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In many application areas, the problem of the automatic variable selection in a linear model with asymmetric errors is encountered, when the number of explanatory variables diverges with the sample size. For this high-dimensional model, the penalized least squares method is not appropriate and the quantile framework makes the inference more difficult because of the non differentiability of the loss function. An estimation method by penalizing the expectile process with an adaptive LASSO penalty is proposed and studied. Two cases are considered: first with the number of model parameters is assumed to be much smaller than the sample size and afterwards it could be of the same order; the two cases being distinct by the adaptive penalties considered. For each case, the rate convergence is obtained and the oracle properties of the adaptive LASSO expectile estimator are established. The proposed estimators are evaluated through Monte Carlo simulations and compared with the adaptive LASSO quantile estimator. The proposed estimation method is also applied to real data in genetics.

Introduction

The focus of the present paper is to better detect significant variables in a linear model, with the possibility that the number of explanatory variables varies with the sample size and when the error distribution is asymmetrical. For this type of law, the use of the least squares(LS) estimation method is not appropriate because of the estimator's accuracy (see [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF]). One possibility would be to use the quantile method, but it has the disadvantage that the loss function is not derivable, which complicates the theoretical study but also the computational methods. A very interesting possibility is to consider the expectile method, introduced by [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF], under assumption that the first moments of ε exist. This method has the advantage over the quantile model that the loss function is differentiable, which makes the theoretical study more amenable and considerably facilitates the numerical computation (see also [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF]). Readers can find in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF], [START_REF] Schnabel | Optimal expectile smoothing[END_REF] the theoretical and computational advantages of expectile method over quantile regression. Two of these advantages are: the efficiency of the expectile estimator and the fact that its asymptotic variance can be calculated without going via the density of the model errors. The advantage of the quantile estimation method is that it is more robust to outliers than the expectile method, the last being also more sensitive to the extreme values in the response variable (see also [START_REF] Zhang | A continuous threshold expectile model[END_REF]). In application fields (genetics, chemistry, biology, industry, finance), with the development in recent years of storage and/or measurement tools, we are confronted to study the influence of a very large number of variables on a studied process. That is why, we consider in the present work the following linear model:

Y i = X t i β + ε i , i = 1, • • • , n, (1) 
with the vector parameter β ∈ R p and β 0 its true value (unknown). The size p of β 0 can depend on n but the components β 0 j don't depend on n, for any j = 1, • • • , p. The vector X t i = (X i1 , • • • , X ip ) t contains the values of the p explanatory deterministic variables and Y i the values of response variable for observation i. The values (Y i , X i ) are known for any i = 1, • • • , n. Throughout the paper, all vectors are column. If p is very large, in order to find the explanatory variables that significantly influence the response variable Y , an automatic selection should be made without performing hypothesis tests. Concerning the hypothesis testing of coefficients in high dimensional linear regression model, a lot of progress has been made in recent years. For Gaussian errors, with possibility that the number of variables exceeds the sample size, [START_REF] Zhang | Confidence intervals for low dimensional parameters in high dimensional linear models[END_REF] propose a method for constructing confidence interval for individual coefficients, which can be used to select variables after proper thresholding. [START_REF] Dezeure | High-Dimensional Inference: Confidence Intervals, p -Values and R -Software hdi[END_REF] present a review of frequentist methods for constructing p-values and confidence intervals in a high dimensional linear model. Always for this model, with zero mean errors, [START_REF] Dezeure | High-dimensional simultaneous inference with the bootstrap[END_REF], [START_REF] Shah | Goodness-of-fit tests for high dimensional linear models[END_REF] propose bootstrap methodology.

For model (1), let the index set of the non-null true parameters,

A ≡ j ∈ {1, • • • , p}; β 0 j = 0 .
Since β 0 is unknown then, the set A is also unknown. We assume, without reducing generality, that A = {1, • • • , p 0 } and its complementary set is A c = {p 0 + 1, • • • , p}, with p 0 ≤ p. Hence the first p 0 explanatory variables have a significant influence on the response variable and the last p -p 0 variables are irrelevant. Thus, the true parameter vector can be written as β 0 = β 0 A , β 0 A c = β 0 A , 0 p-p 0 , with 0 p-p 0 a (p -p 0 )-vector with all components zero. The number p 0 of the nonzero coefficients can depend on n.

For a vector β we use the notational convention β A for its subvector containing the corresponding components of A. For i = 1, • • • , n, we denote by X i,A the p 0 -vector with the components X ij , j = 1, • • • , p 0 . We also use the notation |A| or Card(A) for the cardinality of A. In order to find the elements of A, one of the most used techniques is the adaptive LASSO method, introduced for p fixed by [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF] by penalizing the squares sum with an weighted L 1 penalty. This type of parameter estimator is interesting if it satisfies the oracle properties, i.e. the two following properties occur:

• sparsity of estimation: the non-zero parameters are estimated as non-zero and the null parameters are shrunk directly as 0, with a probability converging to 1 when n → ∞;

• asymptotic normality of non-zero parameter estimators.

In order to distinguish between different types of adaptive LASSO estimators, we will use the term "adaptive LASSO LS-estimator" to refer to the minimizer of the LS sum penalized with adaptive LASSO. Let us give some papers from very rich literature that consider the adaptive LASSO LSestimator when p depends on n: [START_REF] Huang | Adaptive Lasso for sparse high-dimensional regression models[END_REF], [START_REF] Wang | Parametric component detection and variable selection in varying-coefficient partially linear models[END_REF], [START_REF] Yang | Nonnegative adaptive lasso for ultra-high dimensional regression models and a two-stage method applied in financial modeling[END_REF]. If the moments of the errors do not exist or the distribution of ε presents outliers, then the LS framework is not appropriate. One possibility is to consider the quantile model with the adaptive LASSO penalty. The recent literature is also very rich: [START_REF] Fan | Adaptive robust variable selection[END_REF], [START_REF] Kaul | Weighted l 1 -penalized corrected quantile regression for high dimensional measurement error models[END_REF], [START_REF] Tang | Variable selection in high-dimensional quantile varying coefficient models[END_REF], [START_REF] Ciuperca | Adaptive group LASSO selection in quantile models[END_REF], [START_REF] Zheng | Adaptive penalized quantile regression for high dimensional data[END_REF], [START_REF] Zheng | Globally adaptive quantile regression with ultra-high dimensional data[END_REF], to give just a few examples. As stated before, the non-differentiability of the loss function for quantile method complicates the theoretical study and its computational implementation, which is a very important aspect in highdimensionality. Let us mention another work of [START_REF] Fan | Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions[END_REF] which is also devoted to the high dimensional regression in absence of symmetry of the model errors and which proposes a penalized Huber loss but in which the sparsity of the robust approximate LASSO estimator is not studied. The robust approximate LASSO estimator is consistent with the same convergence rate as the optimal rate under the light tail situation. In the present paper we consider the expectile loss function for a high-dimensional model. In order to introduce the expectile method, for a fixed τ ∈ (0, 1), let us consider the function ρ τ (.) of the form

ρ τ (x) = |τ -1 1 x<0 |x 2 , with x ∈ R.
For the error and the design of model (1) we make the following basic assumptions. The errors ε i satisfy the following assumption:

