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The increased availability of interdependent heterogeneous data generated from different sources is fostering the incorporation of semantic knowledge-based graphs and ontologies in information management and search applications. Most of the existing Information Retrieval systems mainly focus on the semantic analysis of the information contained in heterogeneous data. In their results, they provide documents as query answers without considering (i) detailed information regarding relevant granularity levels of the documents, and most importantly (ii) dependencies between the documents or parts of the documents. To overcome these limitations, we propose a graph-based search and ranking algorithm within a generic framework that retrieves the data in the form of a novel augmented data structure for query answers, which we call hybrid molecules. The latter consist of well-defined subgraphs representing relevant contextual information regarding domainspecific information coupled with structural information related to the document. This improves the search results and reduces users' efforts in tracking and interpreting them. Experiments conducted on real world data corpus using projects from the building construction industry validate the effectiveness of our approach.

looking for a particular information have to search through heterogeneous documents provided by different sources. It is also common for the documents to have several dependencies between them (e.g., documents with related topics, references between documents or parts of documents) [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF]. Figure 1 illustrates a sample of two interdependent documents from the construction industry: d1 (a technical specification document) and d2 (a material thermal report) related to the same project. Parts of document d1 describe acoustic and thermal properties (section A and section B respectively). Document d2 describes a thermal study which includes details on the solar factors of windows (section 1), implicitly described by "SW coefficient". The reference relation between the two documents shows that section 1 of d2 contains complementary information to section B of d1. Consider that the user is searching for "the solar factor of windows". He is not interested in getting only relevant documents, but also relevant contextualized and precise answers (e.g., the value of solar factor, the part of the document describing it and the related parts of documents containing additional information), so he makes less efforts in interpreting the results.

Traditional Information Retrieval (IR) approaches mainly rely on syntactic keyword-based search [START_REF] Christopher | Introduction to information retrieval[END_REF]. To overcome their limitations, there has been significant interest in taking semantics into account leading to the emergence of Semantic Information Retrieval (SIR) systems. Although suitable for several applications [START_REF] Fausto | Concept search[END_REF][START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF][START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF], SIR systems provide documents as query answers without considering in their results (i) detailed information regarding relevant granularity levels of the documents (e.g., section B of d1 in Figure 1), and most importantly (ii) inter and intra-document dependencies (e.g., the reference between section B of d1 and section 1 of d2).

In this paper, we provide a solution to the aforementioned limitations of current SIR systems. In [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF][START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF], authors demonstrated the importance of adopting a tightly coupled semantic graph 1 . Similarly, we take advantage of such a model to provide a novel data structure for query answers, which we call hybrid molecules. The latter consist of hybrid subgraphs encapsulating domain-specific information coupled with related structural information of the documents [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF]. The hybrid molecule-based query answers bring in helpful contextual information of the documents improving the search results and reducing users' efforts in tracking and interpreting them.

In this context, we tackle the following challenges: (i) formally defining the hybrid molecule's structure in view of the characteristics of a tightly coupled semantic graph and the definition of a molecule concept in the literature [START_REF] Li | Tracking rdf graph provenance using rdf molecules[END_REF][START_REF] Kemele | MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates[END_REF], and (ii) adopting an effective graph-based approach to construct the hybrid molecules based on the associated definition and rank them conveniently.

The literature provides a vast array of graph-based search algorithms [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF]. Constrained Spread Activation (CSA) [START_REF] Paul | Information retrieval by constrained spreading activation in semantic networks[END_REF] stands out as a simple yet effective solution in many IR applications [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Shengtao | A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model[END_REF][START_REF] Fabio | Searching the web by constrained spreading activation[END_REF][START_REF] Paul | Information retrieval by constrained spreading activation in semantic networks[END_REF]. Inspired by this search approach, we propose an algorithm which we call HM_CSA that provides a ranked list of hybrid molecules as query answers instead of single nodes.

The contributions of this paper which can be summarized by • Hybrid molecule, a novel data structure for query answers • HM_CSA, an algorithm that constructs and ranks relevant hybrid molecules from a tightly coupled semantic graph are presented within a SIR framework entitled FEED2SEARCH (FramEwork for hybrid molEcule-baseD SEmantic SEARCH) where users submit their natural language (e.g., plain English text) queries over a heterogeneous document corpus and obtain relevant answers in the form of hybrid molecules. This paper is structured as follows. In Section 2, we introduce FEED2SEARCH. We present in Section 3 fundamental notions of a tightly coupled semantic graph required to understand the hybrid molecules, which we introduce in Section 4. Section 5 integrates the hybrid molecules in a graph-based search and ranking algorithm. In Section 6, we evaluate the proposed solution on data collected from projects in the construction industry. Section 7 reviews the related work, and Section 8 concludes remarks and future work.

