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Abstract

We study the large time behaviour of the Fisher-KPP equation ∂tu = ∆u + u− u2

in spatial dimension N , when the initial datum is compactly supported. We prove the
existence of a Lipschitz function s of the unit sphere, such that u(t, x) converges, as t

goes to infinity, to Uc∗

(
|x|−c∗t+

N + 2

c∗
lnt+s∞

( x

|x|

))
, where Uc∗ is the 1D travelling

front with minimal speed c∗ = 2. This extends an earlier result of Gärtner.

1 Introduction

The paper is devoted to the large time behaviour of the solution of the reaction-diffusion
equation

∂tu = ∆u+ f(u), t > 1 , x ∈ RN (1)

u(1, x) = u0(x), x ∈ RN
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We will take
f(u) = u(1− u);

thus f is, in reference to the pioneering paper [19], said to be of the Fisher-KPP type. The
initial datum u0 is in C(RN) and there exist 0 < R1 < R2 such that

∀x ∈ RN , 1BR1
(x) ≤ u0(x) ≤ 1BR2

(x), (2)

where 1A is the indicator of the set A and BR the ball of RN of radius R. By the maximum
principle and the standard theory of parabolic equations (see for instance [17]), equation (1)
has a unique classical solution u(t, x) in C([1,+∞[×RN , (0, 1)) emanating from u0. The first
and most general result is due to Aronson and Weinberger [1]. The solution u spreads at
the speed c∗ = 2

√
f ′(0) = 2 in the sense that

min
|x|≤ct

u(t, x)→ 1 as t→ +∞ , for all 0 ≤ c < c∗

and
sup
|x|≥ct

u(t, x)→ 0 as t→ +∞ , for all c > c∗.

The goal of this paper is to sharpen this result.

Let us briefly recall what happens as time goes to infinity when N = 1. Equation (1) with
N = 1 reads

∂tu = ∂xxu+ f(u), t > 1 , x ∈ R. (3)

It admits one-dimensional travelling fronts U(x − ct) if and only if c ≥ c∗ = 2 where the
profile U , depending on c, satisfies

U ′′ + c U ′ + f(U) = 0, x ∈ R, (4)

together with the conditions at infinity

lim
x→−∞

U(x) = 1 and lim
x→+∞

U(x) = 0. (5)

Any solution U to (4)-(5) is a shift of a fixed profile Uc: U(x) = Uc(x + s) with some fixed
s ∈ R. The profile Uc∗ at minimal speed c∗ = 2 satisfies, up to translation,

Uc∗(x) = (x+K) e−x +O(e−(1+δ0)x) , as x→ +∞

for some universal constants K ∈ R and δ0 > 0. The large time behaviour of (3) has a
history of important contributions, we are only going to list two lasting ones. The first is the
paper of Kolmogorov, Petrovskii and Piskunov [19]. They proved that the solution of (3)
starting from the initial datum 1(−∞,0] converges to Uc∗ in shape: there is a function

σ∞(t) = 2t+ ot→+∞(t),

such that
lim
t→+∞

u(t, x+ σ∞(t)) = Uc∗(x) uniformly in x ∈ R.

The second contribution makes precise the σ∞(t): in [5], Bramson proves the existence of a
constant x∞, depending on u0, such that

σ∞(t) = 2t− 3

2
ln t− x∞ + ot→+∞(1). (6)
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Formula (6) was proved through elaborate probabilistic arguments. As said before, the prob-
lem, as well as more complex variants of it, are currently the subject of intense investigations.
See for instance [20] for an account of them.

In several space dimensions, the asymptotics have been pushed less far. In the framework
of the Fisher-KPP equation that we are studying, the Aronson-Weinberger result is made
precise up to O(1) terms in Gärtner [12]. If N is the space dimension, the main result of
[12] is that, for every λ ∈ (0, 1), the level set {u = λ} is trapped, for large times, between
two spheres of radius

R(t) = c∗t− N + 2

c∗
lnt+Ot→+∞(1).

The Ot→+∞(1) terms are not studied. Gärtner’s contribution is probabilistic, and a PDE
proof of his result is provided by Ducrot [8], adapting to higher dimension the proof of (a
weaker version of) Bramson’s formula (6), given by F. Hamel, J. Nolen, L. Ryzhik and the
first author in [15].

When the coefficients of the equation actually depend on x in a periodic fashion, as for
instance for the equation

∂tu = ∆u+ µ(x)u− u2, t > 0, x ∈ RN ,

with µ periodic and positive (actually, more general assumptions on µ can be allowed, as
well as inhomogeneous diffusion terms, or the presence of advection), a lot is now known
on the spreading speed, or, in other words, the position of the level sets up to Ot→+∞(1)
terms. The first result in this direction is Freidlin-Gärtner [13], which gives, through a
probabilistic approach, an almost explicit expression (the Freidlin-Gärtner formula) of the
spreading speed in each direction. Several proofs and generalisations of this formula have
been given, by various approaches: viscosity solutions [10], abstract dynamical systems [28],
PDE approach [2], [24]. Let us mention an important contribution [27], which generalises
Gärtner’s result to periodic functions µ(x), by computing the relevant logarithmic shift. This
work also generalises [16], a contribution that computes the shift for periodic µ, but in one
space dimension.

Coming back to (1), the goal of the present paper is to make precise the Ot→+∞(1) in
Gärtner’s expansion. Our result is the

Theorem 1.1 Let u0 satisfy assumption (2). There is a Lipschitz function s∞(Θ), defined
on the unit sphere of RN , such that the solution u of (1) emanating from u0 satisfies

u(t, x) = Uc∗

(
|x| − c∗t+

N + 2

c∗
lnt+ s∞

( x
|x|

))
+ot→+∞(1),

with c∗ = 2.

This completes the result of [12]. At this stage, let us anticipate the proof of the theorem,
and let us give a brief explanation of the logarithmic shift observed here: it can be decom-
posed into two shifts having different origins. One is due to the curvature term N−1

c∗
ln t,

it systematically arises in this type of large time issues for reaction-diffusion equations, the
nonlinearity f does not need to be of the KPP type. See for instance [26], [29]. The other is
the one-dimensional shift 3

c∗
lnt, it is typical of the KPP nonlinearity. All this will be made

clearer in Section 2.

Theorem 1.1 is in contrast with a recent paper [23] of the first and third authors, which
studies (1) when the initial datum is trapped between two planar travelling waves. In this
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setting, the logarithmic shift is
3

2
lnt, as in the one-dimensional case. However, the dynamics

beyond the logarithmic shift is given by that of the heat equation on the whole line. This last
equation, though extremely well-behaved as far as the regularity of its solutions is concerned,
exhibits solutions that do not converge, as time goes to infinity, to anything. However, this
last feature holds for reaction-diffusion that need not be of the KPP type, see [22].

Before starting the proof of our results, let us mention that it would be certainly interesting
to understand sharper asymptotics of u(t, x). In one space dimension, a full expansion has
been proposed, in the formal style, in [9], or with another approach in [4]. The next term
in the expansion of the shift is computed, in a mathematically rigorous way, in [21]. The
expansion is pushed even further in [14].

