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ABSTRACT
The increased availability of interdependent heterogeneous data
generated from different sources is fostering the incorporation of
semantic knowledge-based graphs and ontologies in information
management and search applications. Most of the existing Infor-
mation Retrieval systems mainly focus on the semantic analysis of
the information contained in heterogeneous data. In their results,
they provide documents as query answers without considering (i)
detailed information regarding relevant granularity levels of the
documents, and most importantly (ii) dependencies between the
documents or parts of the documents. To overcome these limita-
tions, we propose a graph-based search and ranking algorithm
within a generic framework that retrieves the data in the form of
a novel augmented data structure for query answers, which we
call hybrid molecules. The latter consist of well-defined subgraphs
representing relevant contextual information regarding domain-
specific information coupled with structural information related
to the document. This improves the search results and reduces
users’ efforts in tracking and interpreting them. Experiments con-
ducted on real world data corpus using projects from the building
construction industry validate the effectiveness of our approach.

CCS CONCEPTS
• Information systems → Information retrieval; Document

representation; Ontologies; Enterprise search;

KEYWORDS
Tightly Coupled Semantic Graphs, Hybrid Molecules

1 INTRODUCTION
Web and Information Systems are increasingly adopting seman-
tic knowledge-based models to represent the data encapsulated in
heterogeneous resources [2]. This has several proven benefits in
improving users’ experience in search applications [1]. As an exam-
ple, in several industries involving multidisciplinary projects, users
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Figure 1: Sample documents from the construction industry.

looking for a particular information have to search through hetero-
geneous documents provided by different sources. It is also common
for the documents to have several dependencies between them (e.g.,
documents with related topics, references between documents or
parts of documents) [4]. Figure 1 illustrates a sample of two interde-
pendent documents from the construction industry: d1 (a technical
specification document) and d2 (a material thermal report) related
to the same project. Parts of document d1 describe acoustic and
thermal properties (section A and section B respectively). Document
d2 describes a thermal study which includes details on the solar
factors of windows (section 1), implicitly described by “SW coeffi-

cient". The reference relation between the two documents shows
that section 1 of d2 contains complementary information to section

B of d1. Consider that the user is searching for “the solar factor of
windows". He is not interested in getting only relevant documents,
but also relevant contextualized and precise answers (e.g., the value
of solar factor, the part of the document describing it and the related
parts of documents containing additional information), so he makes
less efforts in interpreting the results.

Traditional Information Retrieval (IR) approaches mainly rely on
syntactic keyword-based search [9]. To overcome their limitations,
there has been significant interest in taking semantics into account
leading to the emergence of Semantic Information Retrieval (SIR)
systems. Although suitable for several applications [7, 8, 10, 13],
SIR systems provide documents as query answers without consid-
ering in their results (i) detailed information regarding relevant
granularity levels of the documents (e.g., section B of d1 in Figure 1),
and most importantly (ii) inter and intra-document dependencies
(e.g., the reference between section B of d1 and section 1 of d2).

In this paper, we provide a solution to the aforementioned limi-
tations of current SIR systems. In [4, 10, 13], authors demonstrated
the importance of adopting a tightly coupled semantic graph1. Sim-
ilarly, we take advantage of such a model to provide a novel data
structure for query answers, which we call hybrid molecules. The

1The data objects (documents, web pages, tuples, etc.) and their metadata are individu-
als coupled with those of a lexical knowledge base or domain-specific ontology.
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latter consist of hybrid subgraphs encapsulating domain-specific
information coupled with related structural information of the doc-
uments [4]. The hybrid molecule-based query answers bring in
helpful contextual information of the documents improving the
search results and reducing users’ efforts in tracking and interpret-
ing them.

In this context, we tackle the following challenges: (i) formally
defining the hybrid molecule’s structure in view of the character-
istics of a tightly coupled semantic graph and the definition of a
molecule concept in the literature [5, 6], and (ii) adopting an effec-
tive graph-based approach to construct the hybrid molecules based
on the associated definition and rank them conveniently.

The literature provides a vast array of graph-based search al-
gorithms [15]. Constrained Spread Activation (CSA) [17] stands
out as a simple yet effective solution in many IR applications [10,
11, 14, 17]. Inspired by this search approach, we propose an algo-
rithm which we call HM_CSA that provides a ranked list of hybrid
molecules as query answers instead of single nodes.

The contributions of this paper which can be summarized by
• Hybrid molecule, a novel data structure for query answers
• HM_CSA, an algorithm that constructs and ranks relevant
hybrid molecules from a tightly coupled semantic graph

are presented within a SIR framework entitled FEED2SEARCH
(FramEwork for hybrid molEcule-baseD SEmantic SEARCH) where
users submit their natural language (e.g., plain English text) queries
over a heterogeneous document corpus and obtain relevant answers
in the form of hybrid molecules.

This paper is structured as follows. In Section 2, we introduce
FEED2SEARCH. We present in Section 3 fundamental notions of a
tightly coupled semantic graph required to understand the hybrid
molecules, which we introduce in Section 4. Section 5 integrates the
hybrid molecules in a graph-based search and ranking algorithm.
In Section 6, we evaluate the proposed solution on data collected
from projects in the construction industry. Section 7 reviews the
related work, and Section 8 concludes remarks and future work.

