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A Model for the Dynamics of Space -Expedition to the Early Universe

The expansion of our universe is fascinating. Additionally there are exciting mysteries about the early universe: How is causality achieved? Why is quantum gravity essential? How can the problems of reheating and big bang singularity be solved? Here I present a teaching unit that I developed and tested in a research club at school. The 'process related competences' of 'modeling' and 'problem solving' are applied: Observations are modeled systematically. Problems are utilized to improve the models progressively. Additionally models developed by the teacher are available for critical tests and cooperative research projects.

Introduction

The formation of models by students is an essential topic at school [START_REF] Kultusministerium | Kerncurriculum für das Gymnasium -gymnasiale Oberstufe, die Gesamtschule -gymnasiale Oberstufe, das Fachgymnasium, das Abendgymnasium, das Kolleg[END_REF]. Accordingly we start with observational data about the expanding and about the early universe and we form corresponding models. Thereby we start with simple models and improve these when necessary. In order to improve a model we establish a cognitive conflict first. This conflict establishes a problem to be solved by the students with help of the teacher. Such problem solving establishes a particularly efficient method for learning [START_REF] Hattie | Visible Learning[END_REF]. As a result we develop a progressive sequence of models, all related to observations and solving problems that are inherent to the previous model. In that process a model first establishes a hypothesis about a solution of a problem and this hypothesis is critically tested by the students themselves. Such a learning by forming hypotheses and testing these actively is a particularly efficient method for learning [START_REF] Hattie | Visible Learning[END_REF]. Altogether I present a teaching unit about the early universe. Additionally I report about experiences with teaching this sequence in a research club at school. The students are from classes 9 to 12. Each of the following sections describes the content of a lesson. Thereby the activity of the students is emphasized by italic letters. Performing research in a research club one might arrive at a novel theory. This is presented at the end of this report.

Discovery of the Hubble law

The students observed distant galaxies with help of our school observatory [START_REF] Carmesin | Schüler beobachten den Urknall mit einem C11 Teleskop. PhyDid B, Internetzeitschrift[END_REF]. They determined the redshifts z and they either estimated the distance similarly as Carl Wirtz did it [START_REF] Wirtz | Radialbewegung der Gasnebel[END_REF] or they applied data about the distance d from the literature (see figure 1). As a result we obtain the Hubble law d ~ z (Hubble, 1929). The proportionality factor z/d is named Hubble constant H 0 .

Figure 1: Hubble diagram: redshifts observed by students at the school observatory using a telescope with the aperture 11'' (Helmcke u. a. 2018).

First model: discovery of age of our universe

In order to develop a first model for the observed Hubble law, the students model a radial velocity v for distant galaxies. Corresponding lessons are presented in [START_REF] Carmesin | How Old is the Universe? PhyDid B[END_REF]. Thereby we apply the Doppler effect to the emitted wavelength λ e = c•T and obtain the observed wavelength λ obs as follows: λ obs = λ e + v•T {1} We solve for the velocity and obtain: v = c•z with z = (λ obs -λ e )/λ e {2} So we obtain a radial velocity v for each galaxy and we can determine from our data when the distance d of that galaxy was zero. Here we discover that the distance was zero 14 billion years ago for each distant galaxy. This establishes our first concept of the big bang.
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Figure 2: Quasar APM 8279+5255 at redshift z = 3.9 observed by students at the school observatory using a telescope with the aperture 11''.

Observation of a very distant quasar

In our school observatory our students observed very distant galaxies or quasars and took pictures. For instance they made a picture of the quasar APM 8279+5255 (see figure 2). That quasar has the redshift z = 3.9. According to equation {2} the velocity would take the value v = 3.9c. This contradicts other observations of our students according to which the velocity of an object in space cannot exceed the velocity of light c [START_REF] Carmesin | Entdeckungen im Physikunterricht durch Beobachtungen des Himmels[END_REF]. So the student's own observations give rise to a cognitive conflict or a falsification of our first model at large z [START_REF] Popper | Objektive Erkenntnis. 2. Auf[END_REF]. Accordingly our task or problem is to establish an improved model. 

