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Abstract

Power producers are interested in valuing their power plant production. By
trading into forward contracts, we propose to reduce the contingency of the asso-
ciated income considering the fixed costs and using an asymmetric risk criterion.
In an asymptotic framework, we provide an optimal hedging strategy through a
solution of a nonlinear partial differential equation. As a numerical experiment, we
analyze the impact of the fixed costs structure on the hedging policy and the value
of the assets.

Keywords: Hedging, asymmetric risk, fully nonlinear PDE, cost management,
power plant.
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1 Introduction

Background After the deregulation process of energy markets in early 1990, several
spot and futures exchanges were established to trade an almost non-storable commodity,
the electricity. Simultaneously, power producers faced the problem of valuing their power
plants, whose future production depends on the electricity spot price.

In order to diminish the randomness of future earnings, practitioners generally use
some discrete hedging strategies involving some forward contracts (see for example
[Aï15] or [BGS14]). Here, we adopt a local asymmetric risk criterion distinct from the
Black-Scholes (BS) approach. The aim of this approach is to control the distribution of
the residual risk1, by penalizing the losses and considering the plant fixed costs.

∗This research is part of the Chair Financial Risks of the Risk Foundation, the Finance for Energy
Market Research Centre (FiME) and the ANR project CAESARS (ANR-15-CE05-0024).

†Finance for Energy Market Research Centre (FiME), Electricité de France (EDF), 7 boulevard
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1In the following, residual risk is also called P&L (Profit and Loss).
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Residual risk Here, we use an asymmetric risk criterion to define optimal pricing and
hedging policies in an asymptotic framework (for more details, see [GPW18]). Power
plant owners perform discrete hedging at trading dates t0 = 0 < t1 < . . . < tN = T
(for some N ≥ 1), using a hedging security X to reduce the risk associated to a
contingent income GT at the time T . This discrete hedging produces a residual risk
E = GT −

∑N−1
n=0 δtn

(
Xtn+1 −Xtn

)
, where δt denotes the number of units invested in the

hedging security at time t. In the following, we consider the hedging security X is the
forward contract with delivery time T .

Because the power producers perform a low-frequency hedging (once a week or twice
a month, for example), they search to find the pricing and hedging strategies2 (V, δ)
considering the local balance En = Vtn+1 − Vtn − δtn

(
Xtn+1 − Xtn

)
, 0 ≤ n ≤ N − 1,

through risk function `. In this setting, we perform the asymptotic analysis of an
integrated measure RN [V, δ] =

∑N−1
n=0 E

[
`
(
En
)]
/∆t.

Notice that power producers search to obtain the most concentrated residual risk
distribution possible (perceived through the P&L histogram). Concurrently, they are
averse to loss scenarios, which are locally described by negative local balance En < 0.
Looking to satisfy those preferences, we choose as risk function3 the function `γ such
that `γ(x) := (1 + γ sgn(x))2 x2/2, x ∈ R, for any γ ∈ (−1, 0), where the sign function
is defined as sgn(x) := 1x>0 − 1x<0, x ∈ R. Here, the parameter γ corresponds to
the producer aversion to extreme local losses (see Figure 1). When the risk aversion
parameter γ gets closer to minus one, the probability of extreme local losses is diminished
compared to γ equals to zero. In a residual risk perspective, this reduction in extreme
local losses raises the likelihood of small losses globally.
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Figure 1: Risk level as a function `γ of the local balance En for different values of γ. For
γ ∈ (−1, 0), the risk function `γ weights further the negative local balances than the
positive ones.

Fixed costs Here, we consider that a power plant generates some fixed costs, including
maintenance and investment costs, whether or not it is producing electricity. In an
accounting perspective, the power producers need to assign in their balance book a price
to the contingent income generated by their future power plant taking into consideration

2The pricing process V satisfies the replication constraint VT = GT .
3Due to the power producers’ preferences, we need an almost-quadratic function ` weighting more

negative arguments. For simplicity, we take the same function `γ as in [GPW18] with negative risk
aversion parameter γ.
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those costs. For this purpose, they can use the underlying forward market as a mark-to-
market way of reducing the contingency of GT = g(XT ) by minimizing an integrated
measure, similarly to RN [V, δ], with the asymmetric risk (AR in short) function `γ.

To include the staggered costs4, we suppose that it depends on the price of forward
contract, seen as the best proxy of the future electricity spot price, through a function
C. Then, by taking equidistant trading dates tn = n∆t with time step ∆t = T/N , we
consider C(Xtn)∆t as the fixed costs associated to the trading period [tn, tn+1) and
subtract it from the local balance En. In this setting, we perform the asymptotic analysis
of the following integrated measure

RN [V, δ] =
1

∆t

N−1∑
n=0

E
[
`γ
(
Vtn+1 − Vtn − δtn

(
Xtn+1 −Xtn

)
− C(Xtn)∆t

)]
. (1)

Cost models Here, we provide two economic points of view to justify the dependence
of staggered costs on the future electricity spot price.
First, we use as argument the large usage of the power plant when the electricity spot is
expensive. Indeed, an elevated price is usually triggered by a raised demand matching
a larger production. This means we have to employ the power plant more frequently.
This is the reason why we assume an increasing dependence of staggered costs on the
future spot price level. This is typically the case of thermal plants that are mainly used
for high demands and high prices.
Second, for some plants, fixed costs related to maintenance are seasonal and greater
during the power plant refueling stop. Also, the producer would rather stop its power
plant over the period5 where the demand and the spot price are low. In this sense, the
staggered costs and the future spot price are negatively correlated and this is why we
consider a decreasing dependance of staggered costs on the future spot price level. This
is typically the case of nuclear power plants.

Nuclear plant example For an illustration purpose, we estimate fixed costs for a
nuclear plant. Following the World Energy Outlook (WEO) 2016 assumptions6 (for the
WEO report, see [IEA16]), we consider

• an maintenance cost of $170 per kW per year;

• an investment cost of $6600 per kW;

• an exchange rate at 0.90e/$ (for 2015 US dollar).

Building a nuclear plant with installed capacity of 1 GW costs $6.6 billion (or 5.9 billione).
Also, its owner spends $170million per year (or 153millione) in maintenance services.

To soften the financial effort, the owner spread those fixed costs over its power
plant lifespan of 20 years. Thus, we obtain the amount of fixed costs per unit (MW)

4First, we estimate the total fixed costs related to investment and maintenance services. Then, we
spread those costs uniformly over the expected lifespan of the power plant, and then estimate the fixed
costs per hour of delivery. By smoothing these fixed costs per hour uniformly over the hedging period,
we get the staggered costs.