2 FEED2SEARCH FRAMEWORK
This section presents FEED2SEARCH, a novel generic framework
which stands for FramEwork for hybrid molEcule-baseD SEman-
tic SEARCH over a heterogeneous document corpus. The main
purpose is to facilitate the query processing over a heterogeneous
document corpus for non computer expert users by providing them
with relevant answers in response to their natural language queries.
As presented in Figure 2, FEED2SEARCH is made of two intercon-
nected layers where the upper layer uses data and services provided
by the lower layer.

Figure 2: Overall architecture of FEED2SEARCH.

The main purpose of the bottom layer (Indexing) is to index a
given heterogeneous document corpus and provide a tightly cou-
pled semantic graph (See Definition 3) made of instances describing
the document corpus. This is done through annotators handling:
(1) Automatic Metadata Extraction of the documents to generate
structural-based instances i.e., instances describing the documents,
their metadata, their decomposition into different granularity lev-
els and relations between these granularities [4]; (2) Natural Lan-
guage Processing (NLP) and Text Engineering [3] to identify regu-
lar expressions and generate further relations (such as references)
between documents or parts of documents; (3) Semantic Annota-
tion [8] to automatically generate domain-specific instances based
on any relevant external domain-specific ontology; and (4) Tight
Coupling to generate relations between domain-specific instances
and structural-based instances. A coupling between two instances
of different types is generated if a domain-specific instance was
previously extracted, in the Semantic annotation module, from the
content of a structural-based instance.

The upper layer (Query processing) comprises four sequential
modules to process the query from the end-user’s input (natural
language query) to the final system’s output (documents or parts
of documents with relevant contextual information presented in
SERP2-like results). In the first module, query interpretation runs
classical NLP techniques followed by semantic annotation. This
module outputs a set of domain-specific instances extracted from
the query based on the domain-specific ontology at hand. These
instances are then considered as input for the second module where
they are matched3 against instance nodes of the tightly coupled
semantic graph. The matched instance nodes are used to initial-
ize HM_CSA as described in Section 5. The third module uses
HM_CSA to output a ranked list of hybrid molecules. The forth
module transforms, through several operations, the ranked list of
hybrid molecules into SERP-like results.

In this paper, we particularly focus on the Hybrid Molecule-based

Search and Rankingmodules as they comprise our two contributions
(the Hybrid Molecules and HM_CSA).

3 PRELIMINARIES
We rely on a specific type of semantic graphs i.e., a tightly cou-
pled semantic graph to couple domain-specific information with its
related structural information within a heterogeneous document
corpus. This type of graph leverages semantics at the finest granu-
larity levels of the documents. We generate this graph using two
underlying external resources: a heterogeneous document corpus
and a background domain-specific ontology.

3.1 Underlying External Resources
We define a heterogeneous document corpus and a domain-specific
ontology as follows:

Definition 1 (Heterogeneous Document Corpus). A hetero-
geneous document corpus δ is defined as a set of n documents
originated from different sources. The structure of the documents
does not necessarily follow a common standard. Formally, δ =
{d1, . . . ,dn }. A document di ∈ δ is characterized by a set of p meta-
data (e.g., author, format, creation date, etc.) and a set ofqmedia (e.g.,

2Search Engine Results Page.
3Using concept matching i.e., instances are said to be matched if they are instances of
the same concept.
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Figure 3: Extract of a tightly coupled semantic graph repre-
senting a heterogeneous document corpus δ from the con-
struction industry.

text, image, video, or audio), such that di = {meta1, . . . ,metap ,
med1, . . . ,medq }. Further, a mediamedl ∈ di is made of s media
components, such thatmedl = {medComp1, . . . ,medComps }, (e.g.,
section, paragraph, etc. for the text; still region, object, etc. for the
image).

Definition 2 (Domain-specific Ontology). Given an applica-
tion domainD, a domain-specific ontology designated as OD (C,R,
Lit ,A,L, fL) is the semantic knowledge describing information in
D, where:
• C is the set of domain-specific concepts. For instance, con-
sidering the construction industry, such concepts include,
but not limited to, entities describing building elements (e.g.,
Window,Door,Wall) and thermal properties (e.g., SolarFactor,
Insulation).
• R ⊆ C × C is the set of relations between domain-specific
concepts in C . For instance, r1 = (Wall, Window) is a spatial
containment relation betweenWall andWindow, where r1 ∈
R.
• Lit = {Inteдer ,Decimal , Strinд, ...} is the set of literal types.
• A ⊆ C×Lit is the set of attributes describing domain-specific
concepts i.e., relations between domain-specific concepts
in C and literals in Lit . For instance, WindowHeight is an
attribute property linkingWindow to Decimal.
• L is the set of relation labels.
• fL : R → L is the association function that assigns a label
l ∈ L to a domain-specific relation r ∈ R, hence fL(r ) = l .
For instance, fL(r1) = “containsElement".

For ease of presentation, OD (C,R,Lit ,A,L, fL) will be referred
to as OD in the remainder of the paper.

3.2 Tightly Coupled Semantic Graph
In the context of a SIR application, we need to leverage the semantics
of OD over a heterogeneous document corpus δ related to a domain
D. A coupling is required between concepts of OD and elements of
δ on different granularity levels. This ensures the ability to locate
a relevant information at different levels of precision, and most
importantly tracking the document interdependencies at finest
structural elements.