(A1) (ε i ) 1 i n are i.i.d. such that E[ε 4 i ] < ∞ and E[ε τ 1 1 ε>0 + (1 -τ )1 1 ε<0 ] = 0, that is its τ -th expectile is zero: E[ρ τ (ε)] = 0.
While, the design (X i ) 1 i n satisfies the following assumption:

(A2) there exists two positive constants m 0 , M 0 such that, 0 < m 0 ≤ µ min n -1 n i=1 X i X t i ≤ µ max n -1 n i=1 X i X t i ≤ M 0 < ∞.
For a positive definite matrix, we denote by µ min (.) and µ max (.) its largest and smallest eigenvalues, respectively. Let us consider ε the generic variable for the sequence (ε i ) 1 i n . Assumption (A1) is commonly required for the expectile models, see Zhao et al. (2018), [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF], [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF], [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF], while assumption (A2) is standard in linear model for the parameter identifiability (considered also by [START_REF] Gao | Asymptotic analysis of high-dimensional LAD regression with Lasso[END_REF], [START_REF] Wang | Adaptive Lasso estimators for ultrahigh dimensional generalized linear models[END_REF], [START_REF] Fan | Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions[END_REF], [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]). Other assumptions will be stated about design in the following two sections, depending on the size p which varies in turn with n.

Quite in general, it is wise to use the expectile method when the moments of ε exist but its distribution is asymmetric. For τ = 0.5, we get the classical method of least squares. For model (1), consider the expectile process

Q n (β) ≡ n i=1 ρ τ (Y i -X t i β),
and the one with LASSO adaptive penalty:

R n (β) ≡ n i=1 ρ τ (Y i -X t i β) + nλ n p j=1 ω n,j |β j |. (2) 
The adaptive weights ω n,j will be defined later depending on the size of p in respect to n. The tuning parameter λ n is a positive deterministic sequence which together with ω n,j controls the overall model complexity. Hence, we should choose λ n and ω n,j such that nλ n ω n,j P -→ n→∞ 0 for non-null parameters and nλ n ω n,j P -→ n→∞ ∞ for null coefficients. In order to automatically detect the null and non-zero components of β, we proceed in a similar way as for the adaptive LASSO LS-estimation introduced by [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF], and we consider the adaptive LASSO expectile estimator of β:

β n ≡ arg min β∈R R n (β).
(3)

The components of

β n are β n = β n,1 , • • • , β n,p .
Similarly to A, let's define the index set:

A n ≡ {j ∈ {1, • • • , p}; β n,j = 0},
with the non-zero components of the adaptive LASSO expectile estimator. The estimator β n will satisfy the oracle properties if:

• sparsity: lim n→∞ P A = A n = 1.

• asymptotic normality: for any vector u ∈ R p 0 with bounded norm, we have that: √ n(u t Υ -1 n,A u) -1/2 u t ( β n -β 0 ) A converges in distribution to a zero-mean Gaussian law, with the p 0 -squared matrix:

Υ n,A ≡ n -1 n i=1 X i,A X t i,A .
For p fixed, the properties of the estimator β n have been studied by [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF] where it is shown that the convergence rate of β n towards β 0 is of order n -1/2 and that β n satisfies the oracle properties. The case where p is fixed has also been studied by Zhao and Zhang (2018), where consider a penalized linear expectile regression with SCAD penalty function and obtain a n -1/2 -consistent estimator with oracle properties. In the present paper we assume that p depends on n, more precisely, p = O(n c ), with the constant c ∈ [0, 1].

The size p 0 and the set A can also depend on n.

The case when p depends on n was also considered in Zhao et al. (2018) by considering the SCAD penalty for the expectile process. They propose an algorithm that converges, with probability converging to one as n → ∞, to the oracle estimator after several iterations. Always for p depending on n, for (ε i ) sub-Gaussian errors, [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF] penalize the expectile process with LASSO or nonconvex penalties. They find the convergence rate of the penalized estimator, propose an algorithm for finding this estimator and implement the algorithm in the R language in package SALES. The paper of [START_REF] Spiegel | Model selection in semiparametric expectile regression[END_REF] introduces several approaches depending on selection criteria and shrinkage methods to perform model selection in semiparametric expectile regression.

Let us give some general notations. For a vector v, we denote its transpose by v t , by v 1 , v 2 and v ∞ the L 1 , L 2 , L ∞ norms, respectively. The number p of the explanatory variables and p 0 of the significant variables can depend on n, but for convenience, we do not write the subscript n. Throughout the paper, C denotes a positive generic constant that does not dependent on n, which value may differ from one formula to another.

In order to study the properties of the adapted LASSO expectile estimator β n , we introduce the following functions, using the same notations as in [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF]:

g τ (x) ≡ ρ τ (x -t)| t=0 = 2τ x1 1 x≥0 + 2(1 -τ )x1 1 x<0 , h τ (x) ≡ ρ τ (x -t) t=0 = 2τ 1 1 x≥0 + 2(1 -τ )1 1 x<0
The paper is organized as follow. In Section 2 we study the asymptotic behaviour of the adaptive LASSO expectile estimator when p = O(n c ), with 0 ≤ c < 1/2. We obtain the convergence rate of the β n and the oracle properties. A similar study is realized in Section 3, when c ∈ [1/2, 1]. In Section 4, a simulation study and an application to real data are presented. All the proofs are relegated in Section 5.

Case c < 1/2, parameter number less than the sample size

In this section we study the asymptotic behavior of the adaptive LASSO expectile estimator when the number p of model parameter is p = O(n c ), with 0 ≤ c < 1/2. If c = 0, that is p fixed, then we get the particular case studied by [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF].

An additional assumption to (A2) on the design is requested:

(A3) p 1/2 n -1/2 max 1 i n X i 2 -→ n→∞ 0.
The upper bound 1/2 for c is deduced taking into account assumptions (A2) and (A3). Since tr

X t i X i = tr X i X t i = X i 2 2 ≤ max 1 i n X i 2 2
, taking into account assumption (A2) we have that max 1 i n X i 2 2 ≥ Cp. This last relation, together with assumption (A3) involve pn -1/2 → 0, as n → ∞, from where c < 1/2. Because p < n, the regression parameters are identifiable and we can calculate the expectile estimator:

β n ≡ arg min β∈R Q n (β), the components of β n being β n = β n,1 , • • • , β n,p
. This estimator will intervene in the adaptive weight of the penalty,

ω n,j = | β n,j | -γ , for j = 1, • • • , p. (4) 
Conditions on the constant γ > 0 will be specified in Theorem 2.2. By the following theorem we obtain the convergence rate of the expectile and adaptive LASSO expectile estimators. We obtain that the convergence rate depends on the size p of the vector β.

