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Variable selection in high-dimensional linear model with
possibly asymmetric errors

Gabriela CIUPERCA1

Institut Camille Jordan, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

Abstract

In many application areas, the problem of the automatic variable selection in a linear model
with asymmetric errors is encountered, when the number of explanatory variables diverges
with the sample size. For this high-dimensional model, the penalized least squares method
is not appropriate and the quantile framework makes the inference more difficult because
of the non differentiability of the loss function. An estimation method by penalizing the
expectile process with an adaptive LASSO penalty is proposed and studied. Two cases are
considered: first with the number of model parameters is assumed to be much smaller than
the sample size and afterwards it could be of the same order; the two cases being distinct by
the adaptive penalties considered. For each case, the rate convergence is obtained and the
oracle properties of the adaptive LASSO expectile estimator are established. The proposed
estimators are evaluated through Monte Carlo simulations and compared with the adaptive
LASSO quantile estimator. The proposed estimation method is also applied to real data
in genetics.

Keywords: adaptive LASSO, expectile, high-dimension, oracle properties.

1. Introduction

The focus of the present paper is to better detect significant variables in a linear model,
with the possibility that the number of explanatory variables varies with the sample size
and when the error distribution is asymmetrical. For this type of law, the use of the least
squares(LS) estimation method is not appropriate because of the estimator’s accuracy (see
Liao et al. (2019)). One possibility would be to use the quantile method, but it has the dis-
advantage that the loss function is not derivable, which complicates the theoretical study
but also the computational methods. A very interesting possibility is to consider the ex-
pectile method, introduced by Newey and Powell (1987), under assumption that the first
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moments of ε exist. This method has the advantage over the quantile model that the loss
function is differentiable, which makes the theoretical study more amenable and consider-
ably facilitates the numerical computation (see also Gu and Zou (2016)). Readers can find
in Newey and Powell (1987), Schnabel and Eilers (2009) the theoretical and computational
advantages of expectile method over quantile regression. Two of these advantages are: the
efficiency of the expectile estimator and the fact that its asymptotic variance can be cal-
culated without going via the density of the model errors. The advantage of the quantile
estimation method is that it is more robust to outliers than the expectile method, the last
being also more sensitive to the extreme values in the response variable (see also Zhang
and Li (2017)).
In application fields (genetics, chemistry, biology, industry, finance), with the development
in recent years of storage and/or measurement tools, we are confronted to study the influ-
ence of a very large number of variables on a studied process. That is why, we consider in
the present work the following linear model:

Yi = Xt
iβ + εi, i = 1, · · · , n, (1)

with the vector parameter β ∈ Rp and β0 its true value (unknown). The size p of β0 can
depend on n but the components β0

j don’t depend on n, for any j = 1, · · · , p. The vector
Xt
i = (Xi1, · · · , Xip)

t contains the values of the p explanatory deterministic variables and
Yi the values of response variable for observation i. The values (Yi,Xi) are known for
any i = 1, · · · , n. Throughout the paper, all vectors are column. If p is very large, in
order to find the explanatory variables that significantly influence the response variable Y ,
an automatic selection should be made without performing hypothesis tests. Concerning
the hypothesis testing of coefficients in high dimensional linear regression model, a lot of
progress has been made in recent years. For Gaussian errors, with possibility that the
number of variables exceeds the sample size, Zhang and Zhang (2014) propose a method
for constructing confidence interval for individual coefficients, which can be used to select
variables after proper thresholding. Dezeure et al. (2015) present a review of frequentist
methods for constructing p-values and confidence intervals in a high dimensional linear
model. Always for this model, with zero mean errors, Dezeure et al. (2017), Shah and
Bühlmann (2018) propose bootstrap methodology.

For model (1), let the index set of the non-null true parameters,

A ≡
{
j ∈ {1, · · · , p}; β0j 6= 0

}
.

Since β0 is unknown then, the set A is also unknown. We assume, without reducing gener-
ality, that A = {1, · · · , p0} and its complementary set is Ac = {p0 +1, · · · , p}, with p0 ≤ p.
Hence the first p0 explanatory variables have a significant influence on the response variable
and the last p−p0 variables are irrelevant. Thus, the true parameter vector can be written
as β0 =

(
β0
A,β

0
Ac
)

=
(
β0
A,0p−p0

)
, with 0p−p0 a (p− p0)-vector with all components zero.

The number p0 of the nonzero coefficients can depend on n.
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For a vector β we use the notational convention βA for its subvector containing the cor-
responding components of A. For i = 1, · · · , n, we denote by Xi,A the p0-vector with the
components Xij , j = 1, · · · , p0. We also use the notation |A| or Card(A) for the cardinality
of A.
In order to find the elements of A, one of the most used techniques is the adaptive LASSO
method, introduced for p fixed by Zou (2006) by penalizing the squares sum with an
weighted L1 penalty. This type of parameter estimator is interesting if it satisfies the
oracle properties, i.e. the two following properties occur:

• sparsity of estimation: the non-zero parameters are estimated as non-zero and the
null parameters are shrunk directly as 0, with a probability converging to 1 when
n→∞;

• asymptotic normality of non-zero parameter estimators.

In order to distinguish between different types of adaptive LASSO estimators, we will
use the term ”adaptive LASSO LS-estimator” to refer to the minimizer of the LS sum
penalized with adaptive LASSO.
Let us give some papers from very rich literature that consider the adaptive LASSO LS-
estimator when p depends on n: Huang et al. (2008), Wang and Kulasekera (2012), Yang
and Wu (2016). If the moments of the errors do not exist or the distribution of ε presents
outliers, then the LS framework is not appropriate. One possibility is to consider the
quantile model with the adaptive LASSO penalty. The recent literature is also very rich:
Fan et al. (2014), Kaul and Koul (2015), Tang et al. (2013), Ciuperca (2019), Zheng
et al. (2013), Zheng et al. (2015), to give just a few examples. As stated before, the
non-differentiability of the loss function for quantile method complicates the theoretical
study and its computational implementation, which is a very important aspect in high-
dimensionality. Let us mention another work of Fan et al. (2017) which is also devoted
to the high dimensional regression in absence of symmetry of the model errors and which
proposes a penalized Huber loss but in which the sparsity of the robust approximate LASSO
estimator is not studied. The robust approximate LASSO estimator is consistent with the
same convergence rate as the optimal rate under the light tail situation.
In the present paper we consider the expectile loss function for a high-dimensional model.
In order to introduce the expectile method, for a fixed τ ∈ (0, 1), let us consider the
function ρτ (.) of the form

ρτ (x) = |τ − 11x<0|x2, with x ∈ R.

For the error and the design of model (1) we make the following basic assumptions.
The errors εi satisfy the following assumption:

(A1) (εi)16i6n are i.i.d. such that E[ε4i ] <∞ and E[ε
(
τ11ε>0 + (1− τ)11ε<0

)
] = 0, that is

its τ -th expectile is zero: E[ρ′τ (ε)] = 0.
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While, the design (Xi)16i6n satisfies the following assumption:

(A2) there exists two positive constantsm0,M0 such that, 0 < m0 ≤ µmin
(
n−1

∑n
i=1 XiX

t
i

)
≤ µmax

(
n−1

∑n
i=1 XiX

t
i

)
≤M0 <∞.

For a positive definite matrix, we denote by µmin(.) and µmax(.) its largest and smallest
eigenvalues, respectively. Let us consider ε the generic variable for the sequence (εi)16i6n.
Assumption (A1) is commonly required for the expectile models, see Zhao et al. (2018),
Gu and Zou (2016), Liao et al. (2019), Newey and Powell (1987), while assumption (A2)
is standard in linear model for the parameter identifiability (considered also by Gao and
Huang (2010), Wang and Wang (2014), Fan et al. (2017), Zou and Zhang (2009)). Other
assumptions will be stated about design in the following two sections, depending on the
size p which varies in turn with n.

Quite in general, it is wise to use the expectile method when the moments of ε exist but
its distribution is asymmetric. For τ = 0.5, we get the classical method of least squares.
For model (1), consider the expectile process

Qn(β) ≡
n∑
i=1

ρτ (Yi −Xt
iβ),

and the one with LASSO adaptive penalty:

Rn(β) ≡
n∑
i=1

ρτ (Yi −Xt
iβ) + nλn

p∑
j=1

ω̂n,j |βj |. (2)

The adaptive weights ω̂n,j will be defined later depending on the size of p in respect to
n. The tuning parameter λn is a positive deterministic sequence which together with ω̂n,j
controls the overall model complexity. Hence, we should choose λn and ω̂n,j such that

nλnω̂n,j
P−→

n→∞
0 for non-null parameters and nλnω̂n,j

P−→
n→∞

∞ for null coefficients. In order

to automatically detect the null and non-zero components of β, we proceed in a similar
way as for the adaptive LASSO LS-estimation introduced by Zou (2006), and we consider
the adaptive LASSO expectile estimator of β:

β̂n ≡ arg min
β∈R

Rn(β). (3)

The components of β̂n are β̂n =
(
β̂n,1, · · · , β̂n,p

)
. Similarly to A, let’s define the index set:

Ân ≡ {j ∈ {1, · · · , p}; β̂n,j 6= 0},

with the non-zero components of the adaptive LASSO expectile estimator.
The estimator β̂n will satisfy the oracle properties if:

4



• sparsity : limn→∞ P
[
A = Ân

]
= 1.