Existing works [4, 10, 13] have adopted tightly coupled semantic
graphs in their approaches. Rocha et al. [10] couple web pages
and a domain-specific ontology. Tekli et al. [13] couple a lexical
semantic network and a standard inverted index. Charbel et al. [4]
couple two semantic graphs: the first one represents the documents,
their structure and relations between them, and the second one
represents concepts and relations of pluggable domain-specific

ontologies. Inspired by these approaches, we formally define our
tightly coupled semantic graph. We also provide examples based
on Figure 3, which resumes our motivating scenario (See Figure 1)
in the form of the following graph model:

Definition 3 (Graph Model). Given a heterogeneous docu-
ment corpus δ and a domain-specific ontology OD , we define
Gδ (V ,E,Val , fVal ,Lab, fLab ,W , fWv , fWe ) as the instances graph
describing the structural and domain-specific knowledge inδ , where:
• V is the set of nodes representing instances of OD and δ :
– V = Vd ∪Vs .
– Vd ⊂ V is the subset of domain-specific nodes where a
node vd ∈ Vd represents an instance of c ∈ C in OD , e.g.,
solarFactor1 (instance of the concept SolarFactor).

– Vs ⊂ V is the subset of structural-based nodes where a
node vs ∈ Vs represents any granularity element in δ
i.e., a document di ∈ δ (e.g., d1), a metadatametak ∈ di
(e.g., title2), a mediamedl ∈ di or more precisely a media
componentmedCompr ∈medl (e.g., sectA).

– Vd ∩Vs = ∅
4.

• E is the set of directed edges representing relations between
nodes:
– E = Ed ∪ Es ∪ Eh .
– Ed ⊆ Vd ×Vd is the subset of domain-specific edges where
an edge ed ∈ Ed represents an instance of a relation r ∈ R
in OD , e.g., ed1 = (window1, solarFactor1) is the edge
linkingwindow1 to solarFactor1.

– Es ⊆ Vs ×Vs is the subset of structural-based edges where
an edge es ∈ Es represents a relation between structural-
based nodes inVs (such as part-whole, reference, etc.), thus
augmenting the representation of δ ; e.g., es1 = (d2, sect1)
is the edge linking d2 to sect1.

– Eh ⊆ Vd × Vs is the subset of hybrid edges where an
edge eh ∈ Eh represents a tight coupling, i.e. a relation
between a node vd ∈ Vd and a node vs ∈ Vs ; e.g., eh1 =
(solarFactor1, sect1) is the edge linking solarFactor1 to
sect1.

– Ed ∩Es = ∅, Es ∩Eh = ∅, Ed ∩Eh = ∅, and Ed ∩Es ∩Eh =
∅5.

• Val is the set of node literal values6. For the sake of simplicity,
we omit these values from the graph depicted in Figure 3.
• fVal : V → Val is the association function that assigns to a
node v ∈ V a literal value val ∈ Val , hence fVal (v) = val ;
e.g., fVal (sect1) = “SW Coefficient of Windows" where “SW
Coefficient of Windows" is the string value associated to sect1.
• Lab is the set of edge labels.
• fLab : E → Lab is the association function that assigns a
label lab ∈ Lab to an edge e ∈ E, hence fLab (e) = lab; e.g.,
fLab (es1) = “hasPart".
• W is the set of both nodes and edges’ weights.
• fWv : V → W is the node weight mapping that assigns a
weightwv ∈W to a node v ∈ V .
• fWe : E → W is the edge weight mapping that assigns a
weight we ∈ W to an edge e ∈ E. fWe consists of a set

4We distinguish nodes of the subset Vs from those of the subset Vd to explicitly
differentiate between structural characteristics and domain-specific ones.
5We also distinguish between edges of different subsets such as the case for nodes.
6The value of a node vs ∈ Vs is made of its content, whereas the value of a node
vd ∈ Vd consists of the concatenated values of its attributes Avd ⊆ A in OD .
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of functions which adapt to Es , Ed , and Eh depending on
different rationales.
The weight mapping functions fWv and fWe are used in
the search process of query answers. They are detailed in
Section 5.3.

For ease of presentation, Gδ (V ,E,Val , fVal ,Lab, fLab ,W , fWv ,
fWe ) will be referred to as Gδ in the remainder of the paper.

4 HYBRID MOLECULES
We introduce hybrid molecules which we build upon the definition
of molecules in the literature (e.g., [5]). Molecules are subgraphs of
connected nodes. They are extracted from an initial graph using a
decomposition function. We propose adjusting the decomposition
to better cope with our tightly coupled semantic graph and provide
meaningful subgraphs.

Definition 4 (HybridMolecule). Given the instances graphGδ
describing a heterogeneous document corpus δ , we define a hybrid
molecule m(eh ,Vm ,Em ,wm , fWm ), also denoted by m ∈ M , as a
subgraph decomposition result from the initial graph Gδ based on a
coupling between a domain-specific node and its related structural-
based node, where:

• M = dEh (Gδ ) is the set of hybrid molecules representing sub-
graphs obtained from the decomposition function dEh . This
function splits the initial graph Gδ into molecules whenever
a hybrid edge eh ∈ Eh is identified, such that each molecule
m ∈ M has a unique eh ∈ Eh .
• eh ∈ Eh is the hybrid edge identifying the moleculem. Also,
we refer to eh as the core of the moleculem. We denote by
eh .vd ∈ Vd the domain-specific node of the molecule’s core
and eh .vs ∈ Vs the structural-based node of the molecule’s
core.
• Vm ⊆ (Vs ∪Vd ) is the subset made of domain-specific and
structural-based nodes formingm.
• Em ⊆ ({eh } ∪ Ed ∪ Es ) is the subset made of the core edge,
domain-specific and structural-based edges formingm and
linking nodes v ∈ Vm .
• wm is the overall weight of the moleculem such thatwm ∈
Wm , whereWm is the set of molecules’ weights.
• fWm : M → Wm is the molecule weight mapping that as-
signs the weightwm ∈Wm to the moleculem ∈ M .
The molecule weight mapping fWm is used in the ranking
process of query answers. It is detailed in Section 5.3.3.

