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Abstract

Bernstein’s classical inequality asserts that given a trigonometric
polynomial T of degree n ≥ 1, the sup-norm of the derivative of T does
not exceed n times the sup-norm of T . We present various approaches
to prove this inequality and some of its natural extensions/variants,
especially when it comes to replacing the sup-norm with the Lp−norm.

1 Introduction

Bernstein’s inequality for trigonometric polynomials ([4]), already one cen-
tury old, played a fundamental role in harmonic and complex Analysis, as
well as in approximation theory ([4], [5], [14]) and in the study of random
trigonometric series ([30], [11] Chapter 6) or random Dirichlet series ([27],
Chapter 5), when generalized to several variables in the latter case. One can
also mention its use in the theory of Banach spaces ([26], p. 20-21), or its
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extensive use in Numerical Analysis.

The purpose of this survey is not to focus on applications of Bernstein’s
inequality, but on various approaches (some classical, some more recent) to
proving this inequality and its extensions, and to show that even if it was
first stated for the sup-norm, it is valid for a large class of norms, even
of quasi-norms. We will not be interested in describing all equality cases.
There will be two key words here:

• Convexity (with both real and complex variable approaches), well adapted
to norms.

• Subharmonicity (with a rather complex variable approach), better adapted
to quasi-norms.

The paper is organized as follows:

• Section 1 is this introduction, with reminders and the proof of Riesz.

• Section 2, essentially a real variable section, illustrates the role of convexity
and of translation-invariance in generalized forms of Bernstein’s inequality
for Fourier transforms of compactly supported measures.

• Section 3 is a transition between real and complex methods.

• Section 4 is a section using intensively complex and hilbertian methods (in-
tegral representations, reproducing kernels), and new Banach algebra norms
(Wiener norm, Besov norm) in connection with operator theory and func-
tional calculus. Embedding inequalities other than Bernstein’s one will also
be considered.

• Section 5 “jumps” into quasi-norms with a somewhat extreme case, the
Mahler ‖.‖0 quasi-norm, called Mahler norm for simplicity. Here, subhar-
monicity plays a key role.

• Section 6 “climbs again the road” from the quasi-norm ‖.‖0 to quasi-norms
or norms ‖.‖p with 0 < p ≤ ∞, through integral representations.

• The final Section 7 concludes with some remarks and open questions.
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1.1 Reminders and notations

Bernstein’s inequality is generally quoted under the following form.

Theorem 1.1 Let T (x) =
∑n

k=−n ake
ikx be a trigonometric polynomial of

degree ≤ n. Then:
sup
x∈R

|T ′(x)| ≤ n sup
x∈R

|T (x)|

and the constant n is optimal in general (T (x) = einx).

Throughout this paper, we shall have to make a careful distinction between
trigonometric polynomials as above and algebraic polynomials

T (x) =

n∑

k=0

ake
ikx = P (eix) with T ′(x) = ieixP ′(eix) and |T ′(x)| = |P ′(eix)|

where P is the ordinary polynomial P (z) =
∑n

k=0 akz
k for which complex

techniques are more easily available. If once and for all D designates the open
unit disk and T = {z : |z| = 1} its boundary, as well as ‖f‖∞ = supz∈D |f(z)|
when f is a bounded analytic function on D, the maximum modulus principle
gives us for T (x) = P (eix) as above:

‖T‖∞ = sup
x∈R

|P (eix)| = sup
z∈D

|P (z)| = ‖P‖∞,

and we shall always identify both sup-norms, as well as P and x 7→ P (eix).
The Haar measure of T will be denoted m:

∫

T

fdm =

∫ 1

0
f(e2iπθ)dθ.

The Lp-norm (quasi-norm when 0 < p < 1) will always refer to the measure
m. We also set (the Mahler norm)

(1.1) ‖f‖0 = lim
p→0

‖f‖p = exp
( ∫

T

log |f |dm
)
.

Recall that ‖f‖∞ = limp→∞ ‖f‖p.

If P (z) =
∑n

k=0 akz
k = a

∏n
j=1(z − zj) is an algebraic polynomial, its (com-

plex) reciprocal polynomial Q is defined by

(1.2) Q(z) = znP (1/z) =

n∑

k=0

an−k z
k = a

n∏

j=1

(1− zjz).
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The reciprocal polynomial of Q is P .The following obvious property is quite
useful:

(1.3) |z| = 1 ⇒ |Q(z)| = |P (z)|.

For P as above, Jensen’s formula tells that

(1.4) ‖P‖0 = |a|
n∏

j=1

max(1, |zj |).

1.2 Bernstein through interpolation, Riesz formula

Bernstein ([4]) initially obtained

‖T ′‖∞ ≤ 2n‖T‖∞

and the best constant n was shortly afterwards obtained by E. Landau ([6])
by a reduction to a sum of sines, and slightly later by M. Riesz ([29]), using
a new interpolation formula.
We first present the proof of Riesz. See also the nice books [24] page 146
and [9] page 178.

Theorem 1.2 (M.Riesz.) There exist c1, . . . , c2n ∈ C and x1, . . . , x2n ∈ R

with
∑2n

r=1 |cr| = n such that, for all trigonometric polynomials T of degree
n:

(1.5) T ′(x) =

2n∑

r=1

crT (x+ xr) for all x ∈ R.

In particular
|T ′(0)| ≤ n sup

x∈En

|T (x)|

where En = {xj , 1 ≤ j ≤ 2n}.

Proof : we sketch the proof. Let r be an integer with 1 ≤ r ≤ 2n. We set:

(1.6) xr =
(2r − 1)π

2n
, ω = e

iπ
2n , zr = eixr = ω2r−1, z2nr = −1.

An easy variant of the Lagrange interpolation formula for the 2n points zr
gives, for any polynomial P (z) =

∑2n
k=0 ckz

k:

(1.7) P (z) =
z2n + 1

2
(c0 + c2n) +

z2n + 1

2

1

2n

2n∑

r=1

P (zr)
zr + z

zr − z
·
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Next, if T (x) =
∑n

k=0

(
ak cos kx+ bk sin kx

)
, we apply formula (1.7) to the

polynomial P (z) =
∑2n

k=0 ckz
k defined by P (eix) = einx T (x). We get

(1.8) T (x) = an cosnx+ cosnx
1

2n

2n∑

r=1

T (xr)(−1)r+1 cot
(xr − x)

2
·

Differentiation at 0 now gives

(1.9) T ′(0) =
1

2n

2n∑

r=1

T (xr)
(−1)r+1

2 sin2(xr/2)
=:

2n∑

r=1

crT (xr) with

2n∑

r=1

|cr| = n.

By translation, we get the Riesz interpolation formula:

(1.10) T ′(x) =
2n∑

r=1

crT (x+ xr).

In convolution terms:

(1.11) T ′ = T ∗ µn, where µn =

2n∑

r=1

crδxr and ‖µn‖ = n

and this clearly ends the proof. �

Observe that the measure µn is a finite combination of Dirac point masses.
We will later see an extension of this method in which µn is discrete, but an
infinite combination of Dirac point masses.

