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3D unsteady Navier-Stokes problem with memory and
subdifferential boundary condition

Mahdi Boukrouche', Laetitia Paoli'*

Lyon University, UIM F-42023 Saint-Etienne, CNRS UMR 5208, Institut Camille Jordan,
23 rue Paul Michelon, 42023 Saint-Etienne Cedex 2, France

Abstract

We consider a mathematical model which describes the motion of a 3D unsteady fluid flow gov-
erned by the Navier-Stokes system, and subjected to mixed boundary conditions with a given
velocity on one part of the boundary and nonlinear slip conditions with a memory term reminis-
cent of Coulomb’s friction law on the other part. We establish first some regularity properties
and estimates for a simplified model. Then we prove the existence of a solution to our problem
by using a successive approximation technique and compactness arguments based on Helly’s
theorem for the velocity field.

Keywords: Navier-Stokes system, Coulomb’s friction law, history-dependent boundary
condition, variational inequality, successive approximation technique.

1. Introduction

Motivated by lubrication or injection/extrusion problems, we consider in this paper a 3D
incompressible fluid flow with mixed boundary conditions, namely non homogeneous Dirichlet
boundary conditions on one part of the boundary and nonlinear slip conditions of friction type
on the other part. More precisely let us denote by Q c R?, d = 3, the fluid domain given by

Q:{(x',x3)eR2xR: ¥ €w, O<x3<h(x’)},

where w is a non empty open bounded subset of R? with a C! boundary, and 4 is a function
of class C' on R?, bounded from above and from below by two positive real numbers. Let us
emphasize that we do not introduce any restrictive assumption on the thickness of the domain
unlike previous papers where only thin films where studied ([24, 1, 6]). Then the velocity and
the pressure fields, u and p, are solutions of Navier-Stokes system

%+(u-V)u—div(0'):f in Qx(0,7), (D
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diviu) =0 in Qx(0,7), (2)
with 7 > 0, and the initial condition
u@0) =uy in Q, 3)
where f is the density of body forces, o = —pl + 2u(6)D(u) is the stress tensor, p(6) is the
temperature-dependent viscosity of the fluid and D(u) is the strain rate tensor given by

D(u) = (dij(w) diju) = >

2

1 8u,~ aI/lj
+ S
an ax,-

Leij<3” ) 1<i,j<3.

The boundary of the fluid domain is decomposed as Q2 = T = Iy U 'y U T}, where I'y =
{(x’, X3) € Q: X3 = O} is the lower surface of the injection/extrusion device, I'} = {(x’, X3) € Q:
X3 = h(x’)} is the upper surface of the device and I'; = {(XI,X3) €Q: 0<x;< h(x’)} is the
lateral part of the boundary.

To describe the boundary conditions, we denote by sy : Ij — R? the shear velocity of the
lower surface at t = 0 and by sy{(?), its velocity at any instant ¢ € [0, 7] with £(0) = 1. We denote
also by n = (ny, ny, n3) the unit outward normal vector to dQ, by u-w the Euclidean inner product
of two vectors u and w, and by |[.| the Euclidian norm. We define respectively the normal and the
tangential velocities on 0Q by

3
un:u-n:Zuini, u,:(u,,-) owith u; =u; —u,n; 1<i<3
1<i<3
i=1

and the normal and the tangential components of the stress tensor by

3 3
o,=(-n)-n= Z oijnn;, 0y = (O-Ij)lsis3 with o = Z oijnj—oun; 1 <0 <3,
ij=1 j=1

We introduce a function g : 9Q — R such that
f gndy=0, g=0onTy, g,=0andg; =(sp,0)onlYy.
Iy

Such a function exists. Indeed, with the particular geometry of Q2 considered here, the normal at
any point (x’, x3) € I'; is independent of x3 and we may consider for instance g = (so(x’)s 1(x3), O)

for all (X', x3) € 0Q where s; is any C' function on R such that s;(0) = 1, s;(x3) = 0 for all
fn

x3 > h,, and s1(x3)dxz = 0 with h,,, = inf2 h(x").
x'eR

We assumg that the upper surface of the extrusion device is fixed, so
u=0 on Iyx(0,T7), “4)
and the velocity on the lateral boundary is given by
u=gl{ on I'px(0,T). ®))
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The normal component of the velocity on the lower part of boundary is given by
u, =0 on Tyx(0,T), (6)
while the tangential velocity is unknown and satisfies a friction type boundary condition
oyl <F on Tox(0,7), (7)

with
loe] < F = uy = (504,0)

oyl =F = 31 >0 suchthat wu; = (sof,0) — Ao, } Lo x(0,T) (8)

where 7 is the upper limit for the shear stress (we say also that ¥ is the friction threshold), which
may be given as a data or which may depend on o,,. The former case leads to Tresca’s friction
boundary conditions while the latter is reminiscent of Coulomb’s friction boundary conditions
for solids ([9, 10]).

The two conditions (7)-(8) can be rewritten as a subdifferential boundary condition

—oy € FO|u — (s0£.0)])  on Ty x (0.7)

where u; — (5o, 0) 1s the relative tangential velocity of the fluid with respect to the lower surface
of the injection/extrusion device and d(| - |) is the subdifterential of the function | - | (see [25]).

This kind of nonlinear slip boundary conditions for flows have been introduced first for
Bingham fluids ([18]) and seems in agreement with experiments ([21, 17]). Then they have
been considered also for Stokes and Navier-Stokes flows by H.Fujita during his Lectures at
College de France ([12]), paving the way to new and challenging mathematical questions. For
existence, uniqueness and regularity properties of solutions in the case of Tresca’s friction see
[13, 14, 27, 15, 28] or more recent references [2, 4].

The purpose of this paper is to extend these results to Coulomb’s friction type boundary
conditions i.e. to consider the case when ¥ depends on the normal component of the stress
tensor. For solids in contact, Coulomb established experimentally that the friction threshold #
is given by & = klo,|, where k : (0,T7) — R is called the friction coefficient ([7]). Since

3
we expect the velocity field to take its values in (H 1(Q)) , we may only expect o to take its

3x3
values in (LZ(Q)) y and |o7,| is not well defined on I'y. So following [10, 11, 8] we introduce a

regularization operator R from H ~12(0Q) to L*(Ty) by using a convolution technique. Moreover,

for this unsteady problem, we have to deal with another difficulty. Indeed the stress tensor has

the same regularity with respect to the time variable as the pressure p and we may expect only
3x3

oeH ‘1(0, T; (LZ(Q)) * ) except if the friction threshold belongs to H 1(0, T; LZ(FO)) (see [2]).

Hence we introduce also a time-regularization procedure and we let

1
F(t,x',0) = k(D) f S(t = 9|R(uls,))(x)|ds ¥x' €Ty, VYt e[0,T] 9)
0
where S is a non negative smooth real function which can be interpreted as the kernel of some

history-dependent shear stress threshold. Such kind of friction laws have been recently devel-
opped in the framework of solid mechanics (see [29] and the references therein for instance).

3



Finally having in mind lubrication and injection/extrusion problems where thermal effects
can not be neglected, we should introduce also the energy conservation law to describe the evo-
lution of the variable 6. Nevertheless, if the heat capacity and conductivity of the fluid are
independent of u and p, the heat equation is decoupled from the flow problem and we may con-
sider € as a data. More complex behaviours, leading to a coupled system of partial differential
equations for the triplet velocity-pressure-temperature have been studied in ([3]) in the case of
Tresca’s friction boundary conditions.