Theorem 2.1 Under assumptions (A1), (A2) and (A3) we have:

(i) β n -β 0 2 = O P p n . (ii) If the tuning parameter sequence (λ n ) n∈N satisfies p 1/2 0 n (1-c)/2 λ n → 0, as n → ∞, then, β n -β 0 2 = O P p n .
Theorem 2.1 provides that the expectile and adaptive LASSO expectile estimators have the same convergence rate. Concerning the adaptive LASSO expectile estimator, the same convergence rate has been obtained for other adaptive LASSO estimators: by the likelihood method for a generalized linear model when p < n in [START_REF] Wang | Adaptive Lasso estimators for ultrahigh dimensional generalized linear models[END_REF], by the least squares approximation method in [START_REF] Leng | Least squares approximation with a diverging number of parameters[END_REF]. By the following theorem, considering a supplementary condition on λ n , c and γ, in addition to that considered for the convergence rate in Theorem 2.1, we show that the adaptive LASSO expectile estimator β n satisfies the oracle properties. If τ = 0.5, that is, for the adaptive LASSO LS-estimator, the variance of the normal limit law is the variance of ε. In fact, we obtained for τ = 0.5, the same asymptotic normality as in [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF].

Theorem 2.2 Suppose that assumptions (A1), (A2) and (A3) hold and that the tuning parameter satisfies

λ n n (1-c)(1+γ)/2 → ∞, p 1/2 0 n (1-c)/2 λ n → 0, as n → ∞. Then: (i) P A n = A → 1, for n → ∞.
(ii) For any vector u of size p 0 such that u 2 = 1, we have:

n 1/2 (u t Υ -1 n,A u) -1/2 u t ( β n - β 0 ) A L -→ n→∞ N 0, Var [gτ (ε)] E 2 [hτ (ε)] .
The convergence rate of β n does not depend on the power γ, but otherwise, for holding the oracle properties, the choice of γ is very important. Concerning the suppositions and results stated in Theorem 2.2, let's make some remarks on the regularization parameter λ n , the constants c, γ and the sizes p 0 , p.

Remark 2.1 1) If p 0 = O(p), then if we want that λ n n (1-c)(1+γ)/2 → ∞ and λ n p 1/2 0 n (1-c)/2 → 0 occur, we must choose the constant γ and sequence (λ n ) such that: γ > c/(1 -c) and n -1/2 λ n -→ n→∞ 0.
2) If p 0 = O(1), we must choose the constant γ > 0 and the tuning parameter such that [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF] for a linear model with p fixed. We also find the same variance of Gaussian distribution in [START_REF] Liao | Penalized expectile regression: an alternative to penalized quantile regression[END_REF].

n (1-c)/2 λ n -→ n→∞ 0. 3) If we want that λ n p 1/2 0 n (1-c)/2 → 0 holds, it is necessary that λ n → 0, as n → ∞. 4) If c = 0 then the conditions on λ n become: n 1/2 λ n → 0 and n (1+γ)/2 λ n → ∞, conditions considered by
Remark 2.2 If ε ∼ N (0, σ 2 ), then τ = 1/2 and the variance of the Normal limit law of the adaptive LASSO expectile estimators for the non-zero parameters, given by Theorem 2.2(ii), is equal to σ 2 . The analogous result for the adaptive LASSO quantile estimator obtained by [START_REF] Ciuperca | Adaptive group LASSO selection in quantile models[END_REF] gives a variance of πσ 2 /2. Thus, adaptive LASSO expectile estimator is more efficient than the adaptive LASSO quantile estimator.

Case c ∈ [1/2, 1]

In this section, after we propose an adaptive weight, we study the asymptotic behavior of the estimator β n when the number of regressors p = O(n c ), with 1/2 ≤ c ≤ 1, with the possibility that p is of the same order as the number of observations, with p ≤ n.

Instead of assumption (A3), we consider:

(A4) There exists a constant M > 0 such that max 1 i n X i ∞ < M .
The same assumption (A4) was considered for a generalized linear model in [START_REF] Wang | Adaptive Lasso estimators for ultrahigh dimensional generalized linear models[END_REF] where the adaptive LASSO likelihood method is proposed.

In addition to the weight ω n,j given by relation (4), in this section we also propose:

ω n,j = min(| ∨ β n,j | -γ , n 1/2 ), (5) with ∨ 
β n,j an estimator of β 0 j consistent with a n → 0 the convergence rate:

∨ β n -β 0 2 = O P (a n ).
These weights are proposed because when the estimator ∨ β n,j takes the value 0, then we consider n 1/2 as adaptive weight. An example of such estimator is the LASSO expectile estimator, proposed by [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF], defined as: arg min [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF]).

β∈R p n -1 n i=1 ρ τ (Y i -X t i β) + ν n β 1 , with the deterministic sequence ν n ∈ (0, ∞), ν n → 0 as n → ∞. If ε i is sub-Gaussian and E[g(ε)] = 0, under our assumptions (A2), (A4), if κ = inf d∈C Xd 2 2 nd 2 2 ∈ (0, ∞), with X the matrix n × p of design and the set C ≡ {d ∈ R p ; d A c 1 ≤ 3 d A 1 = 0}, then ∨ β n -β 0 2 = O P p 1/2 0 ν n . Thus, the sequence (a n ) is in this case a n = p 1/2 0 ν n (see Theo- rem 1 of
Another possibility of estimator ∨ β n in (5) could be the expectile estimator calculated by (3). In this case, we study the convergence rate of

β n when p = O(n c ), 1/2 ≤ c ≤ 1, p ≤ n.
Then, in a similar way to Theorem 2.1(i), we have the following Lemma.

Lemma 3.1 Under assumptions (A1), (A2) and (A4), we have that β n -β 0 1 = O P (a n ), with the sequence (a n ) n∈N such that a n → 0 and n 1/2 a n → ∞.

By this lemma we deduce that another estimator ∨ β n,j in (5) can be the expectile estimator β n,j , for j = 1, • • • , n. We will compare in the next section, by simulations, these two possible choices of estimators in (5). Still in the next section, we will compare adaptive weights (5) with (4). The form of the random process R n (β) defined by (2) and the adaptive LASSO expectile estimator β n given by (3) remain the same, only the adaptive weight ω n,j can change, using either (5) or (4). It would be desirable for β n to satisfy the oracle proprties. For the sparsity property of β n its convergence in L 1 norm is required. In the following theorem, (b n ) n∈N is a deterministic sequence converging to 0 as n → ∞. This theorem holds for the two possible choices of ω n,j .

Theorem 3.1 Under assumptions (A1), (A2) and (A4), the tuning parameter (λ n ) n∈N and sequence

(b n ) satisfying λ n p 1/2 0 b -1 n → 0, as n → ∞, we have, β n -β 0 1 = O P (b n ).
The result of Theorem 3.1 indicates that the convergence rate of the adaptive LASSO expectile estimator β n depends on the chosen sequence (λ n ) n∈N . On the other hand, the convergence rate of β n doesn't depend on the convergence rate (a n ) of the estimators ∨ β n or β n . The only thing that matters (see relation ( 23) of the proof in Section 5) is that ∨ β n converges in probability to β 0 . The result of Theorem 3.1 now allows us to state oracle properties. For a quantile model, [START_REF] Zheng | Adaptive penalized quantile regression for high dimensional data[END_REF] obtains that the convergence rate, in L 2 norm, of the adaptive LASSO quantile estimator is (p 0 /n) -1/2 and that it also satisfies the oracle properties. The sparsity of the adaptive LASSO quantile estimator will be shown in our Section 4 by simulations, where we obtain that compared to the adaptive LASSO expectile estimator, it would be necessary to have a larger number n of the observations when the model errors have an asymmetric distribution. From where, a supplementary interest in considering the expectile method instead of the quantile.

