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0 Abstract and basic information

In this paper we consider a Stokes system with Navier-slip boundary conditions. The main results

concern the behaviour of the cost of null controllability with respect to the diffusion coefficient when the

control acts in the interior. In particular, we prove in (0, π)2 that for a sufficiently large time the cost

decays exponentially as the diffusion coefficient vanishes, whereas in (0, π)3 we prove that for most of

the control domains and for any time T > 0 the cost explodes exponentially as the diffusion coefficient

vanishes.
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1 Introduction

1.1 Main results

Throughout the paper we are interested in understanding the following control problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt − ε∆y + ∂xd
y +∇q = f1ω in Q,

∇ ⋅ y = 0 in Q,

y ⋅ n = 0, (Dy ⋅ n)tg = 0 on Σ,

y(0, ⋅) = y0 on Ω.

(1.1)

As usual, here and throughout the paper, T > 0, Ω ⊂ Rd and ω ⊂ Ω are domains, Q ∶= (0, T ) × Ω,

Qω ∶= (0, T )×ω, Σ ∶= (0, T )×∂Ω, Du ∶= 1
2
(∂xiuj + ∂xjui)i,j for all u ∈ L2(Ω) (in the distributional sense),

n denotes the normal vector pointing outwards ∂Ω, “∂n” denotes the normal outward partial derivative

on ∂Ω, and vtg ∶= v − (v ⋅ n)n. The bold notation is used to denote vectorial spaces. As for initial data,

y0, we take it in H(Ω), which is defined by:

H(Ω) ∶= {u ∈ L2(Ω) ∶ ∇ ⋅ u = 0 in Ω and u ⋅ n = 0 on ∂Ω}.

We recall that we can define a normal trace which belongs to H−1/2(∂Ω) in the (closed) subspace of

L2(Ω) of functions that have a divergence in L2(Ω). As for the control force, f , we want it at least in

L2(Qω) and, if possible, of null first component. Finally, throughout the document Ωd ∶= (0, π)d.

Let us denote the sets of admissible controls as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S1(y0) ∶= {f ∈ L2(Qω) ∶ Φ2(y0, f)(T, ⋅) = 0},
S2(y0) ∶= {f2 ∈ L2(Qω) ∶ Φ2(y0, (0, f2))(T, ⋅) = 0},
S3(y0) ∶= {f ∈ L2(Qω) ∶ Φ3(y0, f)(T, ⋅) = 0},

for y0 ∈ H(Ωd), for f ∈ L2(Qω) and for Φd(y0, f) the solution of (1.1) in Ωd. Thanks to [18], we know

that S1 and S3 are non-empty, whereas we obtain in Section 3.1 that S2 is non-empty by proving the

corresponding observability estimate. As for the cost of the control, we measure it with the usual norms.

In fact, we denote:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1(T, ε, ω) ∶= sup
y0∈H(Ω2)∖{0}

inf
f∈S1(y0)

∥f∥L2(Qω)

∥y0∥L2(Ω2)

,

K2(T, ε, ω) ∶= sup
y0∈H(Ω2)∖{0}

inf
f2∈S2(y0)

∥f2∥L2(Qω)

∥y0∥L2(Ω2)

,

K3(T, ε, ω) ∶= sup
y0∈H(Ω3)∖{0}

inf
f∈S3(y0)

∥f∥L2(Qω)

∥y0∥L2(Ω3)

.

(1.2)

The main results that we prove in the paper are the following ones:

Theorem 1.1. We have the following results for the control system (1.1):

1. Let ω ⊂ Ω2 a domain. Then, there are some c,C,T0 > 0 such that, if T > T0 and ε ∈ (0,1):

K2(T, ε, ω) ≤ Ce−cε
−1

.
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2. Let h ∈ (0, π) and ω ⊂ (0, π) × (π − h,π) a domain. Then, for any T ∈ (0,2(π − h)), there is c > 0

such that, if ε ∈ (0,1):

K1(T, ε, ω) ≥ cecε
−1

.

3. Let h ∈ (0, π) and ω ⊂ (0, π)× (0, h) a domain. Then, for any T ∈ (0, π −h), there is c > 0 such that,

if ε ∈ (0,1):

K1(T, ε, ω) ≥ cecε
−1

.

4. Let h ∈ (0, π) and ω ⊂ (0, π)2 × (π − h,π) a domain. Then, for any T > 0 there is c > 0 such that, if

ε ∈ (0,1):

K3(T, ε, ω) ≥ cecε
−1

.

Remark 1.2. The results in dimension 2 are not surprising as they are similar to those in [9, 20, 14, 25, 26].

The result in dimension 3 (see Item 4), however, is surprising because it holds for all T > 0 and for a wide

range of control domains (in particular, for all the control domains compactly supported in Ω3). This

result is explained because we have much more freedom to construct eigenfunctions of the adjoint operator

(see (1.5) and Remark 4.1 in Section 4 below). Indeed, we can construct in dimension 3 a continuous

family of eigenfunctions whose respective eigenvalues do not explode when ε → 0+. The existence of a

system with this property is a novelty with respect to the existing literature.

Remark 1.3. The analogous results to the ones stated in Theorem 1.1 and in the lemmas and propositions

throughout the paper are true for any rectangle or cuboids and with any velocity parallel to their edges.

Indeed, all the operations can be replicated under those assumptions. The reason of restricting to (0, π)2

or (0, π)3 is to reduce the number of operations so that the reader can focus on the main ideas of the

proof.

In order to estimate the cost of the control, we study the adjoint system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕt − ε∆ϕ − ∂xd
ϕ +∇p = 0 in Q,

∇ ⋅ ϕ = 0 in Q,

ϕ ⋅ n = 0, (2εDϕ ⋅ n + ϕnd)tg = 0 on Σ,

ϕ(T, ⋅) = ϕT on Ω,

(1.3)

for d the dimension of Ω. We recall the following classical result (see, for instance, [27, 23]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K1(T, ε, ω)]2 = sup
ϕT ∈H(Ω2)∖{0}

∫Ω2
∣ϕ(0, x)∣2dx

∬Qω
∣ϕ∣2dxdt ,

[K2(T, ε, ω)]2 = sup
ϕT ∈H(Ω2)∖{0}

∫Ω2
∣ϕ(0, x)∣2dx

∬Qω
∣ϕ2∣2dxdt

,

[K3(T, ε, ω)]2 = sup
ϕT ∈H(Ω3)∖{0}

∫Ω3
∣ϕ(0, x)∣2dx

∬Qω
∣ϕ∣2dxdt .

(1.4)

While working in Ω2 we use the following notation:

Σlr ∶= (0, T ) × {0, π} × (0, π), and Σbt ∶= (0, T ) × (0, π) × {0, π}.
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In order to understand the (energy) solutions of (1.3), we do a spectral decomposition. In particular,

we look for the solutions of:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ε∆u − ∂xd
u +∇p = λu in Ω,

∇ ⋅ u = 0 in Ω,

u ⋅ n = 0, (2εDu ⋅ n + und)tg = 0 on ∂Ω,

(1.5)

for d the dimension of Ω.

Remark 1.4. One interesting property of system (1.3) considered in Ω2 is that, as long as ϕT ∈ H(Ω2),
the gradient of the pressure of the solution of (1.3) is null for any given time. Indeed, by taking the

divergence in (1.3)1 we obtain that −∆p = 0, so the result is proved if we show that ∂np = 0 on Σ. For

that purpose, we multiply (1.3)1 by n. First, ϕt ⋅ n = 0 as ϕ ⋅ n = 0. Second, we have that:

−(ε∆ϕ + ∂x2ϕ) ⋅ n1Σlr
= −(ε∂2

x1
ϕ1 + ε∂2

x2
ϕ1 + ∂x2ϕ1)n11Σlr

= ε∂x2∂x1ϕ2n11Σlr
= 0.

We have used on the previous equality that n2 = 0 on Σlr, (1.3)2 and that ϕ1 = ∂x1ϕ2 = 0 on Σlr because

of (1.3)3. And finally, we have that:

−(ε∆ϕ + ∂x2ϕ) ⋅ n1Σbt
= −(ε∂2

x1
ϕ2 + ε∂2

x2
ϕ2 + ∂x2ϕ2)n21Σbt

= (ε∂x1∂x2ϕ1 + ∂x1ϕ1)n21Σbt
= 0.

We have used that n1 = 0 on Σbt, (1.3)2 and that ϕ2 = ε∂x2ϕ1 + ϕ1 = 0 on Σbt because of (1.3)3.

Remark 1.5. An immediate consequence of Remark 1.4 is that if ϕT ∈H(Ω2), ϕ1 (the first component of

the solution ϕ of (1.3) in Ω2) satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−zt − ε∆z − ∂x2z = 0 in Q,

z = 0 on Σlr,

ε∂x2z + z = 0 on Σbt,

z(T, ⋅) = zT on Ω2,

(1.6)

for zT = ϕT1 . In addition, ϕ2 satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−zt − ε∆z − ∂x2z = 0 in Q,

∂x1z = ∂nz = 0 on Σlr,

z = 0 on Σbt,

z(T, ⋅) = zT on Ω2,

(1.7)

for zT = ϕT2 .

Throughout the paper we use c and C to denote strictly positive constants, which might be different

each time. We denote the small constants by c and the large ones by C.

1.2 Historical background

The first control system with a small diffusion and a transport term that was analysed was the heat

equation in dimension 1 with Dirichlet boundary conditions in [9]. Afterwards, the same problem but
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in any dimension and with any speed belonging to W 1,+∞(R+ × Ω) was studied in [20]. More recently,

better approximations of the optimal time in which the cost of the control decays have been given: the

upper bound was improved in [14, 25] (in the first one through complex analysis and in the second one

by transforming the original equation into the pure heat equation), and the lower bound was improved in

[26] through complex analysis and properties of the entire functions. As for similar results, work has been

done in the the Burgers equation (see [15]), in the KdV equation (see [16, 17, 2, 3]) and in an artificial

advection-diffusion problem (see [5, 6]). As for the Stokes system with small diffusion and a transport

term, this is the first time that such a system has been studied and is, indeed, one of the contributions

of the paper.

The study of control problems associated to Stokes systems with Navier-slip boundary condition (see

(1.1)) is not new in the literature: the existence of d dimensional controls leading to null controllability

was proved in [18], while the existence of d−1 dimensional controls has recently been proved in [21]. The

need of working in a specific domain to simplify the problem is not new either. For example, recently,

in [10], they prove that the Navier-Stokes is (globally) null controllable in any rectangle with boundary

controls at two opposing edges and with a phantom force (see also [19] for a weaker result in cuboids).

