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ON THE RANDOMISED STABILITY CONSTANT FOR INVERSE

PROBLEMS

GIOVANNI S. ALBERTI, YVES CAPDEBOSCQ, AND YANNICK PRIVAT

Abstract. In this paper we introduce the randomised stability constant for
abstract inverse problems, as a generalisation of the randomised observability
constant, which was studied in the context of observability inequalities for the
linear wave equation. We study the main properties of the randomised stability
constant and discuss the implications for the practical inversion, which are not
straightforward.

1. Introduction

Inverse problems are the key to all experimental setups where the physical quan-
tity of interest is not directly observable and must be recovered from indirect mea-
surements. They appear in many different contexts including medical imaging, non-
destructive testing, seismic imaging or signal processing. In mathematical terms,
an inverse problem consists in the inversion of a linear or nonlinear map

T : X → Y, x 7→ T (x),

which models how the quantity of interest x belonging to a space X is related to
the measurements y = T (x) in the space Y . The reader is referred to the many
books on inverse problems for a comprehensive exposition (see, e.g., [27, 3, 47, 30,
44, 2, 24, 4]).

Inverse problems can be ill-posed: the map T may not be injective (i.e., two
different x1 and x2 may correspond to the same measurement T (x1) = T (x2)) or,
when injective, T−1 : ranT ⊆ Y → X may not be continuous (i.e., two different
and not close x1 and x2 may correspond to almost identical measurements T (x1) ≈
T (x2)). Various strategies have been introduced to tackle the issue of inversion in
this setting, Tykhonov regularisation being the most famous method [17, 29].

Our purpose is to investigate the role of randomisation in the resolution of inverse
problems. By randomisation, we refer to the use of random measurements, or to
the case of random unknowns. We do not mean the well-established statistical
approaches in inverse problems, as in the Bayesian framework, where probability is
used to assess the reliability of the reconstruction.

Even with this distinction, the wording “randomisation” may refer to many
different concepts in the framework of inverse problems. A huge literature is devoted
to the issue of randomisation in the measuring process: the unknown x in X is fixed
and deterministic, and we choose the measurements randomly according to some
suitable distribution. For example, compressed sensing [19] and passive imaging
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with ambient noise [20] belong to this class. Another very popular idea consists in
randomising the unknown: in this scenario, we try to recover most unknowns x in
X , according to some distribution. For example, this is typically the situation when
deep learning [21] is applied to inverse problems. We briefly review these instances
in Appendix A.

This article deals with a more recent approach, in the framework of observability
or control theory: the so-called randomised observability constants [38, 39, 40].
We argue that, in contrast with the initial motivation for its introduction, the
randomised observability constant is not necessarily indicative of the likelihood for
randomised unknowns to be observable.

In the next section, we recall the notion of randomised observability constant and
comment on its use in optimal design problems. In section 3, we reformulate the
randomised observability constant in an abstract setting as randomised stability
constant. In section 4 we show that when the classical (deterministic) stability
constant is null, a positive randomised stability constant need not imply, as one
could hope, that the inverse problem can be solved for most unknowns. In the course
of our study, we make several observations on the properties of the randomised
stability constant. Section 5 contains several concluding remarks and discusses
possible future directions.

2. Randomising initial data of PDEs

In this section we briefly review the randomised observability constant introduced
in [38, 39, 40] and its main properties. This was motivated by the original idea of
randomisation by Paley and Zygmund, which we now briefly discuss.

2.1. On randomisation processes. In order to understand the principle of ran-
domisation that will be at the core of this paper, it is useful to recall the historical
result by Paley and Zygmund on Fourier series. Let (cn)n∈Z be an element of ℓ2(C)
and f be the Fourier series given by

f : T ∋ θ 7→
∑

n∈Z

cne
inθ,

where T denotes the torus R/(2π). According to the so-called Parseval identity, the
function f belongs to L2(T); furthermore, the coefficients cn can be chosen in such
a way that f does not belong to any Lq(T) for q > 2. Some of the results obtained
by Paley and Zygmund (see [36, 35, 37]) address the regularity of the Fourier series
f . They show that if one changes randomly and independently the signs of the
Fourier coefficients cn, then the resulting random Fourier series belongs almost
surely to any Lq(T) for q > 2. More precisely, introducing a sequence (βν

n)n∈Z of
independent Bernoulli random variables on a probability space (A,A,P) such that

P(βν
n = ±1) =

1

2
,

then, the Fourier series fν given by

fν : T ∋ θ 7→
∑

n∈Z

βν
ncne

inθ

belongs almost surely to Lq(T) for all q < +∞.
In [13], the effect of the randomisation on the initial data of solutions to dis-

persive equations has been investigated. In that case, initial data and solutions of
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the PDE considered are expanded in a Hilbert basis of L2(Ω) made of eigenfunc-
tions (φj)j≥1 of the Laplace operator. The randomisation procedure consists hence
in multiplying all the terms of the series decomposition by well-chosen indepen-
dent random variables. In particular, regarding for instance the homogeneous wave
equation with Dirichlet boundary conditions, one can show that for all initial data
(y0, y1) ∈ H1

0 (Ω) × L2(Ω), the Bernoulli randomisation keeps the H1
0 × L2 norm

constant. It is observed that many other choices of randomisation are possible.
For instance a positive effect of the randomisation can be observed by considering
independent centred Gaussian random variables with variance 1 (Gaussian ran-
domisation). Indeed, it allows to generate a dense subset of the space of initial
data H1

0 (Ω)× L2(Ω) through the mapping

R(y0,y1) : A→ H1
0 (Ω)× L2(Ω), ν 7→ (y0ν , y

1
ν),

where (y0ν , y
1
ν) denotes the pair of randomised initial data, provided that all the

coefficients in the series expansion of (y0, y1) are nonzero. Several other properties
of these randomisation procedures are also established in [13].

2.2. Randomised observability constant . We now review how randomisation
appeared in the framework of inverse problems involving an observability inequality.
The property of observability of a system is related to the following issue: how to
recover the solutions of a PDE from the knowledge of partial measurements of the
solutions. In what follows, we will concentrate on wave models, having in particular
photoacoustic/thermoacoustic tomography imaging in mind.

Let T > 0 and Ω ⊆ Rd be a bounded Lipschitz domain with outer unit normal ν.
We consider the homogeneous wave equation with Dirichlet boundary conditions

(1)

{

∂tty(t, x)−∆y(t, x) = 0 (t, x) ∈ [0, T ]× Ω,
y(t, x) = 0 (t, x) ∈ [0, T ]× ∂Ω.