Let us also say that the observed behaviour is quite typical of Fisher-KPP equations with
second-order linear diffusion. Another important class of nonlinearities f(u) in (1) satisfies

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, with

∫ 1

0

f(u)du > 0. A typical example is

f(u) = u(u− θ)(1− u), 0 < θ <
1

2
.

A statement of the same type as Theorem 1.1 is [26], with the important difference that the
logarithmic delay is solely due to the curvature terms; the dynamics beyond the shift is the
same as the one presented in Theorem 1.1. And, although the phenomenon does not look so
remote to the one displayed in [26], it is quite different in nature, as the convergence to the
wave is dictated by what happens in the region where the solution takes intermediate values.
A similar, and recent contribution [7] treats the porous medium equation with Fisher-KPP
nonlinearity; although the nonlinearity is the same as in the present paper, the result is of
the type of [26] (although the dynamics beyond the shift is not made precise when the initial
datum is nonradial), this is due to the fact that the solution does not have a tail that would
govern the overall dynamics. We end this series of remarks by recalling a result of Jones
[18], stating that the level sets of the solution of (1), whatever the nonlinearity is, will have
oscillations only of the size Ot→+∞(1). This is a consequence of the following fact: if λ is a
regular value of u, the normal to the λ-level set of u meets the support of the initial datum.
A very simple proof of this fact is given by Berestycki in [3].

In the next section, we transform the equations so as to uncover the basic mechanism at
work, namely the fact that the whole phenomenon is dictated by the tail of the solution. The
subsequent sections are different steps of the proof of Theorem 1.1, this will be explained in
more detail in Section 2.

Acknowledgement. JMR and LR are supported by the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n. 321186 - ReaDi - “Reaction-
Diffusion Equations, Propagation and Modelling”. VRM is supported by the ANR project
NONLOCAL ANR-14-CE25-0013.

2 Preparation of the equations, method of proof

There is a sequence of transformations that bring the equations under the (1) to a form that
will make evident that the region |x| ∼

√
t in the moving frame, that we will subsequently

call the diffusive zone, dictates the hole dynamics.
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1. We first use the polar coordinates

x 7→ (r = |x| > 0,Θ =
x

|x|
∈ SN−1)

then (1) becomes

∂tu = ∂rru+
N − 1

r
∂ru+

∆Θu

r2
+ u− u2, t > 1, r > 0,Θ ∈ SN−1.

Here, ∆Θ is the Laplace-Beltrami operator on the unit sphere of RN . Its precise
expression will not be needed in the sequel.

2. Let us believe that the transition zone where u decreases from 1 to 0 is located around
R(t) = 2t−k ln t (k to be chosen later) and choose the change of variables r′ = r−R(t)
and u(t, r,Θ) = u1(t, r −R(t),Θ). We drop the primes and indexes, and (1) becomes

∂tu = ∂rru+
N − 1

r + 2t− klnt
∂ru+ (2− k

t
)∂ru+

∆Θu

(r + 2t− klnt)2
+ u− u2. (7)

The equation is valid for t > 1, r > −2t+ klnt, and Θ ∈ SN−1.

3. As is by now classical, we take out the exponential decay of the wave Uc∗ , and set
u(t, r,Θ) = e−rv(t, r,Θ); (7) thus becomes

∂tv = ∂rrv + (
N − 1

r + 2t− klnt
− k

t
) (∂rv − v) +

∆Θv

(r + 2t− klnt)2
− e−rv2, (8)

with initial datum v(1, r,Θ) = eru0(r + 2,Θ).

4. We now choose k. Our first guess is that the term in ∆Θv will not matter too much,
because it decays like t−2 (an integrable power of t), except in the zone r ∼ −2t, where
we know (for instance [1]) that u(t, r,Θ) goes to 1 as t → +∞. Hence we expect the
dynamics to be like that of the one-dimensional equation. On the other hand, in the

advection term, the quantity
N − 1

r + 2t− klnt
is nonintegrable in t, except for extremely

large r. Thus we wish to balance it with the
k

t
term. However, instructed by the

large time behaviour in one space dimension, we keep in mind that we should keep the

quantity − 3

2t
factoring ∂rv − v. Hence we choose

N − 1

2
− k = −3

2
, (9)

hence

k =
N + 2

2
=
N + 2

c∗
. (10)

In the sequel, we will keep the notation k, keeping in mind that k is defined by (10).

5. Finally, in order to study (8) in the diffusive zone, that is, the region r ∼
√
t, we use

the self-similar variables ξ =
r√
t
, τ = ln t. The variable Θ is unchanged:

w(τ, ξ,Θ) = w

(
ln t,

r√
t
,Θ

)
=

1√
t
v(t, r,Θ) (11)
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Then (8) becomes

∂τw+Lw =
eτ∆Θw

(2eτ + ξeτ/2 − kτ)2
+h(τ, ξ)e−

τ
2 ∂ξw−

(
h(τ, ξ)+

3

2

)
w−e

3
2
τ−ξe

τ
2w2, (12)

where

Lw = −∂ξξw −
ξ

2
∂ξw − w.

The function h can easily be computed, although its expression is lengthy. It satisfies,
for all δ ∈ (0, 1/2):

h(τ, ξ) =

 −3

2
+O(e−δτ ) for ξ ≤ e( 1

2
−δ)τ , that is, r ≤ t1−δ,

O(1) for ξ ≥ e( 1
2
−δ)τ , that is, r ≥ t1−δ

(13)

Of course the range of ξ should be restricted in the negative direction, that is, ξ >
−2e

τ
2 +kτe−

τ
2 , thus a very negative quantity if τ is very large. As the range of negative

ξ that will preoccupy us will be extremely modest (we will always have ξ ≥ −e−( 1
2
−δ)τ ,

that is, r ≥ −tδ) we will not mention this constraint in the sequel. Finally, the initial
datum at τ = 0 is

w0(ξ,Θ) = eξu0(ξ + 2,Θ).

Let us say a word about the strategy of the proof of Theorem 1.1. It will be inspired from
the ideas of [20] in one space dimension, with some actual novelties due to the transverse
variable. Our main step will be to prove the existence of a Lipschitz function α∞(Θ) such
that

w(τ, ξ,Θ) −→τ→+∞ α∞(Θ)ξ+e−ξ
2/4, in {ξ ≥ e−( 1

2
−δ)τ},

where δ > 0 is arbitrarily small. We will see that we cannot expect a better regularity than
Lipschitz. The parallel step in [20] for N = 1 was to prove, for the equation

∂τw + Lw = −3

2
e−

τ
2 ∂ξw − e

3
2
τ−ξe

τ
2w2 , τ > 0 , ξ ∈ R,

the existence of a constant α∞ > 0 such that

w(τ, ξ) −→τ→+∞ α∞ξ+e−ξ
2/4, in {ξ ≥ e−( 1

2
−δ)τ}.

