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This work is devoted to the development of a penalization method for the simulation of
bubbly flows. Spherical bubbles are considered as moving penalized obstacles interacting
with the fluid and a numerical method for ensuring the shear free condition at the liquid–
bubble interface is proposed. Three test-cases (curved channel, inclined channel and 3D
translating bubble) are used to validate the accuracy of the discretization ensuring the slip
condition at the interface. Numerical simulations of a rising bubble in a quiescent liquid are
performed for moderate Reynolds numbers. Considering bubble terminal velocities, initial
accelerations and wake decay, the effect of the penalization viscosity used to ensure a
uniform velocity in the penalized object is discussed. Finally, simulations of bubble swarms
have been carried out in a fully periodic box with a large range of void fractions from 1% to
15%. The statistics provided by the simulations characterizing the bubble-induced agitation
are found in remarkable agreement with the experiments.

1. Introduction

Building reliable simulation tools able to predict a wide range of multiphase flows regimes is a major challenge in in-
dustry. Today, such simulations of boiling flows (dispersed or separate phases) can be carried out using the local 3D CFD 
code NEPTUNE_CFD [12] developed in the frame of the project NEPTUNE (EDF, CEA, Areva, IRSN). Making accurate simulations 
of bubbly flows is of importance for providing closures laws on momentum transfer, bubble–liquid interaction and induced 
turbulence. Bunner and Tryggvason [5,6] and Esmaeeli and Tryggvason [9] carried out simulations with non-deformable and 
deformable bubbles providing PDFs of the bubble velocity. Roghair et al. [28] developed a new drag correlation for bub-
bles in bubble swarms at intermediate and high Reynolds numbers through their numerical simulations. Direct numerical 
simulations (DNS) were performed by Roghair et al. [29] to study the behavior of a swarm of rising air bubbles for the 
comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs) with experimental data.

To get a local description of the flow, the DNS simulation approaches of liquid–bubble flows are widely used. The notable 
variation among all the DNS approaches concerns the representation and the numerical treatment of the bubbles interface: 
the body fitted approach proposed by McLaughlin [19] for a single bubble; the front tracking method by Tryggvason and 
Unverdi [32,35] requiring markers on the interface. Two major drawbacks arise from this kind of approach: a clear limitation 
on both the Reynolds number and the number of bubbles. DNS of bubbly flows are often limited to moderate bubble 
Reynolds numbers (Re = O (10–100)) for spherical bubbles [32,41]. Recently, the simulation of 16 rising bubbles at Re =
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Fig. 2. Use of the Bna et al. [4] method for the interface volume tracking. (a) Contours of the volume fraction for a single bubble; (b) volume fraction in the
corresponding cut plane.

Table 1
Single bubble test case for the volume conservation. The relative errors ε at the end of the
simulation and the CPU time ts of the simulation are reported for the four grids considered.

203 403 803 1603

ε 4.5 × 10−16 2.4 × 10−17 3.1 × 10−18 3.9 × 10−19

ts (ms) 35 52 84 103

The bubbles are transported in a Lagrangian way. When the velocity un+1
b of a bubble at time tn+1 is calculated (see 

section 2.8), the bubble mass center xn
b is then determined using the first order Euler explicit scheme:

xn+1
b = xn

b + �t un+1
b (2)

Once, the updated position of the bubble is known, the bubble surface F n+1 at time n + 1 is calculated through equation 
(1). We introduce the classical VoF function C as the volume fraction of the continuous fluid. The VoF function Cn+1 at time 
n + 1 is computed from the interface position F n+1 using the VoF function initialization found in Bna et al. [4] (Fig. 2). We 
stress that the VoF function C is not transported here but determined from the bubble surface equation F . We also define 
α f = C and αb = 1 − C the volume fraction of the liquid and the gas, respectively.

We tested the method on a single bubble test case to evaluate its precision and in particular the mass loss during the 
simulation. For this test, we consider a spherical bubble with a radius rb = 0.2 m centered in a 1 m × 1 m × 1 m cubic 
computational domain. A uniform grid of N cells is used and the cell size is h0. The computational domain is periodic. The 
bubble is initially located at the center of the computational domain. At t0 in a uniform velocity ub = (0.10, 0.15, 0.20) m/s
is imposed to the bubble. The error and CPU measurements (ε and ts) are made at t f , when the bubble has traveled a 
distance corresponding to 1 m. The velocity of the bubble is chosen to avoid any case of favorable alignment with a raw of 
cells.