The core of a hybrid molecule holds the molecule’s central infor-
mation as it is where the domain specific knowledge is anchored
to a structural component in the document corpus. The rest of
the molecule’s nodes and edges augments the core with additional
relevant information.

Illustrative Example: The dashed area in Figure 3 is an example of
a hybrid molecule m1, where eh1 = (solarFactor1, sect1) is the
molecule’s core. sect1 contains relevant information on the solar
factor. Other structural-based components (e.g., es1 = (d2, sect1))
and domain-specific ones (e.g., ed1 = (window1, solarFactor1)) in
Vm and Em providem1 with further useful information (i.e., sect1
is part of document d2 and solarFactor1 is a property ofwindow1).

5 HYBRID MOLECULE-BASED SEARCH AND
RANKING BY CONSTRAINED SPREAD
ACTIVATION (HM_CSA)

After having introduced the hybrid molecule’s structure, we pro-
pose in this section a graph-based search and ranking algorithm
in order to generate a ranked list of hybrid molecules as query
answers within a SIR system.

CSA [17] is one form of the Breadth-First Search (BFS) family of
graph-based search algorithms [15]. It works by spreading out the
activation from a set of start nodes to adjacent nodes progressively
until predefined constraints are met. We consider CSA as a suit-
able search strategy for our tightly coupled semantic graph as (i)
it handles the heterogeneity of the graph since it can explore pos-
sibly relevant structural-based and domain-specific nodes located
anywhere in the graph, (ii) it constructs progressively multiple
target nodes from activated nodes, and (iii) it supports the incorpo-
ration of useful constraints, either at the beginning to select start
nodes or at termination point to stop the spreading in the graph.
Although, in its standard form, CSA stands out as an effective and
suitable solution for many IR applications [10, 11, 14], it outputs
a ranked list of single nodes. Thus, we propose extending CSA to
HM_CSA to generate a ranked list of hybrid molecules as query an-
swers. HM_CSA also adapts edge weights differently to handle the
characteristics of hybrid molecules and rank them appropriately.

5.1 Constrained Spread Activation (CSA)
HM_CSA builds on the CSA theory as presented in Algorithm 1 (ex-
cluding the red-highlighted area). The input of HM_CSA consists of
(i) a set of domain-specific nodesVd_in generated from the query in-
terpretation module as they matched the user query (See Section 2),
(ii) a tightly coupled semantic graph Gδ representing a heteroge-
neous document corpus δ , (iii) weight parameters α , β ∈ [0, 1] that
balance the contribution of structural and domain-specific nodes
respectively in the calculation of a molecule’s weight, and (iv) a
set of constraints parameters, params . The latter consist of pre-
adjustment parameters to be checked before each spread iteration
occurs (e.g., a firing threshold F , and a maximum spread distance
D from start nodes), post-adjustment parameters (e.g., a maximum
number of iterations I , and a maximum processing time T ), and
spread configurations (e.g., an activation percent decrease γ which
imposes a decay on the propagation of the activation through the
graph). The choice of these parameters is application-dependent.

We use two sets of nodesVin andVout . The former is fed with ac-
tivated nodes as the spread activation processes through the graph
while the second consists of spread nodes i.e., nodes which have
activated others and will go in the final output. At start time, Vin
contains previously selected start nodesVd_in where the activation
value Activation(vi ) of each node vi ∈ Vin is set to 1 (max value),
and Vout is initially empty. Each iteration consists of removing vi
fromVin (lines 5-6) i.e., the node with the highest activation value7,
and check whether it is allowed to spread its activation or not to
its neighbors by verifying if its distance to start nodes is less than
or equal to D and its activation value is higher than or equal to F
(line 7). If so, 4 main steps are applied: (1) exploring neighbors (line
8); (2) spreading out activation to each neighbor (lines 9-13); (3)
processing each neighbor (lines 14-15) i.e., adding it to the set of
activated nodes Vin if it is visited for the first time; and (4) adding
7If nodes have equal highest activation values, HM_CSA selects the first node.
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Algorithm 1: HM_CSA
Inputs :Set of domain-specific start nodesVd_in ; Tightly coupled semantic graph Gδ ;

Molecule’s weight parameters α, β ∈ [0, 1]; Constraint parameters params ;
Output :Ranked List of hybrid moleculesMout ⊆ M

1 Vin ← Vd_in ; // set of activated nodes

2 Vout ← ∅ ; // set of spread nodes

3 stopSpread ← f alse ; // boolean checking whether to stop CSA or not

4 while ( |Vin | > 0 AND !stopSpread ) do
5 vi ← дet F ir inдNode(Vin ) ; // node with highest activation value

