Finite Bisimulations for Dynamical Systems with Overlapping Trajectories
Résumé
Having a finite bisimulation is a good feature for a dynamical system, since it can lead to the decidability of the verification of reachability properties. We investigate a new class of o-minimal dynamical systems with very general flows, where the classical restrictions on trajectory intersections are partly lifted. We identify conditions, that we call Finite and Uniform Crossing: When Finite Crossing holds, the time-abstract bisimulation is computable and, under the stronger Uniform Crossing assumption, this bisimulation is finite and definable.