FEED2SEARCH FRAMEWORK

This section presents FEED2SEARCH, a novel generic framework which stands for FramEwork for hybrid molEcule-baseD SEmantic SEARCH over a heterogeneous document corpus. The main purpose is to facilitate the query processing over a heterogeneous document corpus for non computer expert users by providing them with relevant answers in response to their natural language queries. As presented in Figure 2, FEED2SEARCH is made of two interconnected layers where the upper layer uses data and services provided by the lower layer. The main purpose of the bottom layer (Indexing) is to index a given heterogeneous document corpus and provide a tightly coupled semantic graph (See Definition 3) made of instances describing the document corpus. This is done through annotators handling:

(1) Automatic Metadata Extraction of the documents to generate structural-based instances i.e., instances describing the documents, their metadata, their decomposition into different granularity levels and relations between these granularities [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF]; (2) Natural Language Processing (NLP) and Text Engineering [START_REF] Cunningham | A framework and graphical development environment for robust NLP tools and applications[END_REF] to identify regular expressions and generate further relations (such as references) between documents or parts of documents; (3) Semantic Annotation [START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF] to automatically generate domain-specific instances based on any relevant external domain-specific ontology; and (4) Tight Coupling to generate relations between domain-specific instances and structural-based instances. A coupling between two instances of different types is generated if a domain-specific instance was previously extracted, in the Semantic annotation module, from the content of a structural-based instance.

The upper layer (Query processing) comprises four sequential modules to process the query from the end-user's input (natural language query) to the final system's output (documents or parts of documents with relevant contextual information presented in SERP2 -like results). In the first module, query interpretation runs classical NLP techniques followed by semantic annotation. This module outputs a set of domain-specific instances extracted from the query based on the domain-specific ontology at hand. These instances are then considered as input for the second module where they are matched3 against instance nodes of the tightly coupled semantic graph. The matched instance nodes are used to initialize HM_CSA as described in Section 5. The third module uses HM_CSA to output a ranked list of hybrid molecules. The forth module transforms, through several operations, the ranked list of hybrid molecules into SERP-like results.

In this paper, we particularly focus on the Hybrid Molecule-based Search and Ranking modules as they comprise our two contributions (the Hybrid Molecules and HM_CSA).

PRELIMINARIES

We rely on a specific type of semantic graphs i.e., a tightly coupled semantic graph to couple domain-specific information with its related structural information within a heterogeneous document corpus. This type of graph leverages semantics at the finest granularity levels of the documents. We generate this graph using two underlying external resources: a heterogeneous document corpus and a background domain-specific ontology.

Underlying External Resources

We define a heterogeneous document corpus and a domain-specific ontology as follows: Definition 1 (Heterogeneous Document Corpus). A heterogeneous document corpus δ is defined as a set of n documents originated from different sources. The structure of the documents does not necessarily follow a common standard. Formally, δ = {d 1 , . . . , d n }. A document d i ∈ δ is characterized by a set of p metadata (e.g., author, format, creation date, etc.) and a set of q media (e.g., text, image, video, or audio), such that d i = {meta 1 , . . . , meta p , med 1 , . . . , med q }. Further, a media med l ∈ d i is made of s media components, such that med l = {medComp 1 , . . . , medComp s }, (e.g., section, paragraph, etc. for the text; still region, object, etc. for the image). • f L : R → L is the association function that assigns a label l ∈ L to a domain-specific relation r ∈ R, hence f L (r ) = l.

For instance, f L (r 1 ) = "containsElement".

For ease of presentation, O D (C, R, Lit, A, L, f L ) will be referred to as O D in the remainder of the paper.

Tightly Coupled Semantic Graph

In the context of a SIR application, we need to leverage the semantics of O D over a heterogeneous document corpus δ related to a domain D. A coupling is required between concepts of O D and elements of δ on different granularity levels. This ensures the ability to locate a relevant information at different levels of precision, and most importantly tracking the document interdependencies at finest structural elements.

Existing works [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF][START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF]] have adopted tightly coupled semantic graphs in their approaches. Rocha et al. [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF] couple web pages and a domain-specific ontology. Tekli et al. [START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF] couple a lexical semantic network and a standard inverted index. Charbel et al. [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF] couple two semantic graphs: the first one represents the documents, their structure and relations between them, and the second one represents concepts and relations of pluggable domain-specific ontologies. Inspired by these approaches, we formally define our tightly coupled semantic graph. We also provide examples based on Figure 3, which resumes our motivating scenario (See Figure 1) in the form of the following graph model: Definition 3 (Graph Model). Given a heterogeneous document corpus δ and a domain-specific ontology O D , we define

G δ (V , E, V al, f V al , Lab, f Lab ,W , f W v , f W e )
as the instances graph describing the structural and domain-specific knowledge in δ , where:

• V is the set of nodes representing instances of O D and δ : 

-V = V d ∪ V s . -V d ⊂ V is
-V d ∩ V s = ∅ 4 .
• E is the set of directed edges representing relations between nodes: 

-E = E d ∪ E s ∪ E h . -E d ⊆ V d ×V d is
. -E d ∩ E s = ∅, E s ∩ E h = ∅, E d ∩ E h = ∅, and E d ∩ E s ∩ E h = ∅ 5 .
• V al is the set of node literal values 6 . For the sake of simplicity, we omit these values from the graph depicted in Figure 3.