2 Convexity

We begin with giving a general form (due to R. P. Boas) of Bernstein’s
previous inequality, as in the book [10] page 30, and which may be seen as
an extension of Riesz’s proof. This form is valid for non-periodic (almost
periodic) trigonometric polynomials as well. We denote the derivative f ′ by
Df and the translate of f by a real number a by Taf , that is Taf(x) =
f(x + a). The convolution of the function f and the measure µ (already
appearing in Riesz’s proof) is accordingly defined as

f ∗ µ =

∫

R

(Ttf)dµ(t).
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Theorem 2.1 Let λ > 0.Then there exists a complex sequence (ck)k∈Z and
a real sequence (tk)k∈Z, depending only on λ, such that

∑
k∈Z |ck| = λ and

that, whenever f(x) =
∫
R
eitxdµ(t) is the Fourier transform of a complex

measure on R supported by [−λ, λ], then

Df =
∑

k∈Z

ckTtkf.

If one prefers, Df = f ∗ µ with ‖µ‖ = λ.
In particular, if f(x) =

∑N
j=1 aje

iλjx where the λj ’s are real and distinct
with |λj | ≤ λ, then

‖f ′‖∞ ≤ λ‖f‖∞.
Proof : we rely on the following lemma.

Lemma 2.2 Let ϕ be the 4λ-periodic odd function defined by

ϕ(t) =

{
t if 0 ≤ t ≤ λ

2λ− t if λ ≤ t ≤ 2λ.

Then,

iϕ(t) =
∑

k∈Z

cke
iπkt/2λ with

∑

k∈Z

|ck| = λ.

Indeed, let us work with the space E of 4λ-periodic functions, initially defined
on [−2λ, 2λ]. Let χ ∈ E be the characteristic function of the interval [−λ, λ].
Let ψ(t) = ϕ(t+λ)+λ ∈ E, a triangle function on [−2λ, 2λ]. We see that ψ =
4λ(χ ∗ χ), and it can hence be written as ψ(t) =

∑
k∈Z dke

iπkt/2λ with dk =

4λ(χ̂(k))2 ≥ 0, so that
∑

k∈Z dk = ψ(0) = 2λ and d0 = 1
4λ

∫ 2λ
−2λ ψ(t)dt = λ.

Since ϕ(t) = ψ(t− λ)− λ, the lemma follows with c0 = 0 and ck = idki
−k if

k 6= 0.

Coming back to Theorem 2.1, we see that, since µ is supported by [−λ, λ]:

f ′(x) =

∫

R

iteitxdµ(t) =

∫

R

iϕ(t)eitxdµ(t) =
∑

k∈Z

ck

∫

R

eiπkt/2λeitxdµ(t)

=
∑

k∈Z

ckf(x+ tk) with tk =
kπ

2λ

and this ends the proof of the general part of our theorem. For the special
case, just observe that f is the Fourier transform of the discrete measure
µ =

∑N
j=1 ajδλj . The meaning of this theorem is that, for Fourier transforms

of compactly supported measures, the differential operator D can be replaced
by kind of a convex combination of translation operators Ttk ; this is why
Theorem 2.1 belongs to convexity. �

6



It is worth mentioning a more general application of Theorem 2.1.

Theorem 2.3 Let f be an entire function of exponential type λ (namely
|f(z)| ≤ Ceλ|z|), bounded on the real axis (‖f‖∞ := supx∈R |f(x)| < ∞).
Then

‖f ′‖∞ ≤ λ‖f‖∞.

Proof : indeed, by the Paley-Wiener theorem ([13] page 212), f restricted to
the real line is the Fourier transform of a measure (indeed of an L2-function)
supported by [−λ, λ]. �

Let us denote by Pn the translation-invariant space of trigonometric poly-
nomials

∑
|j|≤n pje

ijx of degree ≤ n. A nice corollary of Theorem 2.1 is the
following:

Theorem 2.4 Let ‖.‖ be a translation-invariant norm on Pn. Then

‖f ′‖ ≤ n‖f‖ for all f ∈ Pn.

Proof : writing f ′ =
∑

k∈Z ckTtkf and taking norms (note that the series
on the right-hand side is absolutely convergent for the norm ‖.‖), we get

‖f ′‖ ≤
∑

k∈Z

|ck| ‖Ttkf‖ =
∑

k∈Z

|ck| ‖f‖ = n‖f‖.

�

This can be applied to the Lp-norm with respect to the Haar measure m
of the circle T, with 1 ≤ p ≤ ∞, more generally to the Lψ-norm where ψ
is any Orlicz function ([32] page 173). There are lots of applications, and
improvements of the factor n under special assumptions (as unimodularity
of coefficients); we just mention the paper [28] and the book [11] with appli-
cations to random Fourier series.

As we will now see, subharmonicity and complex methods allow us to go
beyond convexity and to consider Lp-quasi-norms for 0 < p < 1, even for
p = 0 (the Mahler norm). We begin with a “transition” section.

3 Convexity and Complexity

What follows still belongs to convexity, in spite of the appearance of
Complex Analysis and the maximum principle, behind which subharmonicity
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is lurking. Let us consider this section as a transition, we will be more explicit
on subharmonicity later. A typical example of this transition is the famous
Gauss-Lucas theorem, and its extension by Laguerre.

Theorem 3.1 Let f be an algebraic polynomial of degree n, all of which
roots lie in a convex set K of the plane. Then, all the roots of the derivative
f ′ also lie in K.

The following variant, due to Laguerre, of Theorem 3.1 is worth mentioning,
in view of the forthcoming applications.

Theorem 3.2 Let ρ ≥ 1. Let P be an algebraic polynomial of degree n, all
of which roots lie inside E := {z : |z| ≥ ρ}. Assume that ξ, z satisfy

(ξ − z)P ′(z) + nP (z) = 0.

Then, either ξ or z lie in E.
As a consequence,

|z| = 1 ⇒ ρ|P ′(z)| ≤ |Q′(z)|
where Q is the (complex) reciprocal polynomial of P .

Proof : without loss of generality, we can assume that ρ > 1. Denote here
by Tz the “inversion” with pole z, namely

Tz(u) =
1

u− z
·

Let F = C \ E and z1, . . . , zn the roots of P . In view of the formula
P ′(z)/P (z) =

∑n
j=1 1/(z − zj), the relation between z and ξ can be written

as

(3.1) Tz(ξ) =
1

n

n∑

j=1

Tz(zj).