The paper is organized as follows. In Section 2 we introduce the functional framework and
the assumptions on the data, then we formulate the problem as a variational inequality for the
fluid velocity and pressure fields. In Section 3 we recall the existence, uniqueness and regularity
results for Tresca’s problem already obtained in [2, 4] and we establish additional regularity
properties and estimates for the second time derivative of the velocity in L*(0, T} (H(l) 2in(E2)))
and the pressure in L*(0, T'; Lé(Q)). Then in Section 4 we prove the existence of a solution for
our problem by using a successive approximation method with respect to the friction threshold
and compactness arguments based on Helly’s theorem for the velocity field.

2. Variational formulation of the problem

From now on let us denote X = X> for any Banach space X. We introduce the following
functional framework. Let

Vo = {goeHl(Q) c@=0onTLUTY, ¢, :Oonro},
and its subspace
Voa = {0 € Vo : div(g) = 0in Q,

endowed with the norm of H'(Q), and

L(Q) = {q e L*(Q): fqu = 0}.
Q
Let u € C'(R; R) and assume that there exist three real numbers p*, u, and y, such that
0<u <2uX) <p., WX)I<u, VXeR. (10)
For a given temperature field 6 € L*(0, T; L*(Q)), with T > 0, we define
3
a(@;u,v) = f 2u(@)D(u) : D(v)dx = f Z 2u(0)d; j(u)d;;(v) dx
Q Q7
Y(u,v) € HY(Q) x H(Q), Ya.e.t € (0,T),

and

_ f : A7 1 1 1
b(u,v,w) = ui—w;dx Yu,v,w)e H (Q)x H (Q) x H (Q).
Q: ox;

i,j=1



By definition of V, we have the identity
b(u,v,w) = =b(u,w,v) — f diviu)v -wdx Yu,v,w) € Vo X VyxVy, (11)
Q

and using Korn’s inequality [19], there exists @ > 0 such that, for almost every t € (0,7), we
have

allulliy o < f 2p(0)D(w) : D(u) dx < pullullgy Vit € V. (12)
Q

We assume also that

ke Wh2,T:R"), S eC'R":R"), (13)
feH'(0,T:LX(Q)), (14)
6 e W0, T;L°(Q)), 6(0) e W'(Q), (15)
£€C™([0.T]) suchthat £(0)=1, (16)
and
2 . . aMO
uy € H(QY), div(ug) =0in Q, ug = g on 0€, Fr =0onl (17)
d
with d = 3. We set
v =u—uyl. (18)

The choice of the particular boundary condition (5) on I'; plays here a role in the definition of
v. For the mathematical study this new unknown velocity satisfies two important properties:
it vanishes on I'; U T} and at + = 0. Then the variational formulation of problem (1)-(9) is
obtained by multiplying (1) by test-functions and using Green’s formula. Of course we expect

0
VE LZ(O, T, (V()d,-v) but since we consider a 3D flow domain the time derivative il is expected to
belong only to LY 3(0, T, ((VOd,-V)’) (see [4]). So we choose test-functions as gy € Vo x D(0,T).

0
It follows that (v, ¢) € L?(0, T; R) where (-, -) denotes the inner product in L?(Q), and Y (v, ) is

defined in the sense of distributional derivatives. Moreover Tresca’s boundary condition (7)-(8)
is equivalent to

o] < F

vicor+F vl =0 } onTox(0,7)

(see for instance [9]) and the boundary term derived from Green’s formula can be rewritten as

T T
—f f oy dx'dt = —A + f f T(Iv + x| - Ivl) dx’dt
0 Jry 05 To



f f oy +v)dx'dt + f f Flv + x| dx'dt

f f —|o + F) v+ pxldx'dt > 0
So we obtain

Problem (P) For k, f, 0, { and v, such that (13)-(17) hold, find
0
ve L0, 7;Voan) 0 L7(0, T: LA©))  such that 8—: e L0, T: (Voan)

and
p € H'(0.T: Lj(Q))

such that ¥ (-,-,0,) € LZ(O, T, LZ(FO)) and satisfying the following variational inequality

(5 0:0x) + (00 000) = (paivihr) + (aiv.1)

PEO + o) — ) 2 (o) x) — (Cal6: uo. 9)x) = (£ 0. 0) 1) (1%
~(¢buo, v + 1ol 9),x) = (Cb(v, 1o, @) x) Ve, x) € Vo X DO, T),

T
f fT(t,x’,an)|v(t,x’)|dx’dt
0 Ty
T t
f k(1) ( f S(t = |R(cals, ) )
0 Iy 0

v(0,)=0 (21)

where (-,-) = (-, ) 0.1).00,r) 15 the duality product between 9'(0,T) and O(0, 7). Hence the
first term in (19) has to be understood as the derivative in the distribution sense of (v, ¢) (which
belongs to L*(0, T; R) for any ¢ € V), i.e.

with

Y(v)

(20)

and the initial condition

a T
<E(v,90),)(>=—<(v,90),)('>=— fo (v ) @' dt V(g x) € Vo x DO, T).

Let us emphasize that we identify v+ ¢y and v with their trace on I['j in the definition of WY (v+¢y)
and WY(v).

When F(-,-,0,) is replaced by a given shear stress threshold ¢ € LZ(O, T,L? (FO)) in the
friction functional, i.e. when ¥ in (19)-(20) is replaced by the functional @ given by

T
Dd(w) :f f Owldx'dt  Yw e L*(0,T;L*(T)),
0 Jry

we get a description of Tresca’s friction law at the boundary. For this Tresca’s problem the
existence of a solution is established in [4] and uniqueness and regularity properties in [2].
Starting from these results we will prove the existence of a strong solution to Coulomb’s
problem (P) by applying a successive approximation technique with respect to the friction thresh-
old. As a first step we establish in the next section some additional regularity properties for the

solution to Tresca’s problem.
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3. Preliminary results
Let us recall first the existence, uniqueness and regularity results for Tresca’s problem.

Theorem 3.1 (Existence and uniqueness for Tresca’s problem). /2, 4] Assume that (10), (16),
(17) hold and f € L*(0,T;L*(Q)), 6 € L*(0,T;L*(Q)), ¢ € L*(0,T;L2(Ty)). Then there exists
(at least) one solution (v, p) to Tresca’s problem i.e. there exists

ve L*(0,T: Vo) 0 L™(0,T: L*())  such that % e L0, T: (Voan )

and
p e H'(0,T; Lj(Q)
such that
2 (V, ‘P) X |+ <b(V, v, ‘10)’/\/> - <(p’ le((P))»X> + <Cl(9; v, QD)’X>
ot "
O + 1) — B 2 (2 9).x) ~ (Call:uo. ). x) = (& (0. 0) . x) @2
—<§b(uo, v+ upd, go),)(> - <§b(v, o, 90),)(> V(e. x) € Vo x D(0,T),
with
T
dv) = f f C(t, XHv(t, x| dx'dt (23)
0 Jry
and the initial condition
v(0,-) =0. (24)
Furthermore Tresca’s problem (22)-(24) admits at most one solution (v, p) such that
ve Lg(O, T, L4(Q)).
Assume now that (14)-(15) hold and ¢ € H'(0, T; L%r(l"o)). Let
D=Dy+ Ay exp(2A3T) (25)

where

2 of I 112
Dy = 2||f<0>||L2(Q>+2THE + =l I o

L2(0,T5L2())