It is well known that, for all (y0, y1) ∈ H1
0 (Ω) × L2(Ω), there exists a unique

solution y ∈ C0([0, T ], H1
0 (Ω)) ∩ C1((0, T ), L2(Ω)) of (1) such that y(0, x) = y0(x)

and ∂ty(0, x) = y1(x) for almost every x ∈ Ω. Let Γ be a measurable subset of ∂Ω,
representing the domain occupied by some sensors, which take some measurements
over a time horizon [0, T ].

The inverse problem under consideration reads as follows.

Inverse problem: reconstruct the initial condition (y0, y1) from
the knowledge of the partial boundary measurements

1Γ(x)
∂y

∂ν
(t, x), (t, x) ∈ [0, T ]× ∂Ω.

To solve this problem, we introduce the so-called observability constant : CT (Γ) is
defined as the largest non-negative constant C such that

(2) C‖(y(0, ·), ∂ty(0, ·))‖2H1
0
(Ω)×L2(Ω) ≤

∫ T

0

∫

Γ

∣

∣

∣

∣

∂y

∂ν
(t, x)

∣

∣

∣

∣

2

dHd−1 dt,

for any solution y of (1), where H1
0 (Ω) is equipped with the norm ‖u‖H1

0
(Ω) =

‖∇u‖L2(Ω). Then, the aforementioned inverse problem is well-posed if and only if
CT (Γ) > 0. In such a case, we will say that observability holds true in time T .
Moreover, observability holds true within the class of C∞ domains Ω if (Γ, T ) satis-
fies the Geometric Control Condition (GCC) (see [8]), and this sufficient condition
is almost necessary.
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Let us express the observability constant more explicitly. Fix an orthonor-
mal basis (ONB) (φj)j≥1 of L2(Ω) consisting of (real-valued) eigenfunctions of
the Dirichlet-Laplacian operator on Ω, associated with the negative eigenvalues
(−λ2j)j≥1. Then, any solution y of (1) can be expanded as

(3) y(t, x) =

+∞
∑

j=1

yj(t)φj(x) =
1√
2

+∞
∑

j=1

(

aj
λj
eiλj t +

bj
λj
e−iλjt

)

φj(x),

where the coefficients aj and bj account for initial data. More precisely, we consider
the ONB of H1

0 (Ω)× L2(Ω) given by {ψ+
j , ψ

−
j : j ≥ 1}, where

(4) ψ+
j =

1√
2
(
φj
λj
, iφj), ψ−

j =
1√
2
(
φj
λj
,−iφj).

Expanding now the initial data with respect to this basis we can write (y0, y1) =
∑+∞

j=1 ajψ
+
j + bjψ

−
j , namely,

y0 =

+∞
∑

j=1

aj + bj√
2λj

φj , y1 =

+∞
∑

j=1

i
aj − bj√

2
φj .

The corresponding solution to (1) is given by (3). In addition, Parseval’s identity

yields ‖(y0, y1)‖2
H1

0
(Ω)×L2(Ω)

=
∑+∞

j=1 |aj |2 + |bj |2.
Then, the constant CT (Γ) rewrites

CT (Γ) = inf
(aj),(bj)∈ℓ2(C)

∑+∞

j=1
(|aj |2+|bj |2)=1

∫ T

0

∫

Γ

∣

∣

∣

∣

∂y

∂ν
(t, x)

∣

∣

∣

∣

2

dHd−1 dt,

where y(t, x) is given by (3).

The constant CT (Γ) is deterministic and takes into account any (aj), (bj) ∈
ℓ2(C), including the worst possible cases. Interpreting CT (Γ) as a quantitative
measure of the well-posed character of the aforementioned inverse problem, one
could expect that such worst cases do not occur too often; thus it would appear
desirable to consider a notion of observation in average.

Motivated by the findings of Paley and Zygmund (see §2.1) and its recent use
in another context [11, 13], making a random selection of all possible initial data
for the wave equation (1) consists in replacing CT (Γ) with the so-called randomised
observability constant defined by

(5) CT,rand(Γ) = inf
(aj),(bj)∈ℓ2(C)

∑+∞

j=1
(|aj |2+|bj |2)=1

E

(

∫ T

0

∫

Γ

∣

∣

∣

∣

∂yν

∂ν
(t, x)

∣

∣

∣

∣

2

dHd−1 dt

)

,

where

(6) yν(t, x) =
1√
2

+∞
∑

j=1

(

βν
1,jaj

λj
eiλjt +

βν
2,jbj

λj
e−iλj t

)

φj(x)

and (βν
1,j)j∈N and (βν

2,j)j∈N are two sequences of independent random variables
of Bernoulli or Gaussian type, on a probability space (A,A,P) with mean 0 and
variance 1. Here, E is the expectation in the probability space, and runs over
all possible events ν. In other words, we are randomising the Fourier coefficients
{aj, bj}j≥1 of the initial data (y0, y1) with respect to the basis {ψ±

j }j≥1.
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The randomised observability constant was introduced in [38, 39, 40, 41, 42]. It
can be expressed in terms of deterministic quantities (see [40, Theorem 2.2]).

Proposition 1. Let Γ ⊂ ∂Ω be measurable. We have

(7) CT,rand(Γ) =
T

2
inf
j∈N

1

λ2j

∫

Γ

(

∂φj
∂ν

(x)

)2

dHd−1.

Proof. In view of Lemma 1 (see below), we have that

CT,rand(Γ) = inf{‖1Γ∂νy
+
j ‖2L2([0,T ]×∂Ω), ‖1Γ∂νy

−
j ‖2L2([0,T ]×∂Ω) : j ≥ 1},

where y±j is the solution to (1) with initial condition ψ±
j . Thus

y±j (t, x) =
1√
2λj

e±iλjtφj(x),

and in turn

‖1Γ∂νy
±
j ‖2L2([0,T ]×∂Ω) =

1

2λ2j

∫

[0,T ]×Γ

|e±iλj t∂νφj(x)|2 dtdx,

which leads to our thesis. �

We have CT,rand(Γ) ≥ CT (Γ) (see Proposition 4 below). It has been noted in [41]
that the observability inequality defining CT,rand(Γ) is associated to a deterministic
control problem for the wave equation (1), where the control has a particular form
but acts in the whole domain Ω.