The volume of the bubble is measured as

V C = h3
0

N∑
i=1

Ci (3)

and we introduce the relative L1 error ε defined as:

ε = |Vth − V C |
Vth

(4)

where Vth is the theoretical volume. Four different grids 203, 403, 803 and 1603 are considered, leading to the ratio of cells 
per radius 4, 8, 16 and 32, respectively. The relative errors ε is almost constant during the simulation and does not depend 
on the position of the bubble on the grid. The value of ε at the end of the simulation and the time ts of the simulation are 
reported in Table 1. The results highlight three characteristics of the selected VoF method: the high precision of the color 
function computation, even for the smallest ratio of cells per radius, the decrease of the error with mesh refinement and 
the control of the CPU time.















Fig. 12. Effect of the penalization viscosity μp on the velocity field inside the bubble; left figure: μp = 1 Pa.s, right figure: μp = 100 Pa.s. The contours of 
the velocity magnitude inside the bubble are plotted in white, the contour of the color fraction in purple.

to a 2-Fluid eulerian multiphase frame, in which a momentum equation for each phase, liquid and bubble, is weighted by 
their respective volume fraction α f and αb . The formulation of the system of equation is the following:

α f ρ f
∂u

∂t
+ α f ρ f u.∇u = −α f ∇ P + α f μ f ∇2u + α f ρ f g + α f αbρb

ub − u

τ

αbρb
∂ub

∂t
+ αbρbub.∇ub = −αb∇ P + αbμp∇2ub + αbρbg − α f αbρb

ub − u

τ

(23)

The velocities appearing in the penalization term are considered at time n + 1 for a more stable coupling between the 
velocity of the bubble and the hydrodynamic action of the liquid. The aim is now to express the penalization term 
αbρb(ub

n+1 − un+1)/τ in equation (7), given the fluid velocity un and un+1 at time n and n + 1, respectively. The con-
tribution from the fluid on the bubbles is expressed from the liquid momentum and is injected in the bubble equation. 
Given that the convective term αbρbub.∇ub = 0 and the viscous term αbμp∇2ub = 0 because ub is imposed to be uniform 
in the penalized bubble, we obtain the following formulation of the penalization term (see Appendix):

ρb
ub

n+1 − un+1

τ
= ρb

�t

τ + �t

ub
n − un+1

�t
+ ρ f

�t

τ + �t

[
un+1 − un

�t
+ un+1.∇un − μ f ∇2un

]

+ (ρb − ρ f )
�t

τ + �t
g

(24)

which is injected in the liquid momentum equation to obtain the reverse coupling in the fluid:

ρ f

(
1 − αb

�t

τ + �t

)[
un+1 − un

�t
+ un+1.∇un − μ f ∇2un

]
= −∇ Pn +

(
ρ f + αb(ρb − ρ f )

�t

τ + �t

)
g

+αbρb
ub

n − un+1

τ + �t

(25)

The coupling method is defined by the semi-implicit system of equations (24) and (25). Solving this system gives the 
values of ub

n+1 and un+1. A notable drawback of this coupling method concerns a non-uniform solution for the velocity field 
inside the bubble as shown in Fig. 12(left) after solving the system. The formulation of the penalized term (ub

n+1 − un+1)/τ
implies that a uniform velocity should be found inside the penalized region. To ensure that condition, we had to introduce 
a penalization viscosity μp . μ f is imposed to μp in equation (25) inside the penalized domain. μp has not a physical 
meaning since a shear-free condition is imposed for the liquid at the bubble surface (see section 2.6). The role of μp is to 
set the velocity field inside the bubble as uniform as possible as shown in Fig. 12(right). The artificial penalization viscosity 
μp is used for the viscous stress calculation on the faces joining two penalized cells as shown in Fig. 13. We observed no 
influence of the penalization viscosity μp on the stability of the simulations. However the penalization viscosity μp was 
observed to impact the computational cost of the simulations. The CPU time of the simulations is increased when increasing 
μp due to the poor conditioning of the matrix involved in the resolution of the coupling method of NEPTUNE_CFD. The 
impact of the penalization viscosity μp on the results is further discussed in the following sections.

3. Validation of the numerical method

Test cases are now proposed to validate the enhancement of the penalization method for the simulation of bubbly
flows. For that purpose, we will consider in this section the flow in a 2D curved channel with fixed boundaries, the flow 





Fig. 15. Curved channel test case. (a) Pressure field at the end of the simulation. In white: isocontours of the pressure field. (b) Velocity field at the end of
the simulation, coloration by magnitude.

Fig. 16. Curved channel test case. Zoom of the velocity field near the interface; Left: Original method, Right: new penalization method.