2 4 2 2 4
C([O,T]) + K ”u0”H1(Q)”uO”HZ(Q)”g”C([(),T])

é«/

2
+||u0”L2(Q)

2K4 2 2 2
+4+ 7||M0||Hz(Q)||§||C<[0,T])|| Cl,

1
c: = max(l, a) Ciexp(C{T),

7



2 2

2 2 2 2
C; = ||f||L2(O,T;L2(Q)) + _*”uOHHl(Q)”{”LZ(O,T) + “uO”LZ(Q) éd LZ(O,T)
4 2
+K ”uO”Hl(Q)”VMOH '(Q)||§||L4(OT)
2K* 5 5
Cl = 3+ —lVuli o oy
TK* 5
Ay = 1+ _”uOIIH2(Q)”§||C([0,T])’
A, = A2+2H +2A1T +2A,CF
ot |2, LZ(Q))
A = ar L Y@ o)
! ! a 110t

where K is the norm of the identity mapping from H!(Q) into L*Q), ¥(Q) is the norm of the
trace operator from H'(Q) into L2(6Q) and

2

Ao = Kol olluollee + 2K [V(600))[| g ol

ol @) + [FO)| 20, + MHollze [£/©)]

2 2

1> 12 14(u7)” || 08 2 2

A = _”uO”Hl(Q) 4 C([OT])+— ™ ”uO”Hl(g)”(”C([o,T])
@ Ot || =0,1:L=()
+ 4K%|
14u)? || 06| TK* 2
a  otli=ori=@) 2« ’

+K*

(0.7
Then we have the following regularity results:
Theorem 3.2 (Regularity for Tresca’s problem). /2] Assume (10), (14)-(17)and ¢ € H' (0, T’ Li To)).
Assume furthermore that

a,3

Then Tresca’s problem admits (at least) one solution (v, p) such that

D 20, T: Voan) N L2O.T:LAQ),  p € L20.T: L),

ot
Moreover
||v(s)||i2(g) + a/](; ||v||f{1(Q) ds < Ciexp(C{s) Vaesel0,T], (27)
P 2 D S119 2
H—V(s) +la-3K24/= v dr < Agexp(2Ass) Vae se[0,T],  (28)
ot L2(Q) a ot H!(Q)

8



and

D a
() T < w/— —. 29
IVl 20,711 @) < p < 3K2 (29)

H'(0,T; Voai) € L0, T; H(Q)) c L¥(0, T; L*(Q))

Remark 3.1. Since

we infer from Theorem 3.1 that such a solution is unique. In the rest of the paper we will call this
solution the unique regular solution of Tresca’s problem.

All these results allow us to establish now an additional property which will play a crucial
role in the proof of our main Theorem 4.4 in the next section.

Proposition 3.3. Let us assume that { € H 1(0, T, L%r(l“o)), (10), (14)-(17) hold and condition
(26) is satisfied. The unique regular solution (v, p) of Tresca’s problem obtained at Theorem 3.2
satisfies also

v 2 1 ! o0 2

o5 €L (0.7: (Hy,,,(Q) ) and peL™(0,T; L)
with H} , (Q) = o € HY(Q) : div(p) = 0}.

Proor. Indeed we have

<% v, ¢) ,)(> + (b, v,0),x) = ((p. div(@)). x) + (a(®; v, ). x)

T
w7 [ e pd=phavar > ((Fon) - (G o) - € w0

~(gb(uo, v + uod, @) x ) = (Lb(v, 0, 9),x) V(. x) € Vo x DO, T).

0
By choosing ¢ € H(l)(Q) then taking —y instead y € D(0, T'), and recalling that 6—‘; e L0, T: L*(Q)),

we obtain

ot
~((f,9),x) + (¢ (o, 9)x)  V(p,x) € Hy(Q) x DO, T).

Let w € L*(Q) and w € L(Q) be defined as

| f~
w=w-—- — wdx.
Q| Jg

There exists a linear operator P € L(Lg(Q), H(l)(Q)) such that div(P(w)) =wforallw e Lg(Q)
(see [20] page 15 when 0 is smooth and [16] Corollary 2.4 page 25 when Q is a connected
bounded subset of R with a Lipschitz continuous boundary). Hence

((p.aivip)).x) = <(@, 90) ’X> + (DO +uol, v+ uoZ, ), x) + (a6; v + uod ). x)

((p-7)ox) = ((p)) = {5 P9 )+ b0 10 s . PO
+(a®; v + o, Pw)), x) = ((f, P, x) + (¢’ (o, POW)) . x)
9



It follows that

s ov
|<(p, w),)(>| < % 0 T_LZ(Q))”P(W)XHLI(O,T;LZ(Q))

+v + uolll=0,r:14pllv + uolll=0.r:1 @) IPWX L1 (0,7:14 )
v + uolll 0,710 @) IPOX L1 0,7:11 ©))

+If ||L°°(O,T;L2(Q))”P W)y ||L1(0,T;L2(Q))

+HIZ o, rpllollL2 o) IPWX L 0.7:120)

Finally, observing that

||P(W)||H|(Q) < ”P“L(Lg(Q),H(])(Q))”W”LZ(Q)

< 1Pl gz @) Wiz

we may conclude that p € L*(0,T’; L%(Q)).

2
0div

3D

0 ,
In order to prove that 8—; belongs to LZ(O, T; (H1 (Q)) ) we apply the same kind of argu-

ments as in [5]. Indeed, the unique regular solution of Tresca’s problem is obtained as the limit
of the solutions of the approximate problems (P?) introduced in [2, 4] when the parameters &
and & tend to zero. More precisely, let (w;);>; be a Hilbertian basis of “V which is orthonormal
for the inner product of L?(Q), and orthogonal for the inner product of H'(€) (the existence
of such a basis is a direct consequence of Theorem 6.2-1 page 137 in [23]). The approximate
problems (P?) are solved by using Galerkin method and for all £ > 0, 6 > 0 and m > 1, we have
vo :[0,T] — Span(wy,...,w,) such that

ot

+a(0;v2,, wi) + f ¢
T

2
5
1% %
em—é dx' = (f, wr) — a(6; up, w)
o \VEr+ Vo,

~' (ug, wi) — {b(ug, V2, + uod, wi) — Cb(V,,, ug, wi)  ace. in (0, T),

forall k € {1,-

Under the previous assumptions we have = HZ(O, T;Span{wy,...