• f V al : V → V al is the association function that assigns to a node v ∈ V a literal value val ∈ V al, hence f V al (v) = val; e.g., f V al (sect1) = "SW Coefficient of Windows"
where "SW Coefficient of Windows" is the string value associated to sect1. • Lab is the set of edge labels.

• f Lab : E → Lab is the association function that assigns a label lab ∈ Lab to an edge e ∈ E, hence f Lab (e) = lab; e.g., f Lab (e s1 ) = "hasPart". • W is the set of both nodes and edges' weights. For ease of presentation,

• f W v : V → W is the node weight mapping that assigns a weight w v ∈ W to a node v ∈ V . • f W e : E →
G δ (V , E, V al, f V al , Lab, f Lab ,W , f W v , f W e
) will be referred to as G δ in the remainder of the paper.

HYBRID MOLECULES

We introduce hybrid molecules which we build upon the definition of molecules in the literature (e.g., [START_REF] Li | Tracking rdf graph provenance using rdf molecules[END_REF]). Molecules are subgraphs of connected nodes. They are extracted from an initial graph using a decomposition function. We propose adjusting the decomposition to better cope with our tightly coupled semantic graph and provide meaningful subgraphs. Definition 4 (Hybrid Molecule). Given the instances graph G δ describing a heterogeneous document corpus δ , we define a hybrid molecule m(e h , V m , E m , w m , f W m ), also denoted by m ∈ M, as a subgraph decomposition result from the initial graph G δ based on a coupling between a domain-specific node and its related structuralbased node, where: 

• M = d E h (G δ )
• V m ⊆ (V s ∪ V d )

HYBRID MOLECULE-BASED SEARCH AND RANKING BY CONSTRAINED SPREAD ACTIVATION (HM_CSA)

After having introduced the hybrid molecule's structure, we propose in this section a graph-based search and ranking algorithm in order to generate a ranked list of hybrid molecules as query answers within a SIR system. CSA [START_REF] Paul | Information retrieval by constrained spreading activation in semantic networks[END_REF] is one form of the Breadth-First Search (BFS) family of graph-based search algorithms [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF]. It works by spreading out the activation from a set of start nodes to adjacent nodes progressively until predefined constraints are met. We consider CSA as a suitable search strategy for our tightly coupled semantic graph as (i) it handles the heterogeneity of the graph since it can explore possibly relevant structural-based and domain-specific nodes located anywhere in the graph, (ii) it constructs progressively multiple target nodes from activated nodes, and (iii) it supports the incorporation of useful constraints, either at the beginning to select start nodes or at termination point to stop the spreading in the graph. Although, in its standard form, CSA stands out as an effective and suitable solution for many IR applications [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Shengtao | A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model[END_REF][START_REF] Fabio | Searching the web by constrained spreading activation[END_REF], it outputs a ranked list of single nodes. Thus, we propose extending CSA to HM_CSA to generate a ranked list of hybrid molecules as query answers. HM_CSA also adapts edge weights differently to handle the characteristics of hybrid molecules and rank them appropriately.

Constrained Spread Activation (CSA)

HM_CSA builds on the CSA theory as presented in Algorithm 1 (excluding the red-highlighted area). The input of HM_CSA consists of (i) a set of domain-specific nodes V d _in generated from the query interpretation module as they matched the user query (See Section 2), (ii) a tightly coupled semantic graph G δ representing a heterogeneous document corpus δ , (iii) weight parameters α, β ∈ [0, 1] that balance the contribution of structural and domain-specific nodes respectively in the calculation of a molecule's weight, and (iv) a set of constraints parameters, params. The latter consist of preadjustment parameters to be checked before each spread iteration occurs (e.g., a firing threshold F , and a maximum spread distance D from start nodes), post-adjustment parameters (e.g., a maximum number of iterations I , and a maximum processing time T ), and spread configurations (e.g., an activation percent decrease γ which imposes a decay on the propagation of the activation through the graph). The choice of these parameters is application-dependent.

We use two sets of nodes V in and V out . The former is fed with activated nodes as the spread activation processes through the graph while the second consists of spread nodes i.e., nodes which have activated others and will go in the final output. At start time, V in contains previously selected start nodes V d _in where the activation value Activation(v i ) of each node v i ∈ V in is set to 1 (max value), and V out is initially empty. Each iteration consists of removing v i from V in (lines 5-6) i.e., the node with the highest activation value 7 , and check whether it is allowed to spread its activation or not to its neighbors by verifying if its distance to start nodes is less than or equal to D and its activation value is higher than or equal to F (line 7). If so, 4 main steps are applied: (1) exploring neighbors (line 8); (2) spreading out activation to each neighbor (lines 9-13); (3) processing each neighbor (lines 14-15) i.e., adding it to the set of activated nodes V in if it is visited for the first time; and (4) adding 

∆ input (v j ) ← Output (v i ) × f We (e i j ) × (1 -γ ) ; // the contribution of neighbor v i through e i j . Output (v i ) = Act ivat ion(v i ) i.e., the activation value of v i 12 I nput (v j ) ← I nput (v j ) + ∆ input (v j ) ; // input value of v j 13 
Output (v j ) ← normal ize(I nput (v j )) ; // output of v j i.e., its activation value after normalization function the current firing node to the set of spread nodes V out (line 30) so it could be visited for molecules processing in future iterations. The same process repeats until V in has no further nodes to process or post-adjustment constraints are met i.e., I and T (lines 4 and 32).