Regarding CT,rand(Γ), we refer to [42, Section 4] for a discussion on the positivity
of this constant. The authors show that if Ω is either a hypercube or a disk, then
CT,rand(Γ) > 0 for every relatively non-empty open subset Γ of ∂Ω. In particular,
in some cases CT (Γ) = 0 while CT,rand(Γ) > 0. This raised hopes that, even if re-
covering all unknowns is an unstable process, recovering most unknowns could be
feasible, since apparently most unknowns are observable. This heuristic argument,
mentioned amongst the motivations for the study of the optimisation of the ran-
domised observability constant, was not investigated further in the aforementioned
papers. This matter will be studied in the following sections, dedicated more gener-
ally on the possible use of such a constant for investigating the well-posed character
of general inverse problems.

Applications to optimal design problems. A larger observability constant CT (Γ) in
(2) leads to a smaller Lipschitz norm bound of the inverse map. Therefore CT (Γ)
can be used as the quantity to maximise when searching for optimal sensors’ po-
sitions. However, this turns out to be somewhat impractical. When implementing
a reconstruction process, one has to carry out in general a very large number of
measures; likewise, when implementing a control procedure, the control strategy is
expected to be efficient in general, but possibly not for all cases. Thus, one aims at
exhibiting an observation domain designed to be the best possible in average, that
is, over a large number of experiments. Adopting this point of view, it appeared
relevant to consider an average over random initial data. In [38, 39, 40], the best
observation is modelled in terms of maximising a randomised observability constant,
which coincides with CT,rand(Γ) when dealing with the boundary observation of the
wave equation.

When dealing with internal observation of the wave equation on a closed mani-
fold, it has been shown in [26] that the related observability constant reads as the
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minimum of two quantities: the infimum of the randomised observability constants
over every orthonormal eigenbasis and a purely geometric criterion standing for the
minimal average time spent by a geodesic in the observation set.

However, one should keep in mind that a large randomised constant may not be
associated with a reconstruction method (see section 4).

3. The randomised stability constant for abstract inverse problems

It is convenient to generalise the construction of the previous section to an ab-
stract setting. In what follows, none of the arguments require the precise form
of the forward operator related to the wave equation, as they rely solely on the
structure of the randomised constant.

For the remainder of this paper, we letX and Y be separable infinite-dimensional
Hilbert Spaces, and P : X → Y be an injective bounded linear operator.

If P−1 : ranP → X is a bounded operator, the inverse problem of finding x
from P (x) can be solved in a stable way for all x ∈ X , without the need for
randomisation. This can be measured quantitatively by the constant

Cdet = inf
x∈X\{0}

‖Px‖2Y
‖x‖2X

> 0.

The smaller Cdet is, the more ill-conditioned the inversion becomes.
On the other hand, when P−1 is unbounded, the situation is different, and the

inverse problem is ill-posed [30, 24]. In this case, although the kernel of P reduces
to {0}, we have

(8) Cdet = inf
x∈X\{0}

‖Px‖2Y
‖x‖2X

= 0.

Examples of such maps abound. The example that motivated our study was
that introduced in section 2.2, with X = H1

0 (Ω)×L2(Ω), Y = L2([0, T ]× ∂Ω) and

P (y0, y1) = y|[0,T ]×Γ,

where Γ ⊆ ∂Ω and y is the solution to (1) with initial condition (y0, y1): if Γ is not
large enough, P is still injective but P−1 is unbounded [31]. Any injective compact
linear operator satisfies (8).

Let us now introduce the randomised stability constant, which generalises the
randomised observability constant to this general setting. We consider the class of
random variables introduced in the last section. Choose an ONB e = {ek}k∈N of
X and write x =

∑∞
k=1 xkek ∈ X . We consider random variables of the form

xν =

∞
∑

k=1

βν
kxkek,

where βν
k are i.i.d. complex-valued random variables on a probability space (A,A,P)

with vanishing mean and variance 1, so that E(|βν
k |2) = 1 for every k. These include

the Bernoulli and Gaussian random variables considered in the previous section. It
is worth observing that, in the case of Bernoulli random variables, we have |βν

k |2 = 1
for every k, so that ‖xν‖X = ‖x‖X .
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Definition 1. The randomised stability constant is defined as

Crand(e) = inf
x∈X\{0}

E

(

‖P (xν)‖2Y
‖x‖2X

)

.

As in the previous section, this constant should represent stability of the inverse
problem for most unknowns. By definition, we have Crand(e) ≥ Cdet. In general,
this is a strict inequality: we will provide examples in section 4. This can be
heuristically seen also by the following deterministic expression for the randomised
stability constant.

Lemma 1. There holds

(9) Crand(e) = inf
k
‖P (ek)‖2Y .

Proof. Since (Y, ‖·‖Y ) is also a Hilbert space, we find

‖P (xν)‖2Y =

〈 ∞
∑

k=1

βν
kxkP (ek) ,

∞
∑

l=1

βν
l xlP (ek)

〉

Y

=

∞
∑

k=1

|βν
k |2|xk|2 ‖P (ek)‖2Y +

∑

k,l
k 6=l

βν
kβ

ν
l xkxl 〈P (ek) , P (ek)〉Y .

(10)

Since βν
k are i.i.d. with vanishing mean and such that E(|βν

k |2) = 1, we obtain
(11)

E

(

‖P (xν)‖2Y
‖x‖2X

)

=
E

(

‖P (xν)‖2Y
)

∑∞
k=1 |xk|2

=

∑∞
k=1 |xk|2 ‖P (ek)‖2Y
∑∞

k=1 |xk|2
≥ inf

k
‖P (ek)‖2Y ,

which means Crand(e) ≥ infk ‖P (ek)‖2Y . Choosing x = ek, we obtain (9). �

4. Exploiting Crand in inverse problems

The aim of this section is to discuss the impact of the randomised observability
constant in inverse problems. In other words, we would like to address the following
question: how can the positivity of Crand be exploited in the solution of an inverse
ill-posed problem? We will not fully address this issue, but rather provide a few
positive and negative partial results.

We remind the reader that the randomisation introduced in the last section when
(8) holds, was based on the point of view that the ratio in (8) is not “usually” small,
and that, hopefully, in most cases inversion “should” be possible. It is worthwhile
to observe that the subset of the x ∈ X such that ‖Px‖Y ≥ c ‖x‖X for some fixed
c > 0 is never generic inX , since {x ∈ X : ‖Px‖Y < c ‖x‖X} is open and non empty
by (8). This caveat in mind, we nevertheless wish to test if some evidence can be
given to support our optimistic approach that in most cases, inversion should be
possible.

Proposition 2. For every ǫ > 0 and x ∈ X, there exists c > 0 such that

(12) P (‖Pxν‖Y ≥ c ‖x‖X) > 1− ǫ.