Second model: expansion of space

The Hubble law or the increase of the redshift z proportional to the distance d might be explained by an expansion of space. Next we test this hypothesis. For it the students perform a model experiment: they draw a wave onto a balloon and measure how it grows with increasing radius. The result is in rough accordance with the Hubble law. Progressively the students develop a dynamical model that provides the fully relativistic Friedmann -Lemaitre equation FLE [START_REF] Friedmann | Über die Krümmung des Raumes[END_REF][START_REF] Lemaitre | Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques[END_REF]Unsöld, 1999). From a didactic point of view they apply the hypothetic deductive method [START_REF] Kircher | Physikdidaktik[END_REF]. For it we model a mass m on a sphere with radius a and mass M (see figure 3).

Rate of expansion

With the model (see figure 3) the students analyze the dynamics in a next lesson. The students establish the energy equation of the probing mass:

E = ½ • m • v 2 -G•M•m/a {3}
In the framework of the first model and the Hubble constant H 0 the students realize that the rate v/a is essential since it corresponds to H 0 . More generally this rate may vary with time and is named Hubble parameter H correspondingly: H = v/a {4} Accordingly equation {3} is solved for the Hubble parameter:

H 2 = 8πG•ρ/3 -k•c 2 /a 2
{5} Thereby we abbreviate the scaled mechanical energy -2E/(m•c 2 ) by a parameter k. Altogether the students derive the dynamics (equation {5}) with little help. That dynamics presents the well -established Friedmann Lemaitre equation FLE (Unsöld, 1999).

Here the students discover that the rate of expansion H is not fixed like in figure 1, but it increases with the density. Moreover that rate H depends on the scaled mechanical energy k. That scaled energy k is interpreted further as follows: Some students know already that k additionally describes the curvature of space and that it is approximately zero [START_REF] Carmesin | How Old is the Universe? PhyDid B[END_REF]. While the full analysis is presented in (Carmesin, 2018a) we consider k = 0 here, since it corresponds to observations (Planck Collaboration 2016).

Discovery of the big bang singularity

In this lesson the students perform a computer simulation with equation {5} which establishes a differential equation. With it the students determine the time development of the radius a(t) with a computer simulation based on the Euler method. When they investigate the radius a(t) for the past then they observe that the radius a(t) tends to zero. Correspondingly the density ρ tends to infinity. A diverging density is not realistic. It is named the big bang singularity [START_REF] Kiefer | Quantum Cosmology. Beyond the Big Bang[END_REF]. With it the students experience the next cognitive conflict and falsify our second model as well as the Friedmann Lemaitre equation at large density. So we look forward to develop a model for very high densities. For it we develop a model for a white dwarf first.

A model for a white dwarf

In this lesson the students model a white dwarf in order to investigate states at high density (Sexl, 1975). For it the students apply their knowledge about quantum physics to a white dwarf. In such a star the electrons move freely at high density. The students realize that the required space is limited by the Heisenberg uncertainty relation, including the Planck constant h as well as the reduced Planck constant h = h/(2π) [START_REF] Ballentine | Quantum Mechanics[END_REF]:

Δp•Δx ≥ ½ • h {6}
The students model the wave function as follows. It is plausible that the extension of electrons at high density might be modeled by Gaussian wave packets ψ. Correspondingly the students learned some basics about Gaussian wave packets in an extra lesson about mathematical tools. In particular we may replace the inequality in equation {6} by the equality for the case of such wave packets. Moreover we apply the momentum of the relativistic electron p = m•c ≥ Δp. Accordingly we get: Δx = ½ • h/(mc) = 0.19 pm {7} The students calculate the density as follows: We consider one proton per electron. Thereby the proton mass is m Pr = 1.67•10 -27 kg. So we obtain: ρ = m Pr /(4π/3 • Δx 3 ) = 58 •10 9 kg/m 3 {8} The students test their model by comparison with the white dwarf Sirius B with the mass M = 2•10 30 kg, the radius 6000 km and density ρ = 2.2•10 9 kg/m 3 . So our very simple model is in rough accordance with observations. The students investigate the stability of the white dwarf as follows. The gravitational energy causes an inward pressure p in while the kinetic energy of the electrons causes an outward pressure p out . So we compare these two pressures. The pressure is the derivative of the energy E as a function of volume V: 