14 if (v j V in ) then 15 V in ← V in ∪ {v j } ; //
As for the activation process, each explored node v i contributes to the input of its neighbor [START_REF] Shengtao | A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model[END_REF] where Output(v i ) is its current activation value (i.e., Activation(v i )), f W (e i j ) computes the weight w e i j of the link e i j connecting v i to v j (See Section 5.3.1) and (1γ ) is the decay factor. Each ∆ input (v j ) is then added to to the input of v j i.e., Input(v j )8 (line 12). The actual activation value Activation(v j ) = Output(v j ) of a node v j is obtained by normalizing the sum of all the contributions it receives (line 13). HM_CSA uses a simple feature scaling function 9 to rescale values between 0 and 1.

v j by ∆ input (v j ) ← Output(v i ) × f W (e i j ) × (1 -γ ) (line
The usual output of a CSA-based algorithm is a list of spread nodes V out ranked by their activation values. In some applications, the output is augmented with subgraphs consisting of the shortest paths connecting start nodes to output nodes [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF].

Illustrative Example: consider the following user's natural language query: q = "Solar factors of windows" applied on the graph illustrated in Figure 3. After query interpretation module, solar Factor 1 and window1 are matched and selected as start nodes. Consider applying the standard CSA with these start nodes, the given graph, D = 5, and F = 0 as inputs. At termination point, one of the resulting spread nodes is paraд1. The latter is related to d1 as it is part of it and to d2 as it references one of its sections. Thus, neither presenting paraд1 as a single node result, nor within its augmented subgraph that connects it to the start nodes (e.g., paraд1 → sect1 → solar Factor 1) would help the user in getting this information. He still need to search for relevant structural and domain-specific context to understand the result, which is time and effort consuming especially in large graphs.

Molecules Construction and Processing

One naive way to construct the molecules from the standard CSA is to post-process the nodes in V out . However, this would require re-exploring connected nodes in V out . Instead, HM_CSA integrates the molecule construction process in the graph traversal while fetching and activating neighboring nodes as described in the redhighlighted section of Algorithm 1 (lines 17-26).

Two cases arise when processing a neighbor v j ∈ V out connected to v i through an edge e i j : either e i j is hybrid (i.e., e i j = e h ) or not (i.e., e i j = e s or e i j = e d ). In the first case (lines 19-22), a new molecule m i is constructed (according to Definition 4) with e i j being the core of this molecule (line 20). Since a molecule should be also made of contextual information, HM_CSA appends connected nodes (except those connected through hybrid edges) from existing molecules in M out , created in previous iterations, whenever one of the core's nodes (i.e., e h .v s or e h .v d ) is matched in these molecules (line 21). For instance, if e h .v s already exists in molecule m k ∈ M, the structural nodes of m k will be selected and added to the newly created molecule. In the second case where an edge e i j is not hybrid (lines 23-25), HM_CSA adds it to existing molecules in M out where either v j or both v j and v i exist (line 24).

Illustrative Example: Considering the same query q as in Section 5.1 and the same inputs, we apply our HM_CSA on the graph of Figure 3. This results in three molecules constructed from spread nodes (i.e., all nodes except acoustic1) and their connecting edges: m1, m2, and m3 having cores e h1 = (solar Factor 1, sect1), e h2 = (window1, sect1), and e h3 = (thermal1, sectB) respectively. The core of each molecule holds the central information from which other relevant contextual information is provided by either its connected structural nodes or its domain-specific ones. Following the example from Section 5.1, paraд1 is now part of the three molecules. paraд1 plays different roles in each of the molecules. In m1 and m2, the relation (paraд1, sect1) adds to e h1 and e h2 an inter-document 9 Output (v j ) = I nput (v j )-I nput min I nputmax -I nput min where I nput min , I nput max are respectively the minimum and the maximum values of all nodes' inputs in the graph. link information. In m 3 , the relation (paraд1, sectB) adds to e h3 containment information. This allows the user to better interpret the results, especially when he tracks cross-document dependencies, which is challenging and time-consuming.

Weight Mapping

In HM_CSA, the edge weight mapping function f W e , used in the blue-highlighted section of Algorithm 1, is the weighting function that affects the most the output of the search algorithm. This is because it directly controls the contributions of neighboring nodes on the activation value of a given node (lines 11-13), which in turn, affects the final weight of the hybrid molecule query answers encapsulating it (line 34). In the literature, however, defining an edge weighting function remains application dependent [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF]. In the following, we present weighting functions suitable for the characteristics of hybrid molecules: 5.3.1 Edge Weight Mapping. The weight w e of an edge e ∈ E is calculated by f W e (e). We use the following strategies depending on the edge type in G δ :

• a structural-based edge weight is a data design issue. It is set by the corpus expert to best suit the application. For instance, some applications might favor inter-document dependencies (such as references between documents) over other structural-based relations such as the whole-part relations between structural elements. • a domain-specific edge weight uses the specificity measure to reflect the importance of domain-specific edge. The rationale is that the less incoming edges with the same label, the more important the edges become for a node. This measure is commonly used in the literature of semantic graphs [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF][START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF]. • a hybrid edge weight sets the importance of a link between two different nodes: a domain-specific node describing the content of a structural-based node. The value of a domainspecific node can be perceived as a term and the structuralbased node as a document in a TF-IDF like notion [START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF]. The rationale is that the weight value is directly proportional to the number of occurrences of the domain-specific information contained in a structural element and inversely proportional to the number of occurrences of the domain-specific information contained in other structural elements.