--,m}, with

v (0, = 0.

em

N° 1 1
( Leom ) wk) + b0 VW) + = f div(? WO - widx + 5 (div(vgm), div(wk))
Q

(32)

(33)

,wm}) and (32) holds

for all ¢ € [0, T]. So we may differentiate (32) with respect to the time variable and we get

10



azvgm +b avgm o +b avgm

o " e Vo W] B\ Vew

1 A 1 W 1 A
+—fdiv(\7ﬁm)v‘s—':-wdx+§fdiv(v5—':)7im-wdx+5(dlv(va ) a’zv(w))

s
f 2u’ (9)—D(v ) - Dw)dx + f ZM(G)D(a(‘;‘;m) : D(w) dx
Q

ot v‘S w
N S
ro O g2 + v, P
5 s 0, 5
New ) (ng' = )(ng . w)
+ | ¢ & —
Lo | Ve + Vgl (8 + Vol )

)
(3]; ) " (ug, w) = §f2l1 (9)—D(u0) D(w)dx
0
~¢' | 2uB)D(uo) : D(w)dx — {'blug, v3,,, w) — £b (uo, 62jm ’ w)
Q

ov 0
228 b(ug, ug, w) — b0, ug, w) — gb( e uo,w) a.e. in (0, 7),

5
%
for all w € Span{wy, ..., w,}. Next we choose w = % and we observe that

2 2 2
8v§m v6 BVF 1 av(é‘sm
ot em ot ot ,
dx' >0

f ¢ - dx' > f te?—— 1
3/2 - 3/2 -
T | V& + el (22 + pi,P) Lo (&2 + WeuP)

and

bl N, e, lfd & )(Tgm ﬁvgmd _0. b N, o\
Vem g, az 2 VWV o T “oTa 0 Tar | T

Moreover with Lemma 4.1 in [4] we have

2 S . S
O A N A e A A
< Ciexp(Cls) Vsel0,T]

Then, by using Young’s inequalities and Cauchy-Schwarz’s inequality we obtain

2 2

8ng( ) . 2 fs i (0vgm) It
——(s - w|—
, [D s||ave,,
+|la—3K | — — dt < Agexp(2Azs) Vs e[0,T]
a 0 ot H!(Q)

(for the details the reader is referred to Proposition 4.1 and Proposition 4.2 in [2]).

11

(34)

(35)



Now let ¢ € HOdl (). For all m > 1 we define ¢,, as the orthogonal projection of ¢ with
respect to the inner product of H!(Q) on Span{wy,---,wy;,}. Then forallm > 1 and y € D(0,T),
and recalling (11), we get

av T e o
- a. ¥m dt— b Em’ ms V b s ¥mo —= dt
1
+—f fdiv(vgm)vgm~gom)('dxdt
2 Jo Ja
17 .
+gf(; (dlv( ﬁt) dlv(gom))/\/dt
T avé
f (f 2u (9)—D(v m) - D(som)dX+a(9 a‘gm,som)))(df

f f Von ¥m_ v dx'di
82+|V |2

5 0%\ (6

©Om (Vsm "ot )(vam ’ (,Dm) )
f f 32 NN - (.92 v |2)3/2 x dx'dt

= fo (( 8];,90,") é/l (uo, QDm))th - f f2§ (9)—D(u0) D(@)x dxdt
T

- fo fg 20 1u(0)D(uo) : D(@p)x dxdt — fo ¢ b(ug, v2,, o)y dt

T avé T
—f &b (uo, %, sam))(dt - f 224" b(ug, uo, em)x dt
0 t 0
T T Mo
- f éwb(ng’an ‘;Dm))(dt_ f {b( avaOa ‘;Dm))(dt'
0 0 ot

Using the continuity of the trace operator from H!(Q) into L*(0Q) (see Theorem 1.23 page 17 in
[26]) we obtain that

T 0
ot “Om ,
0

O &2 + V3,

(36)

< H— llmlle2aolllzzo,rr) = m—ste0 O
Ot ll1200.7:12(T))

and

5 0\ (0
©Om (vsm C Tor )(Vsm ' ‘pm)
f f 372 xdx'dt
o 82 Ve + 12, (82 + V2P?)

em

3\1

7 llomlles o) lbellze©,7;R) —m—+c0 O.

L*(0,7:L4(T))

—||f||L2(0 T:L2(Tp))

Then, by using the same compactness arguments as in [4] we may pass to the limit as m tends to

12



+00, then as ¢ tends to zero. We obtain

ov, T ov, ov,
_‘fOT(a ’QO)X dl+‘fO\ (b(a,vg,QO)'Fb(Vg,E,(p))){dl‘
+f (f2 ’(9)—D(v8) : D(gp)dx+a(0'%,go)))(dt
0 Q 0

"((of

f f 20 4(O)D(uo) : D)y dixi ~ f C'b(uto, va, @)y di
a T
f cb i, - fo 22 b, o, )
f {'b(ve, ug, @)y dt — f éb( uo,so)xdt (e, x) € Hyy;, (Q) x DO, T).

It follows that

d (v, T( (0ve Ive
<8t (at ,90)7X> j(; (b(ﬁ,vsaso)'i'b(\/s, E,SD))th
+f fZﬂ'(O)@D(vg) : D(p)dx + a6, %,so X dt
0. \Ja ot ot

) T 50
= j(: ((0_]; )_é«// (uo, @))){dt—fo f2fﬂ’(9)—D(u0) : D(go))(dxdt

f f 20 u(O)Dluo) : Dig)y dxdt — f bl vi o)y di
a T
fo Kb(uo, o ,so)xdt—fo 24 b(ug, uo, )x dt
T T a N
- fo 'b(ve, ug, @)y dt — fo ﬂ?(%,uo,so)xdt V(g, x) € Hy,;, () x DO, T).

82
Using the previous estimates we obtain that —- % e L*(0,T, (HOdzv(Q))/) and remains uniformly

bounded with respect to € in L>(0, T, (H0 4i»(€2)") which allows us to conclude. [ |

Let us define

X3

F(Q) = {5 € (LZ(Q))3 div(T) € L4/3(Q)}

endowed with the norm
_ —_n C— 12
1FlE@ = (1T 0 + V@) VT € FQ).
By using the existence, uniqueness and regularity results for Tresca’s problem, we have:

Proposition 3.4. Let us assume that ¢ € H 1(O, T; Li(l“o)), (10), (14)-(17) hold and condition
(26) is satisfied. Let (v, p) be the unique regular solution of Tresca’s problem and let o = —pl +
13



2u(@)D(v + upl). Then o € L°°(0, T;F (Q)) and there exists a positive constant C gy, depending
only on the data u, {, f, uy and 6, such that

(37)

llollz=0.7:r)) < Caata (1 + H )
Ot Il 220.7:12(To))

3x3
Proor. Starting from the previous results, we get immediately o € L°°(O, T; (LZ(Q)) * ) and

ol 0.2y < Pl + 1| |[DO + uod)| LT L2Q))

ov ,( @
< WPy || e, X (552 + Hol@liClcqor) .
r
+M*(||P||L(Lg(g),Hg)(Q)) + 1) (m + Mol @1 lleqo.ry)

+||P||L(L§(Q),H3)(Q))(||f||Lw(0,T;L2(Q)) + ||u0||L2(Q)||§'||C([0,T]))-

In order to estimate div(o-) we choose ¢ € (Z)(Q))3 in (22). We get

<ﬁ 9, i)(> + (b + uoZ, v + uoZ, ), £x) = ((p, divie)). x)
+{a®; v+ ol @), £x) = ((f,0) £x) = (&' (0, @), £x)
for all y € D(0, T). It follows that

0
<E (V’ 90) a)(> <b(V + M0§ v+ MO{ 90) X f f Z 0-1] ded (39)

= (£, 9).x) = (&' (w0, 9) . x)

T 8
i dxdt
I, faea
(‘ ov
<

ot L=O.TLA)
+KIW + uodll7 w0 7101 oy leX L 0,7504 )