In order to determine the convergence order of the method, simulations have been run with six different grids made 
of 4, 8, 16, 32, 64, and 128 cells in the gap of the channel. The results are reported in Fig. 17. The error on the x- and 
y-components of the velocity both decrease with an order of 0.75 while the pressure decreases show a first order conver-
gence. The convergence close to first order is attributed to the imposed slip condition based on a first order extrapolation
of the fluid velocity at the surface of the penalized domain. The convergence may be improved since other penalization
methods offer better convergence rates such as 2 for the velocity and 1 for the pressure [10,37]. Additional numerical
developments required to improve the convergence rate may be considered for future developments in NEPTUNE_CFD.

3.2. Flow inside a 2D inclined channel with moving walls

For this second test case, the configuration studied is a 2D inclined channel as shown in Fig. 18a. The sides of the 
channel (�1 and �2) are two parallel lines defined by the vector (0.1, 0.8). The dimensions are Lx = 0.1 m, Ly = 2 × Lx. 
The gap of the channel is r = 0.25 m. Outside of the fluid domain, the penalized domain � is set to a constant velocity 
ub = −u0 = −(u0x, u0y) = (−0.01, −0.08) m.s−1 parallel to the wall as shown in Fig. 18b. The slip condition is imposed 
on both surfaces. The fluid properties are ρ f = 1000 kg.m−3 and μ f = 0.1 Pa.s so that the Reynolds number is Re =
ρ f r |u0|/μ f = 20. The initial conditions are imposed to u(t = 0, (x, y)) = 0 and P (x, y) = 0 inside the fluid region � f . At 
t = 0 the fluid velocity is imposed to u = u0 at the inlet of the domain while the pressure is P = 0 at the outlet. The 
fluid velocity is thus parallel to the wall and in the opposite direction of the velocity imposed in the penalized domain. 
Due to the slip condition, the moving walls are expected not to interact with the fluid so that solution ub(x, y) = u0 and 
P (x, y) = 0 is expected in the channel. The simulations are run for t = 5 s until the steady state is reached. The velocity 
fields are presented in Fig. 19 for the original penalization method and the new one. The grid is made of 20 × 40 cells in 
each direction. The new method clearly show a uniform velocity field parallel to the wall while some oscillations attributed 
to the calculation of the divergence in the mass conservation are observed with the original method. Simulations have been 









Table 2
3D translating bubble test case. Evolution of the L2 error on the velocity 
through 3 time iterations. The 2003 grid is used.

Method t1 t2 t3

||u−u0 ||2||u0 ||2 CR 4.19 × 10−16 4.14 × 10−16 4.24 × 10−16

NCR 1.76 × 10+1 2.61 × 10+1 1.31 × 10+1

Fig. 23. Convergence study for P , (V x, V y , V z) in L1 norm for the bubble moving at zero relative velocity in the flow test case.

4. Rise of a single bubble in a quiescent liquid

The aim of this section is to simulate the rise a single bubble in a liquid at rest in order to test the momentum coupling
method proposed in section 2.8. The presented formulation makes possible a dynamic interaction between the fluid and the 
bubble. We consider two different moderate Reynolds numbers Re = 17 and Re = 71 based on the bubble diameter db = 2rb

and ubT the modulus of its terminal velocity ub T . For such Reynolds numbers, the bubble is spherical and its trajectory can 
be obtained with [18]:

m f CM
dub

dt
= −1

2
C Dρ f πr2

b ub
2 − m f g (27)

where m f = ρ f
4
3 πr3

b , CM = 1/2 is the added mass coefficient of a single spherical bubble and the history force can be 
considered of second order for such Reynolds numbers. The drag coefficient is given through the correlation [20]:

Cd = 16

Re
1 + (8/Re + 1/2(1 + 3.315/Re0.5)−1 (28)

Equation (27) can be easily solved, leading to the terminal velocity ub T and the transient evolution of the bubble rising 
velocity. As it will be discussed, the coupling formulation introduces a dependence to the penalization viscosity. In particular, 
we will focus on the bubble initial acceleration dub/dt = −2g (balance between bubble acceleration and gravity volume 
forcing), the terminal velocity ubT (balance between pressure-viscous drag with gravity volume forcing), and the bubble 
wake shape because of its importance for the development of bubble induced agitation [26].