5In France, this occurs in the summer rather than in the winter.
6See also the database in the More Information on. . . section and Investment in power generation

subsection of the World Energy Model website: www.iea.org/weo/weomodel/.
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of installed capacity and per unit of lifetime (hour) equals to 51.40e. For every MW
of installed capacity, the owner should pay 33.90e each hour to refund the investment
credit and 17.50e to maintain its installations.

We considered that interest rates are equal to zero and the investment cost is spread
evenly over the power plant lifetime. By looking at the fixed costs generated by a power
plant over a 24-hour period, we get 1233.60e for each MW of installed power. Planning
to hedge a one-day production a year in advance leads us to spread that cost over 8760
hours and to get the so-called staggered costs of 0.14e per unit of installed capacity
(MW) per unit of hedging time (hour).

Contributions In this paper, we propose an approach for the asymptotic analysis
of RN in (1) using a nonlinear pricing PDE (partial differential equation). Consider a
reference pricing rule v obtained by the power producer, for example, when no fixed
costs are taken into consideration. With this exogenous valuation in hand, the power
producer builds his local pricing and hedging rule dependent on v. In fact, the power
producer policy is parameterized by a function f , modeling a pricing kernel, and is given
as follows: the pricing (resp. hedging) rule is (resp. the first derivative of) the solution
to the f -PDE with v as local terminal condition (see Definition 1). After obtaining the
limit R[v, f ] of the integrated measure RN (see Theorem 1) given the power producer
rule, we minimize the functional f 7→ R[v, f ] to obtain f parameterizing the optimal
policies: the pricing (resp. hedging) rule is (resp. the first derivative of) the solution to
the f -PDE (see (5)) with the payoff function g as terminal condition.

For the numerical experiments, we take staggered costs depending on the spot price
level through convex and concave functions. Also, we compute the pricing and hedging7

policies associated to the AR valuation in the presence of staggered costs C. At the
end, we are interested to understand some important aspects of this new physical asset
valuation approach. How the AR parameter γ impacts the P&L distribution? How does
the optimal hedging policy is affected by the staggered costs? As numerical result (see
section 3), we observe that γ allows a change in the distribution shape: we are able to
distort the P&L into an asymmetric and fat-tailed distribution.

This paper is structured as follows. In section 2, we present the stochastic setting
and the optimal pricing PDE. In section 3, we provide two models for the staggered
costs and discuss most numerical results. In appendix A, we gather the assumptions and
the main theoretical result. In appendix B, we show how to deduce the optimal kernel.
Finally, appendix C summarizes important features of the proof of the main result.

2 An asymmetric risk valuation with cost management

Methodology In view of studying the integrated risk RN in the asymptotic regime
N → +∞ using the AR function `γ, we follow an approach by PDE valuation. Because
the risk function is non quadratic, one expects to deal with nonlinear PDE. This
PDE approach is possible if one assumes that the hedging instrument is Markovian,
solution to a stochastic differential equation (SDE), which is our standing assumption
from now. For simplicity, we assume that the interest rate is zero and that there
exists only one risk-neutral measure given by the probability measure P supporting

7This corresponds to the value/derivative of the numerical solution to the f -PDE.
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a Brownian motion8 W : the hedging instrument we consider is the forward contract
X := F T· =

{
Xt = F Tt : t ∈ [0, T ]

}
with (fixed) delivery time T , which dynamics is

given by the (one-factor Gaussian model) SDE9

dF Tt = α(t, T )F Tt dWt, 0 ≤ t ≤ T,

where the volatility function t ∈ [0, T ] 7→ α(t, T ) is a deterministic, strictly positive,
continuous function10. Whenever necessary, we recall that the electricity spot price at
the time t is related to the forward price with same delivery, i.e., F tt .

As discussed in [Pim18] and [GPW18], the optimal management strategy is designed
in two steps. First we consider an exogenous valuation process Vt = v(t,Xt) through
some function v smooth enough11. The value function v serves as a reference for the
power producer to build locally his/her hedging strategy (with asymmetric risk and
maintenance cost). So far this is an exogenous value function but later, it will be made
endogenous and aligned with the optimal hedging rule.

For the second step, the trick for seeking the optimal hedging strategy is to pa-
rameterize the pricing and hedging of the power producer through a function f repre-
senting a pricing/hedging kernel. The value function for the power producer is called
f -PDE: this approach encompasses all nonlinear Markovian pricing rule (see for in-
stance [Cre13, GHL13]). The most basic example is the usual risk-neutral PDE, which
corresponds to f(·) ≡ 0. To formalize the general concept, we state a definition.

Definition 1. Let f be a continuous function. For a terminal time τ > 0 and a
continuous terminal condition v(τ, ·) : R+ → R, we denote by uτ : [0, τ ]× R+ → R the
solution to the f -PDE{

uτt + 1
2α

2(t, T )x2 uτxx + f(t, x, uτ , uτx, u
τ
xx) = 0, for t < τ, x ∈ R+,

uτ (τ, x) = v(τ, x).
(2)

Now, we can proceed to the optimization. Say that there are N ∈ N trading periods
of same size on the interval [0, T ], and thus described by the times {0 = t0 < t1 < t2 <
. . . < tN = T} with tn = n∆t and ∆t = T/N . Given that the maintenance costs for the
period [tn, tn+1[ are c(tn, Xtn)∆t, the local balance of the power producer (using the
reference valuation v and the pricing f -PDE) is

En = v(tn+1, Xtn+1)︸ ︷︷ ︸
utn+1 (tn+1,Xtn+1 )

−utn+1(tn, Xtn)− utn+1
x (tn, Xtn)

(
Xtn+1 −Xtn

)
− c(tn, Xtn)∆t.

8Mathematically speaking, we deal with a filtered probability space (Ω,F ,P) endowed with the
natural Brownian filtration completed by P-null sets.

9The restriction to a one-dimensional Gaussian model is made for sake of simplicity, more general
models can be handled as in [Pim18] which describes a framework including the current one.

10A standard choice, coherent with the Samuelson effect, is α(t, T ) = α0e
−α1(T−t) for some constants

α0 > 0 and α1 ≥ 0 (see Figure 3).
11For the reader careful about the precise definition of function spaces, we recall that the set

C1,2([0, T ]× R) denotes the set of functions φ : [0, T ]× R such that the partial derivatives φt, φx, φxx
exist and are continuous; furthermore, φ is in C1/2,1

loc,pol if

‖φ‖
C

1/2,1
loc,pol

:= sup
t 6=t′∈[0,T ]

sup
x 6=x′∈R

‖φ(t, x)− φ(t′, x′)‖
(|t− t′|1/2 + |x− x′|)(1 + |x|α + |x′|α)

< +∞

for some real α ≥ 0.
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The related conditional risk (according to the risk function `γ) is defined by

∆Rn := E
[
`γ
(
En
)∣∣∣Ftn], (3)

and the integrated conditional risk by

RN :=
1

∆t

N−1∑
n=0

E[∆Rn].