• asymptotic normality : for any vector u ∈ Rp0 with bounded norm, we have that:√
n(utΥ−1n,Au)−1/2ut(β̂n − β0)A converges in distribution to a zero-mean Gaussian

law, with the p0-squared matrix: Υn,A ≡ n−1
∑n

i=1 Xi,AXt
i,A.

For p fixed, the properties of the estimator β̂n have been studied by Liao et al. (2019)
where it is shown that the convergence rate of β̂n towards β0 is of order n−1/2 and that β̂n
satisfies the oracle properties. The case where p is fixed has also been studied by Zhao and
Zhang (2018), where consider a penalized linear expectile regression with SCAD penalty
function and obtain a n−1/2-consistent estimator with oracle properties. In the present pa-
per we assume that p depends on n, more precisely, p = O(nc), with the constant c ∈ [0, 1].
The size p0 and the set A can also depend on n.
The case when p depends on n was also considered in Zhao et al. (2018) by considering the
SCAD penalty for the expectile process. They propose an algorithm that converges, with
probability converging to one as n → ∞, to the oracle estimator after several iterations.
Always for p depending on n, for (εi) sub-Gaussian errors, Gu and Zou (2016) penalize
the expectile process with LASSO or nonconvex penalties. They find the convergence rate
of the penalized estimator, propose an algorithm for finding this estimator and implement
the algorithm in the R language in package SALES. The paper of Spiegel et al. (2017)
introduces several approaches depending on selection criteria and shrinkage methods to
perform model selection in semiparametric expectile regression.

Let us give some general notations. For a vector v, we denote its transpose by vt, by
‖v‖1, ‖v‖2 and ‖v‖∞ the L1, L2, L∞ norms, respectively. The number p of the explanatory
variables and p0 of the significant variables can depend on n, but for convenience, we do
not write the subscript n. Throughout the paper, C denotes a positive generic constant
that does not dependent on n, which value may differ from one formula to another.

In order to study the properties of the adapted LASSO expectile estimator β̂n, we
introduce the following functions, using the same notations as in Liao et al. (2019):

gτ (x) ≡ ρ′τ (x− t)|t=0 = 2τx11x≥0 + 2(1− τ)x11x<0,

hτ (x) ≡ ρ′′τ (x− t)t=0 = 2τ11x≥0 + 2(1− τ)11x<0

The paper is organized as follow. In Section 2 we study the asymptotic behaviour of the
adaptive LASSO expectile estimator when p = O(nc), with 0 ≤ c < 1/2. We obtain the
convergence rate of the β̂n and the oracle properties. A similar study is realized in Section
3, when c ∈ [1/2, 1]. In Section 4, a simulation study and an application to real data are
presented. All the proofs are relegated in Section 5.
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2. Case c < 1/2, parameter number less than the sample size

In this section we study the asymptotic behavior of the adaptive LASSO expectile
estimator when the number p of model parameter is p = O(nc), with 0 ≤ c < 1/2. If c = 0,
that is p fixed, then we get the particular case studied by Liao et al. (2019).

An additional assumption to (A2) on the design is requested:

(A3) p1/2n−1/2 max16i6n ‖Xi‖2 −→
n→∞

0.

The upper bound 1/2 for c is deduced taking into account assumptions (A2) and (A3).
Since tr

(
Xt
iXi

)
= tr

(
XiX

t
i

)
=
∥∥Xi‖22 ≤ max16i6n ‖Xi‖22, taking into account assumption

(A2) we have that max16i6n ‖Xi‖22 ≥ Cp. This last relation, together with assumption
(A3) involve pn−1/2 → 0, as n→∞, from where c < 1/2.
Because p < n, the regression parameters are identifiable and we can calculate the expectile
estimator:

β̃n ≡ arg min
β∈R

Qn(β),

the components of β̃n being β̃n =
(
β̃n,1, · · · , β̃n,p

)
. This estimator will intervene in the

adaptive weight of the penalty,

ω̂n,j = |β̃n,j |−γ , for j = 1, · · · , p. (4)

Conditions on the constant γ > 0 will be specified in Theorem 2.2. By the following
theorem we obtain the convergence rate of the expectile and adaptive LASSO expectile
estimators. We obtain that the convergence rate depends on the size p of the vector β.

Theorem 2.1 Under assumptions (A1), (A2) and (A3) we have:

(i) ‖β̃n − β0‖2 = OP

(√
p
n

)
.

(ii) If the tuning parameter sequence (λn)n∈N satisfies p
1/2
0 n(1−c)/2λn → 0, as n → ∞,

then, ‖β̂n − β0‖2 = OP

(√
p
n

)
.

Theorem 2.1 provides that the expectile and adaptive LASSO expectile estimators have
the same convergence rate. Concerning the adaptive LASSO expectile estimator, the same
convergence rate has been obtained for other adaptive LASSO estimators: by the likelihood
method for a generalized linear model when p < n in Wang and Wang (2014), by the least
squares approximation method in Leng and Li (2010).
By the following theorem, considering a supplementary condition on λn, c and γ, in addition
to that considered for the convergence rate in Theorem 2.1, we show that the adaptive
LASSO expectile estimator β̂n satisfies the oracle properties. If τ = 0.5, that is, for the
adaptive LASSO LS-estimator, the variance of the normal limit law is the variance of ε. In
fact, we obtained for τ = 0.5, the same asymptotic normality as in Zou and Zhang (2009).
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Theorem 2.2 Suppose that assumptions (A1), (A2) and (A3) hold and that the tuning

parameter satisfies λnn
(1−c)(1+γ)/2 →∞, p

1/2
0 n(1−c)/2λn → 0, as n→∞. Then:

(i) P
[
Ân = A

]
→ 1, for n→∞.

(ii) For any vector u of size p0 such that ‖u‖2 = 1, we have: n1/2(utΥ−1n,Au)−1/2ut(β̂n −

β0)A
L−→

n→∞
N
(
0, Var [gτ (ε)]

E2[hτ (ε)]

)
.

The convergence rate of β̂n does not depend on the power γ, but otherwise, for holding
the oracle properties, the choice of γ is very important. Concerning the suppositions and
results stated in Theorem 2.2, let’s make some remarks on the regularization parameter
λn, the constants c, γ and the sizes p0, p.

Remark 2.1 1) If p0 = O(p), then if we want that λnn
(1−c)(1+γ)/2 →∞ and λnp

1/2
0 n(1−c)/2 →

0 occur, we must choose the constant γ and sequence (λn) such that: γ > c/(1 − c) and
n−1/2λn −→

n→∞
0.

2) If p0 = O(1), we must choose the constant γ > 0 and the tuning parameter such that
n(1−c)/2λn −→

n→∞
0.

3) If we want that λnp
1/2
0 n(1−c)/2 → 0 holds, it is necessary that λn → 0, as n→∞.

4) If c = 0 then the conditions on λn become: n1/2λn → 0 and n(1+γ)/2λn →∞, conditions
considered by Liao et al. (2019) for a linear model with p fixed. We also find the same
variance of Gaussian distribution in Liao et al. (2019).

Remark 2.2 If ε ∼ N (0, σ2), then τ = 1/2 and the variance of the Normal limit law of
the adaptive LASSO expectile estimators for the non-zero parameters, given by Theorem
2.2(ii), is equal to σ2. The analogous result for the adaptive LASSO quantile estimator
obtained by Ciuperca (2019) gives a variance of πσ2/2. Thus, adaptive LASSO expectile
estimator is more efficient than the adaptive LASSO quantile estimator.

3. Case c ∈ [1/2, 1]

In this section, after we propose an adaptive weight, we study the asymptotic behavior
of the estimator β̂n when the number of regressors p = O(nc), with 1/2 ≤ c ≤ 1, with the
possibility that p is of the same order as the number of observations, with p ≤ n.

Instead of assumption (A3), we consider:

(A4) There exists a constant M > 0 such that max16i6n ‖Xi‖∞ < M .