We consider the configuration described in Fig. 24. A 1 mm spherical bubble is located at the bottom of a tank-like 
computational domain (xb, yb, zb) = (0.25db, 0.25db, 0.2db). At t0, the bubble starts rising until reaching its terminal velocity. 
The simulation is stopped after the steady state is reached, for a final simulation time t f depending on the considered 
Reynolds number. Simulations have been carried out for two different fluid viscosities leading to two different terminal 
velocities and the two Reynolds numbers Re = 17 and Re = 71. The list of the parameters used is given in Table 3. The 
penalization parameter τ is set to τ = 10−14 s. We want to consider here the influence of the internal penalization viscosity 
μp on the bubble motion. The time step �t is imposed following the CFL criteria |u|�t/�x = 0.5. Three grid refinements 
have been tested: 4, 8 and 16 cells in the radius of the bubble. Note that when considering 4 cells in the bubble radius, the 
boundary layer thickness estimated as δ ∼ rb/Re1/2 and the grid size have the same order of magnitude for Re = 71.

The dimensions of the computational domain shown in Fig. 24 are 5db × 5db × 25db . 48 simulations in total have been 
carried out for a wide range of internal viscosities, eight for each Reynolds number and grid refinement. The computational 
resources have been adapted to the refinement of each grid: 6 × 24, 8 × 24, 12 × 24 CPU units were used respectively for 
4, 8 and 16 cells in the radius of the bubble, leading to the corresponding CPU times 45 min, 2 hours and 12 hours for a 
single simulation.



Fig. 24. Single bubble rise. (a) Initial configuration for the simulation. The bubble is located at the bottom of the tank. The reported vertical plane is used
for the wake description. (b) Locations of the reported wake profiles.

Table 3
Set of numerical parameters for the simulation of a single bubble rise.

db (mm) ρb (kg.m−3) ρ f (kg.m−3) μ f (Pa.s) t f (s) |ub T | (cm.s−1) Re

1.0 50 1000 0.005 0.06 8.90 17
1.0 50 1000 0.0022 0.12 15.60 71

4.1. Initial acceleration and terminal velocity

The time evolution of the bubble is reported in Fig. 25 for Re = 17 and Re = 71 and different penalization viscosities 
μp . The evolutions clearly reveal the effect of the penalization viscosity μp on the evolution of the bubble velocity. An 
appropriate penalization viscosity μp needs to be selected to reproduce correctly both the initial acceleration (added mass 
effect) and the terminal velocity of the bubble. For each Reynolds number, and for each ratio of cells per radius, we are 
always able to reproduce a satisfactory evolution of the bubble rise.

A summary of the tends observed in Fig. 25 is shown in Fig. 26. The optimum value of the penalization viscosity μp for 
a good description of the initial acceleration is compared to the one given the best terminal velocity. They are reported as 
a function of the grid spacing. Depending on both the grid resolution and the Reynolds number an appropriate penalization 
viscosity μp has to be selected. It is not here possible to propose a clear scaling of μp and this aspect of the numerical 
method needs to be improved for providing predictive simulations of single bubble dynamics. However, the objective is here 
to provide a method able to describe bubbly flows. As it will be shown in the next section, the impact of the penalization 
viscosity μp is significantly reduced when considering a bubble swarm.

4.2. Maximal vorticity

In addition to the velocity fields, we also computed the maximal vorticity �max that develops at the bubble surface for 
each mesh refinement and each Reynolds number. This quantity is of interest since it controls the bubble drag force and 
the development of its wake. The maximal vorticity for a spherical bubble moving steadily in a viscous fluid is given by the 
following expression [17]:

ωmax = |ubT |
rb

16 + 3.315Re1/2 + 3Re

16 + 3.315Re1/2 + Re
(29)

This expression has been established through DNS simulations for Reynolds numbers ranging from 0.1 to 5000. The evo-
lutions are shown in Fig. 27. The maximal vorticity measured in the simulations tends to get closer to the DNS results 
(Equation (29)) with the mesh refinement. The maximum velocity and vorticity at a bubble surface are directly linked by 
the relation umax = rbωmax/2 [17]. The good convergence of the maximal vorticity to the expected value implies that our 
simulations reproduce a correct fluid velocity close to the bubble surface. The streamlines and the velocity magnitude for 







Fig. 29. Single bubble rise. Velocity profile in the wake of a rising bubble as indicated in Fig. 24. (a) Re = 17, (b) Re = 71. First line X = 0, second line
X = 2R/3.

is known to follow the standard far-wake behavior that will be used here for the comparison. The corresponding velocity 
deficit profile parallel to the X-direction is given by (Batchelor, 1967 [3]):

uwake ∼ ubT Q

4πν f Z
exp

[
−ubT

X2

4ν f Z

]
(30)

where ν f = μ f /ρ f is the cinematic viscosity of the fluid and Q = F D/ρ f ubT is determined by integration over the wake 
and is directly related to the magnitude F D of the drag force of the body. Given ub T and F D , we obtain the far wake 
description. The numerical results are presented for the two cases in Figs. 29 for X = 0 and X = 2rb/3 and for the 3 mesh 
refinements considered: 4, 8 and 16 cells in the bubble radius. The velocity decay in the bubble wake tends to get closer to 
relation (30) with the mesh refinement for both Reynolds numbers Re = 17 and Re = 71.