p=E(V)'=E(R)'•R(V)'=E(R)'/V(R)'=E(R)'/(4πR 2 ) The gravitational energy is E pot ≈ -G•M 2 /R, accord- ingly we get: p in ≈ G•M 2 /(4πR 4 ) {9} The kinetic energy of an electron is E = p•c or E ≈ ½ •h•c/Δx.

{11}

We solve for this critical mass:

M cr = (½ •h•c/G) 3/2 m Pr -2 = 1.3•10 30 kg {12}
Altogether the students discover the gravitational collapse at that critical mass of the white dwarf [START_REF] Chandrasekhar | The maximum mass of ideal white dwarfs[END_REF]. As a consequence the white dwarf may become a neutron star. At the example of the white dwarf and its gravitational instability the students obtained sufficient experience and curiosity in order to investigate the big bang singularity next.

Planck scale: static limitation of density

In this lesson the students realize that two basic physical effects limit the states that can be measured at all: The Heisenberg uncertainty principle ( equation {6}) as well as gravity with its Schwarzschild radius:

Δx ≥ R S = 2G•M/c 2 {13}
The students combine these two limitations in a distance energy diagram. For it they express the limitations in terms of energies depending on the observable distance r = Δx: r ≥ 2G•E/c 4 and r ≥ ½ • h • c/E {14} These conditions are combined graphically in figure 4: the solid line and the solid ruled area present conceivable measurements according to gravity while the dashed line and the dashed ruled area present conceivable measurements according to quantum physics. The area ruled by dashed as well as solid lines presents conceivable physical measurements. The other areas do not present any conceivable physical measurements at all.

Figure 4: Planck scale

The students discover the smallest measurable length L P at the intersection point of the solid and dashed line. It is called Planck (1899) length:

L P = (h • G/ c 3 ) 0.5 = 1.616•10 -35 m {15}
The corresponding density sets an upper limit for the density [START_REF] Carmesin | Vom Big Bang bis heute mit Gravitation -Model for the Dynamics of Space[END_REF](Carmesin, , 2018a) ) and is named Planck density: ρ P = c 5 / (h • G 2 ) = 5.155•10 96 kg/m 3 {16} So the students discover the static limitation of the density from first principles: gravity and quantum physics. Correspondingly that limitation is expressed by the fundamental physical constants G, c and h. This establishes an essential result of quantum gravity that the students discover in the present teaching unit. The students asked the naturally next question: how is that static limitation achieved dynamically? This is investigated in the following lesson. At this point we must realize that we work with a novel model and that we must develop tools in order to gain results. For it the students are reminded to the typical minimization of energy in nature. For instance a ball typically rolls downwards. They are told that the corresponding states are named ground states and that the procedure of minimization is called variational principle in quantum mechanics. According to the law of energy conservation, the determination of the optimal mass corresponds to a fragmentation of mass or equivalent energy inherent to the density ρ into probing masses m. For it the energy E per mass is minimized in the following. Accordingly we divide the above equation by m

•c 2 : E/(m•c 2 ) = ½•p 2 /(m 2 •c 2 ) -G•M/(a•c 2 )
{18} Next the students determine the expectation value < … >. For it they apply their knowledge that the probability density |ψ| 2 corresponds to the wave function ψ [START_REF] Kultusministerium | Kerncurriculum für das Gymnasium -gymnasiale Oberstufe, die Gesamtschule -gymnasiale Oberstufe, das Fachgymnasium, das Abendgymnasium, das Kolleg[END_REF]. For short we denote the expectation value of the scaled energy by <E/(m•c 2 )> = E D,full . Accordingly we get:

E D,full = ½•<p 2 /(m 2 •c 2 )> -G•<M/(a•c 2 )> {19}
The students realize that two quantities should be varied at a given density ρ: the probing mass m as well as the width Δa of the Gaussian. For it they mark the states with a given density ρ by a dotted line in figure 6. The students realize graphically how the optimum is achieved: the scaled energy E D,full in equation {19} is minimal at maximal m. Thereby m is restricted to the dotted line and to the double ruled area in figure 6. Consequently m corresponds to the intersection point of the solid and dotted line in figure 6 Altogether the students discover the optimal probing mass with little help as follows: the minimization of the scaled energy E D,full causes a fragmentation or partitioning into particular probing masses with particular and regular extension b. Note that these balls cannot fill the complete space for geometric reasons and that this is confirmed by an application of the present model to the emergence of dark matter (Carmesin, 2018a). At this point the students are familiar with the variational principle and they apply it to the width Δa of the Gaussian wave packets ψ in the following lesson.

11.

Regular dynamics

The students apply the variational principle to the Gaussian wave packets with some help as follows. They apply the mathematical identity <p 2 > = <p> 2 + (Δp) 2 to equation {19} and neglect <p> here, since <p> forms according to the FLE in a slow dynamics while the wave function ψ forms in a rapid dynamics:

E D = ½•Δp 2 /(m 2 •c 2 ) -G/c 2 •<M/a> and E D,full = E D + ½ p 2 /(m 2 •c 2 )
{25} Thereby we denote <p> shortly by p in the following. Here the Heisenberg uncertainty principle in three dimensions is applied for Gaussian wave packets: Δp = ½ • 3 h/Δa {26} Accordingly we get:

E D = 9h 2 /(8•m 2 •c 2 •Δa 2 ) -G/c 2 •<M/a>
{27} Classically, the radius a(t) describing the space of the sphere in figure (5) can be chosen arbitrarily. However, here that space is primarily filled by radiation. Accordingly we choose the radius a(t) corresponding to a photon starting at the Planck density and expanding according to the expansion of space. For additional background see Carmesin (2018a). Such a photon is characterized by the dashed line in figure 6 and by the term: M = M P • L P /a {28} The students learned in the additional lesson about mathematical tools how to generate a linear approximation including a statistical approximation and verified these approximations numerically. Accordingly the students simplify the gravitational term with some help as follows:

<M/a> = M P • L P • <1/a 2 > ≈ M P • L P • 1/<a 2 > = 1/(<a> 2 + Δa 2 ) = 1/<a> 2 •1/(1+[Δa/<a>] 2 ) ≈1/<a> 2 • (1 -[Δa/<a>] 2 ) {29}
In the following we apply the abbreviation a = <a>. Accordingly we express the scaled energy E D in terms of the classical term E D,cl and the quantum term E D,Q as follows:

E D = E D,cl + E D,Q with E D,cl = -G•M/(c 2 •a) and E D,Q =9h 2 /(8m 2 •c 2 •Δa 2 ) + G•MΔa 2 /(c 2 •a 3 ) {30}
The students scale the terms (see equations {21}-{24}) as follows:

E D,cl = -ρ • a 2 {31} E D,Q = 9 • ρ • (Δa) -2 + ρ • (Δa) 2 {32}
The students minimize the quantum term E D,Q by variation of Δa and obtain: Δa = 3 0.5 and E D =ρ • a 2 + 6 ρ {33} The students express E D by the density. For it they apply equation {28}: ρ = M/a 3 • L P 3 /M P = M P L P /a 4 • L P 3 /M P = a -4 {34} They apply this relation to equation {33} and obtain: E D =ρ 1/2 + 6 ρ {35} Next the students generalize the FLE {5} by application of the term E D . For it we remind equation {25}: E D,full = E D + ½ p 2 /(m 2 •c 2 ) Thereby we remind that E D,full is proportional to the curvature parameter k. We consider the case k = 0. Moreover we insert p = m•v and solve for H 2 = v 2 /a 2 : H 2 = -2E D •c 2 /a 2 {36} The students introduce scaled variables. For it we apply the Planck time: t P = L P • c = 5.391•10 -44 s {37} We introduce the scaled Hubble parameter by multiplication with t P and get: H = H • t P {38} Accordingly we express the dynamics in equation {36} as follows:

H 2 = -2E D /a 2 = -2E D • ρ 1/2
{39} Here we insert the term for E D (see equation {35}) and factorize ρ:

H 2 = 2 • ρ • (1 -6•ρ 1/2 )
{40} This equation is an extended FLE, denoted by EFLE. With H = v/a it is a differential equation and establishes the dynamics. Here the students analyze that the dynamics stops when the bracket becomes zero at ρ max = 1/36. Accordingly the density cannot become larger than the Planck density. Altogether the students exclude the big bang singularity. A similar maximal density has been obtained by [START_REF] Bojowald | Absence of Singularity in Loop Quantum Gravity[END_REF]. 12.

CMB: horizon problem The energy fluctuations of the early universe are very small (see figure 7). So energy fluctuations must have been compensated by mutual exchange of radiation among regions of the CMB. However, with the dynamics of the FLE or of the EFLE that is impossible as shown by Alan [START_REF] Guth | Inflationary Universe: A possible to the horizon and flatness problem[END_REF]. This is called the horizon problem. Moreover Alan Guth suggested that the early universe expanded very rapidly by a factor Z = e N with 55 ≤ N ≤ 70 [START_REF] Guth | Inflationary Universe: A possible to the horizon and flatness problem[END_REF][START_REF] Broy | Inflation and effective Shift Symmetries[END_REF]. However there is not sufficient energy in the universe for such an expansion. This is named the reheating problem [START_REF] Broy | Inflation and effective Shift Symmetries[END_REF]or Carmesin, 2018a). Here we study whether the model in figure (5) shows how the required enlargement occurs as a result of gravity and quantum physics. For it we consider a situation at the Planck density. Regions with mass or equivalent energy strongly attract each other, but the distances cannot decrease any further. This is a severe problem for gravity. Usually gravity always finds a way to compress things. How can gravity compress things at the Planck density? Here we remind that space has a grainy nature at least near the Planck density. And grains are usually connected to three dimensional space. So gravity might reorganize the dimension in order to compress things further. Is this possible? In order to answer this question the students perform a model experiment with magnetic balls (see figure 8). Thereby they discover that a decrease of dimension causes an enlargement (see figure 8). So the students realize that gravity at high density might cause another gravitational instability: the collapse to higher dimension and conversely decreasing density might cause the unfolding of space by decreasing dimension D. Accordingly the students look forward to calculate the critical density for such a gravitational collapse of dimension.

13.

Fourth model: variable dimension In this lesson the students generalize the third model (see figure 3) to dynamical dimension. For it the Gauss law of gravitation [START_REF] Gauss | Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorummethoda novo tractata[END_REF] is presented and the energy of the probing mass (equation {18}) 

2018). They discover gravitational instabilities at critical densities ρ Dc (see arrows in figure 9). The students characterize the instabilities:

At an instability the dimension changes and thereby the scaled energy is minimized. At high density the stable dimension is high (see figure 10). The maximal density ρ D,max is not reached, since the dimensional transition occurs before at lower density ρ Dc (see figure 10). So the big bang singularity is solved by dimensional transitions. So the big bang singularity is not solved by a stopping of the dynamics (see equation {40}) as dimensional transitions occur first. In the early universe the expansion according to the FLE or EFLE causes a slight decrease of the density ρ D and the next critical density is reached eventually, then the dimension decreases and the universe is enlarged extremely rapidly. This might explain the era of cosmic inflation. The students planned to test this hypothesis by calculating the development of the radius r(t) of the current light horizon at the dimensional transitions and by calculating the enlargement factor Z = e N . If the modeled enlargement factor Z model corresponds to the observed enlargement factor with 55 ≤ N ≤ 70 [START_REF] Broy | Inflation and effective Shift Symmetries[END_REF], then the model satisfies this. Note that the model satisfies many additional tests [START_REF] Carmesin | Vom Big Bang bis heute mit Gravitation -Model for the Dynamics of Space[END_REF](Carmesin, , 2018a,b,c,d;,b,c,d; the flatness problem, dark matter problem and dark energy problem are solved).