Finally, the idea of using spectral decomposition is not new in Control Theory (see, for instance,

[8]). Indeed, for the heat and the Stokes context alone, there are many documents which deal with

eigenfunctions of the elliptic operator, for proving the existence of some control (see, for example, [22, 24,

4]), for estimating the cost of the control (see, for instance, [11]), and for giving negative answer to the

existence of a control (see, for example, [24]). As for a system with small diffusion and a transport term,

a spectral decomposition indirectly appears in [9, 26], when getting lower bounds for the optimal time

T0 in which the cost of the control decays exponentially with ε. However, as far as the author knows,

this is the first time that a spectral decomposition has been used to get the dissipation estimate in a

transport-diffusion system.

The rest of the paper is organized as follows: in Section 2 we study systems (1.3) and (1.5) for Ω2, in

Section 3 we study the cost of the control for Ω2, in Section 4 we study the control problem (1.1) and

its adjoint system for Ω3, in Section 5 we do some further comments about the techniques and point out

some open problems, and in Appendix A we prove a technical result.

2 Spectral decomposition of H((0, π)2) and some immediate con-

sequences

In this section we look for solutions of (1.5) in Ω2 and use them to extract information about the

solutions of (1.3) in Ω2. In particular, in Section 2.1 we provide the proof of a technical result, in Section

2.2 we get some eigenfunctions (solutions of (1.5)) which form a total set in H(Ω2), and in Section 2.3

we use those eigenfunctions to extract information about the solutions of (1.3). We avoid using Remark
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1.4 and Remark 1.5 to have a proof that can be generalized to other Stokes systems and because it does

not spare us many calculations.

As for the notation, given any real Banach space (V, ∥ ⋅∥) and S ⊂ V , we recall that span(S) denotes the

set of all linear combinations of the elements of S. Moreover, we recall that S is a total set if span(S) = V .

Also,

l2 ∶=
⎧⎪⎪⎨⎪⎪⎩
(ak)k∈N∗ ∶ ak ∈ R and ∑

k∈N∗
a2
k < +∞

⎫⎪⎪⎬⎪⎪⎭
.

Besides, for any bounded domain Θ ⊂ Rd, we denote:

L2
0(Θ) ∶= {g ∈ L2(Θ) ∶ ∫

Θ
g(x)dx = 0} .

Moreover, we use m = (m1,m2) ∈ (N∗)2 to index the eigenfunctions. Finally, we denote the set of

functions with separated variables having null normal trace and null divergence as:

SV (Ω2) ∶= {(∫
x1

0
g1(s)dsg2(x2),−g1(x1)∫

x2

0
g2(s)ds) ∶ g1, g2 ∈ L2

0(0, π)} . (2.1)

2.1 Some functional analysis results

In order to look for eigenfunctions, we look among those which have a simple structure; in particular,

among those which belong to SV (Ω2). Indeed, by construction, SV (Ω2) ⊂H(Ω2). Moreover, the interest

of SV (Ω2) is that it is a total set:

Proposition 2.1. We have:

span(SV (Ω2)) =H(Ω2).

Remark 2.2. This result is not surprising since it is well-known that functions with separated variables

form a total set in L2(Ω2).

In order to prove Proposition 2.1, we first need some technical results whose proofs, up to the author’s

knowledge, do not appear explicitly in any book or paper:

Lemma 2.3. Let A1,A2,B1,B2 ∈ R. Let Θ ∶= (A1,A2)× (B1,B2), p ∈ (1,+∞) and h ∈ Lp (Θ) a function

such that:

∫
Θ
h(x1, x2)g1(x1)g2(x2)dx = 0, (2.2)

for all g1 ∈ L∞0 (A1,A2) and for all g2 ∈ L∞0 (B1,B2). Then, there are h1 ∈ Lp(A1,A2) and h2 ∈ Lp(B1,B2)
such that:

h(x1, x2) = h1(x1) + h2(x2) almost everywhere in Θ,

and such that:

∫
A2

A1

h1(s)ds = 0. (2.3)

For the proof, we follow the classical scheme of first proving a regular version of the lemma, and then

generalizing it to weaker spaces thanks to mollifiers.
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Lemma 2.4. Let A1,A2,B1,B2 ∈ R. Let Θ ∶= (A1,A2) × (B1,B2), N ≥ 0 and h ∈ CN (Θ) a function

such that:

∫
Θ
h(x1, x2)g1(x1)g2(x2)dx = 0, (2.4)

for all g1 ∈ L∞0 (A1,A2) and for all g2 ∈ L∞0 (B1,B2). Then, there are h1 ∈ CN([A1,A2]) and h2 ∈
CN([B1,B2]) such that:

h(x1, x2) = h1(x1) + h2(x2) in Θ,

and such that:

∫
A2

A1

h1(s)ds = 0. (2.5)

We remark that (2.3) and (2.5) are required to have some continuity in the decomposition (h1, h2).
Moreover, they also provide uniqueness.

Proof of Lemma 2.4. Since the Lebesgue measure works well with translations and dilations, it suffices

to prove the result for Θ = (0,1)2. In particular, it suffices to prove that for all x1, x2, x̃1, x̃2 ∈ (0,1) such

that x1 ≠ x̃1 and x2 ≠ x̃2:

h(x1, x2) + h(x̃1, x̃2) = h(x1, x̃2) + h(x̃1, x2). (2.6)

Indeed, by continuity, (2.6) extends to all x1, x2, x̃1, x̃2 ∈ [0,1]. Consequently, if we consider (x̃1, x̃2) =
(0,0), we get that:

h(x1, x2) = h(x1,0) + h(0, x2) − h(0,0).

Let us suppose that there exist a1, a2, b1, b2 ∈ (0,1) such that a1 ≠ a2 and b1 ≠ b2 and such that (2.6) is

not true. By symmetry, we can suppose that:

h(a1, b1) + h(a2, b2) > h(a1, b2) + h(a2, b1).

Then, for some δ > 0 small enough (in particular smaller than a1, a2, b1, b2,1 − a1,1 − a2,1 − b1,1 − b2), by

the continuity of h, we have for all s = (s1, s2) ∈ [−δ, δ]2 the inequality:

h(a1 + s1, b1 + s2) + h(a2 + s1, b2 + s2) > h(a1 + s1, b2 + s2) + h(a2 + s1, b1 + s2).

Let us define:

g1 ∶= 1(a1−δ,a1+δ) − 1(a2−δ,a2+δ),

and:

g2 ∶= 1(b1−δ,b1+δ) − 1(b2−δ,b2+δ).

Then, we have that g1, g2 ∈ L∞0 (0,1), but:

∫
Θ
h(x1, x2)g1(x1)g2(x2)dx = ∫

[−δ,δ]2
(h(a1 + s1, b1 + s2) + h(a2 + s1, b2 + s2)

− h(a1 + s1, b2 + s2) − h(a2 + s1, b1 + s2))ds1ds2 > 0,

which contradicts (2.4).
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For the following proof we use the notation Ik ∶= ( 1
k
,1 − 1

k
) and I2

k ∶= Ik × Ik, for k sufficiently large.

Proof of Lemma 2.3. Again, since the Lebesgue measure works well with translations and dilations, it

suffices to prove the result for Θ = (0,1)2. In particular, in order to prove the existence of such h1, h2,

it suffices to prove that, for all k ∈ N∗, there is h1,k ∈ Lp0(Ik) and h2,k ∈ Lp(Ik) with ∥h1,k∥Lp(Ik) and

∥h2,k∥Lp(Ik) bounded uniformly, such that:

h(x1, x2) = h1,k(x1) + h2,k(x2) almost everywhere in I2
k . (2.7)

Indeed, we just have to take weak limits (up to extracting a subsequence) at both sides of:

h(x1, x2)1I2
k
(x1, x2) = h1,k(x1)1Ik(x1) + h2,k(x2)1Ik(x2),

and use that the unit ball of Lp(0,1) is weakly compact.

In order to prove the existence of h1,k and h2,k, let us consider ξ an even mollifier (a positive C∞(R)
function such that ∥ξ∥L1(R) = 1) supported in [−1,1]. We denote ξε(s) ∶= ε−1ξ (ε−1s). Let us now consider

g1, g2 ∈ L∞0 (Ik) (and null outside Ik). We have, for all ε < k−1, by Fubini: g1 ⋆ ξε, g2 ⋆ ξε ∈ L∞0 (0,1). Thus,

by (2.2), Fubini, the even symmetry of ξ, and the support of g1 and g2, we have that:

0 = ∫
Θ
h(x1, x2) (∫

1

0
g1(s1)ξε(x1 − s1)ds1)(∫

1

0
g2(s2)ξε(x2 − s2)ds2)dx

= ∫
Θ
g1(s1)g2(s2) (∫

Θ
h(x1, x2)ξε(s1 − x1)ξε(s2 − x2)dx)ds1ds2

= ∫
I2
k

g1(s1)g2(s2)(h ⋆ (ξε ⊗ ξε))(s1, s2)ds1ds2. (2.8)

Let us denote hε ∶= h ⋆ (ξε ⊗ ξε). Since ξ is a mollifier, hε ∈ C∞ (I2
k) and:

hε → h in Lp(I2
k). (2.9)

Moreover, since identity (2.8) is satisfied for any g1, g2 in L∞0 (Ik), we have that, because of Lemma 2.4,

the existence of h1,ε and h2,ε in C∞ (Ik) such that:

hε(x1, x2) = h1,ε(x1) + h2,ε(x2) in I2
k ,

and:

∫
Ik
h1,ε(s)ds = 0. (2.10)

Because of (2.9) and the justifications given in the previous paragraph it suffices to prove that ∥h1,ε∥Lp(Ik)

and ∥h2,ε∥Lp(Ik) are uniformly bounded. In the case of h2,ε, using (2.10), we get that:

(k − 2

k
)h2,ε(x2) = ∫

Ik
hε(x1, x2)dx1 in Ik.

Thus, by Fubini, Hölder and Young, we get for k ≥ 4 the estimate:

∥h2,ε∥Lp(Ik) ≤ 2∥hε∥Lp(I2
k
) ≤ 2∥h∥Lp(Θ). (2.11)
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As for h1,ε, since:

(k − 2

k
)h1,ε(x1) = ∫

Ik
(hε(x1, x2) − h2,ε(x2))dx2,

by the triangular inequality, Fubini, Hölder, Young and (2.11), we get for k ≥ 4 the estimate:

∥h1,ε∥Lp(Ik) ≤ 6∥h∥Lp(Θ).