The main effort was to prove the compactness of the trajectories (w(τ+T, ξ))T>0 as T → +∞;
because the limiting trajectories satisfied the Dirichlet heat equation in self-similar variables,
this entailed the convergence to a single Gaussian. To prove the compactness, we used a pair
of sub/super solutions very much in the spirit of Fife-McLeod [11]; that one could actually
use ideas from the analysis of bistable equations came as a surprise to us. In [20], the barriers
that we devised, a sort of miracle in the sign of the disturbances (that is, the exponential
correction in the function h) allowed them to be sub and super solutions all the way down to
ξ = 0. Because we are dealing with a more complex equation, we do not want to rely on sign
considerations, and we devise a pair of barriers that are sub and super solutions for more
robust reasons than in [20]. They rely on a technical innovation in the vicinity of ξ = 0, that
is, if one thinks very much about the Fife-McLeod sub/super solutions, quite in the spirit
of [11] once again. Once this is constructed, an additional issue will be to deal with the
variable Θ: as τ → +∞, the Laplace-Beltrami operator will disappear from the asymptotic
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equations. That is, asymptotic regularity in Θ will have to be retrieved with bare hands,
and this is why we cannot expect much more than Lipschitz regularity in Θ.

Once convergence in the diffusive area is under control, the next step is to fix the translation
σ∞(t,Θ). We choose it such that

Uc∗(r + σ∞(t,Θ))

∣∣∣∣
r=tδ

= e−rv(t, r,Θ)

∣∣∣∣
r=tδ

.

That is,
σ∞(t,Θ) = −lnα∞(Θ) +O(t−δ).

We then prove the uniform convergence to Uc∗(r − lnα∞(Θ)) by examining the difference

ṽ(t, r,Θ) =
∣∣v(t, r,Θ)− erUc∗(r + σ∞(t,Θ))

∣∣
in the region {r < tδ}. For N = 1, it turned out in [20] that ṽ(t, x) was a subsolution of (a
perturbation of) the heat equation

Vt = Vxx +O(t1−δ) , t > 0 , −tδ < x < tδ

V (t,−tδ) = e−t
δ
, t > 0

V (t, tδ) = 0 , t > 0.
(14)

The condition at x = −tδ simply comes from the fact that v(t, x) decays, by definition, like
ex at −∞. Although the domain might look very large, its first Dirichlet eigenvalue is of the
order t−2δ, hence a much larger quantity than the right hand side of (14). Thus V (t, x) could
be proved to go to 0 uniformly in x as t → +∞, which implied the sought for convergence
result. The same idea will work here again, up to the caveat that α(Θ) is only Lipschitz
in Θ, something that does not go very well with taking a Laplace-Beltrami operator. A
regularisation argument, together with some addtional technicalities, will settle the issue.

Our experience with working with multi-dimensional reaction-diffusion equations is that the
main additional difficulty is the transverse diffusion, which, in a very paradoxical way, does
not help. This is not a rhetorical argument: its presence is really what prevented convergence
in the earlier paper [23]. This explains why we have to be extra careful with the estimates.

3 Convergence in the diffusive zone

As announced at the end of Section 2, the main effort will be to prove a sufficiently strong
compactness property for the solutions of (12). Once this is done, convergence to a solution
of the Dirichlet heat equation in self-similar variables, up to a multiplicative coefficient
depending on Θ, will follow. In more precise terms, let φ0(ξ) = ξe−ξ

2/4, it solves

Lφ = 0 (ξ > 0), φ(0) = φ(+∞) = 0. (15)

Any solution of (15) is a multiple of φ0. The main result of this section is the following.

Theorem 3.1 Let w(τ, ξ) be the solution of (12) with compactly supported initial datum w0.
There exists a Lipschitz function Θ 7→ α(Θ), positive on the unit sphere, such that

lim
τ→+∞

w(τ, ξ,Θ) = α(Θ)φ0(ξ),

uniformly in ξ ∈ R+ and Θ ∈ SN−1.
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3.1 Sub and super solutions in the diffusive zone, compactness in
the (τ, ξ) variables

This part is the most technical of the paper, but, many computations being in the spirit of
those of [20] or [23], we will not detail all of them, rather give their main steps. Let us set

ξ±δ (τ) = ±e−( 1
2
−δ)τ , (16)

we will often use the notation ξδ and not mention the dependence in τ , as things will -
hopefully - be clear from the context. The constant δ > 0 will be suitably small and, in any
case, less that 1/4. This will not be made more explicit in the subsequent computations.
The point ξ = ξ+

δ (τ) corresponds, in the (t, r,Θ) variables, to r = tδ in the moving frame,
that is, far ahead of the supposed location of the front (r = O(1)), but not quite as far as
the diffusive zone (r ∼

√
t). The point ξ = ξ−δ (τ) therefore corresponds to r = −tδ, that is,

far at the back of the front location, but, again, not quite as far as −
√
t.

The main step in this section will be the construction of a subsolution estimating w(τ, ξ,Θ)
in the region {ξ ≥ ξ+

δ (τ)} (that is, r starting far ahead of the front) and a super-solution
estimating w(τ, ξ,Θ) in the region {ξ ≥ ξ−δ (τ)}, (that is, r starting far at the back of the
front). In the (τ, ξ) variables, the two end points ξ±δ (τ) will rejoin at ξ = 0 as τ → +∞:
this will provide an estimate of the solution in the self-similar variables at ξ ∼ 0, whereas
the main body of the sub and super solutions will estimate w in the diffusive zone.

For a > 0, let λ1(a) be the first eigenvalue of the Dirichlet Laplacian on (−a, a) ⊂ R
whose eigenfunction φ1,a has a maximum equal to 1. Note that the maximum is attained at

ξ = 0 and that λ1(a) =
π2

4a2
. For every a0 > 0 such that λ1(a0) ≥ 100, we have a0 < 1. These

two easy estimates will be used repeatedly in the course of the section. The real number a0

will be, from then on, chosen this way. It may also be suitably decreased, independently of
all other coefficients and variables. We will set

λ1 = λ1(a0), φ1(ξ) = φ1,a0(ξ).

Let us state the result that will be of use to us in the next section.

Proposition 3.2 1. Control of w from above and from the back of the front.
There is a pair of positive functions (q+(τ), ζ+(τ)) that have the following properties.

1. ζ+ is bounded and bounded away from 0 by constants that depend only on the initial
datum and the constants appearing in the equation, whereas there is µ > 0 such that
q+(τ) = O(e−µτ ) as τ → +∞.

2. For ξ ≥ ξ−δ (τ), we have

w(τ, ξ,Θ) ≤
(
q+(τ)

(
φ1(ξ − ξ−δ (τ)) + e−(ξ−ξ−δ )2/16

)
+ζ+(τ)φ0(ξ − ξ−δ (τ))

)
e−(ξ−ξ−δ )2/8.