Theorem 3.2 Suppose that assumptions (A1), (A2) and (A4) hold, the tuning parameter

(λ n ) and sequence (b n ) satisfy λ n p 1/2 0 b -1 n → 0, λ n b -1 n min n 1/2 , a -γ n → ∞, as n → ∞. Then: (i) P A n = A → 1, for n → ∞. (ii) For any vector u of size p 0 such that u 1 = 1, we have n 1/2 (u t Υ -1 n,A u) -1/2 u t ( β n - β 0 ) A L -→ n→∞ N 0, Var [gτ (ε)] E 2 [hτ (ε)] .
Hence, for p = O(n c ), with c ∈ [1/2, 1], the variance of the normal limit distribution is the same as that obtained when p = o(n 1/2 ). As for the case c < 1/2, studied in Section 2, the convergence rate of the adaptive LASSO espectile estimator doesn't depend on the power γ in the adaptive weight. However, γ intervenes in the imposed conditions so that the oracle properties are satisfied. If τ = 0.5, that is for the adaptive LASSO LS-estimator, we obtained the same asymptotic normal distribution as that given by Huang et al. ( 2008)) for their adaptive LASSO LS-estimator.

Regarding the tuning parameter sequence we make the following remark, useful for simulations and applications on real data.

Remark 3.1 The supposition λ n p 1/2 0 b -1 n → 0 made in the Theorems 3.1 and 3.2, implies that the tuning sequence λ n → 0, as n → ∞.

Remark 3.2 As for the non-penalized expectile estimator, by Theorems 3.1 and 3.2, we obtained that the asymptotic variance of the adaptive LASSO expectile estimators can be calculated without going via the density of the model errors. Contrarily, the variance of the adaptive LASSO quantile estimator depends on the density function of the error (see [START_REF] Ciuperca | Adaptive LASSO model selection in a multiphase quantile regression[END_REF]). More precisely, the variance of normal distribution limit of the adaptive LASSO expectile estimators can be estimated without estimation of the density function of the error ε.

Numerical study

In this section we first perform a numerical simulation study to illustrate our theoretical results on the adaptive LASSO expectile estimation and to compare it with the estimations obtained by the adaptive LASSO quantile method. Afterwards, an application on real data is presented. We use the following R language packages: package SALES with function ernet for the expectile regression and the package quantreg with function rq for quantile regression.

Given assumption (A1), the index τ is:

τ = E ε1 1 ε<0 E ε(1 1 ε<0 -1 1 ε>0 ) . ( 6 
)
In the simulation study, the index τ is fixed, but it depends of the law of the model errors ε, such that assumption (A1) is satisfied.

Taking into account the suppositions imposed on the tuning parameter in Theorems 2.2 and 3.2, we consider λ n = n -2/5 for the expectile framework. For the quantile method, the tuning parameter is n 2/5 and the weight in the penalty have the power 1.225 (see [START_REF] Ciuperca | Adaptive LASSO model selection in a multiphase quantile regression[END_REF]).

In order to better compare the two methods, when the penalty weight for the adaptive LASSO expectile method is of type (4), then for adaptive LASSO quantile method is also of type (4). Similarly, if the adaptive weight is of type (5), it will be for both frameworks.

In the weights (4) or (5) of the expectile penalty, the used estimations are obtained, respectively, by expectile or LASSO expectile method. For the adaptive LASSO quantile method, the estimation in the weights are obtained, respectively, by quantile or LASSO quantile method.

4.1. Simulation study: fixed p 0 case In this subsection, we will study the numerical behavior of the adaptive LASSO expectile method and we will compare it with the simulation results obtained by the adaptive LASSO quantile method. For model (1), we consider p 0 = 6 and A = {1, • • • , 6}. In the all simulations of this subsection we take, β 0 1 = 1, β 0 2 = 4, β 0 3 = -3, β 0 4 = 5, β 0 5 = 6, β 0 6 = -1, while n and p are varied. For the errors ε i , three distributions are considered: N (0, 1) which is symmetrical, Exp(-1) and N (-1.2, 0.4 2 ) + χ 2 (1), the last two being asymmetrical. In Figure 1 we give the histogram for 10 5 realizations of a N (-1.2, 0.4 2 )+χ 2 (1) random variable, with empirical mean equal to -0.2 and median -0.628. The exponential law Exp(-1) has the density function exp(-(x + 1))1 1 x>-1 . For each value of n, p and distribution of ε, 1000 Monte Carlo replications are realized for two possible values for γ. In Tables 1 and2 we give the average Table 1: Sparsity study for expectile method with adaptive LASSO penalty, with weights of type (5), ε ∼ N (0, 1), two values for γ. Perfect method, if: Card(A ∩ An) = p0 = 6 and Card( An \ A) = 0. 5) are based on the respective LASSO estimations. For a perfect method, we should have:

n p Card(A ∩ An) Card( An \ A) γ = 1/8 γ = 2 γ = 1/8 γ =
Card(A ∩ A n ) = p 0 = 6 and Card( A n \ A) = 0.
In Table 1, for standard Gaussian errors, the values considered for γ are 1/8 and 2. Since for γ = 1/8 the number of false non-zeros, which in addition increases with n, is much larger than for γ = 2 and for γ = 2 the number of the true non-zeros decreases with n, these values will be dropped, other two values will be considered in Table 2. These results will be consolidated by the study on sparsity, for the three distributions of ε and different values for n and p. In Table 2, taking γ ∈ {5/8, 1}, for the adaptive LASSO expectile method with weights (5), all significant variables are detected when n is large enough, the number p of variables not coming into play. On the other hand, the smaller n, the worse the results obtained by the adaptive LASSO quantile method. In Table 3, in the adaptive weights of the expectile or quantile frameworks, we consider the expectile and quantile estimators, respectively. Comparing Tables 2 and3 we deduce that by the quantile framework for the three error distributions and by the expectile framework for exponential and mixing error distributions, the best results are for weights of type (4) when p n. Conversely, when p n, the performance is worse by using these weights for the two frameworks, the number of null parameters estimated as non null is large by the expectile method, specially for asymmetric errors. This conclusion is consolidated by Figures 2345678. When p = n, the R function rq cannot calculate the quantile estimations, since the matrix design is singular, from where the symbol "NA" (not available) in Table 3. Thus, the results obtained in Tables 2 and 3 show the advantage of using the adaptive LASSO expectile method compared to the adaptive LASSO quantile method.

We observe that the penalized expectile method better detects non-zero parameters compared to the penalized quantile method, especially for asymmetric errors. Concerning the two values considered for γ, when γ = 5/8, there are a little more true non-zeros detected, while, when γ = 1, there are fewer false non-zeros. This trend will be also confirmed by the following numerical studies.