The same assumption (A4) was considered for a generalized linear model in Wang and
Wang (2014) where the adaptive LASSO likelihood method is proposed.
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In addition to the weight ω̂n,j given by relation (4), in this section we also propose:

ω̂n,j = min(|
∨
βn,j |−γ , n1/2), (5)

with
∨
βn,j an estimator of β0

j consistent with an → 0 the convergence rate: ‖
∨
βn − β0‖2 =

OP(an). These weights are proposed because when the estimator
∨
βn,j takes the value 0,

then we consider n1/2 as adaptive weight. An example of such estimator is the LASSO
expectile estimator, proposed by Gu and Zou (2016), defined as:

arg min
β∈Rp

(
n−1

n∑
i=1

ρτ (Yi −Xt
iβ) + νn‖β‖1

)
,

with the deterministic sequence νn ∈ (0,∞), νn → 0 as n → ∞. If εi is sub-Gaussian

and E[g(ε)] = 0, under our assumptions (A2), (A4), if κ = infd∈C
‖Xd‖22
‖nd‖22

∈ (0,∞), with

X the matrix n × p of design and the set C ≡ {d ∈ Rp; ‖dAc‖1 ≤ 3‖dA‖1 6= 0}, then

‖
∨
βn − β0‖2 = OP

(
p
1/2
0 νn

)
. Thus, the sequence (an) is in this case an = p

1/2
0 νn (see Theo-

rem 1 of Gu and Zou (2016)).

Another possibility of estimator
∨
βn in (5) could be the expectile estimator calculated

by (3). In this case, we study the convergence rate of β̃n when p = O(nc), 1/2 ≤ c ≤ 1,
p ≤ n. Then, in a similar way to Theorem 2.1(i), we have the following Lemma.

Lemma 3.1 Under assumptions (A1), (A2) and (A4), we have that ‖β̃n−β0‖1 = OP (an),
with the sequence (an)n∈N such that an → 0 and n1/2an →∞.

By this lemma we deduce that another estimator
∨
βn,j in (5) can be the expectile

estimator β̃n,j , for j = 1, · · · , n. We will compare in the next section, by simulations, these
two possible choices of estimators in (5). Still in the next section, we will compare adaptive
weights (5) with (4).
The form of the random process Rn(β) defined by (2) and the adaptive LASSO expectile
estimator β̂n given by (3) remain the same, only the adaptive weight ω̂n,j can change,

using either (5) or (4). It would be desirable for β̂n to satisfy the oracle proprties. For the
sparsity property of β̂n its convergence in L1 norm is required. In the following theorem,
(bn)n∈N is a deterministic sequence converging to 0 as n→∞. This theorem holds for the
two possible choices of ω̂n,j .

Theorem 3.1 Under assumptions (A1), (A2) and (A4), the tuning parameter (λn)n∈N

and sequence (bn) satisfying λnp
1/2
0 b−1n → 0, as n→∞, we have, ‖β̂n − β0‖1 = OP (bn).
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The result of Theorem 3.1 indicates that the convergence rate of the adaptive LASSO
expectile estimator β̂n depends on the chosen sequence (λn)n∈N. On the other hand, the

convergence rate of β̂n doesn’t depend on the convergence rate (an) of the estimators
∨
βn

or β̃n. The only thing that matters (see relation (23) of the proof in Section 5) is that
∨
βn

converges in probability to β0.
The result of Theorem 3.1 now allows us to state oracle properties. For a quantile model,
Zheng et al. (2013) obtains that the convergence rate, in L2 norm, of the adaptive LASSO
quantile estimator is (p0/n)−1/2 and that it also satisfies the oracle properties. The sparsity
of the adaptive LASSO quantile estimator will be shown in our Section 4 by simulations,
where we obtain that compared to the adaptive LASSO expectile estimator, it would be
necessary to have a larger number n of the observations when the model errors have an
asymmetric distribution. From where, a supplementary interest in considering the expectile
method instead of the quantile.

Theorem 3.2 Suppose that assumptions (A1), (A2) and (A4) hold, the tuning parameter

(λn) and sequence (bn) satisfy λnp
1/2
0 b−1n → 0, λnb

−1
n min

(
n1/2, a−γn

)
→ ∞, as n → ∞.

Then:
(i) P

[
Ân = A

]
→ 1, for n→∞.

(ii) For any vector u of size p0 such that ‖u‖1 = 1, we have n1/2(utΥ−1n,Au)−1/2ut(β̂n −

β0)A
L−→

n→∞
N
(
0, Var [gτ (ε)]

E2[hτ (ε)]

)
.

Hence, for p = O(nc), with c ∈ [1/2, 1], the variance of the normal limit distribution is the
same as that obtained when p = o(n1/2). As for the case c < 1/2, studied in Section 2, the
convergence rate of the adaptive LASSO espectile estimator doesn’t depend on the power
γ in the adaptive weight. However, γ intervenes in the imposed conditions so that the
oracle properties are satisfied. If τ = 0.5, that is for the adaptive LASSO LS-estimator, we
obtained the same asymptotic normal distribution as that given by Huang et al. (2008))
for their adaptive LASSO LS-estimator.
Regarding the tuning parameter sequence we make the following remark, useful for simu-
lations and applications on real data.

Remark 3.1 The supposition λnp
1/2
0 b−1n → 0 made in the Theorems 3.1 and 3.2, implies

that the tuning sequence λn → 0, as n→∞.

Remark 3.2 As for the non-penalized expectile estimator, by Theorems 3.1 and 3.2, we
obtained that the asymptotic variance of the adaptive LASSO expectile estimators can be
calculated without going via the density of the model errors. Contrarily, the variance of
the adaptive LASSO quantile estimator depends on the density function of the error (see
Ciuperca (2016)). More precisely, the variance of normal distribution limit of the adaptive
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LASSO expectile estimators can be estimated without estimation of the density function of
the error ε.

4. Numerical study

In this section we first perform a numerical simulation study to illustrate our theoretical
results on the adaptive LASSO expectile estimation and to compare it with the estimations
obtained by the adaptive LASSO quantile method. Afterwards, an application on real data
is presented.
We use the following R language packages: package SALES with function ernet for the
expectile regression and the package quantreg with function rq for quantile regression.
Given assumption (A1), the index τ is:

τ =
E
[
ε11ε<0

]
E
[
ε(11ε<0 − 11ε>0)

] . (6)

In the simulation study, the index τ is fixed, but it depends of the law of the model errors
ε, such that assumption (A1) is satisfied.
Taking into account the suppositions imposed on the tuning parameter in Theorems 2.2
and 3.2, we consider λn = n−2/5 for the expectile framework. For the quantile method, the
tuning parameter is n2/5 and the weight in the penalty have the power 1.225 (see Ciuperca
(2016)).
In order to better compare the two methods, when the penalty weight for the adaptive
LASSO expectile method is of type (4), then for adaptive LASSO quantile method is also
of type (4). Similarly, if the adaptive weight is of type (5), it will be for both frameworks.
In the weights (4) or (5) of the expectile penalty, the used estimations are obtained, re-
spectively, by expectile or LASSO expectile method. For the adaptive LASSO quantile
method, the estimation in the weights are obtained, respectively, by quantile or LASSO
quantile method.

4.1. Simulation study: fixed p0 case

In this subsection, we will study the numerical behavior of the adaptive LASSO expec-
tile method and we will compare it with the simulation results obtained by the adaptive
LASSO quantile method. For model (1), we consider p0 = 6 and A = {1, · · · , 6}. In the all
simulations of this subsection we take, β01 = 1, β02 = 4, β03 = −3, β04 = 5, β05 = 6, β06 = −1,
while n and p are varied.
For the errors εi, three distributions are considered: N (0, 1) which is symmetrical, Exp(−1)
and N (−1.2, 0.42) + χ2(1), the last two being asymmetrical. In Figure 1 we give the his-
togram for 105 realizations of a N (−1.2, 0.42)+χ2(1) random variable, with empirical mean
equal to -0.2 and median -0.628. The exponential law Exp(−1) has the density function
exp(−(x+ 1))11x>−1. For each value of n, p and distribution of ε, 1000 Monte Carlo repli-
cations are realized for two possible values for γ. In Tables 1 and 2 we give the average
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Table 1: Sparsity study for expectile method with adaptive LASSO penalty, with weights of type (5),

ε ∼ N (0, 1), two values for γ. Perfect method, if: Card(A ∩ Ân) = p0 = 6 and Card(Ân \ A) = 0.

