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Introduction

Here, we will present two di¤erent proofs which prepared very rigorously. First, let us introduce some basic properties of the Riemann zeta function and some wellknown arts as below to make the arguments also accessible to a nonspecialist. We hope that you will read this quite- ‡uent …le nicely.

The Riemann zeta function is de…ned as below in the half-plane with the complex variable s = + it. It is an absolutely convergent series by 1 < <(s): The <(s) is the real part of the complex variable.

(s) = 1 X n=1 1 n s = 1 1 s + 1 2 s + 1 3 s + 1 4 s for 1 < <(s) (1.1) 
As shown by Riemann, (s) extends to the whole complex plane C by analytic continuation as satis…es functional equation ( [START_REF] Menici | Zeros of the Riemann Zeta-function on the critical line[END_REF], p2 ) with a simple pole at s = 1:

(s) s 2 = (1 s) 1 s 2 s 1=2 for s 6 = 1 (1.2)
Meanwhile, if we call another functional equation ( [START_REF] Saidak | On the modulus of the Riemann zeta function in the critical strip[END_REF], p146 ) here;

(s) = 2 s s 1 sin( s 2 ) (1 s) (1 s) for s 6 = 1 (1.3)
we can see that the Riemann zeta function (s) has zeros at the negative even integers ( 2; 4; 6; ::: ) on it . These are called as the trivial zeros. The Riemann hypothesis which proposed in 1859 is concerned with the non-trivial zeros [START_REF] Bombieri | The Riemann hypothesis[END_REF]. Let us denote these non-trivial zeros as s = + it .

The Riemann hypothesis: The real part of any non-trivial zeros of the Riemann zeta function is 1=2. It means, (s ) = 0 ) = 1=2.
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The Riemann hypothesis (RH) is one of the most important unsolved problems in mathematics which will help to illuminate the distribution of the prime numbers.

In 1914 Hardy [START_REF] Hardy | Sur les zéros de la fonction (s) de Riemann[END_REF] proved that (1=2+it) has in…nitely many zeros. Beside, you can review our other work about the zeros of the zeta function [START_REF] Gunes | The imaginary parts of the zeros of the Riemann zeta function[END_REF].

If

(s) is non-trivially equal to zero, the real part must satisfy the following condition which had been already proven ( [START_REF] Saidak | On the modulus of the Riemann zeta function in the critical strip[END_REF], p5 and [START_REF] Titchmarsh | The theory of the Riemann zeta function[END_REF], p30 ):

0 < <(s ) < 1 or 0 < < 1 for s = + it Remark 1.
The gamma function (s) is de…ned and analytic for any complex numbers ´s´except the non-positive integers. In the region 0 < <(s) < 1, we know that (s) and (1 s) have no zeros, no poles and they are …nite ([8], p5).

Let us present some other well-known features of the gamma function:

i-) It is expressed with the positive real part via the improper integral:

(s) = Z 1 0 x s 1 e x dx for 0 < <(s) (1.4) 
ii-) It satis…es the functional equations as:

(s) (1 s) = sin( s) for all ´s´except the integers (1.5)

Remark 2. If one of the Riemann zeta functions which in (s), (1 s); (s) and (1 s) is non-trivially equal to zero; then all of them are equal to zero:

(s) = 0 , (1 s) = 0 , (s) = 0 , (1 s) = 0 (1.6)
Proof. In fact, it is well-known. However, it will be useful for us to show it again. If we set the functional equation in 1.3 equal to zero:

(s) = 0 ) 2 s s 1 sin( s 2 ) (1 s) (1 s) = 0
The following result is obtained by 0 < R(s) < 1:

(1 s) (1 s) = 0
And we know (1 s) 6 = 0 from Remark 1. Consequently, (1 s) = 0. On the other hand, the Schwarz re ‡ection principle in complex analysis [START_REF] Cartan | Elementary theory of analytic functions of one or several complex variables[END_REF] says:

(s) = (s) (1.7)
Thus, we can write accordingly: (s) = 0 , (s) = 0

The First Proof of The RH

Step 1: Let us call the integral representative of the zeta function ( [START_REF] Milgram | Integral and series representations of Riemann's Zeta function and Dirichlet's Eta function and a medley of related results[END_REF], p6 ) which valid in the critical strip 0 < <(s) < 1.