(17)

2. Control of w from below and from the head of the front.
There is a pair of positive functions (q−(τ), ζ−(τ)) that satisfy the same estimates as for q+

and ζ+ in item 1 above, and such that, for ξ ≥ ξ+
δ (τ), we have

w(τ, ξ,Θ) ≥
(
−q−(τ)e−(ξ−ξ+δ )2/16 + ζ−(τ)φ0(ξ − ξ+

δ (τ))

)
e−(ξ−ξ+δ )2/8. (18)
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To prove this proposition, we will make an intermediate step in proving a simple estimate on
a particular integro-differential equation. Indeed, proving (17) and (18) will imply looking
for multiple functions of the type q± or ζ±, that will all boil down to solving the problem
(19) below. So, consider, for any constants a > 0, b > 0 and C > 0, the integro-differential
inequality

q̇ + (a− Ce−bτ )q ≤ Ce−bτ (1 +

∫ τ

0

q(σ)dσ) τ > 0

q(0) = q0.
(19)

with the initial condition q0 > 0. We have the

Lemma 3.3 Equation (19) has a unique solution q(τ) > 0. Moreover there is K > 0,
depending only on a, b, C and q0 such that

q(τ) ≤ Ke−
1
2

min(a,b)τ .

Proof. Inequation (19) is rewritten as

q̇ + aq ≤ Ce−bτ (1 + q +

∫ τ

0

q(σ)dσ)

q(0) = q0.
(20)

Now, it is enough to prove the existence of K > 0, depending only on q0 and the coefficients
of the problem, such that q(τ) ≤ K. Indeed, once this is at hand, inequation (20) implies
the inequality

q̇ + aq ≤ Ce−bτ (1 +K +Kτ),

and the exponential decay of q is deduced from Gronwall’s lemma. So, let us concentrate on
the global upper bound.

We first prove that q grows at most exponentially fast: there exists Λ > 0 large enough
depending algebraically on C and q0 such that q(τ) ≤ 2q0e

Λτ for any τ ≥ 0. Indeed, if this
is not true, define τ0 the supremum of {τ ≥ 0 | ∀s ∈ [0, τ ] , q(s) ≤ 2q0e

Λs}. Then, τ0 > 0,
q(τ0) = 2q0e

Λτ0 and

q̇(τ0) ≥ d

dτ

(
2q0e

Λτ
)
τ=τ0

= Λq(τ0)

which implies that Λ2 − C(1 + 1/q0)Λ− C ≤ 0. This is a contradiction for Λ large enough,
depending on q0 and C.

Let us now improve this exponential bound to a constant. Define τm > 0 large enough
such that

3

2

C

a
e−bτm ≤ q0

2
(21)

and

for all τ ≥ τm ,
Ce−bτ

a
(1 + τ) ≤ 1

3
. (22)

Assume the existence of τ̂ > τm such that q has a global maximum over [0, τ̂ ] at τ = τ̂ . Call
M̂ ≥ q0 this maximum; at τ = τ̂ we have q̇ ≥ 0, so that (20) becomes, at τ = τ̂ :

aM̂ ≤ Ce−bτ̂ (1 + M̂ + τ̂ M̂),

and, because of (22):

M̂ ≤ 3

2

C

a
e−bτ̂ .
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But, thanks to (21), we have M̂ ≤ q0

2
and a contradiction. Therefore, max

τ≥0
q(τ) is reached

over the interval [0, τm] and we have

for all τ ≥ 0, q(τ) ≤ q(τm) ≤ 2q0 e
Λτm .

Because τm depends logarithmically on q0, this upper bound grows algebraically in q0. This
concludes the proof of lemma 3.3. �

Before bounding w(τ, ξ,Θ) from above and below, we unfortunately need some additional
transformations that we detail now. The first one is a simple translation in ξ setting the
origin at ξ = ξ±δ (τ), and the subsequent one transforms L into a self-adjoint operator. This
amounts to setting

w(τ, ξ,Θ) = e−(ξ−ξ±δ )2/8ŵ±(τ, ξ̂±,Θ), ξ̂± = ξ − ξ±δ (τ). (23)

In order to keep the notations as light as possible, we simply rename the new variable ξ̂±

and the new unknown ŵ± as

ξ := ξ − ξ±δ (τ), ŵ±(τ, ξ̂±,Θ) := w(τ, ξ,Θ).

The new equation for w is
∂τw +Mw = l1(τ, ξ)∂ξw + l2(τ, ξ)w +

∆Θw(
ξ + ξ±δ + 2e

τ
2 − kτe− τ2

)2 − e
3τ
2
− ξ

2

8
−(ξ+ξ±δ )e

τ
2w2

w(τ, 0,Θ) = O(e∓δe
τ/2

)
w(0, ξ,Θ) = w0(ξ,Θ) compactly supported.

(24)
The functions l1 and l2 depend on h and are given by

l1(τ, ξ) = (
1

2
− δ)ξ±δ + h(τ, ξ + ξ±δ )e−τ/2 and l2(τ, ξ) = −3

2
− h(τ, ξ + ξ±δ )− ξ

4
l1(τ, ξ)

They satisfy, for ξ ≥ 0, the following estimates

|l1(τ, ξ)| ≤ C

(
1 + ξ1

ξ≤e(
1
2−δ)τ

)
e−( 1

2
−δ)τ

|l2(τ, ξ)| ≤ C

(
ξe−( 1

2
−δ)τ + 1

ξ≥e(
1
2−δ)τ

)
,

(25)

the constant C being universal. The operator M writes

Mw = −∂ξξw + (
ξ2

16
− 3

4
)w. (26)

Notice that, if we set
ϕ0(ξ) = ξe−ξ

2/8 = eξ
2/8φ0(ξ), (27)

we have Mϕ0 = 0. We also notice that the Dirichlet condition for w in (24) is doubly
exponentially small if we have taken the origin at ξ = ξ−δ (τ), whereas it seems doubly
exponentially large in the reverse case. This is simply due to the change of variables in item
3 of section 2: u = e−rv. So, there is nothing extraordinary in this estimate, at least in the
case when we take the origin at the left. When we take the origin at the right, we simply

10



get an over-estimated size that will be of no use to us, because we will seek a bound from
below for w. There we will just use its positivity.

We are now in a position to bound the solution w(τ, ξ, θ) of (12) by bounding the new
(pair of) solution(s) of (24). This is where we will construct a pair of sub and super-solutions.
We will concentrate on the upper bound, this will be the subject of the next sub-section.
In a subsequent one, we will indicate the modifications necessary for the construction of a
subsolution.

3.1.1 Super-solution

Let γ1(ξ) be a nonnegative smooth function, equal to 1 if ξ ≤ a0

2
, and zero if ξ ≥ 2a0

3
, and

γ2(ξ) be a smooth nonnegative function, equal to 1 if ξ ≥ 2 and zero if ξ ≤ 1. We will bound
the solution w(τ, ξ,Θ) from above by a super-solution of the form:

w(τ, ξ,Θ) = q1(τ)φ1(ξ)γ1(ξ) + q2(τ)γ2(ξ)e−µξ
2

+ ζ(τ)ϕ0(ξ), (28)

where µ is any number in (0,
1

8
). Let us set

Nw = ∂τw+Mw− l1(τ, ξ)∂ξw− l2(τ, ξ)w− ∆Θw(
ξ + ξ−δ + 2e

τ
2 − kτe− τ2

)2 + e
3τ
2
− ξ

2

8
−(ξ+ξ−δ )e

τ
2w2.