Now we are ready to prove Proposition 2.1:

Proof of proposition 2.1. Since span(SV (Ω2)) is a closed vectorial subspace of H(Ω2), it suffices to prove

that:

span(SV (Ω2))
⊥
= {0}. (2.12)

So, let us consider u ∈H(Ω2) such that:

∫
Ω2

u ⋅ vdx = 0,

for any v ∈ SV (Ω2). Recalling (2.1) and with an integration by parts, we have that, for any g1, g2 ∈
L2

0(0, π):

0 = ∫
Ω2

u1(x1, x2) (∫
x1

0
g1(s)ds) g2(x2)dx − ∫

Ω2

u2(x1, x2)g1(x1) (∫
x2

0
g2(s)ds)dx

= ∫
Ω2

(−∫
x1

0
u1(s, x2)ds + ∫

x2

0
u2(x1, s)ds) g1(x1)g2(x2)dx. (2.13)

Thus, using Lemma 2.3 for p = 2 and Θ = Ω2, we have that there are h1, h2 ∈ L2(0, π) such that:

−∫
x1

0
u1(s, x2)ds + ∫

x2

0
u2(x1, s)ds = h1(x1) + h2(x2).

If we differentiate with respect to ∂x1x2 , we have that:

0 = −∂x2u1(x1, x2) + ∂x1u2(x1, x2) = ∇× u.

In addition, since u ∈H(Ω2), we also have that ∇ ⋅u = 0 and u ⋅n = 0. Consequently, since Ω2 is Lipschitz

and simply connected, we have that u = 0 (see, for instance, [1, Lemma IV.4.6]).

2.2 A total set of H(Ω2) formed by solutions of (1.5)

Throughout this section we focus on getting all the solutions of (1.5) (in Ω2). In particular, we first

get the candidates and then prove that they form a total set:

Proposition 2.5. For all m = (m1,m2) ∈ (N∗)2 let us set:

um(x) ∶= (∫
x1

0
g1,m1(s)dsg2,m2(x2),−g1,m1(x1)∫

x2

0
g2,m2(s)ds) , (2.14)

for

g1,m1(s) ∶= cos(m1s), g2,m2(s) ∶= (2m2ε cos(m2s) − sin(m2s)) e−(2ε)
−1s. (2.15)
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Then, um is a solution of the system (1.5) (in Ω2) such that:

∥um∥L2(Ω2) =
¿
ÁÁÀ(1 − e−πε−1)m2

2πε
3(1 + 4ε2(m2

1 +m2
2))

m2
1 + 4m2

1m
2
2ε

2
, (2.16)

whose associated pressure is constant and whose associated eigenvalue is:

λm = (m2
1 +m2

2)ε +
1

4ε
. (2.17)

Remark 2.6. We have the equality:

um(x) = e−(2ε)
−1x2( sin(m1x1)

m1
(2m2ε cos(m2x2) − sin(m2x2)), − 2ε cos(m1x1) sin(m2x2)). (2.18)

Moreover, using that m1,m2 ≥ 1 and ε ∈ (0,1), we obtain from (2.18) the estimate:

∥um∥L∞(Ω2) ≤ C(m2ε + 1). (2.19)

Proof. We can check directly the conclusions of Proposition 2.5 for the functions given in (2.18). In

addition, we can get all the eigenfunctions of the elliptic system associated to (1.7) and (1.6) and find

the pairs of compatibility. However, we show an “intuitive” way to get the um to provide a better insight

to the reader which can help him/her to understand what happens in other Stokes systems. With that

purpose, we look for eigenfunctions in SV (Ω2) (see (2.1)) such that g1, g2 ∈ C∞([0, π]). We can prove

easily that in that case the condition (1.5)3 is equivalent to (if g1 ≠ 0 and g2 ≠ 0):

g′1(0) = g′1(π) = εg′2(0) + g2(0) = εg′2(π) + g2(π) = 0. (2.20)

If we apply the divergence operator to (1.5)1, we obtain that ∆p = 0. In particular, we can apply the

Laplacian operator to (1.5)1 to get possible solutions. Indeed, since:

∆u1 = g′1(x1)g2(x2) + ∫
x1

0
g1(s)dsg′′2 (x2),

∂x2∆u1 = g′1(x1)g′2(x2) + ∫
x1

0
g1(s)dsg′′′2 (x2),

∆2u1 = g′′′1 (x1)g2(x2) + 2g′1(x1)g′′2 (x2) + ∫
x1

0
g1(s)dsgiv)2 (x2);

we have that:

− εg′′′1 (x1)g2(x2) − 2εg′1(x1)g′′2 (x2) − ε∫
x1

0
g1(s)dsgiv)2 (x2) − g′1(x1)g′2(x2)

− ∫
x1

0
g1(s)dsg′′′2 (x2) − λg′1(x1)g2(x2) − λ∫

x1

0
g1(s)dsg′′2 (x2) = 0.

We have that g1,m1 ∈ L2
0(0, π) (see (2.15)), that g1,m1 satisfies the first two conditions of (2.20), and

that g1,m1 is an eigenfunction of the Laplacian; so it is a reasonable function to do an attempt. Under

that choice, the functions g2 ∈ L2
0(0, π) have to satisfy the two last conditions of (2.20) and the ODE:

− εm4
1g2 + 2εm2

1g
′′
2 − εg

iv)
2 +m2

1g
′
2 − g′′′2 + λm2

1g2 − λg′′2 = 0. (2.21)

In order to solve (2.21) we calculate the roots of its characteristic polynomial:

− ε(r2 −m2
1)2 − r(r2 −m2

1) − λ(r2 −m2
1) = 0. (2.22)
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Let us focus on the roots of:

r2 + r
ε
+ λ
ε
−m2

1 = 0, (2.23)

which are given by:

r =
− 1
ε
±
√

1
ε2
− 4λ

ε
+ 4m2

1

2
.

These roots are complex if λ is sufficiently large with respect to ε−1. We then have that the associated

solutions for λ large enough are:

g2,m2(s) ∶= (A cos(m2s) +B sin(m2s))e−(2ε)
−1s, (2.24)

where m2 > 0 is defined by:

m2 ∶=m2(ε, λ,m1) ∶=
√

λ

ε
− 1

4ε2
−m2

1. (2.25)

Consequently, the g2,m2 that we get are solutions of:

− εg′′2 − g′2 = (λ − εm2
1)g2. (2.26)

We are going to see that there are some g2,m2 ∈ L2
0(0, π) that also satisfy the last two conditions of

(2.20). Indeed, we have that:

g′2,m2
(s) = [(− A

2ε
+m2B) cos(m2s) + (−B

2ε
−Am2) sin(m2s)] e−(2ε)

−1s.

From g2,m2(0) = −εg′2,m2
(0), we obtain that:

A = −2m2εB. (2.27)

Moreover, from g2,m2(π) = −εg′2,m2
(π) and (2.27) we have that:

−2m2εB cos(m2π) +B sin(m2π) = −2m2εB cos(m2π) + (1

2
− 2m2

2ε
2)B sin(m2π).

Consequently,

B sin(m2π) = −4m2
2ε

2B sin(m2π).

Hence, we have either m2 ∈ N∗ or B = 0, which by (2.27) implies that g2,m2 = 0, which just gives the null

solution. Consequently, the possible values for g2,m2 are (we have taken B = −1):

g2,m2(s) = (2m2ε cos(m2s) − sin(m2s))e−(2ε)
−1s =

d (2ε sin(m2s)e−(2ε)
−1s)

ds
, ∀m2 ∈ N∗, (2.28)

which clearly belong to L2
0(0, π). Thus, our candidates are those defined in (2.15) and λm satisfies (2.17)

because of (2.25).

In order to see that um satisfies the first equation of (1.5)1 with a constant pressure for any given time,

we have to use (2.14), that g2,m2 is a solution of (2.26) and that g1,m1 is a solution of −εg′′1,m1
= εm2

1g1,m1 .

Moreover, in order to see that they satisfy the second equation of (1.5)1, we consider (2.26) and that

εg′2,m2
(0) + g2,m2(0) = 0, which imply that:

(λ − εm2
1)∫

s

0
g2,m2(s′)ds′ = −εg′2,m2

− g2,m2 = −ε
d2 (∫

s
0 g2,m2(s′)ds′)

ds2
−
d (∫

s
0 g2,m2(s′)ds′)

ds
.

11



Finally, let us prove (2.16) using (2.18). We recall that, if a, b ∈ R such that a ≠ 0 or b ≠ 0:

∫
s

0
sin(as′)ebs

′

ds′ = e
bs(b sin(as) − a cos(as)) + a

a2 + b2 , ∫
s

0
cos(as′)ebs

′

ds′ = e
bs(b cos(as) + a sin(as)) − b

a2 + b2 .

(2.29)

In addition, recalling that m1 ∈ N∗, we have the identity:

∫
π

0
sin2(m1x1)dx1 =

π

2
. (2.30)

Similarly, we have that:

(2m2ε cos(m2x2) − sin(m2x2))2 = 2m2
2ε

2(1 + cos(2m2x2)) − 2m2ε sin(2m2x2) +
(1 − cos(2m2x2))

2

= 4m2
2ε

2 + 1

2
+ 4m2

2ε
2 − 1

2
cos(2m2x2) − 2m2ε sin(2m2x2). (2.31)

Consequently, considering that m2 ∈ N∗, (2.29) and (2.31) we obtain the equality:

∫
π

0
(2m2ε cos(m2x2) − sin(m2x2))2e−ε

−1x2dx2

= ∫
π

0
(4m2

2ε
2 + 1

2
+ 4m2

2ε
2 − 1

2
cos(2m2x2) − 2m2ε sin(2m2x2)) e−ε

−1x2dx2

= ε4m2
2ε

2 + 1

2
(1 − e−πε

−1

) + 4m2
2ε

2 − 1

2

ε−1(1 − e−πε−1)
4m2

2 + ε−2
− 2m2ε

2m2(1 − e−πε
−1)

4m2
2 + ε−2

= (4m2
2ε

3 + ε)(4m2
2ε

2 + 1) + 4m2
2ε

3 − ε − 8m2
2ε

3

8m2ε2 + 2
(1 − e−πε

−1

) = 2m2
2ε

3(1 − e−πε
−1

). (2.32)

Moreover, since m1 ∈ N we have the identity:

∫
π

0
cos2(m1x1)dx1 =

π

2
. (2.33)

In addition, from m2 ∈ N∗ we obtain the equality:

∫
π

0
sin2(m2x2)e−ε

−1x2dx2 = ∫
π

0

1 − cos(2m2x2)
2

e−ε
−1x2 = 1

2
(ε − ε

4m2
2ε

2 + 1
)(1 − e−πε

−1

)

= 2m2
2ε

3

4m2
2ε

2 + 1
(1 − e−πε

−1

). (2.34)

So, combining (2.18), (2.30), (2.32), (2.33) and (2.34) we obtain that:

∥um∥2
L2(Ω) =

π

m2
1

m2
2ε

3(1 − e−πε
−1

) + 4πm2
2ε

5

4m2
2ε

2 + 1
(1 − e−πε

−1

)

= (1 − e−πε
−1

)π 4m4
2ε

5 +m2
2ε

3 + 4m2
2m

2
1ε

5

4m2
2m

2
1ε

2 +m2
1

= (1 − e−πε−1)m2
2πε

3(1 + 4ε2(m2
1 +m2

2))
m2

1 + 4m2
1m

2
2ε

2
,

which implies (2.16).