(s) = sin ( s=2) (s 1) 1 s Z 1 0 x 1 s 1 sin 2 ix + 1 x 2 dx (2.1)
Let us de…ne two new functions as below:

f (s) = sin ( s=2) (s 1) 1 s and g(x) = 1 sin 2 ix + 1 x 2 (2.2)
Now, let us consider (s) and (1 s) as partial with a new variable ´u( as u 2 R which is su¢ ciently large) by denoting them as below:

u (s) = f (s) Z u 0 x 1 s g(x)dx ; u (1 s) = f (1 s) Z u 0 x s g(x)dx (2.3)
If we handle them with the non-trivial zeros (s ) by Remark 2 as:

lim u!1 f (s o ) Z u 0 x 1 so g(x)dx = 0 ; lim u!1 f (1 s o ) Z u 0 x so g(x)dx = 0 (2.4)
Step 2: Let us call equation 1.3 as

(s) = 2 s s 1 sin( s 2 ) (1 s) (1 s).
We know from Remark 1 that (1 s) has no zeros and poles and it is …nite in the critical strip (0 < <(s) < 1).

Remark 3. Thus, the following function will be entire/ analytic/ continuous and …nite and nonzero in the critical strip. Naturally, we can see that the nontrivial zeros the Riemann zeta function have no any privilege or exception on it. We can also observe the similar approaches in Schipani's work ([10], p100).

h(s) = 2 s s 1 sin( s 2 ) (1 s) (2.5)
Meanwhile, we know jzj = jzj for any ´z´complex number. Thus, let us write equation 1.3 again, but this time as below:

j (s)j = j (s)j = 2 s s 1 sin( s 2 ) (1 s) (1 s) (2.6)
Now, by noticing Remark 3, let us write the following one. Here s refers the values which are di¤erent than the non-trivial zeros of the Riemann zeta function. Depending on Remark 2; if s 6 =s , we see

(s ) 6 = 0 and (1 s ) 6 = 0. (s ) (1 s ) = 2 s s 1 sin( s 2 ) (1 s ) (2.7)
With the equation in 2.1 accordingly (for f (s) and g(x) see equation 2.2):

f (s ) Z 1 0 x 1 s g(x)dx f (1 s ) Z 1 0 x s g(x)dx = jh(s )j (2.8)
Right after, let's write it in the following new form with the equations in 2.3:

lim u!1 f (s ) Z u 0 x 1 s g(x)dx lim u!1 f (1 s ) Z u 0 x s g(x)dx = jh(s )j (2.9)
Because the limit result will be stay as the same, we can write it as below:

lim u!1 f (s ) Z u 0 x 1 s g(x)dx f (1 s ) Z u 0 x s g(x)dx = jh(s )j (2.10)
Now, let us handle equation 2.10 with the non-trivial zeros of the Riemann zeta function under the limit approach as u ! 1. However this time, the left side will appear in the indeterminate form as 0/0 (see the results in 2.4). On the other hand, with the non-trivial zeros, the existence of a limit-result will keep on being in the same way (see Remark 3):

lim u!1 f (s o ) Z u 0 x 1 so g(x)dx f (1 s o ) Z u 0 x so g(x)dx = 2 s s 1 sin( s 2 ) (1 s ) (2.11)
At this stage, let' s ask ourselves the following critical question: Could we …nd the non-trivial zeros of the Riemann zeta function which provide the aboveequation? Or at least, any feature about them?