(|Q|4( v

ot
+K(3? + ||u0||Hl(Q)ll(llC([o,T])) Xl o.r:L4)-

and thus

+ [1fllz=0,7:12) + lluollL2) ”5,”0([01])) llex Iz o.7:L2)

+ 1= o,r:12@)) + lluollLz o) ”g,”C([O,T]))

L>(0,T;L2(Q))

Hence div(c) & (L'(0, T L4(Q)))’ = L=(0,T: L3 () and

o)

+ 1 fllz=0.7r:12@) + oLz ”{/”0([01]))

morLie 519 l( Lo(0.TL2AQ))

+K(3? + ||M0||H1(Q)||§||C([0,T]>) '

Then with (28) we may conclude with

Caara =2 max(gdam’ adam)
14



where

~ 1 VIy(Q)
Caara = (1Pl 2z, + 1917 Ja CPAT).
Caara = (”P”,[(LS(Q),H(]](Q)) + |Q|4)(\[A4 exp(A3T)
a 2 ,
HK + K2 (555 + ol lllogorn) -+ Ifliora@y + ol oo
o
i1 (1Pl cazvmyen + 1) (555 + lollmililico

Remark 3.2. With (39) we get

T T
<dlv(0-)’ 90>(1)/(Q))3,(D(Q))3X di = fo‘ <dzv(0'), "D>L4/3(Q),L“(Q)X i

0
= <(a—‘;, (,0) ,X> + <b(V +uol,v + upd, ‘70)’X>

~((fo X))+ w09 x) Ve (DQ). Yy € DO, T)

and by density of (D(Q))3 into L*(Q), the same equality holds for all ¢ € L*(Q) and for all
¥ € D(0,T). Hence, for all ¢ € L*(Q), we have

(divion), S”>L4/3<Q>,L4(9>
ov ’ . 00
:(E’SO +b(v+uo{,v+uo§,tp)—(f,¢,0)+§ (MO,‘P) in L*(0,T).

4. Existence for Coulomb’s problem (P)

In order to prove the existence of a solution to problem (P) we will apply now a successive
approximation technique with respect to the friction threshold.

First we observe that, for any o € L™ (O, T, F (Q)) we may define ¥ (-, -, 07,). Indeed,
—\3
Proposition 4.1. The set (Z)(Q)) . is dense in F(Q) and there exists a linear continuous oper-
ator y, € LIF(Q),H™/2(0Q)) such that
V(@) =T -n ondQ forany T € (D(Q))>.
Moreover the following Stokes formula remains true for all & € F(Q) and w € H'(Q)

(o, grad W)(LZ(Q))3X3 +(div(o), W>L4/3(Q),L4(Q) = (yn(0), W>H-'/2(6Q),H'/2(69) (40)

where (-, )2y denotes the inner product in (L*(€))><.

Proor. We apply the same arguments as in the proof of Theorem 1.1 in [30] and Theorem 1.2.5
in [16]. |

15



For the sake of notational simplicity we will denote simply o, instead of y,(c) for any
o € F(Q). Then, following [10, 11, 8] we introduce a regularization operator R by using a
convolution technique which fits the mechanical meaning of the normal component of the stress
tensor that is defined as the ratio of a force by a surface. More precisely, for any o € F(Q) we
define R(c,,) € C(I'y) by

R@() = (T, Bo) V¥ €T, 1)

H-1/2(6Q),H!/2(50Q))

where ¢ is a function belonging to Dy X R3;R?) and @, : Q — R is defined by @ (x) =
@(x’', x' — x) for all x € Q and for all x” € T'y. It follows that R € LC(F Q); C’(Fo)) and we have:

Proposition 4.2. Let o € L™(0, T F(Q)). Let us recall (see (9) and (13)) that

F(t,x, o) = k(1) f S(t = 9)|R(cals,))(x)|ds V' €Ty, V1 €[0,T]
0

where S € C'(R*; R*) and k € WH°(0, T; R*). Then F(-,-,0,) € Wl"x’(O, T; LZ(FO)) and there
exists a positive constant C),  , depending only on ||R|| z.(r@y.cry)) and on the data S and k, such
that

||7:(a ) O-”)”WI’M(O,T;LZ(F())) < C;gmllo-”L“(O,T;F(Q))-

Proor. Since R(o,) € L°°(0, T;C(Fo)), it is straighforward that ¥ (-, -, 0,) € W“"’(O, T;LZ(FO))
and

1FC, - Tl .7:02r0)) s 42)
< Tkl .08 lleqo.rplIRI . @rcaon Lol ol o.r:r @)
Moreover
0F €, n)

ot
+k(t) f S'(t = )|R(ou(s.))()|ds ¥ ae.t€[0,T].
0

(t,) =K@ fo S (t = )|R(cals,))()| ds + kS O)|R(orat,)) )

Then

H 3(7:('(;; ), )

<
0)

140] fo 15 = )|[R(euC5: )| 2qr, D5
k@IS O[R(et: ) 2 c,, + D) fo 8" (t = O||R(a(5: )| 2 ey 5 (43)

< (Tllk'lle(o,T)llS||C([0,T]) + Tkll=,0 1S lleqo.ry + ||k||L°°(O,T)||S”C([O,T]))
12
X|IRI|z.cr@caoplCol Aol r.ray Y ae tel0,T]

IAT

and we may conclude with

Cpra = max(T, 1)(||k'||L°°(0,T)||S lleqo,rny + lIkllz=0.) IS "lleqo,rn + ||k||L°°(0,T)||S”C([O,T]))
X|IR| caonTol'’?
L(F(Q);CTo) I 0

16



Now let 7, € [0,7), T € (r,,T] and ¢. € H'(0,7.;L3(Iy)). Possibly modifying £. on a
negligible subset of [0, 7.] we may assume without loss of generality that £, € C([O, 7.]; L2(T 0)).
Forany L € LZ(T*, T; L%(FO)) we define £ € HI(O, T, L%r(Fo)) by

tu(1,-) on I'px[0,7.],

) = 5*(T*,~)+£L(s,-)ds on I'gX|[7., 7], (44)

f*(T*,~)+fL(s,-)ds on I'gx|[7,T].

The corresponding Tresca’s problem admits a unique regular solution on [0, T'], denoted as
(¢, pb), if condition (26) holds. Let us define

@0_@0+(A2+2

H i +2A4T + 2A2c$) exp(2A3T)

L2(0,T;L2(Q)

where Dy and A; for i € {0,...,3} are defined as in Section 3. Then 2 is a positive constant
depending only on the data u, ¢, f, 8 and uy, and condition (26) is obviously satisfied if

Ty(Q)? ( oL,

2
a ’6t

a,3
2A5T —
xpAaT) < §og

’
Dy +

L2(0,7,;L2(Tp)) "[ﬁ L2(x., TLZ(Fo)))

We will assume that

3

(04

exp(2AsT) < —. 45)
LOrmy T 9K*

ot |
ot

Ty(Q)?
o

/
Dy +

Then, for any L € LZ(T*, 712 (Fo)) such that

Ty(Q)?