Table 2: Sparsity study for expectile (ES) and quantile (Q) methods, with the adaptive LASSO weights of type ( 5). |A| = p0 = 6 and 1000 Monte Carlo replications. Perfect method, if: Card(A ∩ An) = p0 = 6 and Card( An \ A) = 0. In this subsection, we always compare expectile and quantile penalized methods, but when the values considered for p vary with n. Moreover, the number of non-zero parameters can increase as n increases. In Table 4 we take p = [n/2], p 0 = 2[n 1/2 ], with [x] the entire part of x, the power γ ∈ {5/8, 1} and ε ∼ Exp(-1). The true value of the non-null parameter vector is 

ε n p Card(A ∩ An) Card( An \ A) ES Q ES Q γ = 5/8 γ = 1 γ = 5/8 γ = 1 N (-1.2, 0.4 2 ) + χ 2 (
Card(A ∩ An) = p0 = 6 and Card( An \ A) = 0. ε n p Card(A ∩ An) Card( An \ A) ES Q ES Q γ = 5/8 γ = 1 γ = 5/8 γ = 1 N (-1.2, 0.4 2 ) + χ 2 (
ε n 100p -1 0 Card(A ∩ An) 100(n -p 0 ) -1 Card( An \ A) mean(| β n -β 0 |) mean(|( β n -β 0 A |) ES Q ES Q ES Q ES Q γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 N (0,
β 0 A = (1, • • • , p 0 ).
: p = [n(log n) -1 ], p0 = 2[n 1/4 ], ε ∼ Exp(-1).
The adaptive weights are of type (5). 

β 0 A n 100p -1 0 Card(A ∩ An) 100(n -p 0 ) -1 Card( An \ A) mean(| β n -β 0 |) mean(|( β n -β 0 A |) ES Q ES Q ES Q ES Q γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 γ = 5/8 γ = 1 (1, 2
β 0 |) = (M p) -1 M m=1 p j=1 | β (m) n,j -β 0 j |. Similarly we calculate mean(|( β n -β 0 ) A |) = (M p) -1 M m=1 p 0 j=1 | β (m) n,j -β 0 j |.
The results are similar by the two estimation methods, while by the adaptive LASSO expectile method the results being more accurate for γ = 1 than for γ = 5/8. In Table 5, taking p = [n(log n) -1 ], the value of p is increased compared to that considered in Table 4. Furthermore, the sparsity of the model is more accentuated by considering

p 0 = 2[n 1/4 ]. Two values for β 0 A are considered: (1, 2, • • • , p 0 ) and 1 p 0 = (1, • • • , 1
) while for the model errors, only the exponential distribution ε ∼ Exp(-1) is made. For both values of β 0 , the expectile and quantile methods with adaptive LASSO penalty give very good results for identifying of null and non-null parameters. Comparing Tables 4 and5, for n fixed and exponential law, we deduce that the penalized expectile estimation quality of the model does not vary for two different p. Furthermore, the quality is better if p 0 decreases and when γ = 1. We also deduce that the quality of automatic detection increases with n.

In Table 6 we give the median run time, for 1000 simulation replicates, of R functions: "ernet" for calculate the adaptive LASSO expectile estimation and "rq" for adaptive LASSO quantile estimation, for a linear model with |A| = p 0 = 6, ε ∼ Exp(-1), γ = 1 and adaptive LASSO weights of type (4). The algorithm used for "ernet" has been proposed by [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF] and combines the cyclic coordinate descent and proximal gradient algorithms. The calculation time of the adaptive LASSO quantile estimate is much longer than that of the penalized expectile method, especially when the number p of parameters is close to the sample size n.

Sparsity study function of γ

In Figure 2 we present the results of the percentages of the true non-zero and false zero estimators by adaptive LASSO expectile method, for a model with n = p = 100 and Gaussian estimators. The true parameters are β 0 1 = 1, β 0 2 = 4, β 0 3 = -3, β 0 4 = 5, β 0 5 = 6, β 0 6 = -1 and β 0 j = 0 for any j > 6. The results are better when in the adaptive weights

Table 6: Run time (in seconds) of R functions: "ernet" corresponding to the expectile method and "rq" for quantile method, both being LASSO penalized with LASSO penalty, for a model: |A| = p0 = 6, ε ∼ Exp(-1), γ = 1, adaptive LASSO weights of type (4).

n p time by adaptive LASSO expectile (by "ernet") time by adaptive LASSO quantile (by "rq") 50 10 9.9 • 10 -4 9.9 • 10 -4 25 9.9 • 10 -4 9.9 • 10 -4 200 10 9.9 • 10 -4 10 -3 100 2 • 10 -3 10 -2 500 10 9.9 • 10 -4 1.9 • 10 -3 250 2.9 • 10 -3 1.1 • 10 -1 1000 10 10 -3 2.99 • 10 -3 500 10 -2 0.93 10 4 10 4.9 • 10 -3 0.03 10 3 0.29 38.9

we take the LASSO expectile estimator. Following this results, right now, for weight (5) we consider only LASSO expectile estimator.

In Figures 345678, for n = 100, p ∈ {10, 100}, ε ∼ N (0, 1) or Exp(-1) or N (-1.2, 0.4 2 )+χ 2 (1), we present the percentage of true and false zero, when for the adaptive weight we take (5) by dotted line, and (4) with solid line. We deduce that for p n we must take weights (4), for p n weights (5), choosing in the two cases γ ∈ [1/2, 1]. In Figures 9 and 10, for ε ∼ N (-1.2, 0.4 2 ) + χ 2 (1), for the same n (either 50 or 100), we vary p. Then, when p = n we consider adaptive weight (5) with dotted line and in the other case we take (4) with solid line. We deduce that we must take different weights, function that p is of the same order as n or much smaller. 

Conclusion of simulation study

For adaptive LASSO expectile estimation, when p n, the best results are obtained for adapted weights (4) and when p n for weights (5). The penalized expectile method is more accurate when n is small and the error distributions are asymmetric. When p and p 0 increase with n, the adaptive LASSO expectile estimations identify very well the null and non-zero parameters, while the adaptive LASSO quantile estimations happen to have the same performances only for very large n. The calculation time of the adaptive LASSO quantile estimate is much longer than that of the adaptive LASSO expectile method, especially when the number p of parameters is close to n. On the other hand, the adaptive LASSO quantile method identifies true zeros less well when the number of observations is small. Moreover, another disadvantage of the penalized quantile method is that when the number of parameters is close to the number of observations, the R function cannot calculate numerically the quantile estimations. In all cases, the most appropriate the power γ which intervenes in adaptive weights of the penalized expectile method is γ ∈ [1/2, 1]. 

Application to real data

We use the data eyedata of R package flare which contains n = 120 observations (rats) for the response variable of gene TRIM32 and 200 explanatory variables, other genes probes, from the microarray experiments of mammalian-eye tissue samples in [START_REF] Scheetz | Regulation of gene expression in the mammalian eye and its relevance to eye disease[END_REF]. The objective is to find genes that are correlated with the TRIM32 gene, known to cause Bardet-Biedl syndrome, a genetically disease of multiple organ systems including the retina. In this paper, the expectile index τ is supposed to be known, such that for model error ε we have E[g τ (ε)] = 0. On the other hand, in applications, an estimate should be given for τ , with the remark that same related question also exists in quantile regression for estimating the quantile level τ such that IP [ε < 0] = τ . But to estimate τ we must first calculate the model errors and to calculate the errors we must know τ . Therefore, we will not give an exact estimator of τ but we will try to prefix the value of τ such that the dispersion around their median of the values of (y i ) 1 i n is taken into account. We propose the following approach in order to give a prefixed value for the expectile index τ . The values of the explained variable are first transformed, for i

= 1, • • • , n, y i = (y i -M n )/D n , with M n = median(y 1 , • • • , y n ) and D n = n -1 n i=1 |y i -M n |
the empirical mean of the absolute values of the distances to the median of the y i . Afterwards, based on relation (6), we calculate the empirical estimation of τ for y i :

τ = n -1 n i=1 y i 1 1 y i <0 n -1 n i=1 y i 1 1 y i <0 -n i=1 y i 1 1 y i >0
.