So far, this depends on f and v. Then in order to complete the optimization, the
determination of the optimal strategy consists in

a) taking the limit of RN as the number N of trading dates goes to infinity

b) minimizing the limit over all kernel f . Denote by f the minimizer.

Taking for v the solution of the f -PDE (on the interval [0, T ] with terminal payoff g)
gives our optimal risk management with an explicit pricing and hedging strategy based
on local asymmetric risk. By choosing this pricing rule, the power producer will have a
time-consistent way to hedge locally his/her risk, accounting for asymmetric criterion.

Optimal pricing PDE Following the analysis in appendix B, we deduce that the
optimal kernel f is given by

f (t, x, y1, y2, y3) = α2(t, T )x2
(
a+y

+
3 − a−y

−
3

)
− c(t, x), (4)

for any (t, x, y1, y2, y3) ∈ [0, T ]× R+ × R3. The optimal constants a+ and a− depends
on γ and is given as the solution to the equation in (14). For numerical purposes, we
report, in Table 1, the numerical values of a+ and a− for a few γ, calculated by a root
finding algorithm (using the Mathematica FindRoot function).

Table 1: Optimal constants a+ and a− as a function of the parameter γ

Parameter γ Constant a+ Constant a−
0.0 0.0000 0.0000
-0.1 -0.0901 0.1044
-0.2 -0.1684 0.2262
-0.3 -0.2366 0.3702
-0.4 -0.2960 0.5434
-0.5 -0.3476 0.7567

We are now in a position to define the pricing and hedging policies, used by the
power producer. If g denotes the future income payoff due to the power plant production,
and using the optimal kernel f in (4), the pricing and hedging process are given by

Vtn = v(tn, Xtn), δtn = vx(tn, Xtn),

where v is the solution to the f -PDE{
v t + 1

2α
2(t, T )x2 vxx + f (t, x, v , vx, vxx) = 0, ∀ t < T, x ∈ R+,

v(T, x) = g(x).
(5)

6



Notice that v depends on the parameter γ and on the staggered cost function c(t, x),
through the optimal kernel f . In the case of symmetric risk, i.e., γ = 0, note that
f (t, x, v , vx, vxx) = −c(t, x) and the PDE becomes linear. In all other cases, the pricing
PDE is nonlinear.

3 Numerical experiments

In this section, we show the pricing and hedging strategies of the power producer in
the presence of fixed costs. We spread those costs over the hedging period to obtain
the staggered costs. Then we assume it depends on the forward price according to the
following models.

3.1 Staggered cost models

Here, we consider convex-concave models. We first introduce increasing costs as a
continuous, differentiable function of the forward price, then we examine decreasing
costs described as a piecewise convex function of the forward price.

Let the staggered costs be written as C(x) = Cinvest(x) + Cmaint(x) such that

Cinvest(x) = C0 and Cmaint(x) = C1h
(
x/C2

)
,

where C0, C1 and C2 are real constants such that C0 ≥ 0, C1 > 0 and C2 > 0. Here, C0

(resp. C1) represents the investment (resp. maintenance) component in the staggered
costs (resp. until the price level C2). First, we propose the increasing functions

h0(x) = xβ and h1(x) = x1/β, x ∈ R+, (6)

which are respectively convex and concave for β > 1 (see Figure 2a). Then we suggest
the decreasing function

h2(x) = e−x, (7)

which is continuous, differentiable convex (see Figure 2b). In the following, the real
function h will be either increasing (i.e., h0 or h1) or decreasing (i.e., h2), modeling the
dependency on the forward price level.

3.2 Numerical scheme

In the following, we aim to evaluate the power producer rules through the solution v to
the f -PDE12. To solve this nonlinear PDE, we approximate the second-order derivative
by a second-order finite difference evaluated at different times depending whether it
belongs or not to the linear part of the equation.

Centered Time Centered Space method Here, we reduce the partial differential
equation to a system of algebraic equations using a grid {0 = t0 < t1 < . . . < tN = T}
in time and {x0 < x1 < . . . < xJ} in space defined by the step sizes ∆t and ∆x (for

12Replacing the positive part and negative part by the absolute value in the expression f in (4) turns
the PDE (5) into the Black-Scholes-Barenblatt (BSB) equation (for more details, see [ALP95]).
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(a) Increasing costs h0 and h1 for β = 1.5.
Around x = 1, the convex function h0 presents
a steep slope while the concave function h1 is
flatter.
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(b) Decreasing costs h2. At x = 0, the convex
function h2 and its first derivative take a finite
value.

Figure 2: Increasing and decreasing functions modeling the staggered costs.

time and space, respectively). Therefore, we use the backward difference at time tn for
the linear part and the forward difference at time tn+1 for the kernel part to get

v(tn+1, xj)− v(tn, xj)

∆t
+

1

2
α2(tn, T )x2

j vxx(tn, xj)

+ f
(
tn+1, xj , v(tn+1, xj), vx(tn+1, xj), vxx(tn+1, xj)

)
= 0.

By taking unj = v(tn, xj), we use a central space approximation

δunj :=
unj+1 − unj−1

2∆x
, δ2unj :=

unj+1 − 2unj + unj−1

∆x2
,

to get

un+1
j − unj

∆t
+

1

2
α2(tn, T )x2

j δ
2unj + f

(
tn+1, xj , u

n+1
j , δun+1

j , δ2un+1
j

)
= 0.

Finally, replacing the optimal kernel f in (4) leads to

un+1
j − unj

∆t
+

1

2
α2(tn, T )x2

j δ
2unj +

1

2
α2(tn+1, T )x2

j (a+ − a−)
∣∣δ2un+1

j

∣∣
+

1

2
α2(tn+1, T )x2

j (a+ + a−)δ2un+1
j − c(tn+1, xj) = 0,

where a+ and a− are the real constants depending on γ (see Table 1). By defining
the map r : (t, x) 7→ ∆t

2∆x2α
2(t, T )x2 and taking rnj = r(tn, xj), we obtain the following

system of algebraic equations:

−rnj unj+1 + (1 + 2rnj )unj − rnj unj−1 = un+1
j + rn+1

j (a+ − a−)
∣∣un+1
j+1 − 2un+1

j + un+1
j−1

∣∣
+ rn+1

j (a+ + a−)(un+1
j+1 − 2un+1

j + un+1
j−1 )− c(tn+1, xj)∆t.