We see that, modulo Tz, ξ is none other than the barycenter of the zj ’s and
convexity is again implied. Suppose now that z ∈ F . Then, ∞ = Tz(z) ∈
Tz(F ), hence Tz(F ) is unbounded, and its complement Tz(E) is convex
since it is a disk or a half-plane. Now, (3.1) shows that Tz(ξ) ∈ Tz(E) since
zj ∈ E, 1 ≤ j ≤ n, by hypothesis. That is ξ ∈ E. Finally, fix z with modulus
one. Note that, since then

z
P ′(z)

P (z)
= n− zQ′(z)

Q(z)
,
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we have as well

(3.2) ξ = −n P (z)
P ′(z)

+ z = −zQ
′(z)

Q(z)
× P (z)

P ′(z)
·

Now, z /∈ E since ρ > 1. The first part of the theorem gives ξ ∈ E or again
|ξ| ≥ ρ, giving the conclusion in view of (3.2) and of |P (z)| = |Q(z)|. �

The key point of the end of this section is the following lemma of term by
term differentiation of inequalities; here, two polynomials are involved:

Lemma 3.3 Let f, F be two algebraic polynomials of degree n satisfying

1. |f(z)| ≤ |F (z)| for all z ∈ T;

2. all roots of F lie in the closed disk D.

Then

1. |f(z)| ≤ |F (z)| for all |z| ≥ 1;

2. |f ′(z)| ≤ |F ′(z)| for all z ∈ T.

Proof : We begin with assertion 1. Suppose first that all roots of F lie
in D. We consider the rational function f/F in the (unbounded) open set
Ω = {z : |z| > 1}; this function is holomorphic and bounded in Ω (since f
and F have the same degree n) and continuous on Ω since by hypothesis all
roots of F lie in D. Moreover, f/F has modulus ≤ 1 on ∂Ω. The maximum
modulus principle gives the conclusion. In the general case, one writes (note
that the multiplicity of the zero zj is higher for f than for F , due to our first
assumption)

f(z) =
∏

|zj |=1

(z − zj)
αjg(z) and F (z) =

∏

|zj |=1

(z − zj)
αjG(z)

where g and G are polynomials of the same degree, all roots of G lying in D,
and satisfying |g(z)| ≤ |G(z)| for z ∈ T. From the first case, one gets

|z| ≥ 1 ⇒ |g(z)| ≤ |G(z)| ⇒ |f(z)| ≤ |F (z)|.

The second assertion follows from the first one. Let us indeed fix a complex
number w with modulus > 1. If |z| > 1, we have

|wF (z) − f(z)| ≥ |w| |F (z)| − |f(z)| ≥ (|w| − 1)|F (z)| > 0,
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and all the roots of the polynomial wF − f lie in D, as well as (by Theorem
3.1) those of the derivative wF ′ − f ′. In particular:

|z| > 1 ⇒ f ′(z) 6= wF ′(z).

By the Gauss-Lucas theorem again, we have F ′(z) 6= 0, therefore f ′(z)/F ′(z) 6=
w. The quotient f ′(z)/F ′(z) being different from any complex number of
modulus > 1, we get:

|z| > 1 ⇒ |f ′(z)| ≤ |F ′(z)|.

Letting |z| tend to 1 gives the claimed result. �

Remark. The previous lemma contains Bernstein’s inequality for algebraic
polynomials (meaning f(eit) =

∑n
k=0 ake

ikt), assuming that |f(z)| ≤ 1 for
z ∈ T and taking then F (z) = zn. But the extension to trigonometric poly-
nomials is not straightforward, and will need the full generality of Lemma
3.3, under the following form ([17]).

Theorem 3.4 (Malik.) Let P be an algebraic polynomial of degree n, and
Q its reciprocal polynomial. We assume that ‖P‖∞ ≤ 1. Then

z ∈ T ⇒ |P ′(z)|+ |Q′(z)| ≤ n.

Proof : let |w| > 1. It suffices to apply Lemma 3.3 to f = Q− w and its
reciprocal polynomial F = P − wzn, which satisfy: |f | = |F | on T, and F
has no zeros outside D, by a new application of Lemma 3.3 to P and zn. We
get for z ∈ T:

|Q′(z)| ≤ |P ′(z) −wnzn−1|,
whence the result by adjusting the argument of w and by letting its modulus
tend to 1. �

Lax proved that if an algebraic polynomial P of degree n has no roots in
D, Bernstein’s inequality can be improved as follows: ‖P ′‖∞ ≤ n

2 ‖P‖∞,
the inequality being optimal. What precedes provides a simple proof and
extension of Lax’s result, due to Malik ([17]).

Theorem 3.5 Let ρ ≥ 1 and let P be an algebraic polynomial f degree n, all
of which roots have modulus ≥ ρ. Then

‖P ′‖∞ ≤ n

1 + ρ
‖P‖∞.

The constant n
1+ρ is optimal.
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Proof : the optimality is clear by considering P (z) =
(
z+ρ
1+ρ

)n
· Now, assume

that ‖P‖∞ = 1 and fix a unimodular complex number z. We combine two
previous results:

|P ′(z)|+ |Q′(z)| ≤ n

ρ|P ′(z)| ≤ |Q′(z)| ≤ n.

We hence get
(1 + ρ)|P ′(z)| ≤ n.

This ends the proof. �

It is worth mentioning a corollary of Lax-Malik’s result, due to Ankeny and
Rivlin for ρ = 1.

Proposition 3.6 Let ρ ≥ 1 and P be an algebraic polynomial of degree n
with no roots in ρD. Then:

|z| ≥ 1 ⇒ |P (z)| ≤ |z|n + ρ

1 + ρ
‖P‖∞.

Proof : we can assume ‖P‖∞ = 1. By Malik’s theorem, one gets that
|P ′(z)| ≤ n

1+ρ for |z| = 1. By the maximum principle, |P ′(z)| ≤ n
1+ρ |z|n−1

for |z| ≥ 1. Now, if R > 1 and θ ∈ R, one can write

P (Reiθ)− P (eiθ) =

∫ R

1
eiθP ′(reiθ)dr

whence
∣∣P (Reiθ)− P (eiθ)

∣∣ ≤
∫ R

1

n

1 + ρ
rn−1dr =

Rn − 1

1 + ρ
·

The triangle inequality now gives

∣∣P (Reiθ)
∣∣ ≤ Rn + ρ

1 + ρ
·

This ends the proof. �

Here is an interesting variant, and strenghtening, of Bernstein’s inequality.

Theorem 3.7 (Schaake-van der Corput.) Let T be a real trigonometric
polynomial of degree n, with |T (x)| ≤ 1 for all x ∈ R. Then

(T ′(x))2 + n2(T (x))2 ≤ n2 for all θ ∈ R.

In particular, |T ′(x)| ≤ n.
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Proof : let P (eix) = einxT (x), an algebraic polynomial of degree 2n, and
Q be its reciprocal polynomial. Since T is real, we have:

Q(eix) = e2inxP (eix) = e2inxe−inxT (x) = P (eix),

hence Q = P . Malik’s inequality therefore gives:

2|P ′(eix)| ≤ 2n, that is |P ′(eix)| =
√
(T ′(x))2 + n2(T (x))2 ≤ n.

�

An obvious corollary is once more

Theorem 3.8 (Bernstein.) Let T be a complex trigonometric polynomial
of degree n, with |T (x)| ≤ 1 for all x ∈ R. Then

|T ′(x)| ≤ n for all x ∈ R.