We want w, defined by (28), to satisfy Nw ≥ 0 for τ > 0, ξ > 0 and Θ on the unit sphere.
A sufficient condition for that is

Nw ≥ 0, (29)

with
Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w

− ∆Θw(
ξ + ξ−δ + 2e

τ
2 − kτe− τ2

)2 ; (30)

in other words we have dropped the positive nonlinear term. We are now looking for sufficient
conditions on q1, q2 and ζ to have Nw ≥ 0. Throughout the computations, we look for ζ
satisfying moreover

ζ̇(τ) ≥ 0. (31)

We are going to assume that it is satisfied, then check that it is indeed true. We remark here
that we are in the spirit of Fife-McLeod [11]: because the null space ofM is not empty, the
best we can do with a bare hand computation is estimating the solution, but not prove its
convergence, as we have no idea of what multiple of ϕ0 will be picked eventually. In [11], a
similar computation estimated the position of the front, but did not prove convergence to
a wave, as the translation invariance would not permit to guess what translate of the wave
would be eventually picked up.

1. The region 0 ≤ ξ ≤ a0

2
. This is, in comparison to [20] and [23], the newest part. Here,

we have γ2 = 0 since a0 < 1, so that, using Mϕ0 = 0 and −ϕ′′1 = λ1φ1, we have:

Nw =

(
q̇1 + (λ1 +

ξ2

16
− 3

4
)q1

)
φ1 −

(
l1(τ, ξ)φ′1 + l2(τ, ξ)φ1

)
q1

+ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
.

11



Recall that

φ1(ξ) = cos

(
π

2a0

ξ

)
,

so that
|φ′1(ξ)| ≤

√
λ1 φ1(ξ) on [0,

a0

2
].

On [0, a0/2], the functions ϕ0 and ϕ′0 are estimated by a constant C that - and this is the
main thing - does not depend on a0, whereas φ1 stays above

√
2/2 on the same interval. The

function l1 is estimated by e−( 1
2
−δ)τ . In the range that we consider, the indicator function

appearing in the estimate (25) of l2 vanishes after a (controlled) finite time, thus we may

also estimate l2 by e−( 1
2
−δ)τ . This allows us to assert the existence of C > 0 independent of

a0 such that, if assumption (31) is true, we have

Nw
φ1

≥ q̇1 + (λ1 − C
√
λ1 − C)q1 − Cζe−( 1

2
−δ)τ .

We choose a0 > 0 such that λ1 is large enough and

λ1 − C
√
λ1 − C ≥ 1,

this will fix a0 once and for all. And so, a sufficient condition to have Nw ≥ 0 in this region
is

q̇1 + q1 ≥ Cζe−( 1
2
−δ)τ . (32)

2. The region ξ large. By this, we mean that ξ will be larger than a constant ξ0 ≥ 2 that
we will fix in the course of this section. In any case we have γ1(ξ) = 0 and γ2(ξ) = 1. And
so,

Nw =

(
q̇2 +

(
(

1

16
− 4µ2)ξ2 + 2µ− 3

4

)
q2

)
e−µξ

2 −
(

2µl1(τ, ξ)ξ − l2(τ, ξ)

)
q2e
−µξ2

+ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
.

Choose µ =
1

16
, by assumption (31), we have

eξ
2/16Nw ≥ q̇2 +

(
3

64
ξ2 − |l1(τ, ξ)|ξ

8
− |l2(τ, ξ)| − 5

8

)
q2

−ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
eξ

2/16.

We estimate li(τ, ξ) as

|l1(τ, ξ)| ≤ C and |l2(τ, ξ)| ≤ C(ξ + 1) .

Thus, the term in factor of q2 can be bounded from below by 3
64
ξ2 − 9

8
Cξ − (C + 5

8
). Now,

we fix ξ0 large enough so that

3

64
ξ2

0 −
9

8
C ξ0 − (C +

5

8
) ≥ 1 .

Finally, the function ϕ′0 decays as ξ2e−ξ
2/8 and ϕ0(ξ) = ξe−ξ

2/8, so that

|l1(τ, ξ)ϕ′0(ξ) + l2(τ, ξ)ϕ0(ξ)| eξ2/16 ≤ Ce−( 1
2
−δ)τ .

12



Then, the condition Nw ≥ 0 is satisfied if we have the sufficient condition

q̇2 + q2 ≥ Cζe−( 1
2
−δ)τ . (33)

3. The region
a0

2
≤ ξ ≤ ξ0. Notice that, in this range, the functions li may be estimated

by e−( 1
2
−δ)τ . The functions γi may take all values between 0 and 1, and their derivatives are

bounded. Thus we have

Nw = ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
+q̇1γ1φ1 + q̇2γ2e

−ξ2/16 +

(
M− l1(τ, ξ)∂ξ − l2(τ, ξ)

)
(q1γ1φ1 + q2γ2e

−ξ2/16)

≥ ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
+q̇1γ1φ1 + q̇2γ2e

−ξ2/16 − C(q1 + q2).

To render Nw nonnegative in this range, a sufficient condition is to assume that (32) and
(33) are satisfied, so that q̇1γ1φ1 ≥ −q1, q̇2γ2e

−ξ2/16 ≥ −q2. Moreover, ϕ0 is bounded away
from 0 in our range, so that the final sufficient condition is:

ζ̇ ≥ C(q1 + q2 + ζe−( 1
2
−δ)τ ). (34)

It now remains to prove that such functions qi and ζ do exist. Setting q = q1 +q2, a sufficient
condition for inequalities (32), (33) and (34) to hold is that the couple (q, ζ) solves the system{

q̇ + q = Cζe−( 1
2
−δ)τ

ζ̇ = C(q + ζe−( 1
2
−δ)τ ),

(35)

with suitably large initial data (q0, ζ0). System (35) has a unique solution by elementary
Cauchy theory, and a standard argument shows that q and ζ are positive throughout their
evolution. And this also entails ζ̇ ≥ 0.

Proof of Proposition 3.2, Point 1.

Let w be a solution of (12). Perform transformations (23) with ξ±δ (τ) = ξ−δ (τ) so that w
is now a solution to (24). Define q and ζ as in (35) with large initial data (q0, ζ0). Lemma

3.3 yields the exponential decay for q. So, if we choose q1 = q2 =
q

2
and q+ = q1, ζ+ = ζ,

the function w(τ, ξ), defined in (28), is a super-solution to (24). If we choose q0 and ζ0

large enough, we have w(0, ξ) ≥ w0(ξ,Θ) for any Θ on the sphere. Because ζ ≥ 0, we have
q(τ) ≥ q0e

−τ . Thus we have, at the expense of choosing q0 even larger:

w(τ, 0) ≥ w(τ, 0,Θ),

the last quantity being less than a double exponential. This finishes the proof. �

3.1.2 Subsolution

Let us consider again γ2(ξ), a smooth nonnegative function, equal to 1 if ξ ≥ 2 and zero if
ξ ≤ 1. This time, we want (instructed by the previous section) to control w(τ, ξ,Θ) (after
transformations (23) with ξ±δ (τ) = ξ+

δ (τ)) from below by a subsolution of the form:

w(τ, ξ,Θ) = −q2(τ)γ2(ξ)e−ξ
2/16 + ζ(τ)ϕ0(ξ), (36)
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with q2 > 0. We have dropped the term q1γ1φ1 because the function w, as just defined, is
negative at ξ = 0, provided q2(τ) ≥ 0; this will certainly control w from below at ξ = 0.
This time, the nonlinear operator N is

Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w

− ∆Θw(
ξ + ξ+

δ + 2e
τ
2 − kτe− τ2

)2 + e
3τ
2
− ξ

2

8
−(ξ+ξ+δ )e

τ
2w2.