Proposition 2.7. The set {um}m∈(N∗)2 is a total set.

Proof. Thanks to Proposition 2.1, it suffices to prove that:

SV (Ω2) ⊂ span{um}. (2.35)

We prove this inclusion constructively; that is, writing an element of SV (Ω2) as a limit of linear combi-

nations of the eigenfunctions um. We consider a function u ∈ SV (Ω2) (see (2.1)).

12



Let us recall that { cos(ks)
√

2−1π
}
k∈N∗

∪ {π−1} is an orthonormal basis of L2(0, π) (the basis obtained by the

diagonalization of the Laplacian with Neumann boundary conditions in (0, π)). So, since g1 ∈ L2
0(0, π),

we have that, for some ak ∈ l2:

g1(s) = ∑
k≥1

ak
cos(ks)√

2−1π
. (2.36)

That series must be understood as a limit in L2(0, π).

Next, we remark that:

{ γεk√
2−1π

√
1 + 4k2ε2

}
k≥1

⋃
⎧⎪⎪⎨⎪⎪⎩

e−(2ε)
−1s

√
ε(1 − e−π/ε)

⎫⎪⎪⎬⎪⎪⎭
, (2.37)

for:

γεk(s) ∶= 2kε cos(ks) − sin(ks), (2.38)

is the orthonormal basis obtained by diagonalization of the Laplacian in (0, π) with Robin boundary

conditions: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2εg′(0) = g(0),
−2εg′(π) = g(π).

(2.39)

Indeed, we have that the Laplacian is self-adjoint in the subspace of H2(Ω2) that satisfies (2.39). Thus,

we have, for some bk ∈ l2:

g2(s) = (g2(s)e(2ε)
−1s) e−(2ε)

−1s = ∑
k≥1

bk
γεk(s)e−(2ε)

−1s

√
2−1π

√
1 + 4k2ε2

. (2.40)

We have used that g2 ∈ L2
0(0, π) implies that g2e

(2ε)−1s is orthogonal to e−(2ε)
−1s. Moreover, we have

to understand the series as a limit in L2(0, π), not as a pointwise one. In that sense, we can place

the exponential into the series because the multiplication of the functions of L2(0, π) by an element of

L∞(0, π) is a continuous linear form.

Next, we recall that the operator ∫
s

0 is a continuous endomorphism in L2(0, π). Thus, we have that:

∫
s

0
g1(s′)ds′ = ∑

k≥1

ak
sin(ks)
k
√

2−1π
. (2.41)

Similarly, we have that:

∫
s

0
g2(s′)ds′ = ∑

k≥1

bk
2ε sin(ks)e−(2ε)−1s√

2−1π
√

1 + 4k2ε2
. (2.42)

The limits in (2.41) and (2.42) are both pointwise and in L2(0, π).

We finally recall that the tensor product of two convergent sequences of L2(0, π) converges in L2(Ω2)
to the tensor product of their respective limits. Thus, we have that (2.36), (2.40), (2.41) and (2.42) imply:

∫
x1

0
g1(s)dsg2(x2) = lim

k→∞

k

∑
m1,m2≥1

2am1bm2

π
√

1 + 4m2
2ε

2

sin(m1x1)
m1

γεm2
(x2)e−(2ε)

−1x2 ,
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and that:

−g1(x1)∫
x2

0
g2(s)ds = lim

k→∞

k

∑
m1,m2≥1

2am1bm2

π
√

1 + 4m2
2ε

2
(−2ε cos(m1x1) sin(m2x2)e−(2ε)

−1x2) .

Consequently, we have that:

u = lim
k→∞

k

∑
m1,m2≥1

2am1bm2

π
√

1 + 4m2
2ε

2
um,

which proves (2.35).

2.3 Properties of the solution of (1.3) in Ω2

Since our operator is not self-adjoint, the total set {um} given in (2.18) does not have to be orthogonal

(and it is not). In addition, it is not immediate to write an element of H(Ω2) as a series of elements

proportional to those in {um}. Indeed, there are total sets in l2 (for instance {e1}∪{e1+ek}k≥2) such that

it is not possible to write any element of l2 (for instance (k−1)k≥1) as a series of elements proportional to

those in the total sets. In our particular situation we do not even know if this is possible (probably yes),

but we will prove that at least we can express the solutions of (1.3) in Ω2 with the help of {um}.

The next step is given any u ∈ span{um}, to get its coordinates in our generating system. In order to

do so, we get a set of functions vm ∈ L2(Ω2) such that {(um, vm)} is a bi-orthogonal system; that is, such

that:

∫
Ω2

um(x) ⋅ vm′(x)dx = 1m=m′ . (2.43)

Usually, we can get those functions vm by diagonalization of the adjoint operator, but it is easier to do

a systematic search in L2(Ω2). In that sense we define (recall (2.38)):

vm(x) ∶= 2

π2
e(2ε)

−1x2 (m1 sin(m1x1)
γεm2

(x2)
1 + 4m2

2ε
2
,−cos(m1x1) sin(m2x2)

2ε
) . (2.44)

We can easily verify (2.43) because {
√

2π−1 sin(ks)}
k∈N∗

, {
√

2π−1 cos(ks)}
k∈N∗

∪ {π−1} and (2.37) are

Hilbert basis in L2(0, π). We remark that, for a constant C that does not depend on m1, m2 or ε:

∥vm∥L2(Ω2) ≤ C (m1 +
1

ε
) e(2ε)

−1π. (2.45)

Now we are ready to get the solutions of (1.3) through a spectral decomposition.

Proposition 2.8. Let ϕT ∈H(Ω2). Let us denote, for t ≤ T , LTε (t)ϕT the value in H(Ω2) of the energy

solution of system (1.3) in Ω2 on time t. Then, we have that:

1. For all t < T and ε > 0:

LTε (t)ϕT = ∑
m∈(N∗)2

⟨ϕT , vm⟩L2(Ω2) exp [((m2
1 +m2

2)ε +
1

4ε
) (t − T )]um. (2.46)
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In particular, the series of the right hand-side of (2.46) is well-defined and absolutely convergent in

H(Ω2).

2. For all δ > 0 there is Cδ > 0 such that for all T > 0, ϕT ∈H(Ω2), ε ∈ (0,1) and s ≤ T − 2π − δ:

∥LTε (s)ϕT ∥L2(Ω2)
≤ Cδ exp [s − (T − 2π − δ)

4ε
] ∥ϕT ∥

L2(Ω2)
. (2.47)

Throughout the proof we denote Cε,t a generic constant which might be different each time and which

just depends on ε and t.

Proof. First of all, we have that (2.46) is true if ϕT ∈ span{um} as a consequence of Proposition 2.5 (see

(2.17)) and (2.43). Moreover, for t > 0 and ε > 0 fixed, LTε (t) is a continuous endomorphism on H(Ω2).
Consequently in order to prove Item 1, it suffices to prove that the series of the right-hand side of (2.46)

is well-defined, absolutely convergent and continuous. We shall prove the three properties at once.

Recalling estimate (2.19), estimate (2.45) and that xe−x
2

is bounded in R+, we have that, if ε ∈ (0,1):

∑
m∈(N∗)2

∣⟨ϕT , vm⟩L2(Ω2)∣ exp [((m2
1 +m2

2)ε +
1

4ε
) (t − T )] ∥um∥L2(Ω2)

≤ Cε,t ∥ϕT ∥L2(Ω2)
∑

m∈(N∗)2
m1m2 exp ((m2

1 +m2
2)ε(t − T ))

≤ Cε,t ∥ϕT ∥L2(Ω2)
∑

m∈(N∗)2
exp((m2

1 +m2
2)
ε(t − T )

2
) . (2.48)

The series in the right-hand side of (2.48) is convergent because, in (R+)2
:

exp((m2
1 +m2

2)
ε(t − T )

2
)1[m1−1,m1]×[m2−1,m2](x1, x2)

≤ exp((x2
1 + x2

2)
ε(t − T )

2
)1[m1−1,m1]×[m2−1,m2](x1, x2),

which implies that:

∑
m∈(N∗)2

exp((m2
1 +m2

2)
ε(t − T )

2
) ≤ ∫

(R+)2
exp((x2

1 + x2
2)
ε(t − T )

2
)dx = 2

ε(T − t)
π

4
. (2.49)

Combining (2.48) and (2.49), we have that:

∑
m∈(N∗)2

∣⟨ϕT , vm⟩L2(Ω2)∣ exp [((m2
1 +m2

2)ε +
1

4ε
) (t − T )] ∥um∥L2(Ω2) ≤ Cε,t ∥ϕT ∥L2(Ω2)

, (2.50)

which implies that the series in the right-hand side of (2.46) is absolutely convergent and thus well-defined.

Moreover, since the right-hand side of (2.46) is linear, (2.50) implies that the right-hand side of (2.46) is

continuous in H(Ω2).

15



Finally, let us prove (2.47). Indeed, using (2.19), the triangular inequality, and Cauchy-Schwarz, we

have that, for all ε ∈ (0,1):

∥LTε (s)ϕT ∥L2(Ω2)
≤ C ∥ϕT ∥

L2(Ω2)
∑

m∈(N∗)2
m2∥vm∥L2(Ω2) exp [((m2

1 +m2
2)ε +

1

4ε
) (s − T )] . (2.51)

Next, using (2.45) and that xe−x
2

is bounded in R+, if s ≤ T −2 and if ε ∈ (0,1), we have that (2.51) turns

into:

∥LTε (s)ϕT ∥L2(Ω2)
≤
C ∥ϕT ∥

L2(Ω2)

ε2

⎡⎢⎢⎢⎢⎣
∑

m∈(N∗)2
exp (−(m2

1 +m2
2)ε)

⎤⎥⎥⎥⎥⎦
exp(s − (T − 2π)

4ε
) . (2.52)

Using (2.49) for t = T − 2, we have that there is Cδ > 0 such that for all ε ∈ (0,1):
1

ε2 ∑
m∈(N∗)2

exp (−(m2
1 +m2

2)ε) ≤
π

4ε3
≤ Cδeδ(4ε)

−1

.