Proof : let u be a unimodular complex number and Su = Re (uT ), a real
trigonometric polynomial of degree n satisfying |Su(x)| ≤ 1 for all x ∈ R. By
the Schaake-van der Corput theorem, we have |Re (uT ′(eix))| ≤ n, whence
the result, optimizing with respect to u. �

4 Bernstein’s inequality via integral representation

In this section we provide an approach to Bernstein’s inequality for the
sup-norm, the Lp−norm (p ≥ 1) and some other variants, based on new
integral representations for algebraic/trigonometric polynomials. The latter
are developed in [1, 2] in a more general context, to prove Bernstein-type
inequalities for rational functions. These integral representations are footed
on the theory of model spaces and their reproducing kernels. The model
spaces are the subspaces of the Hardy space H2 which are invariant with
respect to the backward shift operator, (we refer to [21] for the general theory
of model spaces and their numerous applications). Applying this method to
the case of algebraic polynomials, Bernstein’s inequalities for the sup-norm
and for the Lp−norm (p ≥ 1) are easily demonstrated.
Our integral representations require to introduce the scalar product 〈·, ·〉 on
L2 = L2(T)

12



〈f, g〉 =
∫

T

f(u)g(u)dm(u).

For n ≥ 1 the (algebraic) Dirichlet kernel Dn is defined as

Dn(z) =

n−1∑

k=0

zk.

4.1 The case of algebraic polynomials

Given an algebraic polynomial of degree n, P (z) =
∑n

k=0 akz
k and given

ξ in the closed unit disk, we have

P ′(ξ) =
n∑

k=1

kakξ
k−1 =

〈
P (z), z

1

(1− ξz)2

〉
.

Expanding (1− (ξz)n)2 we observe that

z
1

(1− ξz)2
− z

(1− (ξz)n)2

(1− ξz)2
= z

1

(1− ξz)2
− z

(
Dn(ξz)

)2

is orthogonal to P . This yields

(4.1) P ′(ξ) =

∫

T

P (u)u
(
Dn(ξu)

)2
dm(u), |ξ| ≤ 1.

Therefore for any unimodular ξ

∣∣P ′(ξ)
∣∣ ≤ ‖P‖∞ ‖Dn‖22

and Bernstein’s inequality for the sup-norm follows. Following the same
approach we prove that

∥∥P ′
∥∥
p
≤ n ‖P‖p , p ∈ [1,∞].

Proof : An application of (4.1) indeed yields

∥∥P ′
∥∥p
p

=

∫

T

∣∣P ′(ξ)
∣∣p dm(ξ)

=

∫

T

∣∣∣∣
∫

T

P (u)u
(
Dn(ξu)

)2
dm(u)

∣∣∣∣
p

dm(ξ)

≤
∫

T

(∫

T

|P (u)| |Dn(ξu)|2
)
dm(u)

)p
dm(ξ).
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We apply Hölder’s inequality (q is the conjugate exponent of p : 1
p +

1
q = 1)

(∫

T

|P (u)| |Dn(ξu)|2dm(u)

)p

≤
(∫

T

|Dn(ξu)|2dm(u)

) p

q
∫

T

|P (u)|p |Dn(ξu)|2dm(u)

≤ n
p

q

∫

T

|P (u)|p |Dn(ξu)|2dm(u).

It remains to integrate with respect to ξ and apply the Fubini-Tonelli theorem
to conclude. �

The case of trigonometric polynomials is more technical and removed
to the end of the section. More precisely, in subsection 4.3 we provide an
analog of (4.1) for trigonometric polynomials T of degree at most n. Ap-
plying “roughly” the above approach to T yields ‖T ′‖p ≤ 2n ‖T‖p instead of
‖T ′‖p ≤ n ‖T‖p.

In the next subsection we show that the continuous embeddings of some
Besov/Wiener algebras of analytic functions on D, into the algebra of bounded
analytic functions, are invertible over the set of algebraic polynomials of de-
gree at most n. We discuss the asymptotic behavior of the respective embed-
ding constants as n→ ∞.

4.2 Inequalities for algebraic polynomials in Besov/Wiener
algebras

We denote by H∞ the algebra of bounded analytic functions on D i.e.
the space of holomorphic functions f on D such that ‖f‖∞ < ∞. Given
a Banach algebra X continuously embedded into H∞, we are interested in
inequalities of the type

‖P‖X ≤ CX(n) ‖P‖∞
holding for any algebraic polynomial P of degree at most n. The selected
algebras X below, are of particular interest for applications in matrix analysis
and operator theory, see [20] for more details.

1. B1
1,1 is the Besov algebra of analytic functions f on D such that

‖f‖∗B1

1,1
:=

∫

D

∣∣f ′′(u)
∣∣ dA(u) <∞

14



where dA stands for normalized Lebesgue measure on D and ‖·‖∗B1

1,1
is

a semi-norm on B1
1,1. Vitse’s functional calculus [31] shows that given

a Banach Kreiss operator A, i.e. an operator A satisfying the resolvent
estimate ∥∥(λ−A)−1

∥∥ ≤ C(|λ| − 1)−1, |λ| > 1,

we have
‖P (A)‖ ≤ 2C ‖P‖∗B1

1,1

for every algebraic polynomial P .

2. W is the analytic Wiener algebra of absolutely converging Fourier/Taylor
series, i.e. the space of all f =

∑
k≥0 akz

k such that:

‖f‖W :=
∑

k≥0

|ak| <∞.

It is easily verified that for any operator A acting on a Banach space,
satisfying ‖A‖ ≤ 1, we have

‖P (A)‖ ≤ ‖P‖W
for every algebraic polynomial P .

3. B0
∞,1 is the Besov algebra of analytic functions f in D such that

‖f‖∗B0

∞,1
:=

∫ 1

0

∥∥f ′r
∥∥
∞
dr <∞

where fr(z) = f(rz) and ‖·‖∗B0

∞,1
is a semi-norm on B0

∞,1. Let A be

power bounded operator on a Hilbert space: supk≥0

∥∥Ak
∥∥ = a < ∞.

Peller’s functional calculus [23] shows that

‖P (A)‖ ≤ kGa
2 ‖P‖∗B0

∞,1

for every algebraic polynomial P , where kG is an absolute (Grothendieck)
constant.

Observe that the following continuous embeddings hold

B1
1,1 ⊂W ⊂ B0

∞,1 ⊂ H∞

see [7, 25] or [21, Sect. B.8.7]. It turns out that the continuous embeddings
W ⊂ H∞, B0

∞,1 ⊂ H∞ and B1
1,1 ⊂ H∞ are invertible on the space of

complex algebraic polynomials of degree at most n ≥ 1. More precisely we
prove the following inequalities.

15



Proposition 4.1 For any algebraic polynomial P of degree at most n the
following inequalities hold

(4.2) ‖P‖W ≤
√
n+ 1 ‖P‖∞ ,

the bound
√
n+ 1 being the best possible asymptotically as n→ ∞, and

(4.3) ‖P‖∗B0

∞,1
≤
(
n−1∑

k=1

1

2k + 1

)
‖P‖∞ .