Based on the above strategies, the edge weight mapping f W e (e i j ) (line 11) that assigns a weight w e i j ∈ W to an edge e i j ∈ E connecting a node v i ∈ V to a node v j ∈ V , is defined as follows:

f W e (e i j ) =          static(e i j ) ∈ [0, 1], if e i j = e s 1 f an-in l ab (v j ) ∈ ]0, 1], if e i j = e d T F (s i , v j ) × IDF (s i , V s ) ∈ [0, 1[, if e i j = e h
where:

• static(e i j ) assigns a static weight w e s to a structural-based edge e s ∈ E s based on prior knowledge provided by the corpus expert. • 1 f an-in l ab (v j ) assigns a weight w e d to a domain-specific edge e d ∈ E d based on the specificity of the edge, such that: -f anin l ab (v j ) is the number of incoming edges toward v j having the same label lab of e i j , where lab = f Lab (e i j ) (See Definition 3).

• T F (s i , v j )×IDF (s i , V s ) assigns a weight w e h to a hybrid edge e h ∈ E h , such that: -T F (s i , v j ) is the frequency of the value s i of the domainspecific node v i ∈ V d occurring in a structural-based node v j ∈ V s (e.g., a document or a part of a document), where

s i = f V al (v i ) (See Definition 3). -IDF (s i , V s )
is the inverse frequency of the value s i of the domain-specific node v i ∈ V d occurring in the set of all structural-based nodes V s .

5.3.2 Node Weight Mapping. The weight w v of a node v ∈ V is calculated by f W v (v) based on its final activation value i.e., f W v (v) = Activation(v) ∈ [0, 1], ∀v ∈ V . 5.3.3 Molecule Weight Mapping. The weight w m of a molecule m ∈ M is calculated by f W m (m)
based on the weights of its nodes: 

• f W m (m) = α × w vs +β × w v d |V m | ∈ [0, 1 

EXPERIMENTAL STUDY

We conducted experiments on real-world implementation of our approach in the construction industry within FEED2SEARCH framework. The main purpose of the experiments is to validate that our approach can provide relevant hybrid molecules using HM_CSA w.r.t. the user queries. In this paper, we will present the results related to the effectiveness of HM_CSA.

Experimental Configuration

6.1.1 Queries. We collected 25 queries from an Institute for the Energy Transition of the building based on frequently required information searched by actors with different expertise (architects, technicians and engineers) throughout the different stages of real world construction projects. We divided the queries into two groups: Query Group 1 (q 1 → q 12 ) for simple queries (firing start nodes of 1 concept type) and Query Group 2 (q 13 → q 25 ) for more diverse queries (firing start nodes of 2 or more concept types).

6.1.2 Tightly Coupled Semantic Graph. We generated a dataset of 30 000 RDF triples10 over a corpus of 15 heterogeneous interdependent documents (total corpus size of 112MB) provided by the construction industry (See Table 1). We relied on the ifcOWL 11ontology to create an adapted domain-specific ontology (built on OWL 2 in the Protégé environment and serialized in RDF/XML). We relied on Java-based libraries 12 and tailored XSLT processors to automatically generate the RDF instances graph.

6.1.3 Metrics. We use the following metrics: (i) Precision P to identify the number of relevant hybrid molecules among the retrieved results, (ii) Recall R to identify the number of relevant hybrid molecules that are retrieved among the total number of expected relevant results, (iii) F 1 score to evaluate the harmonic mean of P and R, and (iv) Mean Average Precision MAP to evaluate the ranking of relevant results. These metrics are widely adopted in IR. They are detailed in [START_REF] Christopher | Introduction to information retrieval[END_REF]. Note that, for the assessment of the relevance of a molecule used in the calculation of the above metrics, we relied on users' judgments. For each query, we asked 12 users (who did not take part in the queries formulation), highly involved in the construction project from which the documents were taken, to provide a score for each answer (1 for relevant and 0 for not relevant) independently from each other. Afterwards, the users were asked to validate the judgments collectively. These users also provided the false negative hybrid molecules 13 for each query. We first evaluated the effectiveness of HM_CSA for the 25 given queries in terms of P, R and F 1 score. We studied the impact of constraint parameters, mainly the firing threshold F and the maximum spread distance D, on the query answers. To do so, we considered 3 different values for F (0.1, 0.3, and 0.5) and 4 different values for D (2,4,6, and 8). This resulted in 12 run configurations for each query execution. We further examined the influence of the diversity of the queries considering the two groups. Figure 4 shows the average values of P, R, and F 1 score per run configuration per query group. We select the optimal values of constraint parameters based on the results of the F 1 score. Figure 4 shows that the highest average values of F 1 score for both Query Group 1 (See Figure 4a) and Query Group 2 (See Figure 4b) are attained with F = 0.3 and D = 4 (F 1 score ≃ 0.75). The optimal values of the constraint parameters portray a trade off between P and R. For instance, high precision is achieved with higher F values as only the most relevant nodes (with very high activation values) are selected. However, a high F value restricts the spread of the activations in the graph resulting in lower recall values. We also notice that, with the optimal constraint parameters (F = 0.3 and D = 4), HM_CSA attains slightly higher average precision and lower average recall with Query Group 1 when compared to Query Group 2. This is because increasing the concept types of the start nodes ensures that larger portion of the graph is searched but at the cost of increased false positive results.