Step 3: At moment, I think that we can apply L'Hopital rule to the left side of the above-equation with respect to the parameter ´u´; because:

i-) The limit of it will appear as ´0=0´with any non-trivial zeros.

ii-) The important thing here we know that there is a limit result as one of the …nite positive real numbers as jh(s o )j. It's values only depend on the non-trivial zeros of the Riemann zeta function. We mean:

jh(s o )j = 2 s s 1 sin( s 2 ) (1 s )
iii-) Both the numerator and the denominator are di¤erentiable. For example, we can get (you can also see it with Wolfram Development Platform [START_REF]The derivatives calculation[END_REF]):

d du f (s) Z u 0 x s g(x)dx = f (s)u s g(u) by g(x) = 1 sin 2 ix + 1 x 2 (2.12)
iv-) Also HERE, we have to show that the denominator shouldn't equal zero as

u (1 s) = f (1 s o ) Z u 0
x so g(x)dx 6 = 0 with any u > M.

´M ´means here; if we speak about the neighborhood of the in…nity, it is a subset of the set of real numbers which contains an interval (M; +1). This subset contains all su¢ ciently large ´u´values as ´u > M´.

PROOF. We know from ([3], p3), the reminder term R N (s) of the Dirichlet eta function for su¢ ciently large ´N ´numbers (0 < < 1):

(s) = N (s) + R N (s) ) 1 2N < R N ( ) < 1 2(N 1)
Even, we can write it more safely with a ´c´value as c 2 R and c > 1 :

1 2cN s < j R N (s)j < c 2(N 1) s
Consequently, we conclude jR N (s)j 6 = 0 at su¢ ciently large ´N ´numbers.

Meanwhile, we know (s) = (1 2 1 s ) (s) in the critical strip. Thus, the reminder term of (s) can not also equal zero with the su¢ ciently large ´N ´. Now, if we evaluate the denominator u (1 s o ) with the su¢ ciently large ´u´values at the neighborhood of the in…nity:

(1 s o ) = u (1 s o ) + R u (1 s o ) (1 s o ) = 0 and R u (1 s o ) 6 = 0 ) u (1 s o ) 6 = 0
So, let us continue by applying L'Hopital rule to equation 2.11:

lim u!1 d du f (s o ) Z u 0 x 1 so g(x)dx d du f (1 s o ) Z u 0 x so g(x)dx = jh(s o )j (2.13)
Thus, we can obtain depending on the result in 2.12 (In the meantime, after applying the rule of L'Hopital, we know that the equality feature remains the same):

f (s o ) f (1 s o ) lim u!1 u 1 so g(u) u so g(u) = jh(s o )j (2.14) f (s o ) f (1 s o ) lim u!1 u 1 so u so = jh(s o )j (2.

15)

Step 4: Anyway, let us focus on our main purpose again which was: We are searching any feature about the non-trivial zeros of the Riemann zeta function which provide the above-equality.

Here, let us draw your attention that we have used the features of the nontrivial zeros of the Riemann zeta function for the …rst time in the operations with L'Hopital rule.

Thus, since we obtained equation 2.15 by using the non-trivial zeros, the results which can be found will be related only to the non-trivial zeros ( no longer will refer to the other values in the critical strip).

With the form of the non-trivial zeros as s = + it :

f (s o ) f (1 s o ) lim u!1 u 1 ( it ) u +it = jh(s o )j (2.16) f (s o ) f (1 s o ) lim u!1 u 1 2 = jh(s o )j (2.17) 
Now, let us analyze it with s = + it for 0 < < 1:

We have already known that the following ones are …nite and nonzero:

f (s o ) f (1 s o )
; it means:

f (s o ) f (1 s o ) =
sin( so=2) (so 1) 1 so sin( (1 so)=2) so so jh(s o )j ; it means: jh(s o )j = 2 s s 1 sin( s 2 ) (1 s )

The limit results of lim

u!1 u 1 2 : lim u!1 u 1 2 = 1 If 1 2 = 0 lim u!1 u 1 2 = 0 If 1 2 < 0 lim u!1 u 1 2 = 1 If 1 2 > 0
Thus, according to these analyses, lim

u!1 u 1 2
has to equal to ´1´.