Proof. Take x ∈ X . Define the real-valued map g(c) = P (‖Pxν‖Y ≥ c ‖x‖X) . Take
a sequence cn ց 0. It is enough to show that

lim
n→+∞

g(cn) = 1.
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We write

g (cn) =

∫

A

fn (ν) dP(ν), where fn (ν) =

{

1 if ‖Pxν‖Y ≥ cn ‖x‖X ,

0 otherwise.

Note that fn is monotone increasing and, since kerP = {0}, limn→∞ fn(ν) = 1 for
every ν. Thus by the Monotone Convergence Theorem,

lim
n→∞

∫

A

fn (ν) dP(ν) =

∫

A

(

lim
n→∞

fn (ν)
)

dP(ν) = 1. �

This thus shows that, for a fixed x, our intuition is vindicated: in the vast
majority of cases, the inequality ‖Pxν‖Y ≥ c ‖x‖X holds true. This is true inde-
pendently of Crand(e); we now investigate whether the positivity of Crand(e) may
yield a stronger estimate.

4.1. Large deviation inequalities. The next step is to estimate the probability

that, for a given x ∈ X \ {0}, the square of the ratio
‖P (xν)‖Y

‖x‖X
used in Definition 1

is close to its mean value. The large deviation result we could derive describes the
deviation from an upper bound to Crand(e), namely the constant Krand(e) defined
by

(13) Krand(e) = sup
k

‖P (ek)‖2Y .

Theorem 1 (large deviation estimate). Assume that Y = L2(Σ, µ), where (Σ, S, µ)
is a measure space. Let (βν

k )k∈N be a sequence of independent random variables of
Bernoulli type, on a probability space (A,A,P) with mean 0 and variance 1. Let
x ∈ X \ {0} and xν =

∑∞
k=1 β

ν
kekxk. Then, for every δ > 0 we have

P (‖Pxν‖Y ≥ δ ‖xν‖X) ≤ exp

(

2− 1

e

δ
√

Krand(e)

)

.

The proof of Theorem 1 is postponed to Appendix B. The argument follows the
same lines as the one of [11, Theorem 2.1] and the general method introduced in
[13].

Remark 1 (Application to a wave system). Considering the wave equation (1) and
adopting the framework of section 2.2 leads to choose {ψ±

j }j≥1 defined by (4) as

the orthonormal basis e. In that case, X = H1
0 (Ω) × L2(Ω), Σ = [0, T ] × ∂Ω,

dµ = dt dHd−1 and Y = L2(Σ). Following the discussion in section 2.2, the map P

is given by P (y0, y1) = 1Γ
∂y
∂ν , where y is the unique solution of (1). Further, we

have

Crand(e) =
T

2
inf
j∈N

1

λ2j

∫

Γ

(

∂φj
∂ν

)2

dHd−1,

Krand (e) =
T

2
sup
j∈N

1

λ2j

∫

Γ

(

∂φj
∂ν

)2

dHd−1,

where the first equality is given in Proposition 1, and the second one follows by
applying the same argument.
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Note that according to the so-called Rellich identity1, we have 0 < Krand (e) ≤
T
2 diam(Ω), under additional mild assumptions on the domain Ω.

The estimate given in Theorem 1 is on the “wrong side”, since we show that the
ratio related to the inversion is much bigger than Krand(e) with low probability.
The issue is not the boundedness of P , which is given a priori, but of its inverse.
This would correspond to a result of the type

(14) P

(‖P (xν)‖2Y
‖x‖2X

< Crand(e)− δ

)

≤ small constant,

namely, a quantification of the estimate given in Proposition 2, uniform in x. If such
a bound held, it would show that Crand(e) is a reliable estimator of the behaviour

of the ratio
‖P (x)‖2

Y

‖x‖2
X

in general. Notice that, in the favourable case when P−1 is

bounded, there exists δ0 ∈ [0, Crand(e)) such that

P

(‖P (xν)‖2Y
‖x‖2X

< Crand(e)− δ

)

= 0

for all δ ∈ [δ0, Crand(e)).
In this general framework, estimate (14) does not hold, see Example 2. Using a

concentration inequality, a weaker bound can be derived.

Proposition 3. Assume that Y = L2(Σ, µ), where (Σ, S, µ) is a measure space.
Let (βν

k )k∈N be a sequence of independent random variables of Bernoulli type, on
a probability space (A,A,P) with mean 0 and variance 1. Let x ∈ X \ {0} and
xν =

∑∞
k=1 β

ν
kekxk. Then, for every δ > 0 we have

(15) P

(

‖P (xν)‖2Y
‖x‖2X

− E

(

‖P (xν)‖2Y
‖x‖2X

)

< −δ
)

< exp

(

− δ2

4Krand(e)2

)

.

This result is based on an appropriate Hoeffding inequality; its proof is postponed
to Appendix B. Note that (15) is not a large deviation result: the quantity under
consideration is bounded between 0 and 1, and the upper bound obtained is not
small. This is unavoidable, see Example 2.

4.2. Can you reconstruct two numbers from their sum? We collect here
several observations that suggest that the positivity of the randomised stability
constant may not be helpful for solving the inverse problems, not even for most
unknowns.

4.2.1. Instability arises for every x ∈ X. We remind the reader why (8) renders
inversion unstable. Hypothesis (8) implies that there exists a sequence (xn)n∈N

such that

(16) ‖xn‖X = 1 and ‖Pxn‖Y <
1

n
for all n ∈ N.

1This identity, discovered by Rellich in 1940 [43], reads

2λ2 =

∫

∂Ω

〈x, ν〉

(

∂φ

∂ν

)2

dHd−1

for every eigenpair (λ, φ) of the Laplacian-Dirichlet operator, Ω being a bounded connected domain
of Rn either convex or with a C1,1 boundary.
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Suppose that our measurements are not perfect, and are affected by a low level of
noise δ, ‖δ‖Y ≤ ǫ, with ǫ > 0. Then, for every n such that nǫ > 1, we have

‖P (x+ xn)− P (x)‖Y < ǫ,

hence x and x+xn correspond to the same measured data, even if ‖(x+ xn)− x‖X =
1. This is an unavoidable consequence of the unboundedness of P−1, and is true for
every x ∈ X , even if the randomised stability constant were positive (and possibly
large).

4.2.2. The dependence of Crand on the basis. Lemma 1 shows that the ONB used
to randomise our input plays a role, as it appears explicitly in the formula (9). The
following proposition underscores that point. Namely, if we consider all possible
randomisations with respect to all ONB of X we recover the deterministic stability
constant Cdet.

Proposition 4. We have

inf
e
Crand(e) = Cdet,

where the infimum is taken over all ONB of X. In particular, if P−1 is unbounded
then infe Crand(e) = 0.