Experiment 2: Mean Average Precision (MAP) values

We also evaluated the ranking of the hybrid molecule-based query answers considering the optimal constraint parameters of HM_CSA (F = 0.3 and D = 4 from the previous experiment) over the same two groups of queries. We varied α and β parameters (See Section 5.3) and studied their impact on the MAP values of HM_CSA. We chose 3 configurations: (i) α = 0 and β = 1, (ii) α = 1 and 13 For the sake of simplicity, they only pointed missing hybrid molecules' cores. β = 0, and (iii) α = 1 and β = 1 to emphasize respectively domainspecific nodes' contribution, structural-based nodes' contribution and the equal contribution of both in the overall weight of a hybrid molecule. These contributions also reflect the impact of the different strategies adopted for the weight mapping (See Section 5.3). Figure 5 shows average values of MAP per configuration per group. The results show that considering only the contribution of domainspecific nodes (i.e., α = 0, β = 1), Query Group 2 attains a higher average MAP value in comparison to the result obtained when considering only the contribution of structural-based nodes (i.e., α = 1, β = 0). Query Group 1 shows an opposite behavior as it has less concept types for starting nodes, thus it is less influenced by the domain-specific contribution. The highest values of MAP (MAP= 0.62 for Query Group 1, MAP= 0.74 for Query Group 2) are reached when taking into account both the structural-based and domain-specific aspects in the weight calculation of the molecules (i.e., α = 1, β = 1). This further highlights the importance of the hybrid aspect of the molecule.

To sum up, in the context of the given heterogeneous document corpus, the two experiments validate that, using optimal constraint and weight parameters, HM_CSA reaches an overall F 1 score of 0.75 and average MAP values > 0.6, which is a promising result in IR. This demonstrates that HM_CSA is capable of providing relevant query answers in the form of hybrid molecules i.e., the augmented contextualized results satisfy the user's needs.

RELATED WORK

Molecules, mainly RDF molecules, have received a wide attention over the past two decades within different research areas. It is first introduced by Ding et al. [START_REF] Li | Tracking rdf graph provenance using rdf molecules[END_REF] for the purpose of tracking RDF provenance and evaluating trustworthiness against RDF data in semantic Web applications. They define it as the finest and lossless connected subgraph decomposition of the original RDF graph based on Functional Properties (FP) and Inverse Functional Properties (IFP), which are specified in a background ontology. Endris et al. [START_REF] Kemele | MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates[END_REF] use RDF Molecule Templates (RDF-MTs) in the context of federated SPARQL query processing over RDF datasets. They a molecule as a set of triples sharing the same subject. Their RDF-MTs model the structure of the data and guide the query decomposition. In our work, we also perceive molecules as a graph decomposition into subgraphs. Yet, we introduce hybrid molecules, independently of the serialization technology, and adjust the decomposition to enrich the output of current IR approaches over heterogeneous data.

In IR, many research works have attested the benefits of incorporating knowledge bases and domain specific ontologies in their index, query, and search process [START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF] to overcome the semantic gap between keywords found in the documents and those in the user's query [START_REF] Fausto | Concept search[END_REF]. This have been rapidly migrating into industrial applications [START_REF]Semantic Technologies for Smarter Information Retrieval and Content Management[END_REF]. The main advantage resides in maximizing the precision and recall w.r.t. to traditional IR [START_REF] Christopher | Introduction to information retrieval[END_REF] where the search is limited to syntactic keyword matching. Tekli et al. [START_REF] Joe | Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS[END_REF] build upon the idea of semantic aware search to target textual databases. They propose a tightly coupled inverted index graph by combining a semantic network and a standard inverted index. In contrast, other works used tightly coupled semantic graphs to describe concepts appearing in heterogeneous document collections [START_REF] Charbel | LinkedMDR: A Collective Knowledge Representation of a Heterogeneous Document Corpus[END_REF][START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF]. Likewise, we leverage information semantics and domain-specific ontologies in an IR approach applied on tightly coupled semantic graphs describing heterogeneous document corpora. However, we differ from the existing approaches by further providing augmented results describing the document structure and the inter and intra-document links, which enriches the search results with helpful information.