LI exp(2A3T)
oL, |I?

ot

L2(1.,m:L2(T))

@’ Ty(Q)*
<2 py 4 2L
~ 9K* ( 2 @

we may define le W“’"(O, T, L%r(Fo)) by

(46)

exp(2A3 T))
L2(0,7.;L2(Tp))

vy €Ty, Yte[0,T],  (47)

Ut,x') = F(t,x,0h) = kt) f S(t - HIR(h(s.)
0

ot
with o = —=p’T + 2u(O)D(' + upl) and we let (L) be the restriction of 5 the time interval

[T, 7].
By using Proposition 3.4 and Proposition 4.2 we get

L2(0,T; Lz(l"o)))

2
L2007, L2(To)) " ”L”LZ(T*’“LZ(F"”) )
\/C_L’CXP(—A_?,T)( 3 D/)I/Z)
Viy@ \9k* ) )
17
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Hence

\/c_yexp(—Ag,T)( o’ _D,)l/z)
Vv 9Kt

and there exists p > 0 such that, for any 7 € (7., 7. + p), X(L) satisfies (46) i.e.

2Dl 200y S ClaaCaara VT — T4 [1 +

Ty(Q)

IS r, 2z, XPRAST)
Ty(Q) |9t
o ot

a,3

2 (s

exp(2A3T)) .
L2(0,7.:L2(Tp))

Thus, for any 7 € (1., T« + p), X maps B = {L € LZ(T*, T; Li(l"o)) satisfying (46)} into itself.
So, starting from any Ly € B, we may construct by induction a bounded sequence (L,,),>o of
B such that L, = 2(L,,) for all m > 0. For all m > 0, we let

C.(t,r) on TIox|[0,7.],
f

f*(T*,-)+fLm(s,-)ds on I'gX|[7., 7],

On(t,) = (48)

5*(7*,-)+f L,(s,)ds on Tyx|[r,T],

we denote as (v, p’») the unique regular solution for the corresponding Tresca’s problem and
bn(t, X') = F(t, X, 0m)

= k(1) f S(t = $)|R(o(.))@)|ds  Vx' €Ty, Vr € [0.T], )
0

with o = —p I + 2u(@)DOV" + ug?).
Since £, € W1’°"(O, T, L%r(Fo)), we may assume without loss of generality (possibly modi-

fying £, ona negligible subset of [0, T']) that b € C([O, Tl; L_%(I“o)) and with (44) and (48) we
get

&s(t, ) on 1—‘0 X [Oa T*],
t tag
0T, ) +f Linyi(s,-)ds = f*(T*,-)+f ——(s,)ds on Tox[r.,7],
Cme1(1,7) = 7. 7 0s

T T 8?,”
f*(T*’ ) + f Lm+l(sa ) ds = f*(T*’ ) + f a_(S’ ) ds on IﬂO X [T’ T]a
Ty Ty s
1.e.

bt (t,) = €@y ) + (L8, ) = T(7,)) on To X [1,,7]

for all m > 0.
With the estimates obtained in Theorem 3.2, Proposition 3.3 and Proposition 3.4 we in-

2 b
6:2 , p'» and o are uniformly bounded in W1’°°(0, T: LZ(Q)) NHY O, T; Voai),
LZ(O, T; (H(l) dl.v(Q))l), L°°(0, T: L(Z)(Q)), L°°(0, T:F (Q)) respectively and since £ maps B into itself

we have also L,, uniformly bounded in LZ(T*, T; LZ(FO)).
18
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ovln
ot
0 avf'" 0 1 ’ . .

C ([O, T];(V()d,-v) and rr e C ([0, T];(HOdiv(Q)) ) Moreover, possibly extracting a subse-

quence, we have

Hence, possibly modifying vi» and on a negligible subset of [0, 7], we have v/ €

a fm 8
vhn, % -, 0_‘; weakly star in L°°(0, T, LZ(Q))
and weakly in L*(0, T; Voair),
62‘}5,,1 2V ) ) | ’
prai vy weakly in L (0, T, (Ho div(Q)) ),

pi" — p  weakly star in L°°(0, T;Lg(Q)),

L, — L weaklyin LQ(T*,T;Li(FO)),
and, for all r € [0, T']
Cn(t,-) = L(t,-) = (.(t,-) strongly in L*(Ty), if t € [0, 7.],
Cu(t, ) = (t,) = C(Ty, ) + ft L(s,-)ds weakly in L*(Ty), if t € [1., 7],

Cu(t,) = (1, ) = Cu(Ts, ") + f L(s,-)ds weakly in L*>(T), if t € [1, T].

By using Aubin’s and Simon’s lemmas, and possibly extracting another subsequence, we
have also

gm
a(;t — % strongly in LZ(O, T, LZ(Q)), (50)
and
vin > v strongly in C°([0, T1; LY(Q))- (51)

Moreover, by using again Aubin’s lemma (see Theorem 2.1 page 271 in [30] with Xy = V),
1
X, = L*(Q) and X = H*(Q) with 3 < s < 1) we have also

vin — v strongly in Lz(O, T; HS(Q)),
and with the trace theorem we infer

0
Possibly modifying v and a—‘; on a negligible subset of [0, T'], we have v € C([O, Tl; VOdiv) and
ov

o € C(10. 71 (Y, () ). Similarly recalling that £ € H'(0, T; L*(€)), possibly modifying f

19



on a negligible subset of [0, T'], we have f € C([O, T, Lz(Q)). By passing to the limit as m
tends to +oco in the corresponding Tresca’s problem we obtain that (v, p) is the unique regular
solution on [0, T'] of Tresca’s problem corresponding to a friction threshold given by ¢. Since
¢ € H'(0,T; L2(Ty)) we infer that o = o = —pId+2u(0) D(v+uo{) satisfies o € L¥(0, T; F(Q)).
With the previous convergence properties it is obvious that

on -~ g =o' weakly in Lz(O, T; (Lz(Q))3X3).

But, this weak convergence does not allow us to pass to the limit in the nonlinear relation (49).
Nevertheless, by using compactness arguments based on Helly’s theorem we may obtain:

Proposition 4.3. Let us assume that (10), (13)-(17) and (45) hold. Then
t
Uu(t,x') = U, x') = k(D) f St - 9|R(ol(s.))@)|ds  Vx' €To, Yt €[0,T].
0

and

bn — € strongly in Lz((O, T) x FO).

avin 0
PRrOOF. Since( ;t ) converges strongly in LZ(O, T;LZ(Q)) to 6—:, we infer that
m>0
onfn 9
aZ — 0 strongly in L*(0,T),
ot 01|l

and, possibly extracting a subsequence still denoted (v, pr),.s0, there exists a negligible subset
A of (0, T) such that

Ovin

o (t,-) strongly in L>(Q), for all € (0, T) \ A. (52)

ov
f.- _
(’)—>(9l

On the other hand, the sequence (v"),,o is bounded in H'(0, T; Vou,) € H' (0, T;HI(Q)), )
it is bounded in CO([O, T];HI(Q)) and, for all # € [0,T], there exists another subsequence of
(v )m=0 such that (v (z, -))m20
order to avoid this difficulty we observe that (v"),,so is bounded both in CO([O, T]; HI(Q)) and

in BV(O, T, HI(Q)). So we may apply compactness results for functions of bounded variations,
namely Helly’s theorem (see Theorem 2.1 page 10 in [22] for instance): from any sequence of
functions from [0, '] with values in a Hilbert space X which is uniformly bounded in norm and
in variation, we can extract a subsequence which converges pointwise weakly in X to some func-
tion of BV(0, T; X). Thus we obtain that, possibly extracting another subsequence, still denoted
(v, p™),us0, we have the following pointwise (this is the key point) convergence property:

converges weakly in H' () but this subsequence depends on 7. In

vin(t, ) = A, ") weakly in H'(Q), for all ¢ € [0, T'] (53)

with A € BV(0, 7; H'(Q)). Then, for all ¢ € H'() and for all y € D(0, T) we have

(1) 0) 1 @V D = (A0 0) gy o x (O forall 1 € 0,71
20



where (-, )1 (q) denotes the inner product of H!'(Q) and

(v 1 ).0) g o ¥ O < Iidllcqory el @IV llo.rmie) — forall 1€ [0.7].