n p Card(A ∩ Ân) Card(Ân \ A)
γ = 1/8 γ = 2 γ = 1/8 γ = 2

50 10 5.99 5.74 0.22 0
25 5.99 5.7 1 0.001
50 5.99 5.64 2.13 0.002

100 10 6 5.99 0.13 0
25 6 5.99 0.56 0
100 6 5.98 2.5 0

of the 1000 Monte Carlo replications for the cardinalities (number of the true non-zeros
estimated as non-zero) Card(A ∩ Ân) and Card(Ân \ A) (number of the false non-zero)
by the expectile (ES) and quantile (Q) penalized methods, each with LASSO adaptive
penalty. The weights of type (5) are based on the respective LASSO estimations. For a
perfect method, we should have: Card(A ∩ Ân) = p0 = 6 and Card(Ân \ A) = 0. In
Table 1, for standard Gaussian errors, the values considered for γ are 1/8 and 2. Since for
γ = 1/8 the number of false non-zeros, which in addition increases with n, is much larger
than for γ = 2 and for γ = 2 the number of the true non-zeros decreases with n, these
values will be dropped, other two values will be considered in Table 2. These results will be
consolidated by the study on sparsity, for the three distributions of ε and different values
for n and p. In Table 2, taking γ ∈ {5/8, 1}, for the adaptive LASSO expectile method
with weights (5), all significant variables are detected when n is large enough, the number
p of variables not coming into play. On the other hand, the smaller n, the worse the results
obtained by the adaptive LASSO quantile method. In Table 3, in the adaptive weights
of the expectile or quantile frameworks, we consider the expectile and quantile estimators,
respectively. Comparing Tables 2 and 3 we deduce that by the quantile framework for
the three error distributions and by the expectile framework for exponential and mixing
error distributions, the best results are for weights of type (4) when p � n. Conversely,
when p ' n, the performance is worse by using these weights for the two frameworks, the
number of null parameters estimated as non null is large by the expectile method, specially
for asymmetric errors. This conclusion is consolidated by Figures 2-8. When p = n, the R
function rq cannot calculate the quantile estimations, since the matrix design is singular,
from where the symbol ”NA” (not available) in Table 3. Thus, the results obtained in Ta-
bles 2 and 3 show the advantage of using the adaptive LASSO expectile method compared
to the adaptive LASSO quantile method.

We observe that the penalized expectile method better detects non-zero parameters
compared to the penalized quantile method, especially for asymmetric errors. Concerning
the two values considered for γ, when γ = 5/8, there are a little more true non-zeros
detected, while, when γ = 1, there are fewer false non-zeros. This trend will be also
confirmed by the following numerical studies.
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Table 2: Sparsity study for expectile (ES) and quantile (Q) methods, with the adaptive LASSO weights of

type (5). |A| = p0 = 6 and 1000 Monte Carlo replications. Perfect method, if: Card(A ∩ Ân) = p0 = 6

and Card(Ân \ A) = 0.

ε n p Card(A ∩ Ân) Card(Ân \ A)
ES Q ES Q

γ = 5/8 γ = 1 γ = 5/8 γ = 1

N (−1.2, 0.42) + χ2(1) 50 10 5.89 5.79 5.58 0.12 0.04 0.07
25 5.84 5.75 5.58 0.60 0.25 0.30
50 5.84 5.71 5.52 1.22 0.49 0.70

100 10 5.99 5.99 5.97 0.05 0.004 0.03
25 5.99 5.99 5.98 0.24 0.07 0.14
100 5.99 5.98 5.96 1.01 0.22 0.45

200 10 6 6 6 0.01 0.003 0.01
100 6 6 6 0.38 0.03 0.13
200 6 6 6 0.65 0.06 0.25

Exp(−1) 50 10 5.98 5.95 5.95 0.01 0.005 0.03
25 5.97 5.93 5.93 0.03 0.01 0.09
50 5.97 5.93 5.90 0.11 0.04 0.22

100 10 6 6 6 0 0 0.004
25 6 6 6 0.003 0.001 0.02
100 6 6 6 0.01 0.002 0.10

200 10 6 6 6 0 0 0.001
100 6 6 6 0 0 0.01
200 6 6 6 0.003 0 0.03

N (0, 1) 50 10 5.98 5.94 5.95 0 0.001 0.04
25 5.97 5.95 5.94 0.048 0.01 0.16
50 5.97 5.91 5.92 0.11 0.01 0.28

100 10 6 6 6 0 0 0.005
25 6 6 6 0 0 0.04
100 6 6 6 0.01 0.01 0.16

200 10 6 6 6 0 0 0
100 6 6 6 0 0 0.03
200 6 6 6 0.001 0 0.06
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Table 3: Sparsity study for expectile (ES) and quantile (Q) methods, with adaptive LASSO weights of type

(4). |A| = p0 = 6 and 1000 Monte Carlo replications. Perfect method, if: Card(A ∩ Ân) = p0 = 6 and

Card(Ân \ A) = 0.

ε n p Card(A ∩ Ân) Card(Ân \ A)
ES Q ES Q

γ = 5/8 γ = 1 γ = 5/8 γ = 1

N (−1.2, 0.42) + χ2(1) 50 10 5.97 5.89 5.88 0.26 0.001 0.19
25 5.94 5.84 5.80 1.56 0.02 1.35
50 5.76 5.65 NA 9 9.9 NA

100 10 5.99 6 5.99 0.12 0.05 0.08
25 5.99 5.99 5.99 0.85 0.33 0.44
100 5.92 5.8 NA 15 16 NA

200 10 6 6 6 0.05 0.01 0.03
100 6 6 6 1.73 0.44 1.33
200 5.97 5.89 NA 20 18 NA

Exp(−1) 50 10 5.99 5.99 5.99 0.03 0.01 0.06
25 5.99 5.99 5.98 0.23 0.07 0.49
50 5.88 5.76 NA 3.76 4.6 NA

100 10 6 6 6 0.002 0 0.02
25 6 6 6 0.03 .002 0.1
100 5.95 5.86 NA 4.7 5.8 NA

200 10 6 6 6 0 0 0.003
100 6 6 6 0.02 0 0.21
200 5.99 5.95 NA 3.2 2.9 NA

N (0, 1) 50 10 6 5.99 5.99 0.02 0.007 0.06
25 5.99 5.99 5.98 0.21 0.08 0.57
50 5.86 5.76 NA 3.9 4.7 NA

100 10 6 6 6 0.005 0 0.01
25 6 6 6 0.03 0.001 0.14
100 5.95 5.88 NA 4.5 5.4 NA

200 10 6 6 6 0 0 0.005
100 6 6 6 0.03 0 0.3
200 5.98 5.96 NA 3 2.8 NA
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Figure 1: Histogram for 105 realizations of a N (−1.2, 0.42) + χ2(1) random variable.

Table 4: Study of the sparsity evolution and of the estimation accuracy for the expectile (ES) and quantile
framework, with p and p0 depending on n: p = [n/2], p0 = 2[n1/2]. The adaptive weights are of type (5).

ε n 100p−1
0 Card(A ∩ Ân) 100(n− p0)−1Card(Ân \ A) mean(|β̂n − β0|) mean(|(β̂n − β0)

A|)
ES Q ES Q ES Q ES Q

γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1

N (0, 1) 50 99.3 98.9 99.3 0.20 0.08 0.27 0.11 0.10 0.11 0.19 0.19 0.19
100 99.9 99.9 99.9 0.02 0.002 0.09 0.04 0.04 0.04 0.11 0.10 0.11
400 100 100 100 0 0 0.002 0.009 0.009 0.01 0.04 0.04 0.05

ε ∼ Exp(−1) 50 99.4 98.9 98.8 0.21 0.08 0.31 0.11 0.10 0.11 0.20 0.19 0.20
100 99.9 99.9 99.9 0.02 0.008 0.08 0.04 0.04 0.04 0.11 0.11 0.11
400 100 100 100 0.001 0 0.002 0.01 0.01 0.01 0.04 0.04 0.05

N (−1.2, 0.42) + χ2(1) 50 99.8 98.3 95.6 1.24 0.14 1.03 0.15 0.04 0.23 0.26 0.126 0.40
100 99.9 99.9 99.6 0.49 0.14 0.31 0.06 0.06 0.07 0.16 0.15 0.18
400 100 100 100 0.04 0.002 0.02 0.01 0.01 0.01 0.07 0.07 0.07

4.2. Simulation study: case when p0 varies with n

In this subsection, we always compare expectile and quantile penalized methods, but
when the values considered for p vary with n. Moreover, the number of non-zero param-
eters can increase as n increases. In Table 4 we take p = [n/2], p0 = 2[n1/2], with [x] the
entire part of x, the power γ ∈ {5/8, 1} and ε ∼ Exp(−1). The true value of the non-null
parameter vector is β0

A = (1, · · · , p0). We assess model selection by calculating the percent-
age (100p−10 Card(A∩Ân)) of the non-zero parameters with a non-zero estimation and the

percentage of false significant variables (100(n−p0)−1Card(Ân\A)), by the two estimation
methods. We also give the accuracy of the complete estimation vectors (mean(|β̂n−β0|))
and of the estimations of non-zero parameters (mean(|(β̂n−β0

)
A|)) (average absolute esti-

mation error) obtained on 1000 Monte Carlo replications. More precisely, if M is the Monte

Carlo replication number and β̂
(m)

n,j is the estimation of β0j obtained for the Monte Carlo
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Table 5: Study of the sparsity evolution and of the estimation accuracy for the expectile (ES) and quantile
framework, with p and p0 depending an n: p = [n(logn)−1], p0 = 2[n1/4], ε ∼ Exp(−1). The adaptive
weights are of type (5).