Proof. By definition of Crand(e), we have that Crand(e) ≥ Cdet for every ONB e,
and so it remains to prove that

inf
e
Crand(e) ≤ Cdet.

By definition of Cdet, we can find a sequence xn ∈ X such that ‖xn‖X = 1 for every
n and ‖Pxn‖2Y → Cdet. For every n, complete xn to an ONB of X, which we call

e(n). By Lemma 1 we have Crand(e
(n)) ≤ ‖Pxn‖2Y , and so

inf
e
Crand(e) ≤ inf

n
Crand(e

(n)) ≤ inf
n

‖Pxn‖2Y ≤ lim
n→+∞

‖Pxn‖2Y = Cdet. �

This result shows that, in general, the randomised stability constant strongly
depends on the choice of the basis. There will always be bases for which it becomes
arbitrarily small when P−1 is unbounded.

It is also worth observing that for compact operators, which arise frequently in
inverse problems, the randomised stability constant is always zero.

Lemma 2. If P is compact then Crand(e) = 0 for every ONB e of X.

Proof. Since ek tends to zero weakly in X , by the compactness of P we deduce that
P (ek) tends to zero strongly in Y . Thus, by Lemma 1 we have

Crand(e) = inf
k
‖P (ek)‖2Y ≤ lim

k→+∞
‖P (ek)‖2Y = 0,

as desired. �

4.2.3. Examples. Let us now consider some examples. The first example is finite
dimensional and the kernel of the operator is not trivial. Note that the definition
of Crand(e) and all results above, except Proposition 2 and Lemma 2, are valid also
in this case, with suitable changes due to the finiteness of the ONB.
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Example 1. Choose X = R2 and Y = R, and consider the map

S : R2 → R

(x, y) 7→ x+ y.

The associated inverse problem can be phrased: find the two numbers whose sum is
given. This problem is ill-posed and impossible to solve. The deterministic stability
constant vanishes

inf
(x1,x2)∈R2\{(0,0)}

|x1 + x2|2
x21 + x22

= 0,

and S−1 does not exist. However, the randomised constant obtained using the
canonical basis is positive. Indeed, |P (1, 0)| = |P (0, 1)| = 1, therefore

Crand ({(1, 0) , (0, 1)}) = inf{1, 1} = 1.

The positivity of this constant does not imply the existence of any useful method
to perform the reconstruction of x and y from x+ y, even for most (x, y) ∈ R2.

Had we chosen as orthonormal vectors 1√
2
(1, 1) and 1√

2
(1,−1) , since |P (1,−1)| =

0, we would have found

Crand

(

1√
2
(1, 1) ,

1√
2
(1,−1)

)

= 0.

One may wonder whether the features highlighted above are due to the fact that
the kernel is not trivial. That is not the case, as the following infinite-dimensional
generalisation with trivial kernel shows.

Example 2. Consider the case when X = Y = ℓ2, equipped with the canonical
euclidean norm. Let e = {ek}+∞

k=0 denote the canonical ONB of ℓ2. Take a sequence
(ηn)n∈N0

such that ηn > 0 for all n, and limn→∞ ηn = 0. We consider the operator
P defined by

P (e2n) = e2n + e2n+1, P (e2n+1) = e2n + (1 + ηn)e2n+1.

The operator P may be represented with respect to the canonical basis e by the
block-diagonal matrix

P =















1 1 0 0 · · ·
1 1 + η0 0 0 · · ·
0 0 1 1 · · ·
0 0 1 1 + η1 · · ·
...

...
...

...
. . .















.

In other words, P may be expressed as

P (x) = (x0 + x1, x0 + (1 + η0)x1, x2 + x3, x2 + (1 + η1)x3, . . . ), x ∈ ℓ2.

We note that kerT = {0} and that its inverse is given by

P−1(y) = ((1+η−1
0 )y0−η−1

0 y1, η
−1
0 (y1−y0), (1+η−1

1 )y2−η−1
1 y3, η

−1
1 (y3−y2), . . . ),

which is an unbounded operator since η−1
n → +∞. Given the block diagonal

structure of this map, the inversion consists of solving countably many inverse
problems (i.e., linear systems) of the form

{

x2n + x2n+1 = y2n,
x2n + (1 + ηn)x2n+1 = y2n+1.
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As soon as ñ is such that ηñ becomes smaller than the noise level, all the following
inverse problems for n ≥ ñ are impossible to be solved, since they reduce to the
“sum of two numbers” discussed in Example 1.

Note that

‖P (e2n)‖22 = 2, ‖P (e2n+1)‖22 = 1 + (1 + ηn)
2
,

therefore
Crand(e) = 2.

If we choose instead the rotated orthonormal basis,

v2n =
1√
2
(e2n + e2n+1) , v2n+1 =

1√
2
(e2n − e2n+1) ,

then P (v2n+1) = −ηn 1√
2
e2n+1, and so

Crand ({vk}k) = inf
k
‖P (vk) ‖22 ≤ lim

n→∞
‖P (v2n+1) ‖22 = 0.

We now turn to (14) and (15). For some k ≥ 0, consider x = e2k. Then
P (xν) = βν

2k(e2k+e2k+1) and therefore ‖P (xν)‖Y = ‖P (x)‖Y : there is no deviation
as

‖P (xν)‖2Y
‖x‖2X

= E

(‖P (xν)‖2Y
‖x‖2X

)

= Crand(e) = 2.

Thus, the probabilities in (14) and (15) are equal to 0, and the inequalities are
trivial.

However, alternatively, consider x = e2k+e2k+1. Then ‖P (xν)‖2Y = 4+(2+η2k)
2

if βν
1β

ν
2 = 1 and ‖P (xν)‖2Y = η22k if βν

1β
ν
2 = −1. Therefore

‖P (xν)‖2Y
‖x‖2X

− Crand(e) =

{

(2+η2k)
2

2 with probability 1
2 ,

η2
2k

2 − 2 with probability 1
2 .

As a consequence, (14) cannot be true in general for every x. Similarly, we have

‖P (xν)‖2Y
‖x‖2X

− E

(‖P (xν)‖2Y
‖x‖2X

)

=

{

2 + η2k with probability 1
2 ,

−2− η2k with probability 1
2 ,

and the left-hand side of (15) can indeed be large for some x.

It is worth observing that a very similar example is considered in [32] to show
that particular complications may arise when using neural networks for solving
some inverse problems, even naive and small scale (cfr. §A.3).

These examples show that considering the observability constant for a particular
basis sheds little light on a potential stable inversion of the problem in average,
and that considering all possible randomisations leads to the same conclusion as
the deterministic case (confirming Proposition 4).