Consequently, (2.52) implies (2.47).

Remark 2.9. Let T > 0 and ϕT ∈H(Ω2). Then, the application:

R+
∗ ∋ ε↦ ϕε(0, ⋅) ∈H(Ω2)

(for ϕε the solution of (1.3) in Ω2 and initial value ϕT ) is continuous. To prove the continuity, we fix

ε0 > 0 and % > 0 and verify that if δ > 0 is small enough, we have for all ε ∈ (ε0 − δ, ε0 + δ) the following

inequality:

∥ϕε(0, ⋅) − ϕε0(0, ⋅)∥L2(Ω2) ≤ %. (2.53)

First, using (2.19), (2.45) and that se−s
2 ∈ L∞(R+, ds) we obtain that for all ε ∈ (ε0/2,3ε0/2) and M ∈ N:

XXXXXXXXXXX
∑

m1+m2≥M

⟨ϕT , vm⟩L2(Ω2) exp [−((m2
1 +m2

2)ε +
1

4ε
)T ]um

XXXXXXXXXXXL2(Ω2)

≤ C(T,ϕT ) (1 + 1

ε2
) exp(−T + 2π

4ε
)
⎡⎢⎢⎢⎣

∑
m1+m2≥M

exp(−(m2
1 +m2

2)
εT

2
)
⎤⎥⎥⎥⎦

≤ C(T,ϕT , ε0)
⎡⎢⎢⎢⎣

∑
m1+m2≥M

exp(−(m2
1 +m2

2)
ε0T

4
)
⎤⎥⎥⎥⎦
. (2.54)

Consequently, since the series in the right-hand of (2.54) is convergent, there is M(T,ϕT , ε0) large enough

such that for all ε ∈ (ε0/2,3ε0/2):
XXXXXXXXXXX

∑
m1+m2≥M

⟨ϕT , vm⟩L2(Ω2) exp [−((m2
1 +m2

2)ε +
1

4ε
)T ]um

XXXXXXXXXXXL2(Ω2)

≤ %
3
. (2.55)

So, using (2.46) and the triangular inequality, we obtain for all ε ∈ (ε0/2,3ε0/2) the estimate:

∥ϕε(0, ⋅) − ϕε0(0, ⋅)∥L2(Ω2) ≤
2%

3
+ ∥ ∑

m1+m2<M

⟨ϕT , vm⟩L2(Ω2)( exp [−((m2
1 +m2

2)ε +
1

4ε
)T ]

− exp [−((m2
1 +m2

2)ε0 +
1

4ε0
)T])um∥

L2(Ω2)

. (2.56)

Finally, considering that the sum in the right-hand side of (2.56) is finite and its terms are continuous

with respect to ε, we have (2.53) for all ε ∈ (ε0 − δ, ε0 + δ) if δ is small enough.
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3 The cost of the control in (0, π)2

In this section we prove the first three items of Theorem 1.1. In the three proofs we use the equivalent

definitions of the costs given in (1.4). In addition, for the proof of Item 2 we use the eigenfunctions given

in (2.18), whereas for the other two proofs we use Remark 1.5 and then inspire in [20]. The three proofs

are independent.

3.1 Proof of Item 1 of Theorem 1.1

In order to prove that the cost of the control decays, we first state a Carleman inequality for system

(1.7), then use that the divergence is null, and finally apply usual parabolic estimates. We recall that

ω ⊂ Ω2 is any arbitrary subdomain.

We consider ω0 an open ball centered at some point x = (x1, x2) and whose closure is contained in ω.

We consider the auxiliary functions:

η±(x) ∶= (2π2)−1 (±G(x1) − (x2 − x2)2) ,

for G a regular (positive) function such that G(0) = G(π) = 0, G′′ < 0, G′(x1) = 0 and ∥G∥L∞(0,π) ≤ π2.

Finally, let us consider the following classical weights, for T̃ > 0:

α±(t, x) ∶=
e8λ − eλ(η±(x)+6)

t(T̃ − t)
, ξ(t, x) ∶= e

λ(η±(x)+6)

t(T̃ − t)
,

α∗±(t) = max
x∈Ω

α±(t, x), ξ∗±(t) = min
x∈Ω

ξ±(t, x).
(3.1)

Remark 3.1. By the choice of G we have that ∥η±∥L∞(Ω2) ≤ 1, the weights α± are positive. This way of

defining the weights is classical (see, for instance, [13] and [8]).

Proposition 3.2. There is a constant C > 0 such that for any domain ω ⊂ Ω2, T̃ > 0 and zT̃ ∈ L2(Ω2)
we have that:

τλ2 ∬
(0,T̃ )×Ω2

e−2τα+ξ+∣∇z∣2dxdt + τ3λ4 ∬
(0,T̃ )×Ω2

e−2τα+ξ3
+∣z∣2dxdt ≤ Cτ3λ4 ∬

(0,T̃ )×ω

e−2τα+ξ3
+∣z∣2dxdt, (3.2)

for z the solution of (1.7) (in (0, T̃ ) instead of in (0, T )), for the weights defined in (3.1) and for any

ε ∈ (0,1), λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1.

The proof of Proposition 3.2 is essentially a combination of the proofs given in [20, Proposition 1] and

[12, Lemma 1]. Since the ideas of the proof are not original and since the proof is rather long, we just

sketch it in Appendix A.

A straight consequence of Proposition 3.2 and Remark 1.5 is that there is C > 0 such that for any

ϕT ∈ L2(Ω2), if ϕ denotes the solution of (1.3) in Ω2, for any λ ≥ C, for any τ ≥ Cε−1, and for the weights
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(3.1) with T̃ = 1, we have that:

τλ2 ∬
(0,1)×Ω2

e−2τα+ξ+∣∇ϕ2(t + T − 1, x)∣2dxdt + τ3λ4 ∬
(0,1)×Ω2

e−2τα+ξ3
+∣ϕ2(t + T − 1, x)∣2dxdt

≤ Cτ3λ4 ∬
(0,1)×ω

e−2τα+ξ3
+∣ϕ2(t + T − 1, x)∣2dxdt. (3.3)

Moreover, because of (1.6)2, we have by Poincaré inequality (and Fubini) that for all t < T :

τλ2 ∫
Ω2

e−2τα∗
+
(t)ξ∗+(t)∣ϕ1∣2(t, x)dx = τλ2e−2τα∗

+
(t)ξ∗+(t)∫

π

0
∥ϕ1(t, ⋅, x2)∥2

L2(0,π;dx1)
dx2

≤ Cτλ2e−2τα∗
+
(t)ξ∗+(t)∫

π

0
∥∂x1ϕ1(t, ⋅, x2)∥2

L2(0,π;dx1)
dx2 = Cτλ2 ∫

Ω2

e−2τα∗
+
(t)ξ∗+(t)∣∂x1ϕ1(t, x)∣2dx. (3.4)

Thus, since ∇ ⋅ ϕ = 0, combining (3.3) with (3.4), we have for λ ≥ C, τ ≥ Cε−1 the estimate:

τλ2 ∬
(0,1)×Ω2

e−2τα∗
+ξ∗+ ∣ϕ(t + T − 1, x)∣2dxdt ≤ Cτ3λ4 ∬

(0,1)×ω

e−2τα+ξ3
+∣ϕ2(t + T − 1, x)∣2dxdt. (3.5)

So, fixing λ large enough, and τ = τ0ε−1 for τ0 large enough, we have that (3.5) implies that:

∥ϕ∥L2((T−2/3,T−1/3)×Ω2) ≤ CeCε
−1

∥ϕ2∥L2((T−1,T )×ω). (3.6)

Let T > 7, using Item 2 of Proposition 2.8 there is C > 0 such that for δ = 7 − 2π − 2/3, for all

t′ ∈ (T − 2/3, T − 1/3) and for s = 0, we have that:

∥ϕ(0, ⋅)∥L2(Ω2) ≤ C exp [7 − 2/3 − t′
4ε

] ∥ϕ(t′, ⋅)∥L2(Ω2) ≤ C exp [7 − T
4ε

] ∥ϕ(t′, ⋅)∥L2(Ω2). (3.7)

So, combining (3.6) and (3.7), we get that, for any T > 7:

∥ϕ(0, ⋅)∥L2(Ω2) ≤ C exp [7 − T
4ε

] ∥ϕ∥L2((T−2/3,T−1/3)×Ω2) ≤ C exp [C − T
4ε

] ∥ϕ2∥L2((T−1,T )×ω).

In particular, if T0 is sufficiently large, Item 1 of Theorem 1.1 is true.

3.2 Proof of Item 2 of Theorem 1.1

Let us fix h ∈ (0, π) and a control domain ω ⊂ (0, π) × (π − h,π). We prove that, for T ∈ (0,2(π − h))
fixed, the cost of the control is at least exponentially large with respect to ε−1. We recall that:

u(x) ∶= ce−(2ε)
−1x2 (sin(x1)(2ε cos(x2) − sin(x2)),−2ε cos(x1) sin(x2)) ,

for:

c ∶=
¿
ÁÁÀ 1 + 4ε2

(1 − e−πε−1)πε3(1 + 8ε2) ,

is a solution of (1.5) for λε ∶= 2ε + 1
4ε

and such that ∥u∥L2(Ω2) = 1 (see Proposition 2.5). We remark that

since ω ⊂ (0, π) × (π − h,π) we have for all δ > 0 and ε ∈ (0,1) the estimate:

∥u∥L∞(ω) ≤ Cε−3/2e−(2ε)
−1

(π−h) ≤ Cδe−(2ε)
−1

(π−h−δ). (3.8)

Indeed, we have that ε−3 ≤ Cδeδε
−1

for all δ > 0 and ε ∈ R+.
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For proving (3.8) we have calculated the maximum of e−2ε−1x2 in (0, π)× (π −h,π). Moreover, we have

that:

ϕ(t, x) ∶= u(x)e−λε(T−t),

is a solution of (1.3) in Ω2 for ϕT = u. On the one hand, we have that:

∫
Ω2

∣ϕ(0, x)∣2dx = e−2λεT . (3.9)

On the other hand, using (3.8) and bounding e−2λε(T−t) by 1 we obtain the estimate:

∬
Qω

∣ϕ∣2dxdt =∬
Qω

∣u(x)∣2e−2λε(T−t)dxdt ≤ ∥u∥2
L∞(ω)∬

Qω

dxdt ≤ Cδ exp [h − π + δ
ε

] . (3.10)

So, combining (1.4), (3.9) and (3.10) we get that:

[K1(T, ε, ω)]2 ≥ cδ exp [π − h − δ − 4ε2T − T /2
ε

] ,

which implies Item 2 of Theorem 1.1 by choosing δ ∈ (0, π − h − T /2).