The asymptotic sharpness of lnn over the space of algebraic polynomials
of degree n as n→ ∞, is an open question. Let us recall a result by V. Peller
[23, Corollary 3.9].

Proposition 4.2 (Peller) Let A be a power bounded operator on a Hilbert
space. Then there exists a postive M such that for any algebraic polynomial
P of degree n the following inequality holds

‖P (A)‖ ≤M ln(n+ 2) ‖P‖∞ .

Indeed combining Peller’s functional calculus [23] with (4.3) we find

‖P (A)‖ ≤ kGa
2 ‖P‖∗B0

∞,1
≤ kGa

2 (lnn+ γ + o(1)) ‖P‖∞ ,

where a = supk≥0

∥∥Ak
∥∥ , kG is an absolute (Grothendieck) constant, and γ

is the Euler constant. The asymptotic sharpness of lnn in Proposition 4.2
is also an open question.

Proof : [Proof of Proposition 4.1] We first prove (4.2). Given P =∑n
k=0 akz

k, Cauchy-Schwarz inequality yields

‖P‖W ≤
√
n+ 1 ‖P‖2 ≤

√
n+ 1 ‖P‖∞ .

Moreover, the bound
√
n+ 1 is asymptotically sharp as shown for example by

Kahane ([12]) at the beginning of his construction of ultraflat polynomials,
when he produces polynomials P (z) =

∑n
k=0 akz

k with |ak| = 1 for k =
0, . . . , n and ‖P‖∞ ≥ (1− δn)

√
n+ 1 where δn → 0+.

Now we prove (4.3). Applying (4.1) with ζ = rv and v ∈ T we find

P ′(rv) =

∫

T

P (u)u (Dn(rvu))
2dm(u).
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This yields

∣∣P ′(rv)
∣∣ ≤ ‖P‖∞

∫

T

∣∣∣u (Dn(rvu))
2
∣∣∣dm(u)

= ‖P‖∞
n−1∑

k=0

r2k.

Therefore taking the supremum over unimodular ξ and integrating over r ∈
[0, 1] we get

‖P‖∗B0

∞,1
≤ ‖P‖∞

n−1∑

k=0

1

2k + 1
.

�

We finally treat the case of the B1
1,1−norm of P . Since the second deriva-

tive of P is involved in the definition of ‖P‖∗B1

1,1
we first need to give an analog

of (4.1) for P ′′. Clearly,

P ′′(ξ) =
n∑

k=2

k(k − 1)akξ
k−2 = 2

〈
P, z2

1

(1 − ξz)3

〉
.

Expanding (1− (ξz)n)3 we observe that

z2
1

(1− ξz)3
− z2

(1− (ξz)n)3

(1− ξz)3

is orthogonal to any polynomial of degree at most n+1 and especially to P .
Therefore

(4.4) P ′′(ξ) = 2

∫

T

P (u)u2
(
Dn(ξu)

)3
dm(u), |ξ| ≤ 1.

We will use (4.4) to prove next proposition.

Proposition 4.3 (Vitse, Peller, Bonsall-Walsh) For any algebraic poly-
nomial P of degree at most n the following inequality holds

‖P‖∗B1

1,1
≤ 8

π

(
n−1∑

k=0

Γ
(
k + 3

2

)2

k!(k + 1)!

)
‖P‖∞ ,

where Γ is the standard Euler Gamma function. In particular

(4.5) ‖P‖∗B1

1,1
<

8

π
n ‖P‖∞ .
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It is shown by P. Vitse in [31, Lemma 2.3] that (4.5) actually holds for
rational functions r of degree n whose poles lie outside the closed unit disk,
with the same numerical constant 8

π . Note that the same inequality was
originally proved by V. Peller in [22] without giving an explicit numerical
constant. Vitse’s proof makes use of a theorem by F. F. Bonsall and D.
Walsh [8], where the constant 8

π is sharp. The proof below does not make
use of the theory of Hankel operators, and is only based on (4.4).

Proof : [Proof of Proposition 4.3] We rewrite (4.4) as

(4.6) P ′′(ξ) = 2

〈
P, z2(1− (ξz)n)

(
1− (ξz)n

(1− ξz)
3

2

)2〉
,

and we use the Taylor expansion of
(
1− ξz

)− 3

2 to get

1− (ξz)n

(
1− ξz

) 3

2

= (1− (ξz)n)
∑

k≥0

Γ
(
k + 3

2

)

k!Γ
(
3
2

) ξ
k
zk

=
2√
π
(1− (ξz)n)

∑

k≥0

Γ
(
k + 3

2

)

k!
ξ
k
zk

=
2√
π

(∑

k≥0

Γ
(
k + 3

2

)

k!
ξ
k
zk −

∑

k≥0

Γ
(
k + 3

2

)

k!
ξ
k+n

zk+n
)

=
2√
π
(ϕξ(z) − ψξ(z)),

where ϕξ(z) =
∑

k≥0

Γ(k+ 3

2
)

k! ξ
k
zk and ψξ(z) =

∑
k≥0

Γ(k+ 3

2
)

k! ξ
k+n

zk+n. We
observe that the functions

z 7→ z2(1− (ξz)n)(ψξ(z))
2

and
z 7→ z2(1− (ξz)n)ϕξ(z)ψξ(z),

are orthogonal to any algebraic polynomial of degree at most n. Writing


 1− (ξz)n

(
1− ξz

) 3

2




2

=
4

π
((ϕξ(z))

2 + (ψξ(z))
2 − 2ϕξ(z)ψξ(z)),

18



(4.6) becomes

P ′′(ξ) = 2

〈
P, z2(1− (ξz)n)

(
1− (ξz)n

(1− ξz)
3

2

)2〉

=
8

π

〈
P, z2(1− (ξz)n)((ϕξ(z))

2 + (ψξ(z))
2 − 2ϕξ(z)ψξ(z))

2
〉

=
8

π

〈
P, z2(1− (ξz)n)(ϕξ(z))

2
〉

=
8

π

〈
P, (zϕξ(z))

2
〉
.

since z 7→ zn+2(ϕξ(z))
2 is also orthogonal to P . Denoting by Sξn(z) =

∑n−1
k=0

Γ(k+ 3

2
)

k! ξ
k
zk and Rξn(z) =

∑
k≥n

Γ(k+ 3

2
)

k! ξ
k
zk,we have

Sξn(z) +Rξn(z) = ϕξ(z),

and

(zϕξ(z))
2 = (zSξn(z) + zRξn(z))

2

= (zSξn(z))
2 + (zRξn(z))

2 + 2z2Rξn(z)S
ξ
n(z),

where the two last terms are again orthogonal to P. Finally, we obtain the
following integral representation:

P ′′(ξ) =
8

π

〈
P, (zSξn(z))

2
〉
.

Using the standard Cauchy duality we have that for any ξ ∈ D,

∣∣P ′′(ξ)
∣∣ ≤ 8

π
‖P‖∞

∫

T

∣∣∣uSξn(u)
∣∣∣
2
dm(u).