It means that 1 2 = 0. Consequently, we …nd = 1=2. SO, THE PROOF OF THE RIEMANN HYPOTHESIS HAS BEEN COMPLETED.

3. The Second Proof of The RH 3.1. A new function q(s). Let us de…ne a new absolutely convergent function as q(s):

q(s) = 1 X n=1 1 (2n) s = 1 2 s + 1 4 s + 1 6 s + 1 8 s for 1 < <(s) (3.1)
The relation between it and the Riemann zeta function looks obviously:

q(s) = 1 2 s 1 X n=1 1 n s = 2 s (s) for 1 < <(s) (3.2)

The Dirichlet lambda function:

It is a well-known absolutely convergent series.

(s) = 1 X n=1 1 (2n 1) s = 1 1 s + 1 3 s + 1 5 s + 1 7 s for 1 < <(s) (3.3)
Because the Riemann zeta function is absolutely convergent for 1 < <(s); we can rearrange it:

1 X n=1 1 n s = 1 X n=1 1 (2n 1) s + 1 X n=1 1 (2n) s for 1 < <(s) (3.4) 
It means:

(s) = (s) + q(s) for 1 < <(s) (3.5)

(s) = (s) q(s) for 1 < <(s) (3.6)
Thus, we see that the Dirichlet lambda function satis…es:

(s) = (1 2 s ) (s) for 1 < <(s) (3.7)
3.3. The functions q(s) and (s) in the region 0 < <(s) < 1. Let us write …rst for 1 < <(s):

(s) + 1 1 s = 1 X n=1 1 n s Z 1 1 1 x s dx for 1 < <(s) (3.8) 
Then by analytic continuation, we can obtain ( See also [START_REF] Menici | Zeros of the Riemann Zeta-function on the critical line[END_REF], p2 ):

(s) = 1 X n=1 1 n s Z n+1 n 1 x s dx 1 1 s
for 0 < <(s) and s 6 = 1 (3.9)

Right after, we can write the functions q(s) and (s) as below:

q(s) + 1 2 s (1 s) = 1 X n=1 1 (2n) s Z 1 1 1 (2x) s dx for 1 < <(s) (3.10) 
(s) + 1 2(1 s) = 1 X n=1 1 (2n 1) s Z 1 1 1 (2x 1) s dx for 1 < <(s) (3.11)
Then by analytic continuation for 0 < <(s) < 1:

q(s) = 1 X n=1 1 (2n) s Z n+1 n 1 (2x) s dx 1 2 s (1 s) (3.12) (s) = 1 X n=1 1 (2n 1) s Z n+1 n 1 (2x 1) s dx 1 2(1 s) (3.13) 
The relation between q(s) and the Riemann zeta function looks obviously:

q(s) = 2 s 1 X n=1 1 n s Z n+1 n 1 x s dx 1 1 s ! (3.14) q(s) = 2 s (s) for 0 < <(s) < 1 (3.15) 
Remark 4. The function (s) satis…es the Riemann zeta function:

(s) = (1 2 s ) (s) for 0 < <(s) < 1 (3.16)
Proof. In fact, it is well-known. However, it will be useful for us to show it again. It is analytic everywhere except at s = 1. Thus, it can be considered in closed form where (s) [START_REF] Weisstein | Dirichlet Lambda Function[END_REF]. Now, let call equation 3.5:

(s) = (s) + q(s) for 1 < <(s)
In 3.9, 3.12 and 3.13, we have seen by analytic continuation that all the functions (s), q(s) and (s) are valid in the critical strip.

Thus, we can write this time:

(s) = (s) + q(s) for 0 < <(s) < 1 (3.17)

Then with equation 3.15 which q(s) = 2 s (s):

(s) = (s) 2 s (s) for 0 < <(s) < 1 (s) = (1 2 s ) (s) for 0 < <(s) < 1

3.4. The Second Proof of The RH Stage 1: Now, let us call equation 3.17 here:

(s) = q(s) + (s) for 0 < <(s) < 1

On the above-equation, we see that when (s) approaches zero, the absolute values of the functions q(s) and (s) will approach to each other as to be equal.