4.3. Linear versus nonlinear problems. The pitfalls we encountered when we
tried to make use of the randomised stability constant all stem from the linearity
of the problems we are considering. The seminal work of Burq and Tzvetkov [12],
which showed existence of solutions in super-critical regimes for a semilinear prob-
lem did not involve tinkering with associated linear operator (the wave equation);
it is the nonlinearity that controlled the critical threshold. In both compressed
sensing and passive imaging with random noise sources, nonlinearity plays a key
role; further, deep networks are nonlinear maps (cfr. Appendix A).
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The naive intuition we discussed earlier, namely, that extreme situations do not
occur often, is more plausible for nonlinear maps where pathological behaviour is
local.

Example 3. As a toy finite-dimensional example, consider the map

T : R → R, T (x) = x(x− ǫ)(x + ǫ),

for some small ǫ > 0. Then T can be stably inverted outside of a region with size of
order ǫ, since there the inverse is continuous. Thus, a random initial data has little
chance of falling precisely in the problematic region. Such a case cannot happen
with linear maps.

Example 4. Let A : H → H be an unbounded linear operator on a Hilbert space
with compact resolvent, so that the spectrum of A is discrete. Define the nonlinear
map

T : H × [0, 1] → H × [0, 1], T (x, λ) = (Ax + λx, λ).

Note that A+ λI is invertible with probability 1 if λ is chosen uniformly in [0, 1].
Thus, if H × [0, 1] is equipped with a product probability measure whose factor
on [0, 1] is the uniform probability, then x may be reconstructed from T (x) with
probability 1.

5. Concluding remarks

In this paper we focused on the randomised stability constant for linear inverse
problems, which we introduced as a generalisation of the randomised observability
constant.

We argue that, despite its intuitive and simple definition, the randomised sta-
bility constant has no implications in the practical solution of inverse problems,
even for most unknowns. As the examples provided show, this may be due to
the linearity of the problem. With nonlinear problems, the situation is expected
to be completely different. It could be that the randomised stability constant is
meaningful in the context of a nonlinear inversion process, involving for example a
hierarchical decomposition [46, 34], but we do not know of results in that direction:
this is left for future research.
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Appendix A. Examples of techniques based on randomisation

In this appendix we briefly review three different techniques for solving inverse
problems where randomisation plays a crucial role. We do not aim at providing an
exhaustive overview, or at reporting on the most recent advances, or at discussing
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the many variants that have been studied. The examples we present are used to
contrast possible different approaches, and the level of mathematical understanding
associated with them.

A.1. Compressed sensing. Since the seminal works [15, 16], compressed sensing
(CS) has provided a theoretical and numerical framework to overcome Nyqvist
criterion in sampling theory for the reconstruction of sparse signals. In other words,
sparse signals in Cn may be reconstructed from k discrete Fourier measurements,
with k smaller than n and directly proportional to the sparsity of the signal (up to
log factors, see eqn. (18) below). Let us give a quick overview of the main aspects of
CS, in order to show how it fits in the general framework of section 1. For additional
details, the reader is referred to the book [19], and to the references therein.

Given s ∈ N = {1, 2, . . .}, let X be the set of s-sparse signals in Cn, namely

X = {x ∈ C
n : # suppx ≤ s}.

Let F : Cn → Cn denote the discrete Fourier transform. In fact, any unitary map
may be considered, by means of the notion of incoherence [14]. In any case, the
Fourier transform is a key example for the applications to Magnetic Resonance
Imaging and Computerised Tomography (via the Fourier Slice Theorem). In order
to subsample the Fourier measurements, we consider subsets Sa of cardinality k
of {1, 2, . . . , n} and parametrise them with a ∈ {1, 2, . . . ,

(

n
k

)

}. Let Y = Ck and

Pa : C
n → Ck be the projection selecting the entries corresponding to Sa. We then

define the measurement map

Ta = Pa ◦ F : X → C
k.

In other words, Ta is the partial Fourier transform, since only the frequencies in Sa

are measured, and #Sa = k ≤ n.
Given an unknown signal x0 ∈ X , we need to reconstruct it from the partial

knowledge of its Fourier measurements represented by y := Ta(x0). The sparsity
of x0 has to play a crucial role in the reconstruction, since as soon as k < n the
map Pa ◦ F : Cn → Ck necessarily has a non-trivial kernel. It is worth observing
that sparsity is a nonlinear condition: if X were a linear subspace of Cn, the
problem would be either trivial or impossible, depending on ker(Pa ◦F )∩X . Thus
nonlinearity plays a crucial role here.

The simplest reconstruction algorithm is to look for the sparsest solution to
Tax = y, namely to solve the minimisation problem

min
x∈Cn

‖x‖0 subject to Tax = y,

where ‖x‖0 = #suppx. However, this problem is NP complex, and its direct
resolution impractical. Considering the convex relaxation ‖ · ‖1 of ‖ · ‖0 leads to a
well-defined minimisation problem

(17) min
x∈Cn

‖x‖1 subject to Tax = y,

whose solution may be easily found by convex optimisation (in fact, by linear pro-
gramming).

The theory of CS guarantees exact reconstruction. More precisely, if x̃ is a
minimiser of (17), then x̃ = x0 with high probability, provided that

(18) k ≥ Cs logn,
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and that a is chosen uniformly at random in {1, 2, . . . ,
(

n
k

)

} (namely, the subset Sa is
chosen uniformly at random among all the subsets of cardinality k of {1, 2, . . . , n})
[15]. In addition, in the noisy case, with measurements of the form y = Ta(x0) + η
where ‖η‖2 ≤ ǫ, by relaxing the equality “Tax = y” to the inequality “‖Tax−y‖2 ≤
ǫ” in (17), one obtains the linear convergence rate ‖x0 − x̃‖2 ≤ Cǫ, namely, the
solution is stable.

In summary, CS allows for the stable reconstruction of all sparse signals from
partial Fourier measurements, for most choices of the measured frequencies. The
corresponding forward map Ta : X → Ck is nonlinear, simply because X is not a
vector space.

A.2. Passive imaging with random noise sources. The material presented
in this part is taken from [20], to which the reader is referred for more detailed
discussion on this topic.

A typical multistatic imaging problem is the recovery of some properties of a
medium with velocity of propagation c(x) > 0 from some measurements at locations
xj ∈ R3 of the solution u(t, x) of the wave equation

∂2t u(t, x)− c(x)2∆u(t, x) = f(t)δ(x− y), (t, x) ∈ R×R
3,

where f(t) is the source pulse located at y. One of the major applications of this
setup is geophysical imaging, where one wants to recover properties of the structure
of the earth from measurements taken on the surface. Generating sources in this
context is expensive and disruptive. Earthquakes are often used as sources, but
they are rare and isolated events. Yet, noisy signals, as they may be recorded
by seismographers, even if low in amplitude, may be relevant and useful even in
absence of important events.