Figure 10: Scaled critical and maximal densities as a function of the dimension (Carmesin, 2018a,b).

A model for the dynamics of space 15.

Expansion of space In this lesson the students apply the FLE in order to calculate the expansion of space backwards from the current light horizon r lh . The observable space is limited by the current light horizon r lh or particle horizon and characterized by the current density of the universe ρ today as well as by the current density of the matter ρ today,m (Planck collaboration, 2016. The density of the vacuum is not included in ρ today,m . A more general analysis that is also independent of the current light horizon is presented in Carmesin, 2018a,b,c,d): r lh = 4.41•10 26 m and t today = 4.35•10 17 s and ρ today = 8.634•10 -27 kg/m 3 and ρ today,m = 2.659•10 -27 kg/m 3 {56} Currently the density of the matter is larger than that of radiation, since the wavelength of radiation decreased according to the expansion of space (for the purpose of quantitative comparisons it is adequate use the notion density so that it includes matter and radiation according to the equivalence E = m•c 2 ). At a time t eq the densities of matter and radiation were equal. The corresponding radius and density have been observed (Planck collaboration 2016): r eq = 1.308•10 23 m and t eq = 1.55•10 12 s and ρ eq,m = ρ today,m •(r lh /r eq ) 3 = 1.02•10 -16 kg/m 3 {57} Before t eq the density varied proportional to the inverse fourth power of the radius (see also equation 

16.

Enlargement by dimensional unfolding In this lesson the students calculate the enlargement factor Z unfolding caused by dimensional unfolding. For it they summarize geometric properties of unfolding: At each transition the wave functions describing the radius b of the probing mass at the higher dimension D+1 and at the lower dimension D should fit in order to obtain a high transition rate (for details see Carmesin, 2018a). As a consequence the following densities should be equal (see equation {46}): ρ D+1 = ρ D {60} Three dimensional space becomes stable at densities lower than the critical density (see figure 9 {62} A dimensional transition is not an expansion (this is illustrated in figure 8). Thereby the dimension changes from D+1 to D. We model the volume in terms of n geometric bodies, each with an extension L P . For simplicity we utilize n balls with the radius L P . Other geometric bodies could be utilized similarly. The dimensional transition does neither modify the radius nor the number n as the dimensional transition merely reorganizes the connections among grains of spacethis is perfectly illustrated by figure (8). So the radius of the whole system changes from r D+1 to r D as follows: 

{69}

The students calculate the duration of cosmic inflation of 3.3635 t P . Moreover the students asked what duration a dimensional transition has. I informed them that this can be calculated and has been included in such a simulation (Carmesin, 2018a). As a result the era of cosmic inflation lasts for 22.28 t P and the universe enlarges already for 6.58 t P before dimension 300 is reached. Accordingly the students start the simulation at D = 300 and t = 6.58 t P with the dynamics according to the EFLE (see equations {39} and {50}) and obtain the a(t) in figure (11). The travelling of light in the enlarging space (see figure 11) is modeled by the position r(t) of a walker on an enlarging rubber bar (see figure 12). The coordinate on the bar is denoted as follows: r = r/a {70} The students realize that the walker in figure ( 12 

18.