We may apply Lebesgue’s dominated convergence theorem and we get

T T
fo (me(t’ ')"'D)Hl(m\/(t)dt_) j(; (A(t’ ')"’D)Hl(m)((t)dt'

Owing that (v/"),,50 converges weakly to vin L2(0, T; Voai), we infer that A = vin LZ(O, T:H' (Q)),
1.e.

T
2
f A = vt )10, 4 = 0.
0
It follows that there exists another negligible subset A" of (0, T') such that
A,y =v(t,-) inHYQ), forallz e (0,T)\ A’ (54)

and with (53) we obtain

vin(e, ) = A(t, ) = (1, ) weakly in H'(Q), forall 1 € (0,T) \ A”. (55)

. (9\/5'" 1 ’ ) .
Recalling that, % belongs to C([O, T1, (Ho dl.v(Q)) ) N LDO(O, T,L (Q)) for all m > 0, we infer

-
that is weakly continuous with values in L*(Q) on [0, 7] and

gm fm
LA < |2 forall € [0,T]
ot L2(Q) ot L2(0.T:L2(Q))

(see Lemma 1.4 page 263 in [30]). Now, let m > 0. For all # € [0, T'] we define f,(t,-) € H Q)
by

avin
{0 )iy = = (%(z, )+ uod (0. 90) —a(6:v™ (1) + ul (). ¢)

=b(vr (1) + ol (0. (1) + uol(1).¢) + (2. ). ) Vip € Hy(€Q).

Then, consider now ¢ € H(l) 4i,(§2). With (22), we obtain that

T
fo (fonlt. ), 90>H71(Q)’H(1)(Q X(Hdi=0 Yy eDO,T).
So

<fm(t, ')a ¢>H’1(Q),Hé(0) = O a.c. in (0, T)

and, using the continuity of the mapping ¢ < Sty 0), g0> on [0, T'], we infer that the

H'(Q).H,(©)
previous equality is valid for all ¢ € [0, T]. It follows that there exists a mapping p’" : [0, T] —
L%(Q) such that, for all ¢ € [0, T']

—(vrln(t .
<ﬁn(t5 ')’ ¢>H‘1(Q),H(1J(Q) - <Vp (t’ )’ QO>D'(Q),D(Q) V‘P € D(Q)
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But, for all 7 € [0, T'], we have p(z,-) € L5(Q) and thus

V() 8) 0y iy = (P () div())

= —(p"(t.).div(g)) Vg € DQ).

D'(),D(Q)

It follows that, for all r € [0, T'],

n

0
(P™(2.). div(p)) = ( ;l (t,) + ol (1), 90) + a(0: v (1, ) + uol (1), )

+b(V (1, ) + uol (1), (2,) + uol (1), ¢) = (F(1, ), ¢) Y € DQ)

and by density of D(Q) into H(l)(Q), the same equality is valid for all ¢ € H(l)(Q). With the same

arguments as in Proposition 3.3, we obtain also that p» € L°°(O, T;L%(Q)) and p’ = p' in

L°°(O, T; L%(Q)). Thus possibly modifying p» on a negligible subset of (0, T') we have

. Ayl ,
(P (t, ), div(p)) = ( 5 (o) + ol (t),so) +a(0; v (1, ) + uol (1), ) (56)
+(vO (1) + uol (). (8, ) + ol (0, ¢) = (f(1.).¢) Vo € HY(Q), Vi e[0,T].
Similarly, possibly modifying p on a negligible subset of (0, 7"), we have
. ov , )
(p(t, ). div(g)) = (E“’ )+ ol (1), go) +a(6; (2, ) + uol (1), ¢) 57

+b(v(t, ) + uol (1), v(t. ) + uol (1), ¢) = (F(t.).¢) Vo € Hy(Q), Vit e [0,T].

Now let w € L*(Q) and w € L3(Q) be given by

1
w=w-— — wdx.
1 Jo

For all m > 0 and for all ¢ € [0, T'] we have
(P™(t,) = pt, ), ) = (p™ (1, ) = p(t, ), w)
vin v
- (7@, )= (), P(w)) +a(0: v (¢, ) = v(t. ), P(w))
by (2,) = vt ),V (2, ) + upl (1), POW)) + b(W(t, ) + uol (1), V7 (8, ) = w(t, ), P(w))

where P is the linear continuous operator from L(Z)(Q) into Hé(Q) such that div(P(w)) = w for all
w € L3(Q). With (51), (52) and (55) we get

(p(t.) = p(t.).%) > 0 forall w € LX(Q), forall 1 € (0,7) \ (AU A"). (58)

By using the definition of ¥ we obtain

|F (1,5, 0y = Ft,x', )| = k(@)

fo S(- s)(|7z(af;m(s, 9))] = IR, -))(x’)|)ds

< k(1) f S(t = 9|R(o(s.) = oh(s,))(x)|ds  Vx' €Ty, Y € [0,T].
0
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Thus, with the definition of R and Stokes formula (40), we have
|F (1,5, o) = F(t,x', %)
!
< k(1) f S =9)|(e"(s,9 = (s, ), grad 3.
0
t
k(1) f St = s)[(div(e(s,) - o'(s,)), G
0

ds

(L2(Q))3><3

L4/3<Q>,L4<fz>‘ ds

and with Remark 3.2
|T(t, X, O'f;") - F(t,x, (Tﬁ)|
!
< [Ikllz=0.1) IS llcqo.ry fo (|(pCs. ) = P (s, ). divi@o))| + |a(@; v (s, ) = v(s, ), @w)]) ds

! 8v€m
k=01 IS oo f (—
Ot ot

HI&l L 0.7 IS Mleqro. 1) f |b(v[’"(s, Y= (s, ), V" (s, ) + upl (s), gbx/)| ds
0

ds

ov B
(Sa ) - E(S’ ')’ ‘;Dx’)

!
Ikl 0.1 IS lleqo.ry f |6(v(s, ) + 1ol (), V" (5,) = (s, ), @ )| ds  ¥x' € Ty, ¥t € [0,T1.
0
With the previous convergences results (51), (52), (55) and (58), we infer that, for all x” € ['y:

(p(s.) = p™(5,), div(@e)) = 0 Vs €[0,TI\(AUA),

a(@; v (s,-) = v(s,"), ) > 0 Vs e[0,T]\ A,

ovim
ot

(s,:)— %(s, -),¢x/) -0 Vsel[O0, T]\A,

b(vor(5.) = v(s, )V (5,) + uod (s). @) > 0 Vs € [0,T]\ A",
and
b(v(s. ) + ul(5). v (5,) = v(s, ). B ) > 0 Vs €[0,TT\ A",

€I11
Owing that yhm, o and pfm are uniformly bounded in L°°(O, T;HI(Q)), L°°(O, T;LZ(Q)) and