Integrating over D with respect to the normalized area measure, we find

∫

D

∣∣P ′′(ξ)
∣∣ dA(ξ) = 8

π
‖P‖∞

∫

D

∣∣∣∣
∫

T

(uSξn(u))2dm(u)

∣∣∣∣ dA(ξ)

≤ 8

π
‖P‖∞

∫

D

(∫

T

∣∣∣Sξn(u)
∣∣∣
2
dm(u)

)
dA(ξ)

=
8

π
‖P‖∞

∫

T

(∫

D

∣∣∣Sξn(u)
∣∣∣
2
dA(ξ)

)
dm(u).
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We conclude noticing that
∫
D

∣∣∣Sξn(u)
∣∣∣
2
dA(ξ) is the square of norm of Sξn in

the standard Bergman space, we find

∫

D

∣∣∣Sξn(u)
∣∣∣
2
dA(ξ) =

n−1∑

k=0

Γ
(
k + 3

2

)2

(k + 1)(k!)2
|u|2k =

n−1∑

k=0

Γ
(
k + 3

2

)2

k!(k + 1)!
.

�

4.3 The case of trigonometric polynomials

As a generalization of (4.1) we prove the following integral representation
for the derivative of trigonometric polynomials.

Lemma 4.4 For any trigonometric polynomial T of degree n we have

(4.7) T ′(ξ) = 〈T, Kξ〉 , |ξ| = 1,

where for all u, ξ ∈ T, Kξ(u) = u
(
Dn(ξu)

)2 − ξ2u
(
Dn(ξu)

)2
.

The proof of Bernstein’s inequality for p ∈ [1,∞] with constant 2n instead
of n, follows from the above lemma. Indeed, following the same trick as in
subsection 4.1 we get

∥∥T ′
∥∥
p
≤ 2n ‖T‖p , p ∈ [1,∞].

Proof : [Proof of the lemma of integral representation] We put T =
∑n

k=−n akz
k

(z = eit), P =
∑n

k=0 akz
k and R =

∑−1
k=−m akz

k so that T = P +R. Apply-
ing (4.1) to the algebraic polynomial P we get

(4.8) P ′(ξ) =

〈
P (z), z

(
Dn(ξz)

)2
〉

=

〈
T (z), z

(
Dn(ξz)

)2
〉
,

because R ⊥ z
(
Dn(ξz)

)2
.We will now perform a similar task for R. Consider

for this the algebraic polynomial

Q(z) = z̄R (z̄) , z̄ = 1/z,

whose degree does not exceed n− 1. For the reasons given above, we have

Q(ξ) = ξ̄R
(
ξ̄
)
=

〈
Q(z),

1

1− ξz

〉
,
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that is to say

R(
1

ξ
) = ξ

〈
Q(z),

1

1− ξz

〉
.

Deriving again with respect to ξ we get

− 1

ξ2
R′(

1

ξ
) =

〈
Q(z),

1

1− ξz

〉
+ ξ

〈
Q(z),

z

(1− ξz)2

〉
,

that is to say

R′(
1

ξ
) =

〈
Q(z),

−ξ2

(1− ξz)2

〉
=

〈
Q(z),

−ξ2(1− ξ
n
zn)2

(1− ξz)2

〉
,

the last equality being due to the fact that 1
(1−ξz)2

− (1−(ξz)n)2

(1−ξz)2
is orthogonal

to any algebraic polynomial of degree at most n. Rewriting this last equality
using the integral representation of the scalar product, we find

R′(
1

ξ
) = −

∫

T

ūR (ū)
ξ2(1− ξnūn)2

(1− ξū)2
dm(u).

Performing the variable change v = ū and replacing ξ with ξ̄ we obtain

R′(ξ) = −
∫

T

R (v)
vξ2(1− ξ̄nvn)2

(1− ξ̄v)2
dm(v).

Finally

(4.9) R′(ξ) =

〈
R(z), −ξ2z

(
Dn(ξz)

)2
〉

=

〈
T (z), −ξ2z

(
Dn(ξz)

)2
〉
,

because P ⊥ z
(
Dn(ξz)

)2
. It remains to combine (4.8) and (4.9) to complete

the proof.
�

As we will now see, subharmonicity and complex methods allow us to go
beyond convexity and to consider Lp-quasi-norms for 0 < p < 1, even for
p = 0 (the Mahler norm). Indeed, we begin with the Mahler norm.
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5 Case p = 0, Mahler’s result

This section and the next one owe much to conversations with F. Nazarov
([19]). Before Nazarov, the possible use of subharmonicity was alluded to by
the referee of Mahler’s paper. But to our knowledge, none of the approaches
that follow theorem 5.1 was detailed anywhere in the literature.
We will first show, following Mahler ([16]), that

Theorem 5.1 (Mahler.) It holds

(5.1) ‖P ′‖0 ≤ n‖P‖0

for every algebraic polynomial P (z) =
∑n

k=0 akz
k of degree n.

Proof : the proof, simpler than Mahler’s initial one, consists of two steps.

1. The result holds true if all roots of P lie in D. Indeed, the same holds for
P ′ (by Gauss-Lucas) and in that case both members of the inequality (5.1)
are equal to n|an|, by Jensen’s formula.

2. The result holds true in the general case. To see that, write

P (z) = an
∏

|zj |<1

(z − zj)
∏

|zj|≥1

(z − zj)

Q(z) = an
∏

|zj |<1

(z − zj)
∏

|zj |≥1

(1− zjz).

All roots of Q lie in D, and |P (z)| = |Q(z)| for |z| = 1, so |P ′(z)| ≤ |Q′(z)|
for |z| = 1 by Lemma 3.3. The first step now implies

‖P ′‖0 ≤ ‖Q′‖0 ≤ n‖Q‖0 = n‖P‖0.

It is convenient to “stock” the result under the form:

(5.2)

∫
log |P ′(z)/n|dm(z) ≤

∫
log |P (z)|dm(z).

�
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We will now show that, more generally (it seems that Mahler only treated
the algebraic case):

Theorem 5.2 One has

(5.3) ‖T ′‖0 ≤ n‖T‖0

for every trigonometric polynomial T (z) =
∑n

k=−n akz
k of degree n.

Proof : we first observe the following: if we write T (x) =
∑n

k=−n ake
ikx,

then T ′(x) = izT ′(z) when z = eix and |T ′(x)| = |T ′(z)|. We can thus work
indifferently with the variable x or the variable z to prove our inequality.
Denote Q(z) = znT (z), an algebraic polynomial of degree 2n. Write

Q(z) = c
2n∏

j=1

(z − zj)

where z1, . . . , zp denote the roots of modulus ≤ 1, and zp+1, . . . , z2n those of
modulus > 1 if some exist. One has:

z
T ′(z)

T (z)
= z

Q′(z)

Q(z)
− n =

2n∑

j=1

z

z − zj
− n

so that
(5.4)
∫

T

log |T ′(z)/T (z)|dm(z) =

∫

T

log
∣∣∣

2n∑

j=1

z

z − zj
− n

∣∣∣dm(z) =:M(z1, . . . , zp)

where M is the function of p complex variables defined by

M(Z1, . . . , Zp) =

∫

T

log
∣∣∣

p∑

j=1

z

z − Zj
+

2n∑

j=p+1

z

z − zj
− n

∣∣∣dm(z).