6 Vin ← Vin − {vi } ; // remove firing node from Vin
7 if (checkRestr ict ions(vi , params .pread justment )) then
8 Ei j ← дetN eiдhbors(vi ) ; // set of outgoing edges from vi to the

set of direct neighbors vj
9 foreach ei j ∈ Ei j do

10 // Using edge weight mapping fWe (ei j )
11 ∆input (vj ) ← Output (vi ) × fWe (ei j ) × (1 − γ ) ; // the

contribution of neighbor vi through ei j .
Output (vi ) = Activation(vi ) i.e., the activation value of
vi

12 Input (vj ) ← Input (vj ) + ∆input (vj ) ; // input value of vj
13 Output (vj ) ← normalize(Input (vj )) ; // output of vj i.e.,

its activation value after normalization function

14 if (vj < Vin ) then
15 Vin ← Vin ∪ {vj } ; // add neighbor vj to the set of

activated nodes Vin
16 else
17 // Molecules Construction and Processing

18 if (vj ∈ Vout ) then
19 if (isHybr id (ei j )) then
20 mi ← createMolecule(ei j ) ; // new molecule

mi
21 mi ← appendFromMolecules(mi , Mout ) ;

// append nodes and edges from existing
molecules in Mout to the newly created
molecule mi

22 Mout ← Mout ∪ {mi } ; // add mi to Mout
23 else
24 Mout ← appendToMolecules(ei j , Mout ) ;

// append current neighbor ei j to existing

molecules in Mout
25 end
26 end
27
28 end
29 end
30 Vout ← Vout ∪ {vi } ; // add firing node vi to Vout after

activation’s propagation is done

31 end
32 stopSpread ← checkRestr ict ions(params .postad justment );
33 end
34 Mout ← scoreAndRankMolecules(Mout , alpha, beta) ; // assign weights

to molecules in Mout calculated by fWm using α and β parameters. Rank

the molecules in descending order following their individual weights.

35 returnMout ;

the current firing node to the set of spread nodesVout (line 30) so it
could be visited for molecules processing in future iterations. The
same process repeats until Vin has no further nodes to process or
post-adjustment constraints are met i.e., I and T (lines 4 and 32).

As for the activation process, each explored node vi contributes
to the input of its neighbor vj by ∆input (vj ) ← Output(vi ) ×

fW (ei j ) × (1 − γ ) (line 11) where Output(vi ) is its current acti-
vation value (i.e., Activation(vi )), fW (ei j ) computes the weight
wei j of the link ei j connecting vi to vj (See Section 5.3.1) and
(1 − γ ) is the decay factor. Each ∆input (vj ) is then added to to the
input of vj i.e., Input(vj )8 (line 12). The actual activation value
Activation(vj ) = Output(vj ) of a node vj is obtained by normaliz-
ing the sum of all the contributions it receives (line 13). HM_CSA

8At start time, the input value Input (vj ) is set to the initial activation value of vj
i.e., 1 for start nodes and 0 for others.

uses a simple feature scaling function9 to rescale values between 0
and 1.

The usual output of a CSA-based algorithm is a list of spread
nodes Vout ranked by their activation values. In some applications,
the output is augmented with subgraphs consisting of the shortest
paths connecting start nodes to output nodes [10].

Illustrative Example: consider the following user’s natural language
query: q = “Solar factors of windows" applied on the graph illus-
trated in Figure 3. After query interpretation module, solarFactor1
and window1 are matched and selected as start nodes. Consider
applying the standard CSA with these start nodes, the given graph,
D = 5, and F = 0 as inputs. At termination point, one of the re-
sulting spread nodes is paraд1. The latter is related to d1 as it is
part of it and to d2 as it references one of its sections. Thus, neither
presenting paraд1 as a single node result, nor within its augmented
subgraph that connects it to the start nodes (e.g.,paraд1→ sect1→
solarFactor1) would help the user in getting this information. He
still need to search for relevant structural and domain-specific con-
text to understand the result, which is time and effort consuming
especially in large graphs.

5.2 Molecules Construction and Processing
One naive way to construct the molecules from the standard CSA
is to post-process the nodes in Vout . However, this would require
re-exploring connected nodes inVout . Instead, HM_CSA integrates
the molecule construction process in the graph traversal while
fetching and activating neighboring nodes as described in the red-
highlighted section of Algorithm 1 (lines 17-26).

Two cases arise when processing a neighborvj ∈ Vout connected
to vi through an edge ei j : either ei j is hybrid (i.e., ei j = eh ) or not
(i.e., ei j = es or ei j = ed ). In the first case (lines 19-22), a new
molecule mi is constructed (according to Definition 4) with ei j
being the core of this molecule (line 20). Since a molecule should be
also made of contextual information, HM_CSA appends connected
nodes (except those connected through hybrid edges) from existing
molecules inMout , created in previous iterations, whenever one of
the core’s nodes (i.e., eh .vs or eh .vd ) is matched in these molecules
(line 21). For instance, if eh .vs already exists in moleculemk ∈ M ,
the structural nodes ofmk will be selected and added to the newly
created molecule. In the second case where an edge ei j is not hybrid
(lines 23-25), HM_CSA adds it to existing molecules inMout where
either vj or both vj and vi exist (line 24).