Solution of the reheating problem In this lesson the students test the alternative of an expansion instead of an unfolding [START_REF] Guth | Inflationary Universe: A possible to the horizon and flatness problem[END_REF][START_REF] Broy | Inflation and effective Shift Symmetries[END_REF]. For it they calculate the development of a primordial photon with maximal wavelength L P = λ prim . During the era of cosmic inflation that wavelength would increase at least by the factor e 55 = 7.7•10 23 . That era ends before the time t GUT ≈ 10 -12 s of the grand unification at which the four fundamental forces emerged from just one fundamental force ( [START_REF] Boer | Grand Unified Theories and Supersymmetry in Particle Physics and Cosmology[END_REF][START_REF] Bethge | Elementarteilchen und ihre Wechselwirkungen[END_REF]. Until t eq = 1.55•10 12 the wavelength would increase at least by another factor (t eq /t GUT ) 1/2 = 1.25•10 12 . Until today the wavelength would increase by the additional factor (t to- day /t eq ) 2/3 = 4287. Altogether the wavelength in the CMB would be at least 67 km. However, the CMB has a wavelength of 5 mm. The students realize that the cosmic enlargement cannot completely be achieved by expansion. This is named reheating problem [START_REF] Broy | Inflation and effective Shift Symmetries[END_REF]. Moreover the students realize that the present model solves the reheating problem since at least the factor e 55 is achieved by enlargement without expansion here.

19.

Experience with teaching The students were very interested in the topic and attended many additional meetings. It was possible to perform the method of problem solving in these lessons. Thereby we made transparent the goal, planned the solution in the plenum, solved it in groups and presented the results in the plenum. The students explained and critically tested the four models. Altogether the students actively applied the 'process related competences' of 'problem solving' and 'modeling' [START_REF] Kultusministerium | Kerncurriculum für das Gymnasium -gymnasiale Oberstufe, die Gesamtschule -gymnasiale Oberstufe, das Fachgymnasium, das Abendgymnasium, das Kolleg[END_REF]. Moreover these competences were especially appropriate for this teaching unit. Thereby the students efficiently developed many challenging 'content related competences' in astronomy, physics and mathematics. Some students successfully performed projects about these topics and won prizes at the Jugend forscht competition. All students appreciated that they obtained solutions based on the three fundamental constants G, c and h and the corresponding fundamental theories gravity, relativity and quantum physics.

20.

Summary Challenging and up-to-date problems about the early universe are exciting to students. A teaching unit at school has been developed and tested in a research club. The 'process related competences' of 'problem solving' and 'modeling' are especially appropriate here. Advanced questions about the classical limit, the role of the dimension two or about the relation to other approaches in the field are elaborated in detail in Carmesin (2018d). Several students are interested to work out a well-arranged problem in this context and four such projects are currently in progress.
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Figure 3 :

 3 Figure 3: Second model: Prototypical ball of the universe with a radius a, volume V, density ρ mass M = ρ•V and a small probing mass m. In the early universe the mass is present in terms of the equivalent energy E = M•c 2 or E = m•c 2 .

  Moreover the extensions R of the star and Δx of the electron are related by Δx=R/N 1/3 . Furthermore the number of electrons is N = M/m Pr . Accordingly we get p out = ½ •h•c• N 4/3 / (4πR 4 ) {10} The instability occurs when both pressures are equal: G•M 2 = ½ •h•c• M 4/3 m Pr -4/3

Figure 5 :

 5 Figure 5: Third model: Probing mass with radius b.10.Third model: regular probing mass In this lesson the students realize the singular nature of the point like probing mass in figure (3). Accordingly they generalize that probing mass by a ball (figure5). Correspondingly we improve the second model by including a radius b of the probing mass m. This is in accordance with the cosmological principle: homogeneous density and isotropy.

Figure 6 :

 6 Figure 6: Fragmentation or partitioning into probing masses m: Dotted line: constant density.

Figure 7 :

 7 Figure 7: Cosmic microwave background CMB (figure: NASA WMAP Science Team, 9 year WMAP image of background radiation: The temperature fluctuations are very small ΔT/T = 0.000024.