In conclusion, we set uNj = g(xj), for j ∈ {0, . . . , J}, and solve the previous system for
the vector un = (un0 , . . . , u

n
J)ᵀ backward in time using non-convexity condition at the

boundaries: un0 = 2un1 − un2 and unJ = 2unJ−1− unJ−2, for n ∈ {N − 1, . . . , 0}(see [Mey06],
for another example of numerical solution to BSB equations). For the volatility function,
we take α(t, T ) = α0e

−α1(T−t), 0 ≤ t ≤ T, for some constants α0 > 0 and α1 ≥ 0 (see
Figure 3).
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Figure 3: Volatility α(t, T ) increasing in time t with α0 = 30%. For α1 = 0.5, the
one-year-to-expiration volatility α(0, T ) is 60.65% of α0 .

Transformed optimal pricing PDE In the analysis of the impact of the staggered
costs dependency, it will be useful to have the optimal PDE (5) in terms of the initial
forward price. By denoting the initial forward price F T0 by x0, we consider ṽ(t, y) =
v(t, y x0)/x0, c̃(t, y) = c(t, y x0)/x0 and g̃(y) = g(y x0)/x0, for any x0 > 0. Then, we
get the derivatives of ṽ :

ṽy(t, y) = vx(t, y x0) and ṽyy(t, y) = vxx(t, y x0)x0,

in terms of the derivatives of v . Finally, we write the PDE (5) in v in terms of ṽ :{
ṽ t + 1

2α
2(t, T )y2 ṽyy + f̃ (t, y, ṽ , ṽy, ṽyy) = 0,

ṽ(T, y) = g̃(y),
(8)

where

f̃ (t, y, ṽ , ṽy, ṽyy) = α2(t, T )y2
(
a+ ṽ+

yy − a− ṽ
−
yy

)
− c̃(t, y).

In the following, we solve the transformed PDE to obtain ṽ , then we get the optimal
solution v through v(t, x) = x0ṽ(t, x/x0) for x ∈ R+. Then the pricing and hedging
rules at time t are given by

x 7→ x0ṽ(t, x/x0) and x 7→ ṽy(t, x/x0),

where ṽ is the solution to the transformed f̃ -PDE (8) and the staggered costs function
c(t, x) ≡ C(x) = C0 + C1hi(x/C2), for i ∈ {0, 1, 2, 3}, according to section 3.1.

3.3 Impact on optimal policies

Here, we analyze the impact of staggered costs on the producer pricing and hedging
policy. At the horizon time, power producers decide to turn their power plants on
whether or not the electricity spot price is larger than K0, representing the costs due
to fuel consumption to produce electricity. The future income function g describing
the producer option is equivalent to a call payoff function with strike price K0 given
by g(XT ) = (XT −K0)+ at maturity T . In this numerical experiment, we consider the
following set of parameters:
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x0 K0 T C0 C1 C2 α0 α1 γ

40 10 1 35 15 40 0.3 0.5 -0.5

Given an initial forward price x0, we assume that we are interested in getting the
optimal policies in two weeks (t = 2/52 ≈ 0.04). Then, we observe the variation in the
hedging position due to the price fluctuation of the forward price. In Figures 4-6, we
show the pricing and hedging rule x0ṽ(t, x/x0) and ṽy(t, x/x0) at time t = 0.04 for the
call payoff g with T = 1 and K0 = 10 considering different staggered costs functions. In
the plot, we observe three different policies through: (a) an asymmetric risk valuation
with staggered costs in full line; (b) a symmetric risk valuation with staggered costs in
dashed line; (c) a symmetric risk valuation without staggered costs in dotted line. First
we remark that the pricing values given by (a) and (b) are close on all tests. Then on
all cases, the pricing values considering staggered costs are obviously lower than those
not considering them so that price given by (c) are always lower than prices given by (a)
and (b).

Increasing convex costs Let us consider the convex staggered costs as C(x) =
C0 + C1h0(x/C2) where h0 is defined in (6), for β = 1.5. Due to these convex costs, the
pricing values in case (a) and (b) are concave as shown in Figure 4. Also, we obtain
that hedging rules considering costs are below the hedging rules in the case of no cost.
Due to the convexity of the cost leading to a decreasing function −C ′, it is natural to
get decreasing hedging rules for high values of x in case (a) and (b) (see analogy with
the tangent process method used to estimate the sensibility of a call payoff including
similar costs) leading to very different strategies from case (a).

Increasing concave costs Here, we consider the concave staggered costs as C(x) =
C0 + C1h1(x/C3) where h1 is defined in (6) by β = 1.5. As shown in Figure 5, for low
prices, we need to buy a lot of hedging securities to cover the fixed costs. The concavity
of the cost function gives us a increasing to zero function −C ′, such that the hedging
rules given by (a) and (b) is below the hedging rule given but (c) but differences between
the hedging rules goes to zero as x increases.
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(a) Pricing rule x 7→ x0ṽ(0.04, x/x0)
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(b) Hedging rule x 7→ ṽy(0.04, x/x0)

Figure 4: Optimal pricing and hedging rule for a call payoff with K0 = 10 using an
increasing convex function h0 with β = 1.5.
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(a) Pricing rule x 7→ x0ṽ(0.04, x/x0)
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(b) Hedging rule x 7→ ṽy(0.04, x/x0)

Figure 5: Optimal pricing and hedging rule for a call payoff with K0 = 10 using an
increasing concave function h1 with β = 1.5.

Decreasing convex costs Now let us consider the decreasing staggered costs as
C(x) = C0 +C1h2(x/C3), where h2 is defined in (7). In Figure 6, we observe the hedging
rule considering staggered costs is greater than the hedging rule without staggered costs
due to the decreasing property of function h2. Again, we get the first derivative h′2
is almost equal to zero for very large price levels, meaning that the hedging rules will
converge to each other.
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(a) Pricing rule x 7→ x0ṽ(0.04, x/x0)
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(b) Hedging rule x 7→ ṽy(0.04, x/x0)

Figure 6: Optimal pricing and hedging rule for a call payoff with K0 = 10 using a
decreasing convex function h2, which is continuous differentiable.