Illustrative Example: Considering the same query q as in Section 5.1
and the same inputs, we apply our HM_CSA on the graph of Fig-
ure 3. This results in three molecules constructed from spread
nodes (i.e., all nodes except acoustic1) and their connecting edges:
m1, m2, and m3 having cores eh1 = (solarFactor1, sect1), eh2 =
(window1, sect1), and eh3 = (thermal1, sectB) respectively. The
core of each molecule holds the central information from which
other relevant contextual information is provided by either its con-
nected structural nodes or its domain-specific ones. Following the
example from Section 5.1, paraд1 is now part of the three molecules.
paraд1 plays different roles in each of the molecules. Inm1 andm2,
the relation (paraд1, sect1) adds to eh1 and eh2 an inter-document

9Output (vj ) =
Input (vj )−Inputmin
Inputmax −Inputmin

where Inputmin , Inputmax are respec-
tively the minimum and the maximum values of all nodes’ inputs in the graph.



SAC ’19, April 8–12, 2019, Limassol, Cyprus Nathalie Charbel, Christian Sallaberry, Sebastien Laborie, and Richard Chbeir

link information. Inm3, the relation (paraд1, sectB) adds to eh3 con-
tainment information. This allows the user to better interpret the
results, especially when he tracks cross-document dependencies,
which is challenging and time-consuming.

5.3 Weight Mapping
In HM_CSA, the edge weight mapping function fWe , used in the
blue-highlighted section of Algorithm 1, is the weighting function
that affects the most the output of the search algorithm. This is
because it directly controls the contributions of neighboring nodes
on the activation value of a given node (lines 11-13), which in
turn, affects the final weight of the hybrid molecule query answers
encapsulating it (line 34). In the literature, however, defining an
edge weighting function remains application dependent [10]. In
the following, we present weighting functions suitable for the char-
acteristics of hybrid molecules:

5.3.1 Edge Weight Mapping. The weight we of an edge e ∈ E is
calculated by fWe (e). We use the following strategies depending on
the edge type in Gδ :
• a structural-based edge weight is a data design issue. It is
set by the corpus expert to best suit the application. For
instance, some applications might favor inter-document de-
pendencies (such as references between documents) over
other structural-based relations such as the whole-part rela-
tions between structural elements.
• a domain-specific edge weight uses the specificity measure to
reflect the importance of domain-specific edge. The rationale
is that the less incoming edges with the same label, the more
important the edges become for a node. This measure is
commonly used in the literature of semantic graphs [10, 13].
• a hybrid edge weight sets the importance of a link between
two different nodes: a domain-specific node describing the
content of a structural-based node. The value of a domain-
specific node can be perceived as a term and the structural-
based node as a document in a TF-IDF like notion [13]. The
rationale is that the weight value is directly proportional to
the number of occurrences of the domain-specific informa-
tion contained in a structural element and inversely propor-
tional to the number of occurrences of the domain-specific
information contained in other structural elements.

Based on the above strategies, the edge weight mapping fWe (ei j )
(line 11) that assigns a weightwei j ∈W to an edge ei j ∈ E connect-
ing a node vi ∈ V to a node vj ∈ V , is defined as follows:

fWe (ei j ) =


static(ei j ) ∈ [0, 1], if ei j = es

1
f an−inlab (vj )

∈ ]0, 1], if ei j = ed

TF (si ,vj ) × IDF (si ,Vs ) ∈ [0, 1[, if ei j = eh

where:
• static(ei j ) assigns a static weightwes to a structural-based
edge es ∈ Es based on prior knowledge provided by the
corpus expert.
• 1

f an−inlab (vj )
assigns aweightwed to a domain-specific edge

ed ∈ Ed based on the specificity of the edge, such that:
– f an − inlab (vj ) is the number of incoming edges toward
vj having the same label lab of ei j , where lab = fLab (ei j )
(See Definition 3).

• TF (si ,vj )×IDF (si ,Vs ) assigns a weightweh to a hybrid edge
eh ∈ Eh , such that:
– TF (si ,vj ) is the frequency of the value si of the domain-
specific nodevi ∈ Vd occurring in a structural-based node
vj ∈ Vs (e.g., a document or a part of a document), where
si = fVal (vi ) (See Definition 3).

– IDF (si ,Vs ) is the inverse frequency of the value si of the
domain-specific node vi ∈ Vd occurring in the set of all
structural-based nodes Vs .

5.3.2 Node Weight Mapping. The weight wv of a node v ∈ V
is calculated by fWv (v) based on its final activation value i.e.,
fWv (v) = Activation(v) ∈ [0, 1],∀v ∈ V .

5.3.3 Molecule Weight Mapping. The weight wm of a molecule
m ∈ M is calculated by fWm (m) based on the weights of its nodes:

• fWm (m) =
α×

∑
wvs +β×

∑
wvd

|Vm |
∈ [0, 1], where:

– wvs and wvd are the weights computed by fWv (v) and
assigned to a structural-based nodevs ∈ Vm and a domain-
specific node vd ∈ Vm respectively.

– |Vm | is the total number of nodes inm.
– α and β are the weight parameters that balance the con-
tribution of the structural and domain-specific parts ofm,
such that α and β ∈ [0, 1].

Note that themolecule weight mapping fWm (m) is used in HM_CSA
by the scoreAndRankMolecules function (line 34) which computes a
weightwm for each hybrid molecule-based answerm ∈ Mout . The
weights of molecules are then ranked in descending order.

6 EXPERIMENTAL STUDY
We conducted experiments on real-world implementation of our ap-
proach in the construction industry within FEED2SEARCH frame-
work. The main purpose of the experiments is to validate that our
approach can provide relevant hybrid molecules using HM_CSA
w.r.t. the user queries. In this paper, we will present the results
related to the effectiveness of HM_CSA.