3 {42}Figure 8 :/(

 38 Figure 8: 216 magnetic balls organized in three dimensions (left). When the dimension decreases then the distances increase (right). Moreover we denote the volume of the ball in D dimensions with radius 1 by V D and we define the density corresponding to Dimension D as follows: ρ D = M • V D -1 • a -D {43} At this point the students realize that the model is solved in D dimensions by the same procedure as at D = 3. So they solve the model with little help as follows.The students derive a term for the Schwarzschild radius from equation {41}:½ m•c 2 = G D •M•m/(R SD D-2 •[D-2]) or {44} R SD -2 =2 ρ D {45} Next the students determine the scaled optimal radius (see figure 6): R SD = b or b -2 = 2• ρ D {46} From it the students determine the scaled optimal probing mass: m = 2 -D/2 • ρ D (2-D)/2 {47} Analogously as for D = 3 the students express the radius a in terms of the density: a D+1 = 1/ρ D {48} With the above results the students determine the scaled energy E D and obtain: E D = E D,cl + E D,Q with E D,cl =ρ D (D-1)/(D+1) and E D,Q = D 2 •2 D-3 • ρ D D-2 /Δa 2 + ρ D •Δa 2 •(D-1)/2{49} Analogously as at D = 3 the students determine the optimal quantum fluctuations Δa by minimizing E D . So they get: Δa = [2 D-2 •D 2 /(D-1)] 0.25 • ρ D (D-3)/4 and E D = -ρ D (D-1)/(D+1) + [2 D-2 •D 2 •(D-1)] 0.5 • ρ D (D-1)/2 {50} 14. Dimensional transitions at critical densities In this lesson the students minimize the scaled energy E D by variation of D according to the variational principle (see figure 9; Sprenger u. a. 2018). They discover gravitational instabilities at critical densities ρ Dc (see arrows in figure9). The students characterize the instabilities:

Figure 9 :

 9 Figure 9: Scaled energy E D at dimensions 3 (solid), 4 (dotted) and 5 (dashdotted).

Figure 11 :

 11 Figure 11: Radius r(t) of the current light horizon as a function of time. Circles: dimensional transitions. Diamonds: duration 6.58 t P before D = 300 emerged (Carmesin, 2018a).

  the density tends to 0.5 (see figure 10): lim D  ∞ ρ D = 0.5 = ρ D,∞

  backwards in time, then during the era of cosmic inflation the space is folded at each dimensional transition from D to D+1 until at most two spheres are neighbors in each dimensional direction. This occurs at a corresponding dimension D max .Here the currently visible space has a radius r Dmax corresponding to the distance of the centers of two neighboring spheres: r Dmax = 2L P or r Dmax = 2 and D max ≈ 300 {66} The students realize that the enlargement factor Z unfolding or Z u enlarges the currently visible space from its primordial extension r Dmax = 2 to the extension at the end of the era of cosmic inflation r f : Z u • r Dmax = r f = 2.72 •10 30 {67} Obviously the students solve for Z u by utilizing equations {15} and {58}: Z u = r f /r Dmax = r f /r Dmax = 0.044 mm/3.232•10 -35 m or Z u = 1.36•10 30 or N u = ln(Z u ) = 69.4 {68} The students realize that this corresponds to the observations of the CMB(Planck collaboration, 2016[START_REF] Bennett | Nine-year Wilkinson microwave anisotropy probe (WMAP) Observations: final maps and results[END_REF] with 55 ≤ N ≤ 70[START_REF] Broy | Inflation and effective Shift Symmetries[END_REF].

Figure 12 :

 12 Figure 12: Radius a(t) of the current light horizon as a function of time.

  ) reaches the coordinate: dr = c•dt/a(t) or r = ∫ 0 tobs c•dt/a(t) {71} The proper distance d H that the walker reaches at a time t obs of observation is the coordinate r times the length of the bar a obs : d H = a obs • ∫ 0 tobs c•dt/a(t) {72} The students obtain d H = 3.291•a obs by utilizing their simulated radius a(t) (figure 11). Causality is achieved when light can travel from one end of the CMB to the other. That amounts to the distance d H,min = 2•a obs < d H . So the horizon problem is solved when the quantum dynamics of the transition is included.

  In this lesson the students calculate how far the light can travel in the enlarging space. For it they calculate the radius of the current light horizon as a function of time first. Here we name that radius a(t).

	Carmesin
	17.	Solution of horizon problem
		In
	particular they simulate the differential equation
	{39} with the scaled energy in equation {50} by
	utilizing the Euler method and by calculating the
	enlargement at unfolding (see equation {65}) as
	follows:
	a D = a D+1 (D+1)/D