To emphasize the key role of subharmonicity, we first outline the following

Lemma 5.3 One considers the two functions

M(w) = log
∣∣∣ 1

w − u
+ v
∣∣∣, N(w) =

∫

T

log
∣∣∣ 1

w − z
+ h(z)

∣∣∣dm(z)

where u ∈ T and v ∈ C, and where h is a continuous function on T. Then
M =:Mu,v is sub-harmonic on D and N sub-harmonic on D and continuous
on D.
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Proof : for M =Mu,v, it is enough to remark that it is the logarithm of |f |
where f(w) = 1

w−u + v is a holomorphic function on D since |u| = 1. Next,

N =

∫

T

Mz,h(z)dm(z)

(vector-valued integral) and a sum (or a barycenter) of subharmonic func-
tions is again subharmonic. The continuity of N on D results from classical
integration theorems (uniform integrability). �

The proof of Theorem 5.3 is then split into two steps:

1. One can assume |zj | = 1 for 1 ≤ j ≤ p. Indeed, M has the form:

M(Z1, . . . , Zp) =

∫

T

log
∣∣∣

p∑

j=1

z

z − Zj
+ ϕ(z)

∣∣∣dm(z)

where ϕ is a fixed continuous function on the circle T, hence by Lemma
5.3, M is separately sub-harmonic in D

p and separately continuous in D
p
.

Repeatedly applying to it the maximum principle in one variable, one sees
that there exist (u1, . . . , up) ∈ ∂Dp, the distinguished boundary of Dp, such
that:

M(z1, . . . , zp) ≤M(u1, . . . , up).

It is thus enough to prove that M(u1, . . . , up) ≤ log n, with u1, . . . , up in
place of the roots z1, . . . , zp of Q. In the sequel, we shall henceforth assume,
without loss of generality, that those roots satisfy

1 ≤ j ≤ p⇒ |zj | = 1 and p+ 1 ≤ j ≤ 2n⇒ |zj | > 1.

In particular, all roots zj of Q have modulus ≥ 1.

2. One has the implication (an essential remark)

|z| < 1 ⇒ Re
z

z − zj
<

1

2
for all 1 ≤ j ≤ 2n.

Indeed, an easy computation gives

Re
(1
2
− z

z − zj

)
=

1

2

|zj |2 − |z|2
|z − zj |2

·
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It follows that, setting f(z) = zQ
′(z)
Q(z) − n =

∑2n
j=1

z
z−zj

− n, one has for

|z| < 1:

Re f(z) ≤
2n∑

j=1

Re
z

z − zj
− n <

2n∑

j=1

1

2
− n = 0.

The holomorphic function f hence has no zeros in D and we are in the cases
of equality in Jensen’s formula :

∫

T

log |fr|dm = log |f(0)| = log n

where r < 1 and fr(z) = f(rz).The rational fraction f being “well-behaved”,
we let r tend to 1 to get

∫

T

log |f |dm = log n

which implies via (5.4)

∫

T

log |T ′(z)/T (z)|dm(z) =

∫

T

log |f |dm = log n

or again ‖T ′‖0 = n ‖T‖0, and we are even in the cases of equality in Bernstein-
Arestov’s inequality when all roots have modulus ≥ 1. �

6 Case 0 < p < 1, Arestov’s result

We will prove (the case p ≥ 1 being already treated in the section “Con-
vexity”, but being recovered here as well) the following theorem, due to
Arestov ([3]):

Theorem 6.1 (Arestov.) Let p > 0. It holds, for any trigonometric poly-
nomial T of degree n:

‖T ′‖p ≤ n‖T‖p.

Proof : instead of starting from Bernstein’s inequality for Lp, p = ∞, and
of generalizing, one starts from Bernstein’s inequality for L0 (initially due
to Mahler; cf. [15] and also the remark of the referee of Mahler’s paper
on the maximum principle for subharmonic functions of several variables)
and one goes up. This is done in two steps, each of which uses an integral
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representation, in the style of Section 4.
1. It holds

(6.1) log+ |v| =
∫

T

log |v + uw| dm(w) ∀u ∈ T, ∀v ∈ C.

Indeed, one can assume u = 1, given the translation-invariance of m; then,
one separates the cases |v| ≥ 1, |v| < 1, and one is always back to

∫

T

log |1 + aw| dm(w) = 0 if |a| < 1

which is nothing but the harmonicity of w 7→ log |1 + aw| in D.
We first note that (6.1) implies:

(6.2)

∫

T

log+ |T ′(z)/n|dm(z) ≤
∫

T

log+ |T (z)|dm(z).

Indeed, for fixed w ∈ T, one applies (5.2) to the polynomial T + wEn with
En(z) = zn. One gets, since E′

n = nEn−1:∫
log |T ′(z)/n + wEn−1(z)|dm(z) ≤

∫

T

log |T (z) + wEn(z)|dm(z).

One next integrates both members with respect to w, uses Fubini’s theorem
and applies the identity (6.1) for fixed z with u = En−1(z), v = T ′(z)/n, or
with u = En(z), v = T (z), to obtain (6.2).

2. It holds for p > 0 and u ≥ 0:

(6.3) up =

∫ ∞

0
log+(u/a) p2ap−1da.

Indeed, write the right-hand side as I =
∫ u
0 log(u/a) p2ap−1da, and integrate

by parts, differentiating the log, to get I =
∫ u
0 pa

p−1da = up.
Write dµ(a) = p2ap−1da to save notation (µ depends on p). Identity (6.3)
and Fubini used twice give, using also (6.2):

∫

T

|T ′(z)/n|pdm(z) =

∫

T

[ ∫ ∞

0
log+(|T ′(z)|/na)dµ(a)

]
dm(z)

=

∫ ∞

0

[ ∫

T

log+(|T ′(z)|/na)dm(z)
]
dµ(a)

≤
∫ ∞

0

[ ∫

T

log+(|T (z)|/a)dm(z)
]
dµ(a)

=

∫

T

[ ∫ ∞

0
log+(|T (z)|/a)dµ(a)

]
dm(z) =

∫

T

|T (z)|p dm(z).

This ends the proof of Arestov’s theorem. �
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7 Final Remarks

1. Passing to the limit, when n→ ∞, in the Riesz relation (1.9)

1

2n2

2n∑

r=1

1

sin2 (2r−1)π
4n

= 1

easily gives the Euler formulas

∞∑

r=1

(2r − 1)−2 = π2/8 and

∞∑

r=1

r−2 = π2/6.