3.3 Proof of Item 3 of Theorem 1.1

Let h ∈ (0, π), a control domain ω ⊂ (0, π) × (0, h) and T ∈ (0, π − h) fixed. In order to prove that

the cost of the control blows out exponentially with respect to ε, we shall adapt the proof given in [20,

Theorem 1]. Indeed, unlike in [20], ϕ is a vectorial function, the boundary conditions are not purely

Dirichlet, and we cannot pick in (1.3) an initial value ϕT such that ∫Ω ϕT2 > 0 because for all u ∈ H(Ω)
we have that ∫Ω u1 = ∫Ω u2 = 0.

To make the proof more clear, we split it with the help of two lemmas:

Lemma 3.3. Let h ∈ (0, π), T ∈ (0, π − h) and δ ∈ (0, π − T − h). Let ϕT ∈ H(Ω2) ∩C∞ (Ω2) ∖ {0} such

that supp(ϕT ) ⊂ (0, π) × (π − δ, π) and let ϕε be the solution of (1.3) in Ω2 and with initial value ϕT .

Then, there is c > 0 such that, for all ε ∈ (0,1):

∥ϕε(0, ⋅)∥L2(Ω) ≥ c. (3.11)

Remark 3.4. For any δ > 0 there are functions ϕT which satisfy the hypothesis of Lemma 3.3. For

example, if χδ ∈ C∞([0, π]) is a function supported in (π − δ, π) of null mean, we can consider:

ϕT (x) ∶= (∫
x1

0
χδ(s)dsχδ(x2),−χδ(x1)∫

x2

0
χδ(s)ds) . (3.12)

Consequently, neither Lemma 3.3 nor Lemma 3.5 below are empty results.

Proof. We prove (3.11) by contradiction. First of all, we remark that, thanks to forward uniqueness of

(1.3) (which can be proved by contradiction with backward uniqueness and (2.46)), ∥ϕε(0, ⋅)∥L2(Ω) > 0

for all ε ∈ (0,1]. In addition, because of Remark 2.9, the only problematic situation arises if there is

εk → 0 such that ∥ϕεk(0, ⋅)∥L2(Ω) → 0. Let us suppose the existence of such sequence εk and derive a

contradiction.
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We have that {ϕε2 ∶ ε ∈ (0,1)} is bounded in L2(Q) (see Remark 1.5); thus, we can suppose that ϕεk2

converges weakly in L2(Q) to some function γ. Let us consider ψ ∈ D([0, T ]×Ω2). Using Remark 1.5 we

have that:

0 =∬
Q
ϕεk2 (∂tψ − εk∆ψ + ∂x2ψ)dxdt + ⟨ϕεk2 (0, ⋅), ψ(0, ⋅)⟩L2(Ω2) − ⟨ϕT2 , ψ(T, ⋅)⟩L2(Ω2). (3.13)

By taking the weak limit of ϕεk2 , the strong limit of εk∆ψ (to 0) and the strong limit of ϕεk2 (0, ⋅) (to 0),

we get from (3.13) that:

0 =∬
Q
γ(∂tψ + ∂x2ψ)dtdx − ⟨ϕT2 , ψ(T, ⋅)⟩L2(Ω2). (3.14)

We have that equation (3.14) is true in particular for ψ(t, x) = ϕT2 (x1, x2 + T − t), which belongs to

D([0, T ] ×Ω). Consequently, we get that ∥ϕT2 ∥L2(Ω2) = 0. Since ϕT ∈ H(Ω2) ∩C1 (Ω2) this implies that

ϕT1 = 0, contradicting the fact that ϕT ≠ 0.

Lemma 3.5. Let h ∈ (0, π), T ∈ (0, π − h) and δ ∈ (0, π − T − h). Then, if ϕT ∈ H(Ω2) such that

supp(ϕT ) ⊂ (0, π) × (π − δ, π) there is c > 0 such that for all ε ∈ (0,1):

∬
Qω

∣ϕε2∣2dxdt ≤ ce−cε
−1

, (3.15)

for ϕε the solution of (1.3) in Ω2 and for initial value ϕT .

For the following proof we fix a parameter δ̃ > 0 so that T ∈ (0, π−h−δ
1+δ̃

).

Proof. First of all, we recall that ϕε2 satisfies (1.7) for zT ∶= ϕT2 . Multiplying (1.7)1 by

2e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2,

and integrating in Ω2 we deduce that for all t ∈ [0, T ] we have the following equality:

− d

dt
(∫

Ω2

∣e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∣

2
dx) + 2ε∫

Ω2

∣∇ (e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2)∣

2
dx = 0. (3.16)

Indeed, first, we have the equality:

− 2∫
Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∂tϕ

ε
2dx = −

d

dt
(∫

Ω2

∣e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∣

2
dx)

+ 2(δ̃ + (δ̃)2)ε−1 ∫
Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1 ∣ϕε2∣2dx. (3.17)

Second, since ϕε2 satisfies (1.7)2 and (1.7)3 we have that:

− 2ε∫
Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∆ϕε2dx

= 2ε∫
Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1 ∣∇ϕε2∣2dx − 4δ̃∫

Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1∂x2ϕ

ε
2ϕ

ε
2dx

= 2ε∫
Ω2

∣∇ (e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2)∣

2
dx − 2(δ̃)2ε−1 ∫

Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1 ∣ϕε2∣2dx. (3.18)

Thirdly, since ϕε2 satisfies (1.7)3 we have the equality:

− 2∫
Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∂x2ϕ

ε
2dx = −2δ̃ε−1 ∫

Ω2

e2(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1 ∣ϕε2∣2dx. (3.19)

Consequently, considering (1.7)1 and (3.17)-(3.19) we obtain (3.16).
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So, we obtain from (3.16) the following Agmon identity:

∫
T

0
∫

Ω2

∣e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∣

2
dxdt

+ 2ε∫
T

0
∫

T

t
∫

Ω2

∣∇ (e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−s))ε−1ϕε2(s, x))∣

2
dxdsdt = T ∫

Ω2

∣eδ̃(π−x2)ε
−1

ϕT2 ∣
2
dx. (3.20)

On the one hand, using that the support of ϕT is included in (0, π) × (π − δ, π), we have that:

T ∫
Ω2

∣eδ̃(π−x2)ε
−1

ϕT2 ∣
2
dx ≤ πe2δ̃δε−1 ∫

Ω2

∣ϕT2 ∣2 dx. (3.21)

On the other hand, recalling that ω ⊂ (0, π) × (0, h), we find that:

e2δ̃(π−h−T−δ̃T )ε−1∬
Qω

∣ϕε2∣2dxdt ≤ ∫
T

0
∫

Ω2

∣e(δ̃(π−x2)−(δ̃+(δ̃)
2
)(T−t))ε−1ϕε2∣

2
dxdt. (3.22)

Combining (3.20), (3.21) and (3.22), we have that:

∬
Qω

∣ϕε2∣2dxdt ≤ π exp [2δ̃(T + δ̃T + h + δ − π)
ε

] ∥ϕT2 ∥2

L2(Ω)
; (3.23)

that is, we get the decay of the L2 norm of ϕ2 in the control domain.

Remark 3.6. So far, combining (1.4), Lemma 3.3, Lemma 3.5 and Remark 3.4, we have that for a given

h ∈ (0, π), for all ω ⊂ (0, T ) × (0, h), and for all T ∈ (0, π − h), there is c > 0 such that for all ε ∈ (0,1):

K2(T, ε, ω) ≥ cecε
−1

.

Now we have the tools to end the proof of Item 3 of Theorem 1.1. For that proof, we denote, for

h ∈ (0, π) and T ∈ (0, π − h) both fixed parameters:

δ ∶= (π − h − T )/3, ω1 ∶= (0, π) × (0, h), ω2 ∶= (0, π) × (0, h + δ). (3.24)

End of the proof of Item 3 of Theorem 1.1. Let ϕε be the solution of (1.3) in Ω2 of initial value (3.12)

and with δ as in (3.24). Thanks to (1.4), Lemma 3.3 and Lemma 3.5, the only thing left to prove is that

∬Qω
∣ϕε1∣2dxdt decays exponentially. For that purpose, we get an estimate of ∂x2ϕ

ε
2 in L2(Qω1).

Let us fix θ(s) a positive regular scalar cut-off function supported in (−∞, h + δ) and such that θ = 1

in (−∞, h]. We define:

ψε(t, x) ∶= θ(x2)ϕε2(t, x). (3.25)

Recalling the support of ϕT (see (3.12)), we have that ψε satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tψε − ε∆ψε − ∂x2ψ
ε = εθ′′(x2)ϕε2 − 2ε∂x2

(θ′(x2)ϕε2) − θ′(x2)ϕε2 in Q,

ψε = 0 on Σb,t,

∂x1ψ
ε = 0 on Σl,r,

ψε(T, ⋅) = 0 on Ω2.

(3.26)
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In particular, if we multiply (3.26) by ψε and we integrate by parts, it is not difficult to deduce that:

∬
Q
∣∇ψε∣2dxdt ≤ C

ε
∬

Qω2

∣ϕε2∣2dxdt. (3.27)

Using Lemma 3.5 for h′ = h + δ, T ′ = T and δ′ = δ and using that for all δ̃ > 0 there is Cδ̃ > 0 such that

ε−1 ≤ Cδ̃eδ̃ε
−1

in R+, we get from (3.27) that:

∬
Qω1

∣∂x2ϕ
ε
2∣2dxdt ≤ Ce−cε

−1

.

In order to conclude, using that the divergence of ϕε is null, we get that:

∬
Qω1

∣∂x1ϕ
ε
1∣2dxdt ≤ Ce−cε

−1

.

In addition, since ϕε1 is null on x1 = 0 (see (1.6)), we have, thanks to Poincaré inequality:

∬
Qω

∣ϕε1∣2dxdt ≤∬
Qω1

∣ϕε1∣2dxdt ≤ Ce−cε
−1

. (3.28)

So, combining (1.4), (3.11), (3.15) and (3.28) we end the proof of Item 3 of Theorem 1.1.