3.4 Impact on the P&L distribution

Here, we analyze the impact of the staggered costs on the P&L generated by the producer
pricing and hedging policy. We use the contingent income GT and the set of parameters
provided in section 3.3. Given an initial value X0 and a staggered costs function C,
we are interested to obtain the P&L distribution E = GT −

∑N−1
n=0 δ(tn, Xtn)

(
Xtn+1 −

Xtn

)
−
∑N−1

n=0 C(Xtn)∆t, produced by a discrete hedging at N trading dates for different
hedging policies (t, x) 7→ δ(t, x). As hedging policies, we take the optimal hedging rules
with staggered costs presented in section 3.3 and we investigate the distortion of the
distribution due to the AR parameter γ and the cost function c. Notice that optimal
hedging rule will depend on sample paths of the hedging security X, which is subject to
its initial value X0. Then, to obtain different P&L distributions, we choose a value for
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X0 such that the optimal hedging rules are distinct at X0.
In Figures 7-8 we depict the P&L distribution for different number N of trading

dates. To represent the staggered costs, we use an increasing concave or a decreasing
convex models (see section 3.1). By looking Figures 5b-6b, we set X0 = 8 for the
increasing concave model and X0 = 12 for the decreasing concave model, respectively.
In the plot, we compare three different policies: (a) the asymmetric risk valuation with
staggered costs in full line; (b) the symmetric risk valuation with staggered costs in
dashed line; (c) the symmetric risk valuation without staggered costs in dotted line.

First we observe the hedging policies given by (c) provide the P&L distribution
with greatest variance in all tests, meaning that the hedging policies given by (a) and
(b) outperform the usual policy given by (c). In all cases, the P&L distribution for
the hedging rule given by (a) is more distorted and asymmetric than the distribution
provided by hedging rule given by (b). Due to the asymmetric risk valuation, we observe
the P&L distribution for the hedging rule given by (a) presents a thinner left-tail and a
fatter right-tail with respect to the distribution given by (b). In comparison with the
latter policy, the former policy prevents extreme losses, while allowing more probable
moderate losses and disperse gains. Similar numerical results with different asymmetric
risk criteria were obtained in [FMW19] using a global criterion and some neural networks
methods.
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(a) N = 24 trading dates, M = 4000 samples
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(b) N = 48 trading dates, M = 2000, samples

Figure 7: P&L distribution for different hedging rules vx(t, x) using an increasing
concave function h1 with β = 1.5 and an initial value X0 = 8.

4 Conclusions and extensions

In this paper, we have described a novel methodology for designing pricing and hedging
strategies for future production of power plants with fixed costs. Using an asymmetric
risk valuation, we have derived the existence of the asymptotic risk in the case of
staggered fixed costs depending on the electricity forward/spot price. Then, we have
provided a numerical method to solve the associated PDE and to find the so-called
optimal policies. Our model considers state-dependent deterministic staggered costs
which can be either a convex or concave function of the spot price level, and we have
discussed the behavior of optimal pricing/hedging rules accordingly. In further research,
we will consider random maintenance cost function, in order to account for unpredictable
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(b) N = 48 trading dates, M = 2000 samples

Figure 8: P&L distribution for different hedging rules vx(t, x) using a decreasing convex
function h2 and an initial value X0 = 12.

factors like when a nuclear plant has a breakdown or when the maintenance periods has
to be extended.

A Main asymptotic result

We now turn to the statement of our main results giving the limit of RN . Earlier in
section 3, we illustrated these results with numerical experiments, with staggered costs
depending on the forward price level through convex-concave functions. First we state
the set of assumptions to make this asymptotic analysis rigorous, as established in
appendix C.

Assumption 1. The volatility function t 7→ α(t, T ) is strictly positive and continuously
differentiable.

Assumption 2. The reference price v: [0, T ] × R+ → R, its space derivatives vx, vxx:

[0, T ]×R+ → R and the kernel f : [0, T ]×R+×R×R×R→ R are in C1/2,1
loc,pol. Additionally,

the cost function c : [0, T ]× R+ → R is in C1/2,1
loc,pol.

Assumption 3. For any τ ∈ (0, T ], there is a unique classical solution uτ : [0, τ ]×R+ →
R to the PDE (2) with the terminal condition uτ (τ, ·) = v(τ, ·) at the time τ . Moreover,
partial derivatives uτt , uτx, uτxx, uτtx, uτxxx exist and are in C1/2,1

loc,pol.

Assumption 4. The Gamma of the reference price v does not vanish except on a set
of zero-measure: vxx(t,Xt) 6= 0, dt⊗ dP a.e.

The next theorem gives the explicit limit of RN as N → +∞. The limit is expressed
using an extra Brownian motion B = {Bθ : θ ∈ [0, 1]}, independent of W : the
expectation below are taken w.r.t. both Brownian motions.

Theorem 1 (Asymptotic risk with staggered costs). Under the standing assumptions,
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the limit of RN [v, f ] as N →∞ exists and is given by

R[v, f ] := E

[ T∫
0

1∫
0

`′′γ

(
J1[v](t,Xt)

B2
θ − θ
2

− J2[v, f ](t,Xt)θ

)

×

(
|J1[v](t,Xt)|2

B2
θ

2
+ |J2[v, f ](t,Xt)|2θ − J1[v](t,Xt) J2[v, f ](t,Xt)

B2
θ − θ
2

)
dθ dt

]
,

(9)

where the functionals J1[v](t, x) and J2[v, f ](t, x) are given by{
J1[v](t, x) := |α(t, T )x|2 vxx(t, x),

J2[v, f ](t, x) := f
(
t, x, v(t, x), vx(t, x), vxx(t, x)

)
+ c(t, x).

(10)

Notice that Theorem 1 is a one-dimensional version of [GPW18, Theorem 2.1],
specialized to positive security prices X, in the presence of staggered costs per unit of
time. The proof relies on the same techniques as presented in [GPW18, section 3] and
is postponed to appendix C.

B Optimal kernel

Here we give the explicit expression of f such that

R[v, f ] ≤ R[v, f ]

for any kernel f as described in the above assumptions. We follow the approach of
[GPW18] where c ≡ 0, by stressing only the main arguments, details are left to the
reader.

First, write the asymptotic risk in (9) as a functional

R[v, f ] = E

[∫ T

0
L
(
J1[v](t,Xt), J2[v, f ](t,Xt)

)
dt

]
, (11)

in terms of L : R× R→ R given by

L(x1, x2) = EB
[∫ 1

0

`′′γ

(
x1
B2
θ − θ
2

− x2θ

)(
|x1|2

B2
θ

2
+ |x2|2θ − x1 x2

B2
θ − θ
2

)
dθ

]
, (12)

for all x1, x2 ∈ R× R.
Since J2[v, f ](·) does depend on f but J1[v](·) does not, we observe that the mini-

mization of (11) over f is made by minimizing (12) over x2 as a function of x1: denote
a(x1) the minimizer. It is established in [GPW18, Section 2.4] that

a(x1) = a+x1
+ − a−x1

−, (13)

for some real a+ and a− (depending on γ)13. Denoting by ΦN the cumulative distribution
function of the standard normal distribution and φN = Φ′N its density, those constants

13Notice that Proposition 2.3 in [GPW18] is stated for γ in [0, 1). In fact, a more general condition
γ ∈ (−1, 1) still guarantees that ∂L

∂x2
(1, x2) and ∂L

∂x2
(−1, x2) is strictly increasing in x2. By the

intermediate value theorem, we get the uniqueness of the value a+ and a− defined by ∂L
∂x2

(1,a+) = 0

and ∂L
∂x2

(−1,a−), respectively.
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a+ and a− are respectively the unique solutions to(
1 + γ2

)
a+ + γ T (a+) = 0,(

1 + γ2
)
a− − γ T (a−) = 0,

(14)

with

T (a) = 2a+ 8aΦN
(
−
√

2a+ 1
)
12a+1>0 − 4

√
2a+ 1φN

(√
2a+ 1

)
12a+1>0.