6.1 Experimental Configuration
6.1.1 Queries. We collected 25 queries from an Institute for the
Energy Transition of the building based on frequently required
information searched by actors with different expertise (architects,
technicians and engineers) throughout the different stages of real
world construction projects.We divided the queries into two groups:
Query Group 1 (q1 → q12) for simple queries (firing start nodes of
1 concept type) and Query Group 2 (q13 → q25) for more diverse
queries (firing start nodes of 2 or more concept types).

6.1.2 Tightly Coupled Semantic Graph. We generated a dataset of
30 000 RDF triples10 over a corpus of 15 heterogeneous interde-
pendent documents (total corpus size of 112MB) provided by the
construction industry (See Table 1). We relied on the ifcOWL11
ontology to create an adapted domain-specific ontology (built on
OWL 2 in the Protégé environment and serialized in RDF/XML).
We relied on Java-based libraries12 and tailored XSLT processors
to automatically generate the RDF instances graph.

10We used Resource Description Framework (https://www.w3.org/RDF/) to represent
our instances graph to take advantage of its simplicity and modularity features.
11Available at http://www.buildingsmart-tech.org/ifcOWL/IFC4
12Mainly GATE 8.1, Apache Jena 3.2.0, Apache Tika 1.14 Toolkit and OxGarage.

https://www.w3.org/RDF/
http://www.buildingsmart-tech.org/ifcOWL/IFC4
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6.1.3 Metrics. We use the following metrics: (i) Precision P to
identify the number of relevant hybrid molecules among the re-
trieved results, (ii) RecallR to identify the number of relevant hybrid
molecules that are retrieved among the total number of expected
relevant results, (iii) F1score to evaluate the harmonic mean of P
and R, and (iv) Mean Average Precision MAP to evaluate the rank-
ing of relevant results. These metrics are widely adopted in IR. They
are detailed in [9]. Note that, for the assessment of the relevance of
a molecule used in the calculation of the above metrics, we relied
on users’ judgments. For each query, we asked 12 users (who did
not take part in the queries formulation), highly involved in the
construction project from which the documents were taken, to pro-
vide a score for each answer (1 for relevant and 0 for not relevant)
independently from each other. Afterwards, the users were asked
to validate the judgments collectively. These users also provided
the false negative hybrid molecules13 for each query.

6.1.4 Implementation. Our query processing prototype is imple-
mented in Java using Apache Jena 3.2.0 (for Ontology and RDF
graph manipulation) and GATE 8.1 APIs (for NLP and Semantic
Annotation of queries). It also implements the proposed HM_CSA.

6.2 Experiment 1: Precision (P ), Recall (R) and
F1 scores

We first evaluated the effectiveness of HM_CSA for the 25 given
queries in terms of P , R and F1score . We studied the impact of con-
straint parameters, mainly the firing threshold F and the maximum
spread distance D, on the query answers. To do so, we considered 3
different values for F (0.1, 0.3, and 0.5) and 4 different values for D
(2,4,6, and 8). This resulted in 12 run configurations for each query
execution. We further examined the influence of the diversity of
the queries considering the two groups. Figure 4 shows the average
values of P , R, and F1score per run configuration per query group.

We select the optimal values of constraint parameters based on
the results of the F1score . Figure 4 shows that the highest average
values of F1score for both Query Group 1 (See Figure 4a) and Query
Group 2 (See Figure 4b) are attained with F = 0.3 and D = 4
(F1score ≃ 0.75). The optimal values of the constraint parameters
portray a trade off between P and R. For instance, high precision
is achieved with higher F values as only the most relevant nodes
(with very high activation values) are selected. However, a high F
value restricts the spread of the activations in the graph resulting in
lower recall values. We also notice that, with the optimal constraint
parameters (F = 0.3 and D = 4), HM_CSA attains slightly higher
average precision and lower average recall with Query Group 1
when compared to Query Group 2. This is because increasing the
concept types of the start nodes ensures that larger portion of the
graph is searched but at the cost of increased false positive results.

6.3 Experiment 2:Mean Average Precision
(MAP) values

We also evaluated the ranking of the hybrid molecule-based query
answers considering the optimal constraint parameters of HM_CSA
(F = 0.3 and D = 4 from the previous experiment) over the same
two groups of queries. We varied α and β parameters (See Sec-
tion 5.3) and studied their impact on the MAP values of HM_CSA.
We chose 3 configurations: (i) α = 0 and β = 1, (ii) α = 1 and

13For the sake of simplicity, they only pointed missing hybrid molecules’ cores.

(a) Query Group 1

(b) Query Group 2

Figure 4: Average Precision (P ), Recall (R), and F1score of
HM_CSA considering different values of threshold F and
maximum spread distance D for (a) Query Group 1 and (b)
Query Group 2.

Table 1: Heterogeneous document corpus.

Format Content Description

5 docx

General Technical Specifications
Electrical Specifications

Exterior Facades and Carpentry
Thermal Properties
Acoustic Properties

7 pdf

Electrical Drawing
HVAC Drawing
Wall Composition
Confort Analysis

Environmental Impacts
Environmental and Energy Impacts

Carpentry and Glazing
1 xlsx Thermal Regulations

2 png Material Pattern Photo
Sealing Test

Figure 5: Average MAP values of HM_CSA per α and β con-
figuration per Query Group.