Then, in model ( 1), the response variable is

Y i = (Y i -M n )/D n .
For this application, we get τ = 0.568 and γ = 5/8. We first consider two linear models (the first on the first hundred explanatory variables and the second on the other hundred explanatory variables), for which we consider adaptive weights of type ( 5), for γ = 5/8, λ n = n 2/5 . Afterwards we consider a linear model with explanatory variables the relevant regressors selected for the two preceding regressions. For this model, we select the relevant variables by the adaptive LASSO expectile method with the weights of type (4). Then, we obtain that the genes whose expressions influence gene TRIM32 are 87,153,180,185,200 with the labels: "21092", "25141", "28680", "28967" and "30141". The obtained estimations for the coefficients of these four explanatory variables are respectively: -1.06, 2.97, 1.29, -1.727 and -0.23. In Figure 11 we illustrate the histogram and the box-plot for response variable Y i . We observe that there are outliers. If a classical LS regression of the TRIM32 variable in respect to the five selected covariates is performed, we obtain a model with an adjusted R 2 = 0.75. The all five variables are significant and the residuals have Gaussian distribution (the p-value by Shapiro test equal to 0.69). In the sub-figure of the right-hand side of Figure 11, we also present, the forecasts beside of the true values of TRIM32. We observe that the scater graph is on the first bisectrix. By the adaptive LASSO quantile method, no variable is selected among the 200 explanatory ones.

In literature works that model the same data, variable number 153, tagged "25141", has been selected as the sole regressor by the bayesian shrinkage in [START_REF] Song | Nearly optimal Bayesian Shrinkage for High Dimensional Regression[END_REF] and by a globally adaptive quantile method in [START_REF] Zheng | Globally adaptive quantile regression with ultra-high dimensional data[END_REF] for quantile index between 0.45 and 0.55. In this last paper, there are other covariates that appear to be significant for other quantile index values. These variables are: "11711", "24565", "25141", "25367", "21092", "29045", "25439", "22140", "15863" and "6222". If we make a classic regression for these ten regressors, we obtain, with a risk of 0.05 that only the variables "25141", "21092", "29045", "15863", "6222" are significant, in a model of lower quality (adjusted R 2 = 0.72, residual standard error=0.52) than the one with the five explanatory variables found in the present paper.

In order to complete the comparison of the three methods, we split the database of 120 observations into two: one for learning and the other for testing. The three methods 2015), while by the adaptive LASSO quantile method it is less good, also because of the fact that no explanatory variable is significant for the latter. From this table, we also deduce that the method proposed in the present paper is also robust because we get the same accuracy on the test and learning set. 

Proofs

In this section we give the proofs of the results presented in Sections 2 and 3.

Result proofs in Section 2

Before presenting the proof of Theorem 2.1, let's recall a result given in [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF].

Lemma 1 of [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF]. For any z, z 0 ∈ R and τ ∈ (0, 1) we have:

min(τ, 1 -τ )(z -z 0 ) 2 ≤ ρ τ (z) -ρ τ (z 0 ) -g τ (z 0 )(z -z 0 ) ≤ max(τ, 1 -τ )(z -z 0 ) 2 .
Proof of Theorem 2.1. (i) In order to show the convergence rate of the expectile estimator, we show that for all > 0, there exists B > 0, large enough when n is large, such that:

P inf u∈R p , u 2 =1 Q n β 0 + B p n u > Q n (β 0 ) ≥ 1 -. (7) 
This part of proof is similar to that of Lemma 1.2 in Zhao et al. (2018), for the convergence rate of the oracle estimator. Let B > 0 be a constant to be determined later and u a vector in R p with the norm u 2 = 1. Let's study the difference:

Q n β 0 + B p n u -Q n (β 0 ) = n i=1 ρ τ ε i -B p n X t i u -ρ τ (ε i ) = n i=1 ρ τ ε i -B p n X t i u -ρ τ (ε i ) -E ρ τ ε i -B p n X t i u -ρ τ (ε i ) + n i=1 E ρ τ ε i -B p n X t i u -ρ τ (ε i ) ≡ ∆ 1 + ∆ 2 .
We first study the term ∆ 2 . By Taylor expansion, we have:

E[ρ τ (ε -t) -ρ τ (ε)] = E -g τ (ε)t + 2 -1 h τ (ε)t 2 + o(t 2 ) = 2 -1 E h τ (ε) t 2 + o(t 2 )
. By the Cauchy-Schwarz inequality, we have that |X t i u| 2 ≤ X i 2 2 u 2 2 and then, using assumption (A3), we obtain that (pn -1 ) 1/2 max 1 i n |X t i u| -→ n→∞ 0. Thus,

∆ 2 = 1 2 n i=1 B 2 p n X t i u 2 E h τ (ε) + o B 2 p n X t i u 2 E h τ (ε) .
On the other hand,

2 min(τ, 1 -τ ) ≤ E h τ (ε) = 2τ E[1 1 ε≥0 ] + 2(1 -τ )E[1 1 ε<0 ] ≤ 2 max(τ, 1 -τ ). Then 0 < ∆ 2 = B 2 p n E h τ (ε) n i=1 X t i u 2 1 + o(1) = O(B 2 p). (8) 
We are now studying the term ∆ 1 . Let us consider the random variable:

D i ≡ ρ τ ε i -B p n X t i u -ρ τ (ε i ) + B p n g τ (ε i )X t i u. (9) 
Then, we can write ∆ 1 as:

∆ 1 = n i=1 -B p n g τ (ε i )X t i u + D i -E[D i ] .
Using assumption (A1) we have, E (pn -1 ) 1/2 g τ (ε i )X t i u = 0 and Var (pn

-1 ) 1/2 n i=1 g τ (ε i )X t i u = pn -1 u t n i=1 X i X t i uVar [g τ (ε)] = O(p)
. Then, we have:

B p n n i=1 g τ (ε i )X t i u = O P p 1/2 B . (10) 
By Lemma 1 of [START_REF] Gu | High-dimensional generalizations of asymmetric least squares regression and their applications[END_REF] for z = ε i -B(pn -1 ) 1/2 X t i u and z 0 = ε i , we can write D i also in the form: D i = B 2 pn -1 |X t i u| 2 V i , with V i a random variable between min(τ, 1-τ ) and max(τ, 1 -τ ) with probability one:

P min(τ, 1 -τ ) ≤ V i ≤ max(τ, 1 -τ ) = 1. (11) Then, Var [D i ] ≤ E[D 2 i ] = B 4 (p/n) 1/2 |X t i u| 4 E V 2 i . But E V 2 i ≤ 1 and thus Var [D i ] ≤ B 4 p 2 n -2 |X t i u| 4 .
On the other hand, the random variables D i defined by ( 9), are independent. Then,

n i=1 D i -E[D i ] = O P n i=1 Var [D i ] ≤ O P n i=1 E[D 2 i ] = O P B 2 p √ n . (12) 
Relations ( 10) and ( 12), imply, since pn -1 → 0, when n → ∞, that:

∆ 1 = O P (Bp 1/2 ) + O P (B 2 pn -1/2 ) = O P (Bp 1/2 ).