L”(O, T; L%(Q)) respectively, we may apply Lebesgue’s dominated convergence theorem and we
conclude that

F(t.x' . 0lr) > F(t.x',0h) Vx' €Ty, Vi e[0,T].

n

Moreover, recalling that R € LC(F (Q); C(FO)), we get

|7:(t, X, cri’”)|
Cn

< Tkl .18 leqo.rplIRI £.r@:caopllo ™l o.r:r@)y VX" €Ty, Yt €[0,T]
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and with Proposition 3.4

|T(t, x, Gﬁ’”)|

ol
< Tk 20,1 IS Nleqo,mplIRI £.(F@):cao)) Cdata (1 + H—m )
ot 2,12y

< Tkl z=0.0) IS lleqo.rp IR £.(r@y:c@o) Caata
< 1+( oL ¢ L ) ]
ot 12(0,7.:L2(T)) L2(1.,7;L%(T0))
< Tkl 1) IS lleqo,rp IR £.(r):caro)) Cdata
V&exp(—Ag,T)( o’ , 12

-D Vx' €Ty, Yt €[0,T].
Viy@Q) \9K* O) ] "

x| 1+

Hence, by using again Lebesgue’s dominated convergence theorem, we infer

Cn=FC,-, O'fl’”) - F(,-, Uﬁ) strongly in Lz((O, T) x Fo).

Let us consider now 7, = 0 and £, = 0. Then there exists p > 0, depending only on the data,
such that for any 7 € (0, p), all the previous results hold. In particular, £,,,(¢,-) = £a(t, ) for all
m > 0 and for all ¢ € (0, 7), which yields at the limit £ = ¢. Hence (v, p) is a solution of Tresca’s
problem (22)-(24) with a shear stress threshold £ = ¥ (-, -, 07,) i.e. (v, p) is a solution of problem
(19)-(21) on [0, 7] and we may conclude

Theorem 4.4. (Existence for Coulomb’s problem in the 3D case) Let us assume that (10) and
(13)-(17) hold. Assume moreover that

2 3

)
D)) = Dy + (Ag +2 Ha_]; +2A,T + 2AZC$) exp(2AsT) < 9‘%

L2(0,T;L2())

where Dy and A fori € {0,...,3} are defined as in Section 3. Then there exists p > 0, depending
only on the data, such that for any v € (0,p), problem (P) admits at least a solution (v, p)

2 :
on [0,7] satisfying v € W'(0,7:LAQ)) N H'(0,7; Voan), a_tzv e 120,73 (Hyy, () ), p €

L2(0,7: L3(Q)), o = =pl+2u(0)D(v+upl) € L2(0, 73 F(Q)) and F (-, -, ) € WH(0, 73 LX(Ty)).
Moreover, if

1/2\2
77(9)2( , 2 Vaexp(-A3T) ( o’ ,
~—(CliraCutara) |1+ | | TexpAsT)
a ara TQ 9K*
o VI Q)

then p = T and we get a solution of problem (P) on [0, T].
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Remark 4.1. Let us observe that we do not obtain here a solution (v, p) to Coulomb’s friction
problem (19)-(21) by using a fixed point theorem with respect to (L,,) >0 but by using a successive
approximation technique with respect to the shear stress threshold i.e. by studying a limit process
for the sequence shear stress thresholds (€,,)m=0 and the corresponding solutions (v, p‘),.=0 of
Tresca’s problem (22)-(24).

Remark 4.2. Let us consider the 2D case and assume that (10) and (13)-(17) hold. Then con-
dition (26) can be avoided and, for any ¢ € H 1(0, T, Li(FO)), Tresca’s problem admits a unique

solution (v, p) such that v € W1’°°(O, T;LZ(Q)) N HY0,T; Voa) and p € L*(0, T;LS(Q)) (see
[2]). Thus with the same computations as in Proposition 3.3 and Proposition 3.4 we may still
prove that

’ ’
% € LZ(O’ T; (H(l)dlv(Q)) )a pE Loo((), T; L(Z)(Q))

and
o = =pl + 2u(O)D(v + ugl) € L(0, T: F(Q)).

But without condition (26) we loose the uniform estimate (29). Nevertheless by using the classical
Sobolev’s inequality

1/2 1/2
il < CEONullysg lullying, Vi € H'(Q)

we get
(b + uol. v+ uoZ. ). x)|

12 12
< C(|v + upd| LQ(O,T;LZ(Q))HV + uodl 0.1 (@ IV + uodl| LQ(O’T;Hl(Q))HSOX 243 0,7:04 )

forall ¢ € Vi and for all y € D(0,T). Moreover (35) is replaced by (see Proposition 4.1 in [2])

2

Mo, 7 ) f y (avim) o f . P
) - wl|— o

7
< Agexp (2A3s - ig—aé‘c’(g)g(c; ) exp(zc;'s)) Vs € [0,T].

Hence estimate (37) is replaced by

ot

llollz+0,7:F) < Caata (1 + ‘ 5

L2(0,T;L2(1“0)))

with a positive constant C ,,, depending only on the data p, , f, uy and 6. By a straightforward
adaptation of Proposition 4.2 we get ¥ (-,-,07,) € W1’4(0, T; LQ(FO)) with

’
||T(9 s O-")||W1'4(0,T;L2(FO)) < Cdgm”0-||L4(0,T;F(Q))

with a positive constant C', = depending only on ||R||z.r).cy) and on the data S and k.
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Then we may construct in the same way the mapping ¥ and, using the same notations as
previously,

_ - \1/4 — /47
||Z(L)||L2(T*,T;L2(r0)) <(@-T7) ||2(L)||L4(T*,T;L2(Fo)) <@-7) ”€||W1’4(0,T;L2(I’0))
ot
1/4
< ClutgCoara(T = T4) M1+ ||+
ot
L2(0,T;L%(T)) 12
oL, |
< ChuuCanale =" |1+ | L
data ™~ data ot L2007 L2(Ty)) L (7,73 L7(T0))
ot
1/4 *
< CluaClara® =T 1 + 5 + ||L||L2<u,r;L2(ro>))
L2(0,7,:L2(T))

Letp € ( ) Then for any T € (1., T« + p) and for any R > O such that

0, ——+7+—
(Cz’iata Caata )4

Céiatacdata(T - T*)1/4 1+ H%
1 —C,  Cuua(t —1)V* ot

data

) <R
L2(0,7.;L*(Iy))

X maps the ball ELz(T*,T; 12t (0, R) into itself and we may apply the successive approximation
technique described previouly, leading first to a solution (v, p) of problem (P) on [0, 1] for any
7 € (0,p). By choosing then 7, € (0,p) and . as the restriction of ¥ (-,-,0,) to [0, 7.], with
o = pl +2u(0)D(v + upl), we can build with the same technique, for any T € (7., 7. + p), an
extension of (v, p) to [0, ] which is a solution of problem (P) on [0, T]. Since p is independent of
7. and €, we may conclude with a finite induction that

Theorem 4.5. (Existence for Coulomb’s problem in the 2D case) Let us assume that (10) and
(13)-(17) hold. Then problem (P) admits at least a solution (v,p) on [0,T] satisfying v €

WL (0,7 L2(Q)) N H'(0. T Voan), g_j; e LX(0.7:(Hy,(@)). p € L=(0.T; L)), o €

L2(0,T; F(Q)) and F(-,-, ) € W(0, T L2(Iy)).
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