By in other words, with any non-trivial zeros of the Riemann zeta function:

(s ) = 0 ) q(s ) = (s ) (3.18)
Even, we will see depending on q(s) = 2 s (s) and (s) = (1 2 s ) (s):

(s ) = 0 ) q(s ) = 0 and (s ) = 0

(3.19)
Meanwhile, we know (s ) = 0 , (1 s ) = 0 from Remark 2. Thus, we can consider the same comments for (1 s) as following:

(1 s) = q(1 s) + (1 s) for 0 < <(s) < 1 (3.20) (1 s ) = 0 ) q(1 s ) = (1 s ) (3.21) (1 s ) = 0 ) q(1 s ) = 0 and (1 s) = 0 (3.22)
Stage 2: Now, let us denote any complex number (as including any non-trivial zeros of the Riemann zeta function) in this critical strip as s c . Then, let us inspect the following function by equations 3.15 and 3.16 in the critical strip (0 < <(s c ) < 1) by noticing s s c :

lim s!sc (s) q(s) = lim s!sc (1 2 s ) (s) 2 s (s) (3.23) lim s!sc (s) q(s) = 2 sc 1 (3.24)
Then with the other equations q(1 s) and (1 s), we can obtain:

lim s!sc (1 s) q(1 s) = lim s!sc (1 2 s 1 ) (1 s) 2 s 1 (1 s) (3.25) = 2 1 sc 1 (3.26)
Theorem 1. All the non-trivial zeros of the Riemann zeta function provide the following equality:

lim s!so (s) q(s) = lim s!so (1 s) q(1 s) (3.27)
Notice here, all the imaginary parts have the same sign.

Proof. Let us present it as below: i ) We know that the following conditions are valid ONLY with the non-trivial zeros (see the equations in 3.18 and 3.21):

q(s ) = (s ) , q(1 s ) = (1 s )
Beside with equations 3.19 and 3.22:

q(s ) = (s ) = 0 , q(1 s ) = (1 s ) = 0
ii ) Let us call equations 3.24 and 3.26 here. In the critical strip, we see that they are entire/ analytic/ continuous functions as including any non-trivial zeros of the Riemann zeta function. And their values will be always …nite and nonzero for 0 < <(s c ) < 1:

lim s!sc (s) q(s) = 2 sc 1 and lim s!sc (1 s) q(1 s) = 2 1 sc 1
It means, the non-trivial zeros can not have any privilege or exception on them. The right and left-hand limits at the non-trivial zeros on them will be equal as:

lim s!s o (s) q(s) = lim s!s + o (s) q(s) = lim s!so (s) q(s) = 2 so 1 lim s!s o (1 s) q(1 s) = lim s!s + o (1 s) q(1 s) = lim s!so (1 s) q(1 s) = 2 1 so 1
iii ) Consequently, if we evaluate the above-results/observations as all together, we can see in a very obvious way: lim s!so With s e = e + it e :

2 e+ite 1 = 2 1 e +ite 1 2 2 e 1 = 1 e = 1=2
We see that equality 3.28 satis…es ONLY with the values s e = 1=2 + it e (let's be aware that t e can be any real number here).

Thus, depending on Theorem 1, a proper-subset of the s e values must be the non-trivial zeros of the Riemann zeta function (we see now: s s e s c ).

Consequently, we can say now that ALL THE NON-TRIVIAL ZEROS OF THE RIEMANN ZETA FUNCTION have to be in the form as s = 1=2 + it . Meanwhile, we know that t o is a proper-subset in R (the list of t o with three decimal digits is: 14:134; 21:022; 25:010; 30:424 ::: etc.).
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Stage 3 :

 3 Now, let us pass to the third stage. Here, let us try to …nd all ´se values in the critical strip which provide the following equality (notice s e s c ): lim