We want w, defined by (36), to satisfy Nw ≤ 0 for τ > 0, ξ > 0 and Θ on the unit sphere.
The w2 term may look bothering; however Point 1 of Proposition 3.2 is now proved, so that
we have, using (in quite a non-optimal way) the proposition:

w2 ≤ Cw,

C once again possibly huge. Let us also notice that, for ξ ≥ 0, we have

3τ

2
− (ξ + ξ+

δ )eτ/2 ≤ 3τ

2
− ξ+

δ e
τ/2 =

3τ

2
− eδτ ,

so that, all in all, we have for τ > 0 and ξ ≥ 0,

e
3τ
2
− ξ

2

8
−(ξ+ξ+δ )e

τ
2w2 ≤ Ce−( 1

2
−δ)τw.

This term may therefore be included in l2(τ, ξ), and a sufficient condition for Nw ≤ 0 is

N w ≤ 0, (37)

with

Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w − ∆Θw(
ξ + ξ+

δ + 2e
τ
2 − kτe− τ2

)2 ;

the term l2 now incorporating an additional e−( 1
2
−δ)τ . From then on, the computation pro-

ceeds in a similar fashion as before, which ends the proof of Proposition 3.2.

3.1.3 Conclusion

Parabolic regularity yields the boundedness of ∂τw(τ, ξ,Θ), ∂ξw(τ, ξ,Θ) and ∂ξξw(τ, ξ,Θ) in
terms of the supremum of w on the product of (τ − 1, τ + 1) × (ξ − 1, ξ + 1) by the unit
sphere. Of course the diffusion in Θ is degenerate, but it suffices to rescale Θ by the square
root of the diffusion at the point under consideration, and drop the useless estimate in Θ.
So, we end up with the following corollary:

Corollary 3.4 For τ ≥ 1, ξ > 0 and Θ on the unit sphere, we have

|∂τw(τ, ξ,Θ)|+ |∂ξw(τ, ξ,Θ)| ≤ Ce−ξ
2/16. (38)

Moreover, there are two constants 0 < q ≤ q such that, for τ ≥ 1, ξ ≤ 1 and Θ on the unit
sphere we have

q(ξ − e−( 1
2
−δ)τ ) ≤ w(τ, ξ,Θ) ≤ q(ξ + e−( 1

2
−δ)τ ). (39)
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3.2 Convergence to an angle-depending self-similar solution

This part completes the preceding one by proving a compactness property for the variable Θ,
entailing the compactness of the trajectories (w(T + τ, ξ,Θ))T>0 in a weighted L∞ norm. As
the asymptotic problem will simply be the heat equation in the variables (τ, ξ), convergence
will follow. So, let us proceed with compactness.

Proposition 3.5 If w(τ, ξ,Θ) is the solution of (24) (with ξ̂± = ξ̂−), there is C > 0,
depending only on the data, such that, for τ > 0, ξ ≥ 0 and Θ on the unit sphere, we have

|∇Θw(τ, ξ,Θ)| ≤ Ce−ξ
2/16.

Proof. Let Θi be any coordinate on the unit sphere, and

wi(τ, ξ,Θ) = ∂Θiw(τ, ξ,Θ).

As there is no dependence with respect to Θ in the coefficients of (24), the equation for wi
is very similar to that for w:

∂τwi +Mwi = l1(τ, ξ)∂ξwi + l2(τ, ξ)wi

+
∆Θwi(

ξ + ξ−δ + 2e
τ
2 − kτe− τ2

)2 − 2e
3τ
2
−(ξ+ξ−δ )e

τ
2− ξ

2

8 wwi

wi(0, ξ,Θ) = ∂Θiw0(ξ,Θ) compactly supported.

(40)

We then resort to a classical trick: Multiplying the equation for wi by the sign of wi and
using Kato’s inequality, then finally the fact that w ≥ 0, we find out that |wi| solves the
inequation

∂τ |wi|+M|wi| − l1(τ, ξ)∂ξ|wi| − l2(τ, ξ)|wi| −
∆Θwi(

ξ + ξ−δ + 2e
τ
2 − kτe− τ2

)2 ≤ 0.

If now wi(ξ) is the supremum of |wi(0, ξ, .)| over the unit sphere, then we have |wi(τ, ξ,Θ)| ≤
wi(τ, ξ) with {

∂τwi +Mwi = −l1(τ, ξ)∂ξwi − l2(τ, ξ)wi
wi(0, ξ) = wi(ξ) compactly supported.

Moreover, parabolic regularity yields, for the solution u(t, r,Θ) of (7):

|∇Θu(t,−tδ,Θ)| ≤ C(1 + t);

this translates into
|∇Θv(t,−tδ,Θ)| ≤ C(1 + t)e−t

δ

,

thus wi(τ, ξ
−
δ ) ≤ Ceτ−e

δτ
. Hence, wi may be controlled by a super-solution similar to that

constructed in Section 3.1.1, which proves the proposition. �
Proof of Theorem 3.1. Corollary 3.4 and Proposition 3.5 yield the compactness of the
trajectory (w(T + ., ., .))T>0 in the L∞τ,ξ,Θ norm, weighted by eξ

2/16. Therefore, there is a
function w∞(τ, ξ,Θ) and a sequence (Tn)n going to infinity such that

lim
n→+∞

eξ
2/16|w(Tn + τ, ξ,Θ)− w∞(τ, ξ,Θ)| = 0, (41)

the limit being locally uniform in τ , and uniform in (ξ,Θ). Moreover, w∞ is Lipschitz in all
its variables, and we have w∞(τ, 0,Θ) = 0.
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On the other hand, for any smooth function ϕ(Θ) over the unit sphere, consider the
integral

wϕ(τ, ξ) =

∫
SN−1

w(τ, ξ,Θ)ϕ(Θ)dΘ.

The equation for wϕ is once again quite similar as the preceding ones:
∂τwϕ +Mwϕ = −l1(τ, ξ)∂ξwϕ − l2(τ, ξ)wϕ − e

3τ
2
−(ξ+ξ+δ )e

τ
2− ξ

2

8

∫
SN−1

w2ϕdΘ

wϕ(0, ξ) =

∫
SN−1

w0(ξ,Θ)ϕ(Θ)dΘ compactly supported.