The key idea is to consider the data generated by random sources (e.g., in seis-
mology, those related to the waves of the sea). The equation becomes

∂2t u(t, x)− c(x)2∆u(t, x) = n(t, x), (t, x) ∈ R×R
3,

where the source term n(t, x) is a zero-mean stationary random process that models
the ambient noise sources. We assume that its autocorrelation function is

E(n(t1, y1)n(t2, y2)) = F (t2 − t1)K(y1)δ(y1 − y2),

where F is the time correlation function (normalised so that F (0) = 1) and K
characterises the spatial support of the sources. The presence of δ(y1 − y2) makes
the process n delta-correlated in space.

The reconstruction is based on the calculation of the empirical cross correlation
of the signals recorded at x1 and x2 up to time T :

CT (τ, x1, x2) =
1

T

∫ T

0

u(t, x1)u(t+ τ, x2) dt.

Its expectation is the statistical cross correlation

E(CT (τ, x1, x2)) = C(1)(τ, x1, x2),

which is given by

(19) C(1)(τ, x1, x2) =
1

2π

∫

R×R3

F̂ (ω)K(y)Ĝ(ω, x1, y)Ĝ(ω, x2, y)e
−iωτ dtdy,
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where ·̂ denotes the Fourier transform in time and G(t, x, y) is the time-dependent
Green’s function. Moreover, CT is a self-averaging quantity, namely

lim
T→+∞

CT (τ, x1, x2) = C(1)(τ, x1, x2)

in probability.
The role of randomised sources is now clear: from the measured empirical cross

correlationCT with large values of T it is possible to estimate, with high probability,
the statistical cross correlation C(1). Using (19), from C(1)(τ, x1, x2) it is possible to
recover (some properties of) the Green function G, which yield useful information
about the medium, such as travel times.

A.3. Deep Learning in inverse problems for PDE. Convolutional Neural Net-
works have recently been used for a variety of imaging and parameter reconstruction
problems [22], including Electrical Impedance Tomography (EIT) [33, 23, 48], opti-
cal tomography [18], inverse problems with internal data [9], diffusion problems in
imaging [7], computerised tomography [28, 10], photoacoustic tomography [5, 25]
and magnetic resonance imaging [50, 49]. In the following brief discussion, we de-
cided to focus on inverse problems for partial differential equations (PDE), and
in particular on EIT, but similar considerations are valid for most methods cited
above.

Significant improvement has been observed in EIT with deep learning compared
to previous imaging approaches. Let Ω ⊆ Rd, d ≥ 2, be a bounded Lipschitz
domain with outer unit normal ν. The data in EIT is (a part of) of the Dirichlet-
to-Neumann map

Λσ : H
1
2 (∂Ω) /R → H− 1

2 (∂Ω) /R
v 7→ σ∇u · ν|∂Ω

where u(x) denotes the unique solution of the elliptic problem
{

div (σ(x)∇u(x)) = 0 x ∈ Ω,
u(x) = v(x) x ∈ ∂Ω,

and σ(x) > 0 is the unknown conductivity. The experimental data is usually part
of the inverse map, namely the Neumann-to-Dirichlet map Λ−1

σ . In two dimensions,
provided that the electrodes are equally separated on the unit disk, the data may
be modelled by

TNΛ−1
σ TN ,

where TN is the L2 projection on span{θ 7→ cos(nθ) : 1 ≤ n ≤ N}, where N is
the number of electrodes: it is the partial Fourier transform limited to the first N
coefficients.

Direct neural network inversion approaches suffer from drawbacks alike direct
non-regularised inversion attempts: the output is very sensitive to measurement
errors and small variations. Successful approaches to Deep Learning EIT [33, 23,
48], and to other parameter identification problems in PDE, often involve two steps.

The first step consists in the derivation of an approximate conductivity σ by a
stable, albeit blurry, regularised inversion method. For instance, in [23] the “D-
bar” equation is used, while in [33] a one-step Gauss-Newton method is used. In
both cases, the output of this step is a representation of the conductivity coefficient,
which depends on the inversion method used. This first step is deterministic and its
analysis is well understood. The forward problem, relating the conductivity to the
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Dirichlet-to-Neumann map, is nonlinear, independently of the inversion algorithm
used. Indeed, the map Λσ is a linear operator, but σ 7→ Λσ is nonlinear.

The second, post-processing, step uses a neural network to “deblur” the image,
and in fact restores details that were not identifiable after the first step.

The second step is not unlike other successful usage of deep-learning approaches
for image classification; in general they are known to be successful only with very
high probability (and in turn for random unknowns). More precisely, since the
findings of [45], deep networks are known to be vulnerable to so-called “adversarial
perturbations” (see the review article [1] and the references therein). Given an
image x that is correctly classified by the network with high confidence, an adver-
sarial perturbation is a small perturbation p such that the images x and y = x+ p
are visually indistinguishable but the perturbed image y is misclassified by the net-
work, possibly with high confidence too. State-of-the-art classification networks are
successful for the vast majority of natural images, but are very often vulnerable to
such perturbations.

These instabilities are not specific to image classification problems; they appear
in the same way in image reconstruction [6]. In this case, given an image that is
well-reconstructed by the network, it is possible to create another image that is
visually indistinguishable from the original one, but that is not well-reconstructed
by the network.

A full mathematical understanding of deep networks is still lacking, and the
reasons of this phenomenon are not fully known. However, the large Lipschitz con-
stant of the network certainly plays a role, since it is a sign of potential instability:
in order for the network to be effective, the weights of its linear steps need to be
chosen large enough, and the composition of several layers yields an exponentially
large constant.

Appendix B. Proofs of the large deviation estimates

The proofs of Theorem 1 and Proposition 3 rest upon a classical large deviation
estimate, the so-called Hoeffding inequality, see e.g. [11, Prop. 2.2], whose proof is
recalled for the convenience of the reader.

Proposition 5. Let (αν
n)n≥1 be a sequence of sequence of independent random vari-

ables of Bernoulli type, on a probability space (A,A,P) with mean 0 and variance
1. Then, for any t > 0 and any sequence (un)n≥1 ∈ ℓ2(C), we have

P

(

+∞
∑

n=1

αν
nvn < −t

)

= P

(

+∞
∑

n=1

αν
nvn > t

)

≤ exp

(

−1

2

t2
∑+∞

n=1 |vn|2

)

.

