hollow-site

adsorption is characterized by a roughly equal contribution of polarization and charge-transfer,

just like water adsorption. On the top site charge-transfer is somewhat more important, but

even in this case its importance is relatively smaller than for H2S or C2H4. We ascribe this

particularity to the donation/back-donation of CO, which can be seen as a particularly strong

polarization contribution.

As demonstrated herein, BLW-EDA provides a convenient (i.e. easy to use) tool, providing

polarization and charge-transfer energies at the metal interface, which is expected to provide
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valuable insight for catalysis and the understanding of the metal/gas and metal/liquid

interface.
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