4 The control problem (1.1) in (0, π)3

In this section we first give some solutions of (1.5) in Ω3 and then, we prove Item 4 of Theorem 1.1.

4.1 Brief study of the spectral decomposition of H((0, π)3)

In order to do the spectral decomposition, we consider the set of separated variables with null diver-

gence, null normal trace, and a null component:

SV (Ω3) ∶= SV1(Ω3) ∪ SV2(Ω3) ∪ SV3(Ω3) ∶=

{(0, g1(x1)∫
x2

0
g2(s)dsg3(x3),−g1(x1)g2(x2)∫

x3

0
g3(s)ds) ∶ g1 ∈ L2(0, π); g2, g3 ∈ L2

0(0, π)}

∪ {(−∫
x1

0
g1(s)dsg2(x2)g3(x3),0, g1(x1)g2(x2)∫

x3

0
g3(s)ds) ∶ g2 ∈ L2(0, π); g1, g3 ∈ L2

0(0, π)}

∪ {(∫
x1

0
g1(s)dsg2(x2)g3(x3),−g1(x1)∫

x2

0
g2(s)dsg3(x3),0) ∶ g3 ∈ L2(0, π); g1, g2 ∈ L2

0(0, π)} .

Remark 4.1. Unlike in SV (Ω2), now the mean of one of the three auxiliary functions is not necessarily

0. This difference is crucial in explaining why the solutions of (1.3) behaves differently in Ω3. Indeed,

this difference allows us to construct eigenfunctions whose associated eigenvalue does not explode with ε

(see (4.2)), which is something that we cannot do in Ω2.

In order to look for eigenfunctions in SV (Ω3), we remark that if g1, g2, g3 are regular functions, the

boundary conditions of (1.3) translates into:

g′1(0) = g′1(π) = g′2(0) = g′2(π) = εg′3(0) + g3(0) = εg′3(π) + g3(π) = 0. (4.1)
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Let us focus on SV3(Ω3). We can again consider for m1,m2 ∈ N∗, g1,m1(s) ∶= cos(m1s) and g2,m2(s) ∶=
cos(m2s). As for g3, we can look at the solutions of:

g′′ + g
′

ε
+ (λ

ε
−m2

1 −m2
2) g = 0,

an equation that can be obtained as in the proof of Proposition 2.5. Since the mean of g3 is not necessarily

0 and since ∫
s

0 g3(s′)ds′ does not have to be an eigenfunction of −ε∆+∂x3 (because the third component of

an element of SV3(Ω3) is null), we can consider small values of λ. In particular we get for any m1,m2 ∈ N∗

the following eigenfunction:

( 1

m1
sin(m1x1) cos(m2x2)e−ε

−1x3 ,− 1

m2
cos(m1x1) sin(m2x2)e−ε

−1x3 ,0) , (4.2)

whose associated eigenvalues is:

λεm1,m2
∶= ε(m2

1 +m2
2), (4.3)

and whose associated pressure term is constant.

Remark 4.2. We can get for dimension 3 similar results to those of Remark 1.4, Proposition 2.1, Propo-

sition 2.5 and Proposition 2.7, with the only difference that some eigenvalues do not explode with ε. In

that sense, we can get similar results as Item 1 of Proposition 2.8, but we cannot get a general dissipation

result as the one in Item 2 of Proposition 2.8.

4.2 Proof of Item 4 of Theorem 1.1

For this proof we consider the function:

u(x) ∶= 2e−ε
−1x3

π
√
ε (1 − e−2πε−1)

(sin(x1) cos(x2),− cos(x1) sin(x2),0) ,

which by (4.2) and (4.3) (we have taken m1 =m2 = 1) is a solution of (1.5) in Ω3 for λ = 2ε and a pressure

which is constant. Moreover, we can easily check that ∥u∥L2(Ω) = 1 and that ϕ(t, x) ∶= u(x)e−2ε(T−t) is a

solution of (1.3) in Ω3. In addition, since ω ⊂ (0, π)2 × (π − h,π) we can bound e−ε
−1x3 by e−(π−h)ε

−1

and

obtain for all δ > 0 and ε ∈ (0,1) that:

∥u∥L∞(ω) ≤ Cε−1/2e−(π−h)ε
−1

≤ Cδe−ε
−1

(π−h−δ). (4.4)

Indeed, we have that ε−1/2 ≤ Cδeδε
−1

for all δ > 0 and ε ∈ R+.

On the one hand, we have that:

∫
Ω3

∣ϕ(0, x)∣2dx = e−4εT . (4.5)

On the other hand, using (4.4) and bounding e−2ε(T−t) by 1 we obtain that:

∬
Qω

∣ϕ∣2dxdt =∬
Qω

∣u(x)∣2e−4ε(T−t)dxdt ≤ ∥u∥2
L∞(ω)∬

Qω

dxdt ≤ TCδ exp [2(−π + h + δ)
ε

] . (4.6)
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So, if we combine (4.5) and (4.6), we have that for all δ ∈ (0, π−h) (remember (1.4) and that ε ∈ (0,1)):

[K3(T, ε, ω)]2 ≥
∫Ω3

∣ϕ(0, x)∣2dx
∬Qω

∣ϕ∣2dxdt ≥ cδ
e−4T

T
exp [2(π − h − δ)

ε
] ;

that is, for T fixed the cost of the control explodes exponentially when ε→ 0+.

Remark 4.3. A difference between dimension 3 and dimension 2 can be seen by comparing (3.9) and

(4.5). Indeed, for T fixed (3.9) decays with ε, whereas (4.5) does not.

5 Further comments and open problems

● About the boundary control. The case where we have a control on the boundary of (1.1) (as

proposed in [7]) instead of in the interior remains an open problem.

● The spectral method in the transport-diffusion elemental equation. Let us consider the

control problem studied in [9, 20]:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yt +Lεy = 1ωf in Q,

y = 0 on Σ,

y(0, ⋅) = y0 on Ω,

(5.1)

for Lε ∶= −ε∆ + ∂xd
, for Ω any open regular domain. In order to prove the dissipation result for the

adjoint system, we can use a spectral decomposition. In particular, if {wm} is the spectral basis when

we diagonalize the Dirichlet Laplacian in Ω, of eigenvalues λm, for w̃m ∶= wme(2ε)
−1xd we have that {w̃m}

is a linearly independent total set such that Lεw̃m = (ελm + (4ε)−1)w̃m, and such that each w̃m satisfies

Dirichlet boundary conditions. Consequently, we can replicate the procedure of Section 2.1 and get the

dissipation result, with an accurate result (see (2.47)), which looking at the eigenvalues clearly is the

optimal one. As for the optimal dissipation rate, there is another proof in [9, Lemma 4] which uses a

representation theorem and a comparison theorem.

● The control problem (1.1) when we change the boundary conditions. We can attempt for

Ω = (0, π)2 and d = 2 to replicate this method to get similar results with a boundary condition of the

type:

(−2εDu ⋅ n + γn2u)tg = 0, (5.2)

for γ ∈ R (it is specially interesting the case γ = 1/2, when the operator is self-adjoint). Even if it actually

produces eigenfunctions, it does it by taking into account the other two roots of (2.22); that is, r = ±m1.

In particular, we get eigenfunctions with g2,m2 of the type (see (2.24)):

A cos(m2πs)e(2ε)
−1s +B sin(m2πs)e(2ε)

−1s +Cem1s +De−m1s,

and with m2 not necessarily in N∗ (and not necessarily easy to calculate explicitly). The root r = m1

does not depend on ε or, more astonishingly, on λ, because:

u(x1, x2) ∶= (sin(m1x1)em1x2 ,− cos(m1x1)em1x2) = ∇(− cos(m1x1)em1x2

m1
) .
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Therefore, that term is an eigenfunction independent of m2 or ε because of the help of the pressure term.

A similar thing happens with the term of De−m1s. All this, of course, adds some difficulties in proving

that they form a total set (if they actually do), difficulties which we have been unable to overcome.

Therefore, getting the eigenfunctions of the Stokes system with a boundary condition of the type (5.2)

(together with u ⋅ n = 0) can be considered for future work.

As for the control problem (1.1) with Dirichlet boundary conditions, replicating the method of this

paper has several problems. For instance, in dimension 2, using the notation of (2.1), we now have the

boundary conditions:

g1(0) = g1(π) = g2(0) = g2(π) = 0.

So, the analogous choice for g1,m1 would be sin(m1s) (see (2.15)1); but, for m1 odd it does not belong to

L2
0(0, π). Moreover, for any m1 ∈ N∗, ∫

s
0 sin(m1s

′)ds′ =m−1
1 (1− cos(m1s)), which is not an eigenfunction

of the Laplacian. Consequently, it is very likely that another method must be used to get the cost of the

control.

● The control problem (1.1) in other domains. It is clear that working in (0, π)2 or (0, π)3 is

really helpful, not only for the dissipation, but for the cost of the control as well. Indeed, we have used

several times in Section 3 that the solutions of (1.3) are solutions of the heat equation. Consequently, it

would be interesting to know what results can be obtained in other domains.

● The cost of the control in dimension 3 if ω is near x3 = 0. It is an open question if K3(T, ε, ω)
(see (1.2)) also explodes with ε for large times T if there is x ∈ (0, π)2 × {0} and δ > 0 such that

B(x, δ) ∩ {x3 > 0} ⊂ ω.

● The optimal T0 in which the cost of the control decays with ε. The optimal T0 in which the

cost of the control decays with ε is an open problem (see Item 1 of Theorem 1.1). Thanks to Item 2 and

Item 3 of Theorem 1.1 we can get a lower bound. Moreover, we could have got an upper bound by doing

all the operations of the proof of the Carleman (Proposition 3.2) explicitly as in [9], but it would be far

from optimal, so is not worth the effort. A more subtle technique would be to transform the problem in

a fast-control problem as in [25]; but, on the one hand, when we multiply by a weight which depends on

a spatial variable, the fact that the divergence is null is lost; and, on the other hand, the fact that fast

controls have a cost of eCT
−1

(without specifying the C) in the Stokes system is just a recent result (see

[4]). In addition, this problem is probably more difficult than getting the optimal T0 for (5.1), which is

still an open problem, even in dimension 1.

● Relation of the cost of control with a force of d − 1 components and with a force of d

components. An interesting question is to see if the fact that K1(T, ε, ω) decays or explodes with ε is

equivalent to the fact that K2(T, ε, ω) decays or explodes with ε (see (1.2) for the definitions).
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A Sketch of the proof of Proposition 3.2

We recall that Ω2 ∶= (0, π)2, ω is any open domain contained in Ω2, z is the solution of (1.7) (in (0, T̃ )
instead of in (0, T )) and the weights are given in (3.1). In addition, in this section Q ∶= (0, T̃ ) × Ω2,

Qω ∶= (0, T̃ ) × ω, Σl,r ∶= (0, T̃ ) × {0, π} × (0, π) and Σb,t ∶= (0, T̃ ) × (0, π) × {0, π}.