Then, this last relation together relation (8) imply ∆ 2 > |∆ 1 |, with probability converging to one, for B large enough. Relation (7) follows, which implies the convergence rate of the expectile estimator.

(ii) For p-vector u = (u 1 , • • • , u p ), with u 2 = 1 and B > 0 a constant, let us consider the difference

R n β 0 +B p n u -R n (β 0 ) = Q n β 0 +B p n u -Q n (β 0 )+nλ n p j=1 ω n,j β 0 j +B p n u j -|β 0 j | . ( 13 
)
The first term of the right-hand side of (13) becomes by the above proof for (i), 

Q n β 0 + B p n u -Q n (β 0 ) = B 2 p n E h τ (ε)
Since p 1/2 0 n (1-c)/2 λ n → 0, as n → ∞, we obtain that relation ( 14) dominates ( 15) and the assertion regarding the convergence rate of β n results.

Proof of Theorem 2.2. (i) Let us consider the parameter set: V p (β 0 ) ≡ β ∈ R p ; ββ 0 2 ≤ B p n , with B > 0 large enough and W n ≡ β ∈ V p (β 0 ); β A c 2 > 0 . According to Theorem 2.1, the estimator β n belongs to the set V p (β 0 ) with a probability converging to 1 as n → ∞. In order to show the sparsity property of claim (i), we will show that, lim n→∞ P β n ∈ W n = 0. Note that if β ∈ W n , then p > p 0 . Let us consider two parameter vectors: β = (β A , β A c ) ∈ W n and β (1) = (β (1)

A , β (1) 
A c ) ∈ V p (β 0 ), such that β A c = 0 p-p 0 . For this parameters, we will study the following difference:

n -1 R n (β) -R n (β (1) ) = n -1 Q n (β) -Q n (β (1) ) + λ n p j=p 0 +1
ω n,j |β j |.

(16)

First, note that by elementary calculations, we get: ρ τ (ε -t) = ρ τ (ε) -g τ (ε)t + 1 2 h τ (ε)t 2 + o P (t 2 ) for t → 0. Then, for the first term of the right-hand side of relation ( 16), we have

n -1 n i=1 ρ τ (Y i -X t i β (1) ) -ρ τ (Y i -X t i β) = n -1 n i=1 ρ τ ε i -X t i,A (β A -β 0 A ) -ρ τ ε i -X t i,A (β A -β 0 A ) -X t i,A c β A c = n -1 n i=1 g(ε i )X t i,A β A -β 0 A + h(ε i ) 2 X t i,A (β A -β 0 A ) 2 + o P X t i,A (β A -β 0 A ) 2 -n -1 n i=1 g(ε i )X t i β A -β 0 A , β A c + h(ε i ) 2 X t i (β A -β 0 A , β A c ) 2 + o P X t i (β A -β 0 A , β A c ) 2 .
By similar arguments used in the proof of Theorem 2.1(i) we have

n -1 n i=1 g(ε i )X t i,A β A -β 0 A = E n -1 n i=1 g(ε i )X t i,A β A -β 0 A + O P Var n -1 n i=1 g(ε i )X t i,A β A -β 0 A 1/2 = O P Var n -1 n i=1 g(ε i )X t i,A β A -β 0 A 1/2 ≤ O P E[g 2 (ε i )] 1 n 2 n i=1 X i,A 2 2 β A -β 0 A 2 2 1/2 = O P 1 n p n 1/2 = O P p 1/2 n .
Proceeding similarly as above, we get:

n -1 n i=1 g(ε i )X t i β A -β 0 A , β A c = O P p 1/2 n .
Taking into account relation ( 11), we deduce that: 0

< n -1 n i=1 h(ε i ) X t i (β A -β 0 A , β A c ) 2 = O P ( β A -β 0 A 2 
2 ) = O P (pn -1 ) and also that,

0 < n -1 n i=1 h(ε i ) X t i,A (β A -β 0 A ) 2 = O P p n .
By these relations, we obtain that the first term of the right-hand side of relation ( 16) is of order pn -1 . For the penalty of the right-hand side of relation ( 16), taking into account Theorem 2.1(i) and since β ∈ W n we obtain:

λ n p j=p 0 +1
ω n,j |β j | ≥ Cλ n p n

(1-γ)/2

.

Using the supposition λ n (pn -1 ) -(1+γ)/2 -→ n→∞ ∞, that is λ n n (1-c)(1+γ)/2 -→ n→∞ ∞, we have that in the right-hand side of relation ( 16), it's the penalty that dominates. Then, since n -1 Q n (β) -Q n (β (1) ) = O P (pn -1 ), we have,

n -1 R n (β) -R n (β (1) ) ≥ Cλ n p n (1-γ)/2 . ( 17 
)
But, on the other hand, since β

(1)

A c = 0 p-p 0 , by similar arguments as above, we have, n -1 R n (β 0 ) -R n (β (1) ) = O P (pn -1 ). From the last relation together relation (17), since λ n (pn -1 ) -(1+γ)/2 -→ n→∞ ∞, we deduce, lim n→∞ P[ β n ∈ W n ] = 0.
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 1 Figure 1: Histogram for 10 5 realizations of a N (-1.2, 0.4 2 ) + χ 2 (1) random variable.

  We assess model selection by calculating the percentage (100p -1 0 Card(A ∩ A n )) of the non-zero parameters with a non-zero estimation and the percentage of false significant variables (100(n-p 0 ) -1 Card( A n \A)), by the two estimation methods. We also give the accuracy of the complete estimation vectors (mean(| β n -β 0 |)) and of the estimations of non-zero parameters (mean(|( β n -β 0 A |)) (average absolute estimation error) obtained on 1000 Monte Carlo replications. More precisely, if M is the Monte Carlo replication number and β (m) n,j is the estimation of β 0 j obtained for the Monte Carlo

Figure 2 :

 2 Figure 2: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 100. In adaptive weights (5), two estimators: LASSO expectile with dotted line and expectile with solid line.

Figure 3 :

 3 Figure 3: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 10. Two adaptive weights: (5) with dotted line and (4) with solid line.
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 4 Figure 4: Percentage of true and false non zero, for ε ∼ N (0, 1), n = 100 and p = 100. Two adaptive weights: (5) with dotted line and (4) with solid line.
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 5 Figure 5: Percentage of true and false non zero, for ε ∼ Exp(-1), n = 100 and p = 10. Two adaptive weights: (5) with dotted line and (4) with solid line.
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 6 Figure 6: Percentage of true and false non zero, for ε ∼ Exp(-1), n = 100 and p = 100. Two adaptive weights: (5) with dotted line and (4) with solid line.
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 7 Figure 7: Percentage of true and false non zero, for ε ∼ N (-1.2, 0.4 2 ) + χ 2 (1), n = 100 and p = 10. Two adaptive weights: (5) with dotted line and (4) with solid line.
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 8 Figure 8: Percentage of true and false non zero, for ε ∼ N (-1.2, 0.4 2 ) + χ 2 (1), n = 100 and p = 100. Two adaptive weights: (5) with dotted line and (4) with solid line.