Among the many heuristic graph-based search methods [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF], CSA has been widely adopted in IR applications where it proved its effectiveness [START_REF] Christoph | A survey and classification of semantic search approaches[END_REF][START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF]. Cohen et al. [START_REF] Paul | Information retrieval by constrained spreading activation in semantic networks[END_REF] use CSA algorithm to realize intelligent matches between user requirements and relevant agents in a Q&A application. Crestani et al. [START_REF] Fabio | Searching the web by constrained spreading activation[END_REF] were the first to apply CSA technique to the World Wide Web to retrieve information using an ostensive approach to querying similar to query-by-example. Sun et al. [START_REF] Shengtao | A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model[END_REF] combine CSA algorithm with a spatial ontology to improve results in associative retrieval of spatial big data. One of the most prominent uses of CSA is the one proposed by Rocha et al. [START_REF] Cristiano | A hybrid approach for searching in the semantic web[END_REF]. It consists of the combination of CSA techniques with traditional search engine techniques for searching in the Semantic Web. Although our approach is also inspired by CSA, it searches for relevant hybrid molecules instead of single nodes. We also differ from existing CSA-based approaches in the different strategies adopted for the weight mapping to cope with the characteristics of hybrid molecules and provide effective ranking.

CONCLUSION

This paper introduces hybrid molecules as novel augmented query answers for IR systems over heterogeneous document corpora. The hybrid molecules are presented within a novel generic framework: FEED2SEARCH. They are generated through HM_CSA algorithm, which is built on the Constrained Spread Activation (CSA). They provide helpful structural and domain-specific contextual information. Experiments conducted on projects in the construction industry show promising real-world results.

These findings and feedback from users motivate us to further evaluate our research in other application domains. We are currently implementing our work in the medical domain, which also involves heterogeneous dependent data and would benefit from augmented query answers. In the future, we plan to evaluate the richness of the hybrid molecule-based query answers w.r.t. the state-of-art in IR in order to quantify the impact of the contextual information of the results on the user's experience, especially regarding the time needed by the users to interpret and track the results. Additionally, we propose the following future improvements to achieve even higher effectiveness values: (i) consider more strategies for firing start nodes in HM_CSA (e.g., adopting advanced disambiguation techniques [START_REF] Joe | Building semantic trees from XML documents[END_REF] beforehand, in the query interpretation stage), and (ii) investigate alternative weight mapping functions.
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 1 Figure 1: Sample documents from the construction industry.

Figure 2 :

 2 Figure 2: Overall architecture of FEED2SEARCH.

Figure 3 :

 3 Figure 3: Extract of a tightly coupled semantic graph representing a heterogeneous document corpus δ from the construction industry.

  the subset of domain-specific nodes where a node v d ∈ V d represents an instance of c ∈ C in O D , e.g., solar Factor 1 (instance of the concept SolarFactor).-V s ⊂ V is the subset of structural-based nodes where a node v s ∈ V s represents any granularity element in δ i.e., a document d i ∈ δ (e.g., d1), a metadata meta k ∈ d i (e.g., title2), a media med l ∈ d i or more precisely a media component medComp r ∈ med l (e.g., sectA).

  the subset of domain-specific edges where an edge e d ∈ E d represents an instance of a relation r ∈ R in O D , e.g., e d 1 = (window1, solar Factor 1) is the edge linking window1 to solar Factor 1. -E s ⊆ V s ×V s is the subset of structural-based edges where an edge e s ∈ E s represents a relation between structuralbased nodes in V s (such as part-whole, reference, etc.), thus augmenting the representation of δ ; e.g., e s1 = (d2, sect1) is the edge linking d2 to sect1. -E h ⊆ V d × V s is the subset of hybrid edges where an edge e h ∈ E h represents a tight coupling, i.e. a relation between a node v d ∈ V d and a node v s ∈ V s ; e.g., e h1 = (solar Factor 1, sect1) is the edge linking solar Factor 1 to sect1

  W is the edge weight mapping that assigns a weight w e ∈ W to an edge e ∈ E. f W e consists of a set of functions which adapt to E s , E d , and E h depending on different rationales. The weight mapping functions f W v and f W e are used in the search process of query answers. They are detailed in Section 5.3.

  is the subset made of domain-specific and structural-based nodes forming m. • E m ⊆ ({e h } ∪ E d ∪ E s ) is the subset made of the core edge, domain-specific and structural-based edges forming m and linking nodes v ∈ V m . • w m is the overall weight of the molecule m such that w m ∈ W m , where W m is the set of molecules' weights. • f W m : M → W m is the molecule weight mapping that assigns the weight w m ∈ W m to the molecule m ∈ M. The molecule weight mapping f W m is used in the ranking process of query answers. It is detailed in Section 5.3.3. The core of a hybrid molecule holds the molecule's central information as it is where the domain specific knowledge is anchored to a structural component in the document corpus. The rest of the molecule's nodes and edges augments the core with additional relevant information. Illustrative Example: The dashed area in Figure 3 is an example of a hybrid molecule m 1 , where e h1 = (solar Factor 1, sect1) is the molecule's core. sect1 contains relevant information on the solar factor. Other structural-based components (e.g., e s1 = (d2, sect1)) and domain-specific ones (e.g., e d 1 = (window1, solar Factor 1)) in V m and E m provide m 1 with further useful information (i.e., sect1 is part of document d2 and solar Factor 1 is a property of window1).