Proof. There holds E (exp (αν
nvn)) = E

(

∑∞
k=0

(αν
nvn)

k

k!

)

=
∑∞

k=0
1
k!E

(

(αν
nvn)

k
)

.

All odd powers of k vanish as αν
n has zero mean and is symmetrical. Therefore for
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any λ > 0

E (exp (λαν
nvn)) =

∞
∑

k=0

1

(2k)!
E

(

(λαν
nvn)

2k
)

≤
∞
∑

k=0

λ2kv2kn
2k (k!)

= exp

(

λ2

2
v2n

)

.

Applying Chernoff’s inequality, we obtain for any λ > 0

P

(

+∞
∑

n=1

αν
nvn > t

)

≤ E[exp

(

λ

(

+∞
∑

n=1

αν
nvn

))

] exp (−λt)

≤ exp

(

λ2
1

2

+∞
∑

n=1

v2n − λt

)

.

Choosing λ = t∑
v2
n
this yields

P

(

+∞
∑

n=1

αν
nvn < −t

)

= P

(

+∞
∑

n=1

αν
nvn > t

)

≤ exp

(

− t2

2
∑

v2n

)

,

as desired. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix r ≥ 2 and set Yν = P (xν)
‖xν‖X

. Markov’s inequality yields

P (‖Yν‖Y ≥ δ) = P (‖Yν‖rY ≥ δr) ≤ 1

δr
E (‖Yν‖rY ) .(20)

Let us denote by Lr
ν the standard Lebesgue space with respect to the probability

measure dP. Recall that Y = L2(Σ, µ). To provide an estimate of the right-hand
side, notice that

E (‖Yν‖rY ) =
∫

A

‖Yν‖rY dP(ν)

=

∫

A

(
∫

Σ

|Yν(s)|2 dµ(s)
)r/2

dP(ν)

=
∥

∥

∥

∫

Σ

|Yν(s)|2 dµ(s)
∥

∥

∥

r/2

Lr/2
ν

≤
(
∫

Σ

∥

∥|Yν(s)|2
∥

∥

Lr/2
ν

dµ(s)

)r/2

=

(
∫

Σ

∥

∥Yν(s)
∥

∥

2

Lr
ν
dµ(s)

)r/2

=
∥

∥s 7→ ‖Yν(s)‖Lr
ν

∥

∥

r

Y

(21)

by using Jensen’s inequality.
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Furthermore, for a.e. s ∈ Σ, we have2

‖Yν(s)‖rLr
ν
=

∫

A

|Yν(s)|rdP(ν) =
∫ +∞

0

rur−1
P(|Yν(s)| > u) du

and by using Proposition 5 and the fact that Yν(s) reads

Yν(s) =

∑∞
k=1 β

ν
kxk (P ek) (s)

√

∑∞
k=1 |xk|2

,

one gets

‖Yν(s)‖rLr
ν
≤ 2

∫ +∞

0

rur−1 exp

(

−1

2

∑∞
k=1 |xk|2u2

∑+∞
k=1 | (P ek) (s)|2|xk|2

)

du.

As a consequence, by using the change of variable

v =

√

∑∞
k=1 |xk|2u

√

∑+∞
k=1 | (P ek) (s)|2|xk|2

we get

‖Yν(s)‖rLr
ν
≤ C(r)

(

∑+∞
k=1 | (P ek) (s)|2|xk|2
∑∞

k=1 |xk|2

)r/2

with

C(r) = 2

∫ +∞

0

rvr−1e−
1
2
v2

dv.

An elementary computation yields C(r) < rr . Therefore,

‖Yν(s)‖Lr
ν
<

(

r2
∑+∞

k=1 | (P ek) (s)|2|xk|2
∑∞

k=1 |xk|2

)1/2

.

According to (21), we infer that

E (‖Yν‖rY ) <
∥

∥

∥

∥

∥

(

r2
∑+∞

k=1 | (P ek) (·)|2|xk|2
∑∞

k=1 |xk|2

)1/2 ∥
∥

∥

∥

∥

r

Y

=

∥

∥

∥

∥

∥

r2
∑+∞

k=1 | (P ek) (·)|2|xk|2
∑∞

k=1 |xk|2

∥

∥

∥

∥

∥

r/2

L1(Σ)

.

From (13) and estimate (20), we get

P (‖Yν‖Y ≥ δ) <
1

δr

(

r2
∑+∞

k=1 ‖P ek‖2Y |xk|2
∑∞

k=1 |xk|2

)r/2

≤
(

Krand(e)

δ2
r2
)r/2

,

using the triangle inequality. Minimising the upper bound with respect to r, that
is, choosing

r2 =
e−2δ2

Krand(e)

2Here, we use that if X denotes a non-negative random variable and ϕ : R+ → R+, then

E(ϕ(X)) =

∫

+∞

0

ϕ′(u)P(X > u) du.



22 GIOVANNI S. ALBERTI, YVES CAPDEBOSCQ, AND YANNICK PRIVAT

in the inequality above, one finally obtains

(22) P (‖Yν‖Y ≥ δ) ≤ exp

(

− e−1δ
√

Krand(e)

)

.

Note that we have assumed r ≥ 2, thus implicitly posited that e−2δ2 ≥ 4Krand(e);
we multiply the bound by exp(2) to cover the other case. �

We conclude by proving Proposition 3.

Proof of Proposition 3. As in (10), we have

(23) ‖P (xν)‖2Y =

∞
∑

k=1

x2k ‖P (ek)‖2Y + 2
∑

k,l
k<l

βν
kβ

ν
l xkxl 〈P (ek) , P (el)〉Y .

Observing that the family αν
k,l = {βν

kβ
ν
l } k,l

k<l
is made of independent Bernoulli

variables, equal almost surely to −1 or 1, with 1/2 as probability of success, we
apply Proposition 5 with

vk,l = 2
xk

‖x‖X
xl

‖x‖X
〈P (ek) , P (el)〉Y

and obtain for all δ > 0

P

(

‖P (xν)‖2Y
‖x‖2X

− E

(

‖P (xν)‖2Y
‖x‖2X

)

< −δ
)

< exp

(

− δ2

2K

)

,

with

K =
∑

k,l
k<l

(

2
xkxl

‖x‖2X
〈P (ek) , P (el)〉Y

)2

≤ 2
∑

k,l

(

|xk| |xl|
‖x‖2X

‖P ek‖Y ‖P el‖Y

)2

= 2

(

∑

k

|xk|2

‖x‖2X
‖P ek‖2Y

)2

≤ 2Krand(e)
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