We first remark that the auxiliary functions η± satisfy:

η+ = η−, ∂nη
+ + ∂nη− = 0, ∣∇η+∣ = ∣∇η−∣ on {0, π} × (0, π),

∂nη
± < 0 on (0, π) × {0, π}.

(A.1)

In addition, there is δ > 0 a constant that just depends on the control domain and fixed for this section

such that:

∣∇η±∣ ≥ δ > 0 in Ω2 ∖ ω0. (A.2)

As for the weights, we have the usual bounds (see Remark 3.1):

∣∂xiα±∣ = ∣∂xiξ±∣ ≤ Cλξ±, ∣∂tα±∣ ≤ CT̃ξ2
±, ∣∂2

t2α±∣ ≤ Cξ2
±(1 + T̃ 2ξ±). (A.3)

In order to prove the Carleman inequality, as explained above, there is nothing original in the proof,

since we do a mixture of the scheme of [20, Proposition 1] and [12, Lemma1]. In particular, we also

consider the change of variables:

ψ± ∶= e−sα±z. (A.4)

We remark that:

α+ = α−, ξ+ = ξ−, ψ+ = ψ− on Σlr. (A.5)

Moreover, ψ has Dirichlet boundary conditions on Σbt. As for Σlr, since z has Neumann boundary

conditions we have the equality:

∂nψ
± = sλξ±∂nη±ψ±. (A.6)

In addition, combining (A.1)1, (A.5) and (A.6), we have the equality:

∣∇ψ+∣ = ∣∇ψ−∣ on Σlr. (A.7)

We finally remark that:

L±1ψ
± +L±2ψ± = L±3ψ±, (A.8)

for:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L±1ψ
± ∶= −2ετλ2∣∇η±∣2ξ±ψ± − 2ετλξ±∇η± ⋅ ∇ψ± + ∂x2ψ

± + ψ±t ,
L±2ψ

± ∶= ετ2λ2∣∇η±∣2ξ2
±ψ

± + ε∆ψ± + τ∂t(α±)ψ± − τλ∂x2η
±ξ±ψ

±,

L±3ψ
± ∶= ετ∆η±ξ±ψ

± − ετλ2∣∇η±∣2ξ±ψ±.

(A.9)

As usual, we denote (L±i ψ)j the j-th term of L±i ψ and calculate the product ⟨L±1ψ±, L±2ψ±⟩L2(Q).

Most of the operations here are repetitions of [20, Proposition 1] with the exception of what we do with

the boundary term when integrating by parts (and with the difference that z is a solution of the direct

equation in [20]). Thus, we skip some operations.
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To begin with, we have for λ ≥ C and τ ≥ CT̃ 2 (see (A.2) for the definition of δ) the estimate:

⟨(L±1ψ±)1 + (L±1ψ±)2, (L±2ψ±)1⟩L2(Q)

= ε2τ3λ4∬
Q
∣∇η±∣4ξ3

±∣ψ±∣2dxdt +O (ε2s2λ3∬
Q
ξ3
±∣ψ±∣2dxdt) − ε2τ3λ3∬

Σlr

∣∇η±∣2ξ3
±∂nη

±∣ψ±∣2dxdt

≥ 3δ4

4
ε2τ3λ4∬

Q
ξ3
±∣ψ±∣2dxdt − δ4ε2τ3λ4∬

Qω0

ξ3
±∣ψ±∣2dxdt − ε2τ3λ3∬

Σlr

∣∇η±∣2ξ3
±∂nη

±∣ψ±∣2dxdt.

(A.10)

Moreover, after an integration by parts, considering that ψ± = 0 on Σbt and (A.3), we obtain for λ ≥ 1

and τ ≥ C(T̃ + T̃ 2) the bound:

⟨(L±1ψ±)3 + (L±1ψ±)4, (L±2ψ±)1⟩L2(Q) = O (ετ2λ3∬
Q
ξ2
±∣ψ±∣2dxdt + εT̃ τ2λ2∬

Q
ξ3
±∣ψ±∣2dxdt) . (A.11)

Summing up, thanks to (A.10), (A.11), (A.1), (A.2) and (A.5), we have for λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1:

∑
i∈{+,−}

⟨Li1ψi, (Li2ψi)1⟩L2(Q) ≥ ∑
i∈{+,−}

δ4

2
ε2τ3λ4∬

Q
ξ3
i ∣ψi∣2dxdt − δ4ε2τ3λ4∬

Qω0

ξ3
i ∣ψi∣2dxdt. (A.12)

To continue with, we have that, integrating by parts, with Cauchy-Schwarz inequality and by (A.1):

⟨(L±1ψ±)1, (L±2ψ±)2⟩L2(Q) = 2ε2τλ2∬
Q
∣∇η±∣2ξ±∣∇ψ±∣2dxdt − 2ε2τλ2∬

Σlr

∣∇η±∣2ξ±∂nψ±ψ±dx2dt

+O (ε2τ2λ4∬
Q
ξ2
±∣ψ±∣2dxdt + ε2∬

Q
(τξ + λ2)∣∇ψ±∣2dxdt) . (A.13)

Next, we have again by integration by parts that:

⟨(L±1ψ±)2, (L±2ψ±)2⟩L2(Q)

= −2ε2τλ∬
Σbt

∂nη
±ξ±∣∂nψ±∣2dx1dt − 2ε2τλ∬

Σlr

(∂tgη
±∂tgψ

± + ∂nη±∂nψ±)ξ±∂nψ±dx2dt

+O (ε2τλ∬
Q
ξ±∣∇ψ±∣2dxdt) + 2ε2τλ2∬

Q
ξ±∣∇η± ⋅ ∇ψ±∣2dxdt + ε2τλ∬

Q
ξ±∇η± ⋅ ∇∣∇ψ±∣2dxdt. (A.14)

As for the term of the gradient, we have the equality:

ε2τλ∬
Q
ξ±∇η± ⋅ ∇∣∇ψ±∣2dxdt = −ε2τλ2∬

Q
∣∇η±∣2ξ±∣∇ψ±∣2dxdy +O (ε2τλ∬

Q
ξ±∣∇ψ±∣2dxdt)

+ ε2τλ∬
Σbt

∂nη
±ξ±∣∂nψ±∣2dx1dt + ε2τλ∬

Σlr

∂nη
±ξ±∣∇ψ±∣2dx2dt. (A.15)

Next, we have that:

⟨(L±1ψ±)3, (L±2ψ±)2⟩L2(Q) = O (ε∬
Σbt

∣∂nψ±∣2dx1dt) + ε∬
Σlr

∂x2ψ
±∂nψ

±dx2dt. (A.16)

To continue with, we have the equality:

⟨(L±1ψ±)4, (L±2ψ±)2⟩L2(Q) = ε∬
Σlr

ψ±t ∂nψ
±dx2dt. (A.17)

So, before adding up, because of (A.1)2, we have for λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1 the bound:

−2ε2τλ∬
Σbt

∂nη
±ξ±∣∂nψ±∣2dx1dt+ε2τλ∬

Σbt

∂nη
±ξ±∣∂nψ±∣2dx1dt+O (ε∬

Σbt

∣∂nψ±∣2dx1dt) ≥ 0. (A.18)
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Summing up, if we consider (A.12)-(A.18), (A.1), (A.2) and (A.5), we get that:

∑
i∈{+,−}

⟨Li1ψi, (Li2ψi)2⟩L2(Q) ≥ ∑
i∈{+,−}

O (ε2τ2λ4∬
Q
ξ2
i ∣ψi∣2dxdt)

+ ∑
i∈{+,−}

δ2

2
ε2τλ2∬

Q
ξi∣∇ψi∣2dxdt − δ2ε2τλ2∬

Qω0

ξi∣∇ψi∣2dxdt. (A.19)

As for the rest of the terms, it is easy to verify for λ ≥ 1 and τ ≥ C(T̃ + T̃ 2)ε−1 the bound:

∑
i∈{+,−}

⟨Li1ψi, (Li2ψi)3 + (Li2ψi)4⟩L2(Q) = ∑
i∈{+,−}

O (ε2τ3λ3∬
Q
ξ3
i ∣ψi∣2dxdt) . (A.20)

So, if we add (A.13), (A.19) and (A.20), we get after absorptions for λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1 that:

2 ∑
i∈{+,−}

⟨Li1ψi, Li2ψi⟩L2(Q) + 2δ4ε2τ3λ4∬
Qω0

ξ3
i ∣ψi∣2dxdt + 2δ2ε2τλ2∬

Qω0

ξi∣∇ψi∣2dxdt

≥ ∑
i∈{+,−}

δ4

2
ε2τ3λ4∬

Q
ξ3
i ∣ψi∣2dxdt +

δ2

2
ε2τλ2∬

Q
ξi∣∇ψi∣2dxdt.

So, considering (A.8) and (A.9)3 we find after some easy absorptions for λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1 the

estimate:

∑
i∈{+,−}

∥Li1ψi∥2
L2(Q) + ∥Li1ψi∥2

L2(Q) +
δ4

4
ε2τ3λ4∬

Q
ξ3
i ∣ψi∣2dxdt +

δ2

2
ε2τλ2∬

Q
ξi∣∇ψi∣2dxdt

≤ ∑
i∈{+,−}

2δ4ε2τ3λ4∬
Qω0

ξ3
i ∣ψi∣2dxdt + 2δ2ε2τλ2∬

Qω0

ξi∣∇ψi∣2dxdt.

Moreover, if we consider in (A.9) the equations of ∆ψ± and ∂tψ
±, we have, after usual absorptions, for

λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1, the inequality:

∑
i∈{+,−}

τ−1∬
Q
ξ−1(ε−2∣ψit ∣2 + ∣∆ψi∣2)dxdt + δ

4

16
τ3λ4∬

Q
ξ3
i ∣ψi∣2dxdt +

δ2

8
τλ2∬

Q
ξi∣∇ψi∣2dxdt

≤ ∑
i∈{+,−}

2δ4τ3λ4∬
Qω0

ξ3
i ∣ψi∣2dxdt + 2δ2τλ2∬

Qω0

ξi∣∇ψi∣2dxdt. (A.21)

From (A.21) it is well-known how to obtain (3.2) (see, for instance, [13] and [12]).
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