In view of (9)-(11)-(12)-(13), we easily deduce that the optimal kernel f is given by

f (t, x, y1, y2, y3) = a
(
α2(t, T )x2y3

)
− c(t, x) = α2(t, T )x2

(
a

+
y+3 − a−y

−
3

)
− c(t, x),

for any t, x, y1, y2, y3 ∈ [0, T ]× R+ × R× R× R. Observe that the above f satisfies As-
sumption 2. Besides, we depict, in Figure 9, the global minimizer a of minx2∈R L(x1, x2)
in function of x1.
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γ=-0.3

γ=-0.5

-1.0 -0.5 0.5 1.0
x1

-0.6

-0.4

-0.2

a

Figure 9: Global minimizer a as function of x1 for different values of γ. For γ ∈ (−1, 0),
the map x1 7→ a(x1) is negative and piecewise linear.

C Existence of the asymptotic risk

In the following, we discuss how Assumptions 1-4 lead to an analysis similar to that
given in [GPW18]. First, we have that the map t 7→ α(t, T ) is globally bounded, and
that its derivative t 7→ αt(t, T ) is locally bounded because of Assumption 1. Therefore,
the diffusion function (t, x) 7→ σ(t, x) = α(t, T )x is Lipschitz in space and time, and it
has linear growth in space uniformly in time, which is in C1/2,1

loc,pol. Next, Assumption 2 is
equivalent to Assumptions 2.2-2.3 in [GPW18]. Moreover, it implies that the map

(t, x) 7→ J2[v, f ](t, x) = f(t, x, v(t, x), vx(t, x), vxx(t, x)) + c(t, x)

is in C1/2,1
loc,pol. Now, any estimation or convergence result valid for

(t, x) 7→ J0[v](t, x) = f(t, x, v(t, x), vx(t, x), vxx(t, x)),

which is C1/2,1
loc,pol, is also valid for J2[v, f ](·). Also, the expectation w.r.t. the distribution

of B, or W , or both, is denoted by EB, or EW , or EW⊗B.
Now, we review some important aspects of the computation of the asymptotic risk.

First of all, we consider a time-space scaling of the hedging security dynamics in order to
study the conditional risk ∆Rn (see (3)) on each interval [tn, tn+1]. Then, we obtain an
expansion of ∆Rn in terms of the time step ∆t. With expansion in hands, we aggregate
the expectation of those conditional ∆Rn and take the limit, after dividing by ∆t.
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Scaling and conditioning aspect As explained in section 2, we deal with one
hedging instrument X, which is the forward contract with delivery time T , satisfying
the following SDE

dXt = α(t, T )Xt dWt, 0 ≤ t ≤ T, (15)

where W is a standard Brownian motion.
In view of the small-time approximations, we define a version X∆t

θ of the solution X
of the SDE (15)

X∆t
θ = x+ ∆t1/2

∫ θ

0
α(tn + θ′∆t, T )X∆t

θ′ dBθ′ , 0 ≤ θ ≤ 1, (16)

where B = {Bθ : θ ∈ [0, 1]} is an extra standard Brownian motion independent from
W . Depending on the trading dates, X∆t is also dependent on the number N of time
steps. Also, it was supposed the original probability space (Ω,F ,P) is large enough to
contain an additional Brownian motion B.

Stochastic expansion aspect In view of expanding the conditional risk ∆Rn

E
[
`γ

(
utn+1(tn+1, Xtn+1

)− utn+1(tn, Xtn)− utn+1
x (tn, Xtn)

(
Xtn+1

−Xtn

)
− c(tn, Xtn)∆t

)∣∣∣∣Ftn],
for any n ∈ {0, . . . , N − 1}, we consider the stochastic process E∆t

θ defined by

E∆t
θ = utn+1(tn + θ∆t,X∆t

θ )− utn+1(tn, x)− utn+1
x (tn, x)(X∆t

θ − x)− c(t, x)θ∆t, (17)

where X∆t
θ is the solution to the SDE (16) starting from x ∈ R+. Using the fact that the

processes
{
Xtn,x
tn+θ∆t : θ ∈ [0, 1]

}
and {X∆t

θ : θ ∈ [0, 1]} have the same distribution, we
rewrite ∆Rn as a continuous function in terms of Xtn,x and X∆t at θ = 0, respectively.
Indeed, by setting

P∆t(tn, x) =
1

(∆t)2
E[`γ(E∆t

1 )] =
1

(∆t)2
E
[
`γ

(
utn+1(tn+1, X

∆t
1 )− utn+1(tn, x)

− utn+1
x (tn, x)

(
X∆t

1 − x
)
− c(t, x)∆t

)]
,

(18)

we obtain
∆Rn = (∆t)2P∆t(tn, Xtn) = E[`γ(E∆t

1 )]
∣∣
x=Xtn

. (19)

In the following, we consider several constants Kn,N (x) depending polynomially on
x, uniformly in the interval [tn, tn+1] and in the number N of time steps. Whenever we
note Kn,N (x) ∈ Kpol, we mean that, for some real α > 0, it holds

sup
N≥1

sup
0≤n≤N−1

sup
x∈R+

|Kn,N (x)|
1 + |x|α

< +∞.

In the following proposition, we state the stochastic expansion of P∆t at point (tn, x)
in terms of the time step ∆t in the presence of a cost function c(t, x) proportional to ∆t.
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Proposition 1. Suppose that assumptions of Theorem 1 hold. Let tn = n∆t, x ∈ R,
X∆t
θ given in (16), E∆t

θ given in (17) and P∆t(tn, x) be defined in (18). Then, it holds

P∆t(tn, x) = EB
[ 1∫

0

`′′γ

(
J1[utn+1 ](tn, x)

B2
θ − θ
2

− J2[utn+1 , f ](tn, x)θ +R∆t

θ (tn, x)
)

×
(
|J1[utn+1 ](tn, x)|2B

2
θ

2
+ |J2[utn+1 , f ](tn, x)|2θ − J1[utn+1 ](tn, x) J2[utn+1 , f ](tn, x)

B2
θ − θ
2

)
dθ

]
+Kn,N (x)∆t1/2,

where

R∆t
θ (tn, x) =

E∆t
θ

∆t
− J1[utn+1 ](tn, x)

B2
θ − θ
2

+ J2[utn+1 , f ](tn, x)θ,

for some constant Kn,N (x) ∈ Kpol.