The same type of super-solution as in Section 3.1.1 may be constructed for wϕ. Moreover,
the same type of subsolution can also be constructed, as we may simply estimate wϕ by a
constant. This yields the compactness of wϕ in the weighted L∞ norm, but wϕ additionally
satisfies a standard parabolic equation in the (τ, ξ) variables. Therefore, parabolic estimates
hold, and a subsequence of (wϕ(T + ., .))T>0 converges, locally in τ , and in the weighted L∞

norm in ξ, to a solution w∞ϕ of{
∂τw

∞
ϕ +Mw∞ϕ = 0, τ ∈ R , ξ ≥ 0
w∞ϕ (τ, 0) = 0.

(42)

The same argument as in [20], Lemma 5.1 yields the convergence of the full trajectory
(wϕ(T + ., .))T>0 to a steady solution of (42), namely, a nontrivial multiple of ϕ0, that we
name αϕϕ0.

The functional ϕ 7→ αϕ is a nonnegative functional acting on the set of all continuous
functions of the unit sphere. On the other hand, (41) yields, for all τ ∈ R:

αϕϕ0(ξ) =

∫
SN−1

w∞(τ, ξ,Θ)ϕ(Θ)dΘ.

This implies the following cascade of facts. First, the function w∞ does not depend on τ ,
we call it w∞(ξ,Θ). Second, the functional ϕ 7→ αϕ is linear, so, combined with positivity,
it is a measure that we call µ. Third, we have, for all ξ > 0:∫

SN−1

ϕ(Θ)dµ(Θ)ϕ0(ξ) =

∫
SN−1

w∞(ξ,Θ)ϕ(Θ)dΘ.

This entails that
w∞(ξ,Θ)

φ0(ξ)
does not depend on ξ, call it α∞(Θ). So, we have

∫
SN−1

ϕ(Θ)dµ(Θ)ϕ0(ξ) =

∫
SN−1

α∞(Θ)ϕ(Θ)dΘ.

so that µ is absolutely continuous with respect to the Lebesque measure, dµΘ) = α∞(Θ)dΘ.
Because w∞ is Lipschitz in Θ, this, in the end, implies that α∞ is Lipschitz. �

4 Convergence to the shifted wave

Let w be a solution to (12) with compactly supported initial datum w0. Setting ξδ(τ) :=
ξ+
δ (τ), we start with the following proposition.
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Proposition 4.1 For every ε > 0, there is τε > 0 (possibly depending also on δ) and ηε > 0
such that, for all τ ≥ τε and ξ ∈ [−ξδ(τ), η0] we have:

(α∞(Θ)− ε) (ξ + ξδ(τ)) ≤ w(τ, ξ,Θ) ≤ (α∞(Θ) + ε) (ξ + ξδ(τ)).

This proposition is a consequence of mean value theorem, and the following corollary of
Theorem 3.1.

Corollary 4.2 We have
lim

τ→+∞
∂ξw(τ, 0,Θ) = α∞(Θ).

Proof. It is enough to prove that

lim
T→+∞

∂ξw(T + τ, ξ,Θ) = α∞(Θ)φ′0(ξ), (43)

uniformly in τ in every compact with centre 0, ξ ∈ [−ξδ(T +τ), 1], and Θ on the unit sphere.
For that, it is enough to show the equicontinuity of the family (∂ξw(T + ., ., .))T>0; this,
combined to the convergence of the family (w(T + ., ., .))T>0, implies the convergence of the
derivatives. Recall the equation for wT := w(T + ., ., .):

∂τwT +MwT = l1(T + τ, ξ)∂ξwT + l2(T + τ, ξ)wT

+
∆ΘwT(

ξ + ξ±δ + 2e
T+τ
2 − k(T + τe−

T+τ
2

)2 − e
3(T+τ)

2
− ξ

2

8
−(ξ+ξ±δ )e

(T+τ
2 w2

T

wT (τ,−ξδ,Θ), ∂τwT (τ,−ξδ,Θ), |∇ΘwT (τ,−ξδ,Θ)| = O(e−e
δ(T+τ)/2

).
(44)

The values of w, ∂τw and ∇Θw at the boundary {ξ = −ξδ(τ)} are evaluated from the
equation u = e−rv, which entails the double exponential for w. The derivatives in τ and
Θ imply the multiplication by a factor eτ at most, hence the (innocent) sacrifice of eτ/2 in
the exponential controlling w. Standard parabolic regularity results (this would involve a
rescaling in Θ by eT so as to transform (44) into a uniformly parabolic equation with smooth
coefficients) up to the boundary yield the uniform boundedness of ∂τξw and ∂ξξw. It remains
to control ∂Θiξw, for all i. For this, it suffices to differentiate (44) in Θ, the result is displayed
in (40), and we already know the boundedness of ∂ΘiwT . At the boundary {ξ = −ξδ}, all
derivatives of ∂ΘiwT are controlled by a double exponential, so that parabolic regularity is
applicable again. This entails the local boundedness of ∂ξ∂ΘiwT , hence, as announced, the
equicontinuity of the whole family (∂ξwT )T>0. �

Because α∞ is only Lipschitz, we will need to use regularisations. If (ρε)ε>0 is an approx-
imation of the identity on the unit sphere, we set

α∞ε (Θ) = (ρε ∗ α∞)(Θ). (45)

Because α∞ is Lipschitz and positive, we have α∞ε −Cε ≤ α∞ ≤ α∞ε +Cε. What is eventually
going to be useful to us is the following inequality, for a possibly different constant C:

(α∞ε (Θ)− Cε) ξ ≤ w(τ, ξ,Θ) ≤ (α∞ε (Θ) + Cε) ξ. (46)

Proof of Theorem 1.1. We revert to the (t, r,Θ) variables, and to the function v(t, r,Θ)
defined in Section 2. Recall that the equation for v is

∂tv = ∂rrv +

(
N − 1

r + 2t− klnt
− k

t

)
(∂rv − v) +

∆Θv

(r + 2t− klnt)2
− e−rv2. (47)
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Also recall that the initial unknown u(t, r,Θ) satisfies u(t, r,Θ) = e−rv(t, r,Θ). Fix δ0 ∈
(0, 1/100). We infer from inequalities (46) that, for all ε > 0, applied with δ =

δ0

2
and

r = tδ0 (so that ξ = e−( 1
2
−δ0)τ , there is tε > 0 such that, for t ≥ tε we have

(α∞ε (Θ)− Cε)tδ0 ≤ v(t, tδ0 ,Θ) ≤ (α∞ε (Θ) + Cε)tδ0 . (48)

In the similar spirit as [20] and [23], we define the upper and lower shifts as

Uc∗(r + s±ε )

∣∣∣∣
r=tδ0

= e−r(α∞ε ± Cε)r
∣∣∣∣
r=tδ0

. (49)

Note that s±ε are both well-defined and that the implicit functions theorem yields

s±ε (Θ) = − ln(α∞ε ± Cε) +O(
1

tδ0
), ∂ts

±
ε (Θ) = O(

1

t1+δ0
).