β = 0, and (iii) α = 1 and β = 1 to emphasize respectively domain-
specific nodes’ contribution, structural-based nodes’ contribution
and the equal contribution of both in the overall weight of a hybrid
molecule. These contributions also reflect the impact of the differ-
ent strategies adopted for the weight mapping (See Section 5.3).
Figure 5 shows average values of MAP per configuration per group.

The results show that considering only the contribution of domain-
specific nodes (i.e., α = 0, β = 1), Query Group 2 attains a higher
average MAP value in comparison to the result obtained when
considering only the contribution of structural-based nodes (i.e.,
α = 1, β = 0). Query Group 1 shows an opposite behavior as it
has less concept types for starting nodes, thus it is less influenced
by the domain-specific contribution. The highest values of MAP
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(MAP= 0.62 for Query Group 1,MAP= 0.74 for Query Group 2) are
reached when taking into account both the structural-based and
domain-specific aspects in the weight calculation of the molecules
(i.e., α = 1, β = 1). This further highlights the importance of the
hybrid aspect of the molecule.

To sum up, in the context of the given heterogeneous document
corpus, the two experiments validate that, using optimal constraint
and weight parameters, HM_CSA reaches an overall F1score of 0.75
and average MAP values > 0.6, which is a promising result in IR.
This demonstrates that HM_CSA is capable of providing relevant
query answers in the form of hybrid molecules i.e., the augmented
contextualized results satisfy the user’s needs.

7 RELATEDWORK
Molecules, mainly RDF molecules, have received a wide attention
over the past two decades within different research areas. It is first
introduced by Ding et al. [5] for the purpose of tracking RDF prove-
nance and evaluating trustworthiness against RDF data in semantic
Web applications. They define it as the finest and lossless connected
subgraph decomposition of the original RDF graph based on Func-
tional Properties (FP) and Inverse Functional Properties (IFP), which
are specified in a background ontology. Endris et al. [6] use RDF
Molecule Templates (RDF-MTs) in the context of federated SPARQL
query processing over RDF datasets. They define a molecule as a
set of triples sharing the same subject. Their RDF-MTs model the
structure of the data and guide the query decomposition. In our
work, we also perceive molecules as a graph decomposition into
subgraphs. Yet, we introduce hybrid molecules, independently of
the serialization technology, and adjust the decomposition to enrich
the output of current IR approaches over heterogeneous data.

In IR, many research works have attested the benefits of incor-
porating knowledge bases and domain specific ontologies in their
index, query, and search process [8] to overcome the semantic gap
between keywords found in the documents and those in the user’s
query [7]. This have been rapidly migrating into industrial applica-
tions [16]. The main advantage resides in maximizing the precision
and recall w.r.t. to traditional IR [9] where the search is limited to
syntactic keyword matching. Tekli et al. [13] build upon the idea of
semantic aware search to target textual databases. They propose
a tightly coupled inverted index graph by combining a semantic
network and a standard inverted index. In contrast, other works
used tightly coupled semantic graphs to describe concepts appear-
ing in heterogeneous document collections [4, 10]. Likewise, we
leverage information semantics and domain-specific ontologies in
an IR approach applied on tightly coupled semantic graphs describ-
ing heterogeneous document corpora. However, we differ from the
existing approaches by further providing augmented results de-
scribing the document structure and the inter and intra-document
links, which enriches the search results with helpful information.

Among the many heuristic graph-based search methods [15],
CSA has been widely adopted in IR applications where it proved its
effectiveness [1, 10]. Cohen et al. [17] use CSA algorithm to realize
intelligent matches between user requirements and relevant agents
in a Q&A application. Crestani et al. [14] were the first to apply CSA
technique to the World Wide Web to retrieve information using
an ostensive approach to querying similar to query-by-example.
Sun et al. [11] combine CSA algorithm with a spatial ontology to
improve results in associative retrieval of spatial big data. One of
the most prominent uses of CSA is the one proposed by Rocha

et al. [10]. It consists of the combination of CSA techniques with
traditional search engine techniques for searching in the Semantic
Web. Although our approach is also inspired by CSA, it searches for
relevant hybrid molecules instead of single nodes. We also differ
from existing CSA-based approaches in the different strategies
adopted for the weight mapping to cope with the characteristics of
hybrid molecules and provide effective ranking.

8 CONCLUSION
This paper introduces hybrid molecules as novel augmented query
answers for IR systems over heterogeneous document corpora. The
hybrid molecules are presented within a novel generic framework:
FEED2SEARCH. They are generated through HM_CSA algorithm,
which is built on the Constrained Spread Activation (CSA). They
provide helpful structural and domain-specific contextual infor-
mation. Experiments conducted on projects in the construction
industry show promising real-world results.

These findings and feedback from users motivate us to further
evaluate our research in other application domains.We are currently
implementing our work in the medical domain, which also involves
heterogeneous dependent data and would benefit from augmented
query answers. In the future, we plan to evaluate the richness of
the hybrid molecule-based query answers w.r.t. the state-of-art in
IR in order to quantify the impact of the contextual information of
the results on the user’s experience, especially regarding the time
needed by the users to interpret and track the results. Additionally,
we propose the following future improvements to achieve even
higher effectiveness values: (i) consider more strategies for firing
start nodes in HM_CSA (e.g., adopting advanced disambiguation
techniques [12] beforehand, in the query interpretation stage), and
(ii) investigate alternative weight mapping functions.
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