β0
A n 100p−1

0 Card(A ∩ Ân) 100(n− p0)−1Card(Ân \ A) mean(|β̂n − β0|) mean(|(β̂n − β0)
A|)

ES Q ES Q ES Q ES Q
γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1

(1, 2, · · · , p0) 50 99.8 99.5 99.7 0.04 0.004 0.10 0.07 0.06 0.06 0.21 0.20 0.19
100 100 100 100 0.002 0.001 0.01 0.03 0.03 0.03 0.12 0.11 0.11
400 100 100 100 0 0 0.0002 0.006 0.006 0.006 0.05 0.05 0.05

(1, · · · , 1) 50 99.3 97.7 97.3 0.04 0.006 0.11 0.10 0.11 0.09 0.35 0.30 0.26
100 99.98 99.97 99.98 0.005 0 0.02 0.05 0.06 0.04 0.20 0.22 0.14
400 100 100 100 0 0 0 0.01 0.01 0.007 0.09 0.09 0.05

replication with the number m, then, mean(|β̂n−β0|) = (Mp)−1
∑M

m=1

∑p
j=1 |β̂

(m)

n,j −β0j |.

Similarly we calculate mean(|(β̂n − β0)A|) = (Mp)−1
∑M

m=1

∑p0
j=1 |β̂

(m)

n,j − β0j |. The re-
sults are similar by the two estimation methods, while by the adaptive LASSO expectile
method the results being more accurate for γ = 1 than for γ = 5/8. In Table 5, tak-
ing p = [n(log n)−1], the value of p is increased compared to that considered in Table 4.
Furthermore, the sparsity of the model is more accentuated by considering p0 = 2[n1/4].
Two values for β0

A are considered: (1, 2, · · · , p0) and 1p0 = (1, · · · , 1) while for the model
errors, only the exponential distribution ε ∼ Exp(−1) is made. For both values of β0, the
expectile and quantile methods with adaptive LASSO penalty give very good results for
identifying of null and non-null parameters.
Comparing Tables 4 and 5, for n fixed and exponential law, we deduce that the penalized
expectile estimation quality of the model does not vary for two different p. Furthermore,
the quality is better if p0 decreases and when γ = 1. We also deduce that the quality of
automatic detection increases with n.

In Table 6 we give the median run time, for 1000 simulation replicates, of R func-
tions: ”ernet” for calculate the adaptive LASSO expectile estimation and ”rq” for adaptive
LASSO quantile estimation, for a linear model with |A| = p0 = 6, ε ∼ Exp(−1), γ = 1 and
adaptive LASSO weights of type (4). The algorithm used for ”ernet” has been proposed
by Gu and Zou (2016) and combines the cyclic coordinate descent and proximal gradient
algorithms. The calculation time of the adaptive LASSO quantile estimate is much longer
than that of the penalized expectile method, especially when the number p of parameters
is close to the sample size n.

4.3. Sparsity study function of γ

In Figure 2 we present the results of the percentages of the true non-zero and false
zero estimators by adaptive LASSO expectile method, for a model with n = p = 100 and
Gaussian estimators. The true parameters are β01 = 1, β02 = 4, β03 = −3, β04 = 5, β05 = 6,
β06 = −1 and β0j = 0 for any j > 6. The results are better when in the adaptive weights
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Table 6: Run time (in seconds) of R functions: ”ernet” corresponding to the expectile method and ”rq”
for quantile method, both being LASSO penalized with LASSO penalty, for a model: |A| = p0 = 6,
ε ∼ Exp(−1), γ = 1, adaptive LASSO weights of type (4).

n p time by adaptive LASSO expectile (by ”ernet”) time by adaptive LASSO quantile (by ”rq”)

50 10 9.9 · 10−4 9.9 · 10−4

25 9.9 · 10−4 9.9 · 10−4

200 10 9.9 · 10−4 10−3

100 2 · 10−3 10−2

500 10 9.9 · 10−4 1.9 · 10−3

250 2.9 · 10−3 1.1 · 10−1

1000 10 10−3 2.99 · 10−3

500 10−2 0.93

104 10 4.9 · 10−3 0.03

103 0.29 38.9

we take the LASSO expectile estimator. Following this results, right now, for weight (5)
we consider only LASSO expectile estimator.
In Figures 3-8, for n = 100, p ∈ {10, 100}, ε ∼ N (0, 1) or Exp(−1) or N (−1.2, 0.42)+χ2(1),
we present the percentage of true and false zero, when for the adaptive weight we take (5)
by dotted line, and (4) with solid line. We deduce that for p � n we must take weights
(4), for p ' n weights (5), choosing in the two cases γ ∈ [1/2, 1].
In Figures 9 and 10, for ε ∼ N (−1.2, 0.42) + χ2(1), for the same n (either 50 or 100), we
vary p. Then, when p = n we consider adaptive weight (5) with dotted line and in the
other case we take (4) with solid line. We deduce that we must take different weights,
function that p is of the same order as n or much smaller.

Figure 2: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 100. In adaptive weights
(5), two estimators: LASSO expectile with dotted line and expectile with solid line.
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Figure 3: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 10. Two adaptive
weights: (5) with dotted line and (4) with solid line.

Figure 4: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 100. Two adaptive
weights: (5) with dotted line and (4) with solid line.

4.4. Conclusion of simulation study

For adaptive LASSO expectile estimation, when p � n, the best results are obtained
for adapted weights (4) and when p ' n for weights (5). The penalized expectile method
is more accurate when n is small and the error distributions are asymmetric.
When p and p0 increase with n, the adaptive LASSO expectile estimations identify very
well the null and non-zero parameters, while the adaptive LASSO quantile estimations
happen to have the same performances only for very large n. The calculation time of
the adaptive LASSO quantile estimate is much longer than that of the adaptive LASSO
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Figure 5: Percentage of true and false non zero, for ε ∼ Exp(−1), n = 100 and p = 10. Two adaptive
weights: (5) with dotted line and (4) with solid line.

Figure 6: Percentage of true and false non zero, for ε ∼ Exp(−1), n = 100 and p = 100. Two adaptive
weights: (5) with dotted line and (4) with solid line.

expectile method, especially when the number p of parameters is close to n. On the other
hand, the adaptive LASSO quantile method identifies true zeros less well when the number
of observations is small. Moreover, another disadvantage of the penalized quantile method
is that when the number of parameters is close to the number of observations, the R
function cannot calculate numerically the quantile estimations.
In all cases, the most appropriate the power γ which intervenes in adaptive weights of the
penalized expectile method is γ ∈ [1/2, 1].
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Figure 7: Percentage of true and false non zero, for ε ∼ N (−1.2, 0.42) + χ2(1), n = 100 and p = 10. Two
adaptive weights: (5) with dotted line and (4) with solid line.

Figure 8: Percentage of true and false non zero, for ε ∼ N (−1.2, 0.42) + χ2(1), n = 100 and p = 100. Two
adaptive weights: (5) with dotted line and (4) with solid line.

4.5. Application to real data

We use the data eyedata of R package flare which contains n = 120 observations (rats)
for the response variable of gene TRIM32 and 200 explanatory variables, other genes
probes, from the microarray experiments of mammalian-eye tissue samples in Scheetz et
al. (2006). The objective is to find genes that are correlated with the TRIM32 gene, known
to cause Bardet–Biedl syndrome, a genetically disease of multiple organ systems including
the retina.
In this paper, the expectile index τ is supposed to be known, such that for model error ε we
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Figure 9: Percentage of true and false non zero, for ε ∼ N (−1.2, 0.42) + χ2(1), n = 50. Two value for the
number of parameters: p = 10 together adaptive weight (5), with dotted line and p = 50 together adaptive
weight (4), with solid line.