Moreover, the L∞ norm of ∆Θs
±
ε is bounded by a constant that may blow up as ε→ 0. Let

us define v±ε as the solutions of (47) for t ≥ tε, r ∈ (−tδ0 , tδ0), Θ on the unit sphere, that
have v(tε, r,Θ) as datum at t = tε, and that satisfy the Dirichlet conditions:

v±ε (t, tδ0 ,Θ) = (α∞ε ± Cε)tδ0 , v+
ε (t,−tδ0 ,Θ) = e−t

δ0 , v−ε (t,−tδ0 ,Θ) = 0, (50)

for t ≥ tε we have
v−ε (t, r,Θ) ≤ v(t, r,Θ) ≤ v+

ε (t, r,Θ).

The last step of the proof is to prove that the functions v±ε (t, r,Θ) converge to e−rUc∗(r+s±ε ),
uniformly in r and Θ in their domains. Because ε is arbitrary, this will imply the convergence
of v. We set (see [20])

V ±ε (t, r,Θ) = v±ε (t, r,Θ)− e−rUc∗(r + s±ε );

we have

∂tV
±
ε = ∂rrV

±
ε +

(
N − 1

r + 2t− klnt
− k

t

)(
∂rV

±
ε − V ±ε

)
+

∆ΘV
±
ε

(r + 2t− klnt)2
− e−r(Uc∗ + v)V ±ε +O(

1

t1−δ0
).

We use one last time the trick consisting in multiplying the equation by the sign of V ±ε , then
using the Kato inequality, then the positivity of Uc∗ + v. This yields

∂t|V ±ε | = ∂rr|V ±ε |+
(

N − 1

r + 2t− klnt
− k

t

)(
∂r|V ±ε | − |V ±ε |

)
− ∆Θ|V ±ε |

(r + 2t− klnt)2
+O(

1

t1−δ0
).

Thus, |V ±ε (t, r,Θ)| ≤ V
±
ε (t, r), with

∂tV
±
ε = ∂rrV

±
ε + (

N − 1

r + 2t− klnt
− k

t
)
(
∂rV

±
ε − V

±
ε

)
+O(

1

t1−δ0
) (t ≥ tε, r ∈ (−tδ0 , tδ0))

V
±
ε (t,−tδ0) = e−t

δ0 , V
±
ε (t, tδ0) = 0 V

±
e (tε, r) = 0.

Just as in [20] we infer that both functions V
±
ε (t, .) converge to 0 as t → +∞. The reason

is that the equation has lower order coefficients and right handside of order less than
1

t
,

whereas the first eigenvalue of the Dirichlet Laplacian on (−tδ0 , tδ0) is of order t−2δ0 �
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5 Discussion

Let us first mention that our result remains valid for more general nonlinearities. For an
equation of the form

∂tu = ∆u+ f(u), t > 0, x ∈ RN ,

it suffices to assume that f is concave and positive on (0, 1), with f(0) = f(1) = 0. Thus
f ′(0) > 0 and the bottom speed is given by c∗ = 2

√
f ′(0). Our result becomes the existence

of a function s defined on the unit sphere such that

u(t, x) = Uc∗

(
|x|+ c∗t−

N + 2

c∗
ln + s∞(

x

|x|
)

)
+ot→+∞(1).

In the course of the proof, the nonlinear term is no more u2 but g(u) = f ′(0)u− f(u), which
is positive and nondecreasing on (0, 1). It is not clear to us whether the result would subsist
by merely assuming f(u) ≤ f ′(0)u. What would probably be true is a statement of the form

u(t, x) = Uc∗

(
|x|+ c∗t−

N + 2

c∗
lnt+ s∞(t,

x

|x|
)

)
+ot→+∞(1),

with s∞(t,Θ) = O(1). Let us also mention that we could have given a slightly different
version of Theorem 1.1 by stating that, for every direction e, |e| = 1, then

{u(t, x) = λ} ∩ {x = re, r > 0} ⊂ {r = c∗t−
N + 2

c∗
lnt− s∞(e) + U−1

c∗ (λ) + ot→+∞(1)}.

The analysis of the solution on the diffusive zone would have been slightly simpler, in the
sense that we would not have had to handle an asymptotically degenerate diffusion in e. On
the other hand, recovering the convergence at the O(1) spatial scale would have been more
delicate. Additionally, this would not have proved the Lipschitz regularity of s in e. This
last approach is, sometimes, better tailored to the geometric situation, where the front has
a preferered direction of propagation. This is the case in the forthcoming paper [6], where
the Fisher-KPP invasion occurs orthogonally to a line of fast diffusion.

We may adapt the preceding ideas to asymptotically homogeneous models of the form

∂tu = ∆u+ µ(x)u− u2, (t > 0, x ∈ RN) (51)

where the function ν(x) := µ− 1 satisfies

ν(x) =
λ

|x|α
+O|x|→+∞(

1

|x|α+δ
), |∇ν(x)| = αλ

|x|1+α
+O|x|→+∞(

1

|x|α+1+δ
).

Theorem 1.1 becomes

Theorem 5.1 Let u0 satisfy assumption (2). There is a Lipschitz function s∞(Θ), defined
on the unit sphere of RN , such that the solution u of (1) emanating from u0 satisfies

u(t, x) = Uc∗

(
|x| − c∗t+

N + 2

c∗
lnt+ s∞(

x

|x|
)

)
+ot→+∞(1),

if α > 1, and

u(t, x) = Uc∗

(
|x| − c∗t+

N + 2− λ
c∗

lnt+ s∞(
x

|x|
)

)
+ot→+∞(1),

if α = 1.
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The shift
N + 2− λ

c∗
had already been identified by Ducrot [8], up to O(1) terms. His

assumptions are more general than ours, in the sense that he neither requires the gradient

estimate on ν, nor the quantitative estimate for ν(x) − λ

|x|α
. However, our result goes one

step further. Theorem 5.1 would probably hold without the error estimate on ν(x), one
would simply need to be more careful in the construction of sub and super solutions. On the
other hand, we have not tried to push the limits of validity of Theorem 5.1, and this might
well be quite an interesting question.

The proof of Theorem 5.1 goes exactly along the same lines as that of Theorem 1.1 for
α > 1, the term ν(x) being thrown into the perturbative terms li(τ, ξ). Of course they now
depend on Θ, but in a smooth and exponentially small in time fashion, so they do not require
any additional arguments. When α = 1, the same algebraic steps as in Section 2 revel the
presence of a nonperturbative term in equation 8. More precisely, this equation becomes

∂tv = ∂rrv + (
N − 1

r + 2t− klnt
− k

t
)∂rv − (

N − 1

r + 2t− klnt
− k

t
− λ

c∗t
)v

+

(
ν(r + c ∗ t− klnt,Θ)− λ

c∗t

)
v +

∆Θv

(r + 2t− klnt)2
− e−rv2.

(52)

To identify k we simply have to make sure that equation (52) behaves like the Dirichlet heat
equation, perturbed by higher order terms; thus the formula (13) becomes

N − 1

c∗
− λ

c∗
− k = −3

2
,

hence the shift. The remaining terms will be, in the self-similar variables, exponentially
decreasing terms. The method used to prove a gradient estimate in Θ for v will then work
exactly as in Proposition 3.5, thanks to the estimate on |∇ν|.

We finally mention that we leave open the question of higher order expansion of the shift,
which is also quite an interesting question.
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