Proof. Following the same argument as in [GPW18, Proposition 3.1], we use Ito’s lemma
in utn+1 and its gradient utn+1

x to obtain the dynamics of E∆t
θ . Then, we apply to the

Ito-Tanaka formula to `γ (E∆t
θ ) in order to obtain the announced result. Indeed, replacing

X∆t
θ in (16) into E∆t

θ in (17) leads to

E∆t
θ = utn+1 (tn + θ∆t,X∆t

θ )− utn+1(tn, x)− c(t, x)θ∆t

−∆t1/2
θ∫

0

utn+1
x (tn, x)α(tn + θ′∆t, T )X∆t

θ′ dBθ′ .

Applying Ito’s formula to utn+1(tn + θ∆t,X∆t
θ ), we obtain

E∆t
θ = −∆t

θ∫
0

c(t, x) dθ′ + ∆t

θ∫
0

(
u
tn+1

t +
1

2
|α(·, T ) · |2utn+1

xx

)
(tn + θ′∆t,X∆t

θ′ ) dθ′

+ ∆t1/2
θ∫

0

(
utn+1
x (tn + θ′∆t,X∆t

θ′ )− utn+1
x (tn, x)

)
α(tn + θ′∆t, T )X∆t

θ′ dBθ′ .

(20)

Now we replace the PDE (2) satisfied by the function utn+1 in (20). Again applying
Ito’s formula to the gradient utn+1

x (tn + θ∆t,X∆t
θ ) in (20), we get

E∆t
θ = ∆t |α(tn, T )x|2 utn+1

xx (tn, x)
B2
θ − θ
2

+ ∆tR∆t
θ (tn, x)

−∆t
(
f(tn, x, u

tn+1(tn, x), utn+1
x (tn, x), utn+1

xx (tn, x)) + c(t, x)
)
θ,

(21)
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where the remainder process R∆t
θ is given by

R∆t

θ (tn, x) =

θ∫
0

(
u
tn+1

t (tn + θ′∆t,X∆t

θ′ )− utn+1

t (tn, x)
)
dθ′

+
1

2

θ∫
0

(
|α(tn + θ′∆t, T )X∆t

θ′ |2 utn+1
xx (tn + θ′∆t,X∆t

θ′ )− |α(tn, T )x|2 utn+1
xx (tn, x)

)
dθ′

+

θ∫
0

(
u
tn+1
x (tn + θ′∆t,X∆t

θ′ )− utn+1
x (tn, x)

∆t1/2
|α(tn, T )X∆t

θ′ |2 − utn+1
xx (tn, x)|α(tn, T )x|2Bθ′

)
dBθ′ .

Due to the result in [GPW18, Lemma 3.5], R∆t
θ is small in the following sense:

supθ∈[0,1] EB|R∆t
θ (tn, x)|2 ≤ Kn,N (x)∆t, for some constant Kn,N (x) ∈ Kpol.

Thanks to the relation `′′γ(y)y = `′γ(y) for all y ∈ R, we get by applying the Ito-Tanaka
formula: `γ(E∆t

θ ) =
∫ θ

0 `
′′
γ(E∆t

θ′ )
(
E∆t
θ′ dE∆t

θ′ + 1
2 d〈E

∆t〉θ′
)
. After replacing the expression of

E∆t in (21), we take the expectation to obtain

EB[`γ(E∆t
1 )] =

(19)
∆t2 P∆t(tn, x)

= ∆t2 EB
[ 1∫

0

`′′γ

(
J1[utn+1 ](tn, x)

B2
θ − θ
2

∆t− J2[utn+1 , f ](tn, x)θ∆t+R∆t
θ (tn, x)∆t

)

×
(
|J1[utn+1 ](tn, x)|2

B2
θ

2
+ |J2[utn+1 , f ](tn, x)|2θ

− J1[utn+1 ](tn, x) J2[utn+1 , f ](tn, x)
B2
θ − θ
2

)
dθ

]
+Kn,N (x) ∆t5/2,

where J2[utn+1 , f ](·) and J1[utn+1 ](·) are given in (10).
We omit the study of the terms in the remainder, because they were already treated

in the proof of [GPW18, Proposition 3.1]. Using the relation `′′γ(ε y) = `′′γ(y) for any
ε > 0, we obtain the announced result.

Aggregating aspect From the relation between P∆t(tn, Xtn) and ∆Rn in (19), we
write RN [v, f ] using the expansion of P∆t(t, x) obtained in Proposition 1:

RN [v, f ] =
1

∆t

N−1∑
n=0

E[∆Rn] =
N−1∑
n=0

E
[
P∆t(tn, Xtn)

]
∆t

=
N−1∑
n=0

E
[ 1∫

0

`′′γ

(
J1[utn+1 ](tn, Xtn)

B2
θ − θ
2

− J2[utn+1 , f ](tn, Xtn)θ +R∆t
θ (tn, Xtn)

)
×
(
|J1[utn+1 ](tn, Xtn)|2

B2
θ

2
+ |J2[utn+1 , f ](tn, Xtn)|2θ

− J1[utn+1 ](tn, Xtn) J2[utn+1 , f ](tn, Xtn)
B2
θ − θ
2

)
dθ

]
∆t+

N−1∑
n=0

E
[
Kn,N (Xtn)∆t3/2

]
.