Figure 10: Percentage of true and false non zero, for ε ∼ N (−1.2, 0.42) + χ2(1), n = 100. Two value for
the number of parameters: p = 50 together adaptive weight (5), represented with dotted line and p = 100
together adaptive weight (4), represented with solid line.

have E[gτ (ε)] = 0. On the other hand, in applications, an estimate should be given for τ ,
with the remark that same related question also exists in quantile regression for estimating
the quantile level τ̃ such that IP [ε < 0] = τ̃ . But to estimate τ we must first calculate
the model errors and to calculate the errors we must know τ . Therefore, we will not give
an exact estimator of τ but we will try to prefix the value of τ such that the dispersion
around their median of the values of (yi)16i6n is taken into account. We propose the
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following approach in order to give a prefixed value for the expectile index τ . The values
of the explained variable are first transformed, for i = 1, · · · , n, ỹi = (yi − Mn)/Dn,
with Mn = median(y1, · · · , yn) and Dn = n−1

∑n
i=1 |yi −Mn| the empirical mean of the

absolute values of the distances to the median of the yi. Afterwards, based on relation (6),
we calculate the empirical estimation of τ for ỹi:

τ̂ =
n−1

∑n
i=1 ỹi11ỹi<0

n−1
(∑n

i=1 ỹi11ỹi<0 −
∑n

i=1 ỹi11ỹi>0

) .
Then, in model (1), the response variable is Ỹi = (Yi −Mn)/Dn. For this application, we
get τ̂ = 0.568 and γ = 5/8.
We first consider two linear models (the first on the first hundred explanatory variables and
the second on the other hundred explanatory variables), for which we consider adaptive
weights of type (5), for γ = 5/8, λn = n2/5. Afterwards we consider a linear model with
explanatory variables the relevant regressors selected for the two preceding regressions. For
this model, we select the relevant variables by the adaptive LASSO expectile method with
the weights of type (4). Then, we obtain that the genes whose expressions influence gene
TRIM32 are 87, 153, 180, 185, 200 with the labels: ”21092”, ”25141”, ”28680”, ”28967”
and ”30141”. The obtained estimations for the coefficients of these four explanatory vari-
ables are respectively: -1.06, 2.97, 1.29, -1.727 and -0.23. In Figure 11 we illustrate the
histogram and the box-plot for response variable Ỹi. We observe that there are outliers.
If a classical LS regression of the TRIM32 variable in respect to the five selected covari-
ates is performed, we obtain a model with an adjusted R2 = 0.75. The all five variables
are significant and the residuals have Gaussian distribution (the p-value by Shapiro test
equal to 0.69). In the sub-figure of the right-hand side of Figure 11, we also present, the
forecasts beside of the true values of TRIM32. We observe that the scater graph is on the
first bisectrix.
By the adaptive LASSO quantile method, no variable is selected among the 200 explana-
tory ones.
In literature works that model the same data, variable number 153, tagged ”25141”, has
been selected as the sole regressor by the bayesian shrinkage in Song and Liang (2017) and
by a globally adaptive quantile method in Zheng et al. (2015) for quantile index between
0.45 and 0.55. In this last paper, there are other covariates that appear to be significant
for other quantile index values. These variables are: ”11711”, ”24565”, ”25141”, ”25367”,
”21092”, ”29045”, ”25439”, ”22140”, ”15863” and ”6222”. If we make a classic regression
for these ten regressors, we obtain, with a risk of 0.05 that only the variables ”25141”,
”21092”, ”29045”, ”15863”, ”6222” are significant, in a model of lower quality (adjusted
R2 = 0.72, residual standard error=0.52) than the one with the five explanatory variables
found in the present paper.
In order to complete the comparison of the three methods, we split the database of 120
observations into two: one for learning and the other for testing. The three methods
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Table 7: Means of residual absolute values (RAV) by adaptive LASSO expectile estimation, LS on explana-
tory variables of Zheng et al. (2015), and by adaptive LASSO quantile estimation on all data, learning and
test data.

estimation method RAV on all data RAV on learning data RAV on test data
adaptive LASSO expectile 0.057 0.056 0.068
Zheng et al. (2015) method 0.059 0.059 0.064
adaptive LASSO quantile 0.75 0.787 0.771

are each calibrated on 105 observations and are tested on 15 observations. The empirical
means of residual absolute values (RAV) are presented in Table 7. The forecast accuracy
of the explained variable is very similar by the adaptive LASSO expectile and by the LS
estimation on explanatory variables of Zheng et al. (2015), while by the adaptive LASSO
quantile method it is less good, also because of the fact that no explanatory variable is
significant for the latter. From this table, we also deduce that the method proposed in the
present paper is also robust because we get the same accuracy on the test and learning set.

Figure 11: Histogram and boxplot of (ỹi)16i6120. Scater graph between forecast and the true value of
TRIM32.

5. Proofs

In this section we give the proofs of the results presented in Sections 2 and 3.

5.1. Result proofs in Section 2

Before presenting the proof of Theorem 2.1, let’s recall a result given in Gu and Zou
(2016).
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Lemma 1 of Gu and Zou (2016). For any z, z0 ∈ R and τ ∈ (0, 1) we have:

min(τ, 1− τ)(z − z0)2 ≤ ρτ (z)− ρτ (z0)− gτ (z0)(z − z0) ≤ max(τ, 1− τ)(z − z0)2.

Proof of Theorem 2.1.
(i) In order to show the convergence rate of the expectile estimator, we show that for all
ε > 0, there exists Bε > 0, large enough when n is large, such that:

P
[

inf
u∈Rp, ‖u‖2=1

Qn
(
β0 +Bε

√
p

n
u
)
> Qn(β0)

]
≥ 1− ε. (7)

This part of proof is similar to that of Lemma 1.2 in Zhao et al. (2018), for the convergence
rate of the oracle estimator. Let B > 0 be a constant to be determined later and u a vector
in Rp with the norm ‖u‖2 = 1. Let’s study the difference:

Qn
(
β0 +B

√
p

n
u
)
−Qn(β0) =

n∑
i=1

[
ρτ
(
εi −B

√
p

n
Xt
iu
)
− ρτ (εi)

]

=
n∑
i=1

[
ρτ
(
εi −B

√
p

n
Xt
iu
)
− ρτ (εi)− E

[
ρτ
(
εi −B

√
p

n
Xt
iu
)
− ρτ (εi)

]]
+

n∑
i=1

E
[
ρτ
(
εi −B

√
p

n
Xt
iu
)
− ρτ (εi)

]
≡ ∆1 + ∆2.

We first study the term ∆2. By Taylor expansion, we have: E[ρτ (ε − t) − ρτ (ε)] =
E
[
− gτ (ε)t + 2−1hτ (ε)t2

]
+ o(t2) = 2−1E

[
hτ (ε)

]
t2 + o(t2). By the Cauchy-Schwarz in-

equality, we have that |Xt
iu|2 ≤ ‖Xi‖22‖u‖22 and then, using assumption (A3), we obtain

that (pn−1)1/2 max16i6n |Xt
iu| −→n→∞0. Thus,

∆2 =
1

2

n∑
i=1

[
B2 p

n

(
Xt
iu
)2E[hτ (ε)

]
+ o

(
B2 p

n

(
Xt
iu
)2E[hτ (ε)

])]
.

On the other hand,

2 min(τ, 1− τ) ≤ E
[
hτ (ε)

]
= 2τE[11ε≥0] + 2(1− τ)E[11ε<0] ≤ 2 max(τ, 1− τ).

Then

0 < ∆2 = B2 p

n
E
[
hτ (ε)

] n∑
i=1

(
Xt
iu
)2(

1 + o(1)
)

= O(B2p). (8)

We are now studying the term ∆1. Let us consider the random variable:

Di ≡ ρτ
(
εi −B

√
p

n
Xt
iu
)
− ρτ (εi) +B

√
p

n
gτ (εi)X

t
iu. (9)
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Then, we can write ∆1 as:

∆1 =
n∑
i=1

[
−B

√
p

n
gτ (εi)X

t
iu +Di − E[Di]

]
.

Using assumption (A1) we have, E
[
(pn−1)1/2gτ (εi)X

t
iu
]

= 0 and Var
[
(pn−1)1/2

∑n
i=1 gτ (εi)X

t
iu
]

=
pn−1ut

∑n
i=1 XiX

t
iuVar [gτ (ε)] = O(p). Then, we have:

B

√
p

n

n∑
i=1

gτ (εi)X
t
iu = OP

(
p1/2B

)
. (10)

By Lemma 1 of Gu and Zou (2016) for z = εi−B(pn−1)1/2Xt
iu and z0 = εi, we can write

Di also in the form: Di = B2pn−1|Xt
iu|2Vi, with Vi a random variable between min(τ, 1−τ)

and max(τ, 1− τ) with probability one:

P
[

min(τ, 1− τ) ≤ Vi ≤ max(τ, 1− τ)
]

= 1. (11)

Then, Var [Di] ≤ E[D2
i ] = B4(p/n)1/2|Xt

iu|4E
[
V 2
i

]
. But E

[
V 2
i

]
≤ 1 and thus Var [Di] ≤

B4p2n−2|Xt
iu|4. On the other hand, the random variables Di defined by (9), are indepen-

dent. Then,

n∑
i=1

[
Di − E[Di]

]
= OP

(√√√√ n∑
i=1

Var [Di]

)
≤ OP

(√√√√ n∑
i=1

E[D2
i ]

)
= OP

(
B2 p√

n

)
. (12)

Relations (10) and (12), imply, since pn−1 → 0, when n→∞, that:

∆1 = OP(Bp1/2) +OP(B2pn−1/2) = OP(Bp1/2).

Then, this last relation together relation (8) imply ∆2 > |∆1|, with probability converging
to one, for B large enough. Relation (7) follows, which implies the convergence rate of the
expectile estimator.

(ii) For p-vector u = (u1, · · · , up), with ‖u‖2 = 1 and B > 0 a constant, let us consider
the difference

Rn
(
β0+B

√
p

n
u
)
−Rn(β0) = Qn

(
β0+B

√
p

n
u
)
−Qn(β0)+nλn

p∑
j=1

ω̂n,j
[∣∣β0

j+B

√
p

n
uj
∣∣−|β0

j |
]
.