Figure 9 :

 9 Figure 9: Percentage of true and false non zero, for ε ∼ N (-1.2, 0.4 2 ) + χ 2 (1), n = 50. Two value for the number of parameters: p = 10 together adaptive weight (5), with dotted line and p = 50 together adaptive weight (4), with solid line.

Figure 10 :

 10 Figure 10: Percentage of true and false non zero, for ε ∼ N (-1.2, 0.4 2 ) + χ 2 (1), n = 100. Two value for the number of parameters: p = 50 together adaptive weight (5), represented with dotted line and p = 100 together adaptive weight (4), represented with solid line.

Figure 11 :

 11 Figure 11: Histogram and boxplot of ( yi) 1 i 120 . Scater graph between forecast and the true value of TRIM32.

  2 1 + o P (1) = O P (B 2 p). (14)Furthermore, for the penalty of (13) we have:

  of the 1000 Monte Carlo replications for the cardinalities (number of the true non-zeros estimated as non-zero) Card(A ∩ A n ) and Card( A n \ A) (number of the false non-zero) by the expectile (ES) and quantile (Q) penalized methods, each with LASSO adaptive penalty. The weights of type (

						2
	50	10	5.99	5.74	0.22	0
		25	5.99	5.7	1	0.001
		50	5.99	5.64	2.13	0.002
	100	10	6	5.99	0.13	0
		25	6	5.99	0.56	0
		100	6	5.98	2.5	0

Table 3 :

 3 Sparsity study for expectile (ES) and quantile (Q) methods, with adaptive LASSO weights of type (4). |A| = p0 = 6 and 1000 Monte Carlo replications. Perfect method, if:

Table 5 :

 5 Study of the sparsity evolution and of the estimation accuracy for the expectile (ES) and quantile framework, with p and p0 depending an n

Table 7 :

 7 Means of residual absolute values (RAV) by adaptive LASSO expectile estimation, LS on explanatory variables of[START_REF] Zheng | Globally adaptive quantile regression with ultra-high dimensional data[END_REF], and by adaptive LASSO quantile estimation on all data, learning and test data. each calibrated on 105 observations and are tested on 15 observations. The empirical means of residual absolute values (RAV) are presented in Table7. The forecast accuracy of the explained variable is very similar by the adaptive LASSO expectile and by the LS estimation on explanatory variables ofZheng et al. (

	estimation method	RAV on all data	RAV on learning data	RAV on test data
	adaptive LASSO expectile	0.057	0.056	0.068
	Zheng et al. (2015) method	0.059	0.059	0.064
	adaptive LASSO quantile	0.75	0.787	0.771

are

(ii) Given the previous result we consider the parameter vector β of the form: β = β 0 + (pn -1 ) 1/2 δ, with δ = (δ A , δ A c ), δ A c = 0 p-p 0 , δ A 2 ≤ C. We study then the following difference:

For the penalty P = λ n p 0 j=1 ω n,j |β j |-|β 0 j | of the right-hand side of relation ( 18) we have, by 2.1(i), ω n,j = | β n,j | -γ = O P (1) and by the triangular inequality |β j | -|β 0 j | ≤ |β j -β 0 j |. Then, as in the proof of Theorem 2.1, by relation (15), we obtain:

For the first term of the right-hand side of relation ( 18) we have:

which has as minimizer the solution of

from where, we get,

We deduce that, the minimum value of (20) is of order O P pn -1 δ A 2 = O P pn -1 = O P n c-1 . Taking into account the supposition λ n p 1/2 0 n (1-c)/2 -→ n→∞ 0 and relation ( 19), we have that, P = o P (pn -1 ). Then, in the right-hand side of relation ( 18), the first term is the dominant one.

Let us now consider the following random variable sequence:

Thus, taking into account assumption (A1), we get:

which implies

The proof of claim (ii) is finished.

Result proofs in Section 3

Proof of Lemma 3.1.

The proof is similar to that of Theorem 2.1(i). Consequently, we give only the main results. Let us consider the p-vector u = (u 1 , • • • , u p ), with u 1 = 1. By Holder's inequality: |X t i u| ≤ X i ∞ u 1 , using also assumption (A4) we obtain that max 1 i n |X t i u| < ∞. For a constant B > 0, we will study the difference:

where, since a n → 0, n 1/2 a n → ∞, we get that ∆ 2 > ∆ 1 with probability converging to one, for B large enough.

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.1(ii). Consequently, we give only the main results. Otherwise, instead of the Cauchy-Schwarz inequality we use Holder's inequality:

). For a p-vector u = (u 1 , • • • , u p ), with u 1 = 1 and a constant B > 0, let the difference

By a similar approach made for the terms ∆ 1 and ∆ 2 of the proof of Theorem 2.1, we obtain:

For the penalty of the right-hand side of relation ( 21) we have:

by the Cauchy-Schwarz inequality and afterwards by the estimator consistency of

Since λ n p 1/2 0 b -1 n → 0, as n → ∞, then relation ( 22) dominates ( 23) and the theorem follows.

Proof of Theorem 3.2. (i) Let j ∈ A c be, then j > p 0 . Thus, the derivative of the random process R n (β) in respect to β j is:

For the first term of the right-hand side of relation ( 24), we have,

. By elementary calculations, we can show that, for t → 0, we have:

On the other hand, by the Holder's inequality, we have:

Using assumption (A4) and Theorem 3.1, we obtain that

By the Central Limit Theorem, tacking into account assumption (A4), we have that:

). On the other hand, 0 < h τ (ε i ) < 2 with probability 1. Using the Holder's inequality, we have, with probability one, n i=1

from where, tacking into account assumption (A4), we have:

For the penalty of relation ( 24) we have:

as n → ∞, also taking into account relation ( 25) we have that:

Then, the solution of ( 24) must be equal to 0. From where β n,A c = 0 p-p 0 , with probability converging to 1. This relation implies A n ⊆ A with probability converging to 1 when n → ∞.

On the basis of this result, from now on we consider the parameters β of the form β = β A , 0 p-p 0 . We must show now that A ⊆ A n . By Theorem 3.1 we have β A -β 0 A 1 = O P b n , from where for any j = 1, • • • , p 0 , we obtain, β n,j P -→ n→∞ β 0 j = 0. Thus, since b n -→ n→∞ 0, we have that β n,j = 0 with probability converging to 1, from where A ⊆ A n .

(ii) Given the previous result (i) and Theorem 3.1, we consider the parameters β of the form: β = β 0 + b n δ, with δ = (δ A , δ A c ), δ A c = 0 p-p 0 , δ A 1 ≤ C. For the penalty P of the right-hand side of relation ( 18 . For the main part, we have:

The end of the proof is similar to that of Theorem 3.1(ii).