(22)

18



In the previous expression, we substitute the solution utn+1(tn, ·) by its terminal
condition v(tn+1, ·). This is equivalent to replace J2[utn+1 , f ](tn, ·) and J1[utn+1 ](tn, ·)
by J2[v, f ](tn+1, ·) and J1[v](tn+1, ·). Then, we rewrite RN [v, f ] in (22) as follows

RN [v, f ] =

N−1∑
n=0

E
[ 1∫

0

`′′γ

(
J1[v](tn+1, Xtn)

B2
θ − θ
2

− J2[v, f ](tn+1, Xtn)θ + R̄∆t

θ (tn, Xtn)
)

×
(
|J1[v](tn+1, Xtn)|2B

2
θ

2
+ |J2[v, f ](tn+1, Xtn)|2θ

− J1[v](tn+1, Xtn) J2[v, f ](tn+1, Xtn)
B2
θ − θ
2

)
dθ

]
∆t+

N−1∑
n=0

E
[
(C̄∆t(tn, Xtn) +Kn,N (Xtn)∆t3/2)

]
,

(23)

where

R̄∆t
θ (tn, x) := R∆t

θ (tn, x) +
(
J1[utn+1 ](tn, x)− J1[v](tn+1, x)

)B2
θ − θ
2

−
(
J2[utn+1 , f ](tn, x)− J2[v, f ](tn+1, x)

)
θ

and

C̄∆t(tn, x) := EB
[ 1∫

0

`′′γ

(
J1[utn+1 ](tn, x)

B2
θ − θ
2

− J2[utn+1 , f ](tn, x)θ +R∆t

θ (tn, x)
)

×
{(
|J1[utn+1 ](tn, x)|2 − |J1[v](tn+1, x)|2

)B2
θ

2
+
(
|J2[utn+1 , f ](tn, x)|2 − |J2[v, f ](tn+1, x)|2

)
θ

−
(
J1[utn+1 ](tn, x) J2[utn+1 , f ](tn, Xtn)− J1[v](tn+1, x) J2[v, f ](tn+1, x)

)B2
θ − θ
2

}
dθ

]
.

Noticed that the terms R̄∆t
θ (tn, Xtn) and C̄∆t(tn, Xtn) need to be estimated in order to

pass to limitN →∞ in the expression (23). From the result in [GPW18, Proposition 3.3],
the previous terms converge to zero in the following sense:

• sup0≤n≤N−1 E
∣∣C̄∆t(tn, Xtn)

∣∣ ≤ K∆t1/2, for some constant K > 0.

• sup0≤n≤N−1 supθ∈[0,1]

∣∣R̄∆t
θ (tn, Xtn)

∣∣ −→
N→∞

0, dPW ⊗ dPB-almost surely.

Now we write the integrated conditional risk RN in (23) as the expectation of a
double integrable. By setting ϕNt := sup{tn : t ≥ tn} and ϕ̄Nt := inf{tn : t < tn}, we
obtain from equation (22)

RN [v, f ] = E
[ T∫

0

1∫
0

`′′γ

(
J1[v](ϕ̄Nt , XϕNt

)
B2
θ − θ
2

− J2[v, f ](ϕ̄Nt , XϕNt
)θ + R̄∆t

θ (ϕ̄Nt , XϕNt
)

)

×
{
|J1[v](ϕ̄Nt , XϕNt

)|2B
2
θ

2
+ |J2[v, f ](ϕ̄Nt , XϕNt

)|2θ

− J1[v](ϕ̄Nt , XϕNt
) J2[v, f ](ϕ̄Nt , XϕNt

)
B2
θ − θ
2

}
dθ dt

]
+

N−1∑
n=0

E
[
C̄∆t(tn, Xtn) +Kn,N (Xtn)∆t3/2

]
.

(24)
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When the number of trading dates N → +∞, the last term of RN [v, f ] in (24) goes to
zero, due to the estimates in [GPW18, Lemma 3.3] and [GPW18, Proposition 3.1]. On
the other hand, the limit of the first term in (24) is achieved by applying the dominated
convergence theorem, as we now explain.
Step 1. Because of the continuity of the volatility α(t, T ) in time t, the reference price
v and its derivatives vx, vxx in time t and in space x, the kernel f , the cost function c,
and the path-continuity of X, we get

J1[v](ϕ̄Nt , XϕNt
) −→
N→∞

J1[v](t,Xt)

J2[v, f ](ϕ̄Nt , XϕNt
) −→
N→∞

J2[v, f ](t,Xt),

dPW -a.s., for all t ∈ [0, T ]. Moreover, the result of item (c) of [GPW18, Lemma 3.3]
states: sup0≤n≤N−1 supθ∈[0,1] |R̄∆t

θ (tn, Xtn)| −→
N→∞

0, dPW ⊗ dPB-a.s.. Then, we get

J1[v](ϕ̄Nt , XϕNt
)
B2
θ − θ
2

− J2[v, f ](ϕ̄Nt , XϕNt
)θ + R̄∆t

θ (ϕ̄Nt , XϕNt
)

−→
N→∞

J1[v](t,Xt)
B2
θ − θ
2

− J2[v, f ](t,Xt)θ

and

|J2[v, f ](ϕ̄Nt , XϕNt
)|2θ + |J1[v](ϕ̄Nt , XϕNt

)|2
B2
θ

2
− J2[v, f ](ϕ̄Nt , XϕNt

)J1[v](ϕ̄Nt , XϕNt
)
B2
θ − θ
2

−→
N→∞

|J2[v, f ](t,Xt)|2θ + |J1[v](t,Xt)|2
B2
θ

2
− J2[v, f ](t,Xt)J1[v](t,Xt)

B2
θ − θ
2

,

dPW ⊗ dPB-a.s., for all (θ, t) ∈ [0, 1]× [0, T ].
Step 2. Because of the second derivative `′′γ is discontinuous at 0 but the set

A :=

{
(ω, t, θ) ∈ Ω× [0, T ]× [0, 1] : J1[v](t,Xt(ω))

Bθ(ω)2 − θ
2

− J2[v, f ](t,Xt(ω))θ = 0

}
has measure zero (owing to Assumption 4 and Xt > 0), it holds

`′′γ

(
J1[v](ϕ̄Nt , XϕNt

)
B2
θ − θ
2

− J2[v, f ](ϕ̄Nt , XϕNt
)θ + R̄∆t

θ (ϕ̄Nt , XϕNt
)
)

−→
N→∞

`′′γ

(
J1[v](t,Xt)

B2
θ − θ
2

− J2[v, f ](t,Xt)θ
)
,

dPW ⊗ dPB ⊗ dt⊗ dθ-a.s.
Step 3. Because of the boundedness of `′′γ , the polynomial growth of v, vx, vxx, and c in
space x, we have that the integrand in (24) is bounded by C

(
1 + supt∈[0,T ] |Xt|+ |Bθ|

)α
,

for some positive constants C and α. Finally, we take the limit of the first term of
RN [v, f ] in (24) to get

R[v, f ] = E
[ T∫

0

1∫
0

`′′γ

(
J1[v](t,Xt)

B2
θ − θ
2

− J2[v, f ](t,Xt)θ

)

×
(
|J1[v](t,Xt)|2

B2
θ

2
+ J2[v, f ](t,Xt)|2θ − J1[v](t,Xt) J2[v, f ](t,Xt)

B2
θ − θ
2

)
dθ dt

]
,

by dominated convergence theorem, which concludes the proof of Theorem 1.
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