(13)

The first term of the right-hand side of (13) becomes by the above proof for (i),

Qn
(
β0 +B

√
p

n
u
)
−Qn(β0) = B2 p

n
E
[
hτ (ε)

] n∑
i=1

(Xt
iu)2

(
1 + oP(1)

)
= OP(B2p). (14)
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Furthermore, for the penalty of (13) we have:

nλn

p∑
j=1

ω̂n,j
[∣∣β0

j+B

√
p

n
uj
∣∣−|β0

j |
]
≥ nλn

p0∑
j=1

ω̂n,j
[∣∣β0

j+B

√
p

n
uj
∣∣−|β0

j |
]
≥ −nλn

p0∑
j=1

ω̂n,jB

√
p

n
|uj |.

By the Cauchy-Schwarz inequality and afterwards by (i), we have

≥ −nλnB
√
p

n

( p0∑
j=1

ω̂2
n,j

)1/2

‖u‖2 = −B
√
p

n
np

1/2
0 λn = −Bp1/20 n(1+c)/2λn. (15)

Since p
1/2
0 n(1−c)/2λn → 0, as n→∞, we obtain that relation (14) dominates (15) and the

assertion regarding the convergence rate of β̂n results. �

Proof of Theorem 2.2.
(i) Let us consider the parameter set: Vp(β0) ≡

{
β ∈ Rp; ‖β − β0‖2 ≤ B

√
p
n

}
, with

B > 0 large enough and Wn ≡
{
β ∈ Vp(β0); ‖βAc‖2 > 0

}
. According to Theorem 2.1, the

estimator β̂n belongs to the set Vp(β0) with a probability converging to 1 as n → ∞. In

order to show the sparsity property of claim (i), we will show that, limn→∞ P
[
β̂n ∈ Wn

]
=

0. Note that if β ∈ Wn, then p > p0.

Let us consider two parameter vectors: β = (βA,βAc) ∈ Wn and β(1) = (β
(1)
A ,β

(1)
Ac) ∈

Vp(β0), such that β
(1)
A = βA and β

(1)
Ac = 0p−p0 . For this parameters, we will study the

following difference:

n−1
[
Rn(β)−Rn(β(1))

]
= n−1

[
Qn(β)−Qn(β(1))

]
+ λn

p∑
j=p0+1

ω̂n,j |βj |. (16)

First, note that by elementary calculations, we get: ρτ (ε− t) = ρτ (ε)− gτ (ε)t+ 1
2hτ (ε)t2 +

oP(t2) for t→ 0. Then, for the first term of the right-hand side of relation (16), we have

n−1
n∑
i=1

[
ρτ (Yi −Xt

iβ
(1))− ρτ (Yi −Xt

iβ)
]

= n−1
n∑
i=1

[
ρτ
(
εi −Xt

i,A(βA − β0
A)
)
− ρτ

(
εi −Xt

i,A(βA − β0
A)−Xt

i,AcβAc
)]

= n−1
n∑
i=1

[
g(εi)X

t
i,A
(
βA − β0

A
)

+
h(εi)

2

(
Xt
i,A(βA − β0

A)
)2

+ oP
(
Xt
i,A(βA − β0

A)
)2]

− n−1
n∑
i=1

[
g(εi)X

t
i

(
βA − β0

A,βAc
)

+
h(εi)

2

(
Xt
i(βA − β0

A,βAc)
)2

+ oP
(
Xt
i(βA − β0

A,βAc)
)2]

.
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By similar arguments used in the proof of Theorem 2.1(i) we have

n−1
n∑
i=1

g(εi)X
t
i,A
(
βA − β0

A
)

= E
[
n−1

n∑
i=1

g(εi)X
t
i,A
(
βA − β0

A
)]

+OP

(
Var

[
n−1

n∑
i=1

g(εi)X
t
i,A
(
βA − β0

A
)])1/2

= OP

(
Var

[
n−1

n∑
i=1

g(εi)X
t
i,A
(
βA − β0

A
)])1/2

≤ OP

(
E[g2(εi)]

1

n2

n∑
i=1

‖Xi,A‖22‖βA − β0
A‖22

)1/2

= OP

(
1

n

p

n

)1/2

= OP

(
p1/2

n

)
.

Proceeding similarly as above, we get:

n−1
n∑
i=1

g(εi)X
t
i

(
βA − β0

A,βAc
)

= OP

(
p1/2

n

)
.

Taking into account relation (11), we deduce that: 0 < n−1
∑n

i=1 h(εi)
(
Xt
i(βA−β

0
A,βAc)

)2
=

OP(‖βA − β0
A‖22) = OP(pn−1) and also that,

0 < n−1
n∑
i=1

h(εi)
(
Xt
i,A(βA − β0

A)
)2

= OP

(
p

n

)
.

By these relations, we obtain that the first term of the right-hand side of relation (16) is
of order pn−1. For the penalty of the right-hand side of relation (16), taking into account
Theorem 2.1(i) and since β ∈ Wn we obtain:

λn

p∑
j=p0+1

ω̂n,j |βj | ≥ Cλn
(
p

n

)(1−γ)/2
.

Using the supposition λn(pn−1)−(1+γ)/2 −→
n→∞

∞, that is λnn
(1−c)(1+γ)/2 −→

n→∞
∞, we have

that in the right-hand side of relation (16), it’s the penalty that dominates. Then, since
n−1

[
Qn(β)−Qn(β(1))

]
= OP(pn−1), we have,

n−1
[
Rn(β)−Rn(β(1))

]
≥ Cλn

(
p

n

)(1−γ)/2
. (17)

But, on the other hand, since β
(1)
Ac = 0p−p0 , by similar arguments as above, we have,

n−1
[
Rn(β0) − Rn(β(1))

]
= OP(pn−1). From the last relation together relation (17), since

λn(pn−1)−(1+γ)/2 −→
n→∞

∞, we deduce, limn→∞ P[β̂n ∈ Wn] = 0.
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(ii) Given the previous result we consider the parameter vector β of the form: β =
β0 + (pn−1)1/2δ, with δ = (δA, δAc), δAc = 0p−p0 , ‖δA‖2 ≤ C. We study then the
following difference:

1

n
Rn
(
β0 +

√
p

n
δ
)
− 1

n
Rn
(
β0
)

=
1

n

n∑
i=1

[
ρτ
(
Yi −Xt

i(β
0 +

√
p

n
δ)
)
− ρτ (εi)

]
+P. (18)

For the penalty P = λn
∑p0

j=1 ω̂n,j
(
|βj |−|β0j |

)
of the right-hand side of relation (18) we have,

by 2.1(i), ω̂n,j = |β̃n,j |−γ = OP(1) and by the triangular inequality
∣∣|βj | − |β0j |∣∣ ≤ |βj −β0j |.

Then, as in the proof of Theorem 2.1, by relation (15), we obtain:

P = OP

(
λnp

1/2
0

(
p

n

)1/2)
= OP

(
λnp

1/2
0 n(c−1)/2

)
. (19)

For the first term of the right-hand side of relation (18) we have:

1

n

n∑
i=1

[
ρτ
(
Yi −Xt

i,A(β0
A +

√
p

n
δA)

)
− ρτ (εi)

]
= − 1

n

n∑
i=1

g(εi)
(
Xt
i,AδA

)√ p

n
+

1

2n

n∑
i=1

[ p
n
‖Xt

i,AδA‖22h(εi) + oP
(
‖Xt

i,AδA‖2
)]

=

(
− 1

n

√
p

n

n∑
i=1

g(εi)
(
Xt
i,AδA

)
+

1

2n

p

n

n∑
i=1

(
δtAXi,AXt

i,AδAh(εi)
))(

1 + oP(1)
)

=

(
− 1

n

√
p

n

n∑
i=1

g(εi)
(
Xt
i,AδA

)
+

1

2n

p

n

n∑
i=1

(
δtAXi,AXt

i,AδA
(
E[h(εi)] + h(εi)− E[h(εi)]

)))(
1 + oP(1)

)
=

(
− 1

n

√
p

n

n∑
i=1

g(εi)
(
Xt
i,AδA

)
+

1

2n

p

n

n∑
i=1

(
δtAXi,AXt

i,AδAE[h(εi)]
))(

1 + oP(1)
)
,

(20)

which has as minimizer the solution of

− 1

n

√
p

n

n∑
i=1

g(εi)Xi,A + Υn,A

√
p

n
δAE[h(ε)] = 0p0 ,

from where, we get,√
p

n
δA =

Υ−1n,A
E[h(ε)]

1

n

n∑
i=1

g(εi)Xi,A.
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We deduce that, the minimum value of (20) is of order OP
(
pn−1‖δA‖2

)
= OP

(
pn−1

)
=

OP
(
nc−1

)
. Taking into account the supposition λnp

1/2
0 n(1−c)/2 −→

n→∞
0 and relation (19), we

have that, P = oP(pn−1). Then, in the right-hand side of relation (18), the first term is
the dominant one.
Let us now consider the following random variable sequence:

Wi ≡ g(εi)u
t

Υ−1n,A
E[h(ε)]

Xi,A,

with u ∈ Rp0 , ‖u‖2 = 1. For the random variable Wi, we have that E[Wi] = 0 and
Var [Wi] = E−2[h(ε)]Υ−1n,AutXi,AXt

i,AuVar [g(εi)]. Thus, taking into account assumption
(A1), we get:

n∑
i=1

Var [Wi] = n
utΥ−1n,Au

E2[h(ε)]
Var [g(ε)],

which implies

√
n

E[h(ε)]√
Var [g(ε)]

ut
(
β̂n − β0

)
A(

utΥ−1n,Au
)1/2 L−→

n→∞
N (0, 1).