  ], where: -w v s and w v d are the weights computed by f W v (v) and assigned to a structural-based node v s ∈ V m and a domainspecific node v d ∈ V m respectively. -|V m | is the total number of nodes in m. -α and β are the weight parameters that balance the contribution of the structural and domain-specific parts of m, such that α and β ∈ [0, 1]. Note that the molecule weight mapping f W m (m) is used in HM_CSA by the scoreAndRankMolecules function (line 34) which computes a weight w m for each hybrid molecule-based answer m ∈ M out . The weights of molecules are then ranked in descending order.

6. 1 . 4

 14 Implementation. Our query processing prototype is implemented in Java using Apache Jena 3.2.0 (for Ontology and RDF graph manipulation) and GATE 8.1 APIs (for NLP and Semantic Annotation of queries). It also implements the proposed HM_CSA.

6. 2

 2 Experiment 1: Precision (P), Recall (R) and F 1 scores

(a) Query Group 1 (b) Query Group 2 Figure 4 :

 124 Figure 4: Average Precision (P), Recall (R), and F 1 score of HM_CSA considering different values of threshold F and maximum spread distance D for (a) Query Group 1 and (b) Query Group 2.

Figure 5 :

 5 Figure 5: Average MAP values of HM_CSA per α and β configuration per Query Group.

Algorithm 1 :

 1 HM_CSAInputs : Set of domain-specific start nodes V d _in ; Tightly coupled semantic graph G δ ;Molecule's weight parameters α, β ∈ [0, 1]; Constraint parameters par ams;Output : Ranked List of hybrid molecules Mout ⊆ M 1 V in ← V d _in ; |V in | > 0 AND !st opSpr ead ) do 5 v i ← дet F ir inдN ode(V in ) ; V in ← V in -{v i } ; //remove firing node from V in 7 if (check Rest r ict ions(v i , par ams .pr ead justment )) then 8 E i j ← дet N eiдhbor s(v i ) ; // set of outgoing edges from v i to the set of direct neighbors v j We (e i j )

		// set of activated nodes
	2 Vout ← ∅ ;	// set of spread nodes
	3 st opSpr ead ← f al se ;	// boolean checking whether to stop CSA or not
	4 while ( // node with highest activation value
	6	
	11	

9

foreach e i j ∈ E i j do 10 // Using edge weight mapping f

  add neighbor v j to the set of activated nodes V in ← append F r omMol ecul es(m i , Mout ) ;

	16	else	
	17	// Molecules Construction and Processing	
	18 19 20	if (v j ∈ Vout ) then if (is H ybr id(e i j )) then m i ← cr eat e Mol ecul e(e i j ) ;	// new molecule
		m i	
	21	m i // append nodes and edges from existing
		molecules in Mout to the newly created
		molecule m i	
	25	end	
	26	end	
	27		
	28	end	
	29	end	

22 Mout ← Mout ∪ {m i } ; // add m i to Mout 23 else 24 Mout ← appendT oMol ecul es(e i j , Mout ) ; // append current neighbor e i j to existing molecules in Mout 30 Vout ← Vout ∪ {v i } ; // add firing node v i to Vout after activation's propagation is done 31 end 32 st opSpr ead ← check Rest r ict ions(par ams .post ad justment ); 33 end 34 Mout ← scor eAnd Rank Mol ecul es(Mout , alpha, bet a) ; // assign weights to molecules in Mout calculated by f Wm using α and β parameters. Rank the molecules in descending order following their individual weights. 35 return Mout ;

Table 1 :

 1 Heterogeneous document corpus.

	Format	Content Description
		General Technical Specifications
		Electrical Specifications
	5 docx	Exterior Facades and Carpentry
		Thermal Properties
		Acoustic Properties
		Electrical Drawing
		HVAC Drawing
		Wall Composition
	7 pdf	Confort Analysis
		Environmental Impacts
		Environmental and Energy Impacts
		Carpentry and Glazing
	1 xlsx	Thermal Regulations
	2 png	Material Pattern Photo Sealing Test

The data objects (documents, web pages, tuples, etc.) and their metadata are individuals coupled with those of a lexical knowledge base or domain-specific ontology.

Search Engine Results Page.

Using concept matching i.e., instances are said to be matched if they are instances of the same concept.

We distinguish nodes of the subset V s from those of the subset V d to explicitly differentiate between structural characteristics and domain-specific ones.

We also distinguish between edges of different subsets such as the case for nodes.

The value of a node v s ∈ V s is made of its content, whereas the value of a node v d ∈ V d consists of the concatenated values of its attributes A v d ⊆ A in O D .

At start time, the input value I nput (v j ) is set to the initial activation value of v j i.e., 1 for start nodes and 0 for others.

We used Resource Description Framework (https://www.w3.org/RDF/) to represent our instances graph to take advantage of its simplicity and modularity features.

Available at http://www.buildingsmart-tech.org/ifcOWL/IFC4

Mainly GATE 8.1, Apache Jena 3.2.0, Apache Tika 1.14 Toolkit and OxGarage.