2. The Bernstein-Arestov inequalities for the trigonometric polynomials
Tn(x) =

∑n
k=−n ake

ikx, namely

‖T ′
n‖p ≤ n‖Tn‖p

thus hold for all p ≥ 0 ([3]). A striking aspect of those inequalities is that the
full question was still open in 1980, even for algebraic polynomials, in spite
of partial nice contributions due to Maté and Nevai ([18]), which appeared in
Annals of Math.! The authors prove that, for 0 < p < 1 and P an algebraic
polynomial of degree n, it holds

‖P ′‖p ≤ n(4e)1/p‖P‖p.

3. The result of ([3]) is more precise: if χ : R+ → R
+ is increasing, differ-

entiable with xχ′(x) increasing as well, for example if χ(x) = xp with p > 0
or χ(x) = log x, one has

(7.1)

∫

T

χ(|T ′
n(z)|)dm(z) ≤

∫

T

χ(|nTn(z)|)dm(z).

4. In the case p = ∞, the quite interesting proof of M. Riesz ([29]) could
inspire for a proof of the existence of the function ϕ in Lemma 2.2. This
Riesz formula gives a more precise result than Bernstein’s one, as we saw:

(7.2) |T ′(0)| ≤ n sup
x∈En

|T (x)|.

where En (a coset) designates the fixed subset of cardinality 2n formed by

the numbers (2r−1)π
2n , 1 ≤ r ≤ 2n. More precisely, identifying kπ

2n and ei
kπ
2n ,

let G4n be the group of 4n-th roots of unity and Hn = G2
4n be the subgroup
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of order 2n formed by squares. One has En = ωHn.

5. In ([28]), one can find various improvements of Bernstein’s inequality
for the so-called ultraflat polynomials P of Kahane (those of degree n with
unimodular coefficients and with modulus nearly

√
n on the unit circle),

under the form
‖P ′‖p ≤ γp n

(
1 +O(n−1/7)

)
‖P‖p

where γp < 1 is a constant given in explicit terms.

8 Acknowledgments

The first named author warmly thanks F. Nazarov for very useful ex-
changes about Bernstein’s inequality. The second-named author acknowl-
edges the Russian Science Foundation grant 14-41-00010. We finally thank
the referee for his careful reading of our manuscript and his many insightful
comments and suggestions.

References

[1] A. Baranov, R. Zarouf, Boundedness of the differentiation operator in
the model spaces and application to Peller type inequalities, J. Analyse.
Math., to appear.

[2] A. Baranov, R. Zarouf, A model spaces approach to some classical in-
equalities for rational functions, J. Math. Anal. Appl. 418 (2014), 1,
121–141.

[3] V.V. Arestov, On integral inequalities for trigonometric polynomials and
their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981) 3–22 (in
Russian), English transl. in Math. USSR Izv. 18 (1982) 1–17.

[4] S. N. Bernstein, Sur l’ordre de la meilleure approximation des fonctions
continues par les polynômes de degré donné, Mémoires publiés par la
Classe des Sciences de l’Académie de Belgique, 4, 1912.

[5] S. N. Bernstein, On the best approximation of continuous functions by
polynomials of given degree, (O nailuchshem problizhenii nepreryvnykh
funktsii posredstrvom mnogochlenov dannoi stepeni), Sobraniye sochi-
nenii, Vol. I, 11–104, 1912, Izd. Akad. Nauk SSSR, Vol. I, 1952.

28



[6] S. N. Bernstein, Sur la limitation des dérivées des polynômes, C. R.
Acad. Sc. Paris, 190 (1930), 338–340.

[7] J. Bergh, J. Löfstrom, Interpolation Spaces: An Introduction,
Grundlehren der mathematischen Wissenschaften, Vol. 223, Springer-
Verlag, Berlin/Heidelberg/New York (1976).

[8] F.F. Bonsall, D. Walsh, Symbols for trace class Hankel operators with
good estimates for norms, Glasgow Math. J. 28 (1986), 4–54.

[9] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities,
Springer 1995.

[10] J.P. Kahane, Séries de Fourier absolument convergentes, Springer 1970.

[11] J.P. Kahane, Some random series of functions, second edition, Cam-
bridge 1985.

[12] J.P. Kahane, Sur les polynômes à coefficients unimodulaires, Bull.
Lond. Math. Soc. 12 (1980), 321-342.

[13] Y. Katznelson, An introduction to harmonic Analysis, third edition,
Cambridge 2004.

[14] G. G. Lorentz, Approximation of functions, Second edition. Chelsea
Publishing Co., New York, 1986.

[15] K. Mahler, On the zeros of the derivative of a polynomial, Proc. Roy.
Soc. London, Ser.A (264) (1961), 145–154.

[16] K. Mahler, On the zeros of the derivative of a polynomial, Proc.
Roy.Soc.Ser.A 264 (1961), 145-154.

[17] I. Malik, On the derivative of a polynomial, J. London Math. Soc. 2
(1969), 57–60.

[18] A. Maté, P. Nevai, Bernstein’s inequality in Lp for 0 < p < 1 and
(C, 1) bounds for orthogonal polynomials, Ann. of Math. 2 (111) (1980),
145–154.

[19] F. Nazarov, Private communication.

[20] N. Nikolski, Condition numbers of large matrices and analytic capacities,
Algebra i Analiz 17 (2005), no. 4, 125–180; translation in St. Petersburg
Math. J. 17 (2006), no. 4, 641?682

29



[21] N. Nikolski, Operators, Function, and Systems: an Easy Reading, Vol.1,
Amer. Math. Soc. Monographs and Surveys, 2002.

[22] V.V. Peller, Hankel operators of class Sp and their applications (ratio-
nal approximation, Gaussian processes, the problem of majorization of
operators), Mat. Sb. 113(155) (1980), 4, 538–581; English transl. in:
Math. USSR-Sb. 41 (1982), 443–479.

[23] V. V. Peller, Estimates of functions of power bounded operators on
Hilbert spaces, J. Operator Theory, 7 (1982), 341–372.

[24] V. Prasolov, Polynomials, Springer, 2004.

[25] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., No.
1, Math. Dept., Duke Univ., Durham, NC, 1976.

[26] G. Pisier, The volume of convex bodies and Banach space geometry,
Cambridge University Press 94, 1989.

[27] H. Queffélec, M. Queffélec, Diophantine Approximation and Dirichlet
Series, HRI Lecture Notes Series 2 (2013).

[28] H. Queffélec, B. Saffari, On Bernstein’s inequality and Kahane’s ultraflat
polynomials, Journ. Fourier Anal. Appl. Volume 2 (6) (1996), 519-582.

[29] M. Riesz, Formule d’interpolation pour la dérivée d’un polynôme
trigonométrique, C. R. Acad. Sciences Paris Sér. I Math 303 (1916),
97-100

[30] R. Salem, A. Zygmund, Some properties of trigonometric series whose
terms have random sign, Acta. Math. 91 (1954), 245–301.

[31] P. Vitse, Functional calculus under Kreiss type conditions, Math. Nachr.
278 (2005), 1811–1822.

[32] A. Zygmund, Trigonometric series, Cambridge University Press, second
edition, 1993.

30