The proof of claim (ii) is finished. �

5.2. Result proofs in Section 3

Proof of Lemma 3.1.
The proof is similar to that of Theorem 2.1(i). Consequently, we give only the main
results. Let us consider the p-vector u = (u1, · · · , up), with ‖u‖1 = 1. By Holder’s inequal-
ity: |Xt

iu| ≤ ‖Xi‖∞‖u‖1, using also assumption (A4) we obtain that max16i6n |Xt
iu| <

∞. For a constant B > 0, we will study the difference: Qn(β0 + Banu) − Qn(β0).
In this case, ∆2 = O(a2n

∑n
i=1(X

t
iu)2) = O(na2n). Since Var

[
an
∑n

i=1 gτ (εi)X
t
iu
]

=

a2nu
t
∑n

i=1 XiX
t
iuVar [gτ (ε)] = O(na2n), then Ban

∑n
i=1 gτ (εi)X

t
iu = OP

(
Bn1/2an

)
. Taking

into account this last relation, we obtain for Di ≡ ρτ
(
εi−BanXt

iu
)
−ρτ (εi)+Bangτ (εi)X

t
iu,

that:
∑n

i=1(Di − E[Di]) = OP(B2n1/2a2n). Thus, ∆1 = OP(Bn1/2an) + OP(B2n1/2a2n) =
OP(Bn1/2an) and ∆2 = O(B2na2n), from where, since an → 0, n1/2an → ∞, we get that
∆2 > ∆1 with probability converging to one, for B large enough.

�

Proof of Theorem 3.1.
The proof is similar to that of Theorem 2.1(ii). Consequently, we give only the main
results. Otherwise, instead of the Cauchy-Schwarz inequality we use Holder’s inequality:
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|Xt
iu| ≤ ‖Xi‖∞‖u‖1 and then we obtain: 0 < ∆2 = O(B2b2nn‖u‖21).

For a p-vector u = (u1, · · · , up), with ‖u‖1 = 1 and a constant B > 0, let the difference

Rn
(
β0+Bbnu

)
−Rn(β0) = Qn

(
β0+Bbnu

)
−Qn(β0)+nλn

p∑
j=1

ω̂n,j
[∣∣β0

j+Bbnuj
∣∣−|β0

j |
]
.

(21)

By a similar approach made for the terms ∆1 and ∆2 of the proof of Theorem 2.1, we
obtain:

Qn
(
β0 +Bbnu

)
−Qn(β0) = OP(B2b2nn‖u‖21). (22)

For the penalty of the right-hand side of relation (21) we have:

nλn

p∑
j=1

ω̂n,j
[∣∣β0

j+Bbnuj
∣∣−|β0

j |
]
≥ nλn

p0∑
j=1

ω̂n,j
[∣∣β0

j+Bbnuj
∣∣−|β0

j |
]
≥ −nλn

p0∑
j=1

ω̂n,jBbn|uj |,

by the Cauchy-Schwarz inequality and afterwards by the estimator consistency of
∨
βn, we

have

≥ −nλnBbn
( p0∑
j=1

ω̂2
n,j

)1/2

‖u‖2 ≥ −BCbnnp1/20 λn‖u‖21 = −Bnλnp1/20 bn. (23)

Since λnp
1/2
0 b−1n → 0, as n → ∞, then relation (22) dominates (23) and the theorem fol-

lows. �

Proof of Theorem 3.2.
(i) Let j ∈ Ac be, then j > p0. Thus, the derivative of the random process Rn(β) in
respect to βj is:

∂Rn(β)

∂βj
=

n∑
i=1

gτ
(
Yi −Xt

iβ
)
Xij + nλnω̂n,jsgn(βj). (24)

For the first term of the right-hand side of relation (24), we have, gτ
(
Yi −Xt

iβ
)

= gτ
(
εi −

Xt
i(β − β0)

)
. We denote ηi = Xt

i(β − β0). By elementary calculations, we can show
that, for t → 0, we have: gτ (ε − t) = gτ (ε) − hτ (ε)t + oP(t). On the other hand, by the
Holder’s inequality, we have: |ηi| =

∣∣Xt
i(β − β0)

∣∣ ≤ ‖Xi‖∞‖β − β0‖1. Using assumption
(A4) and Theorem 3.1, we obtain that ηi → 0, when n → ∞. Hence, gτ (ε − ηi) =
gτ (ε)− hτ (ε)ηi + oP(ηi), which implies:

n∑
i=1

gτ
(
Yi−Xt

iβ
)
Xij =

n∑
i=1

gτ (εi)Xij−
n∑
i=1

Xt
i(β−β0)hτ (εi)Xij+

n∑
i=1

oP
(
Xt
i(β−β0)

)
Xij .
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By the Central Limit Theorem, tacking into account assumption (A4), we have that:∑n
i=1 gτ (εi)Xij = OP(n1/2). On the other hand, 0 < hτ (εi) < 2 with probability 1. Using

the Holder’s inequality, we have, with probability one,∣∣∣∣ n∑
i=1

Xt
i(β−β0)hτ (εi)Xij

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣Xt
i(β−β0)hτ (εi)Xij

∣∣∣∣ ≤ n∑
i=1

‖Xi‖∞
∥∥hτ (εi)Xij(β−β0)

∥∥
1
,

from where, tacking into account assumption (A4), we have:
∑n

i=1 Xt
i(β−β0)hτ (εi)Xij =

OP(nbn). Thus,

n∑
i=1

gτ
(
Yi −Xt

iβ
)
Xij = OP(nbn). (25)

For the penalty of relation (24) we have: nλnω̂n,j = OP
(
nλn min

(
n1/2, a−γn

))
. Since,

λnb
−1
n min

(
n1/2, a−γn

)
→ ∞, as n → ∞, also taking into account relation (25) we have

that:

∂Rn(β)

∂βj


> 0, if βj > 0,

< 0, if βj < 0.

The function Rn(β) is continuous in β. Then, the solution of (24) must be equal to 0.
From where β̂n,Ac = 0p−p0 , with probability converging to 1. This relation implies Ân ⊆ A
with probability converging to 1 when n→∞.
On the basis of this result, from now on we consider the parameters β of the form β =(
βA,0p−p0

)
. We must show now that A ⊆ Ân. By Theorem 3.1 we have ‖β̂A − β0

A‖1 =

OP
(
bn
)
, from where for any j = 1, · · · , p0, we obtain, β̂n,j

P−→
n→∞

β0j 6= 0. Thus, since

bn −→
n→∞

0, we have that β̂n,j 6= 0 with probability converging to 1, from where A ⊆ Ân.

(ii) Given the previous result (i) and Theorem 3.1, we consider the parameters β of
the form: β = β0 + bnδ, with δ = (δA, δAc), δAc = 0p−p0 , ‖δA‖1 ≤ C. For the penalty
P of the right-hand side of relation (18) we have:

∣∣P∣∣ = λn
∣∣∑p0

j=1 ω̂n,j |βj | − |β0j |]
∣∣ ≤

λn
∑p0

j=1 ω̂n,j
∣∣βj − β0j ∣∣ ≤ λn

(∑p0
j=1 ω̂

2
n,j

)1/2‖(β − β0)A‖2 = OP
(
λnbnp

1/2
0

)
. For the main

part, we have:

1

n

n∑
i=1

[
ρτ
(
Yi −Xt

i,A(β0
A + bnδA)

)
− ρτ (εi)

]
=

(
− 1

n
bn

n∑
i=1

g(εi)
(
Xt
i,AδA

)
+

1

2n
b2n

n∑
i=1

(
δtAXi,AXt

i,AδAE[h(εi)]
))(

1 + oP(1)
)
.

The end of the proof is similar to that of Theorem 3.1(ii). �
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Dezeure, R., Bühlmann, P., Zhang, C.H., 2017. High-dimensional simultaneous inference
with the bootstrap. TEST 26 (4), 685–719.
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