5. Mono-dispersed bubble swarm

The final step of the validation process is the simulation of bubbles swarm for both a high Reynolds numbers and a
high number of bubbles. The objective is to verify the whole numerical method, in order to demonstrate the effectiveness 
of the so-built numerical tool for bubbly flows simulations. The validation strategy is defined as follows. Experimental 
investigations of the flow generated by a homogeneous population of bubbles rising in water have been carried out by 
Zenit et al. (2001) [42], Garnier et al. (2002) [11], Riboux et al. (2010) [26] and Colombet et al. (2015) [8]. The experiments 
provide a rather complete description of both the bubbles motion and the induced agitation in the liquid. The idea here is 
to reproduce in relative similar conditions those experiments with our numerical tool, and make a direct comparison with 
the relevant information characterizing a bubble swarm such as the velocity PDFs of both the bubbles and the fluid. The 
flow is supposed to be fully periodic in each direction. The collisions between the bubbles are assumed fully elastic. The 
simulation parameters are shown in Table 4. For all the simulations reported in this section, the time step is the time step 
imposed by the CFL condition divided by 5. The statistical measurement (PDF) is started after reaching a stabilized agitated 



Table 4
Set of numerical parameters for the bubble swarm simulations.

db (mm) ρb (kg.m−3) ρ f (kg.m−3) μ f (Pa.s) μp/μ f V 0 (cm.s−1) Re0 α0

1.0 50 1000 0.0008 100 22.5 281 0.008

state of the mixture. The simulations are run until the PDFs are converged. We note here α the global void fraction. The 
analysis of the results requires for normalization purpose the computation of the rise velocity V 0 of a single bubble. We 
note Re0 and α0 the corresponding Reynolds number and reference void fraction, respectively. The values of V 0, Re0 and 
α0 are reported in Table 4.

Before a detailed investigation of the bubble swarm, we present some preliminary simulations to test the mesh refine-
ment, the domain size and the penalization viscosity.

5.1. Influence of the mesh refinement

We first consider the influence of the mesh refinement with a special attention to the liquid and bubble velocity fluc-
tuations. We introduce three grids refinements R0, R1 and R2 corresponding respectively to 3, 6 and 12 cells in the bubble 
radius. The computational domain is chosen as � = D1 = [0; 005] × [0; 005] × [0; 025] (Fig. 31). Three void fraction are 
considered here: α = 5%, 10% and 15%, corresponding to Nb = 60, 120 and 180 bubbles, respectively. The PDFs of the fluid 
velocity and the bubble velocity for both the horizontal and vertical components are reported in Fig. 30. Statistics on the 
flow have been measured between t = 0.2 s, once the fluid is homogeneously agitated, and t f = 2 s. As shown, the grid has 
no significant influence on the bubble horizontal velocity for the considered refinements. The other velocity components are 
more sensitive to the grid but a clear convergence with the grid is observed and close results are found for the refinements 
R1 and R2. The average bubble rising velocity increases as �x decreases. This is due to an underestimation of the bubbles 
rising velocity on coarse grids, mostly due to the relative high Reynolds number considered here (Re � 300) because of the 
boundary layer at the bubble surface that decreases as Re−1/2. The average rising velocity is evolving in the same way for 
each void fraction. The variance of the horizontal and vertical fluid velocities increases slightly with the mesh refinement. 
The simulations performed with the mesh refinement R0, R1 and R2 required respectively 12, 81 and 350 CPU hours of 
calculation for 6 × 28 CPU units. In order to save computational resources, the refinement R1 is used for all the simulations 
reported in the following sections.

5.2. Influence of the domain size

We want now to consider the influence of the domain size on the results and on the convergence of the statistics. For 
each simulation, the number of bubbles Nb is deduced from the volume of the computational domain and the imposed void 
fraction α. If the number of bubbles in the domain reaches a relative low value, the statistical measurements will not be 
able to describe precisely the bubble-induced agitation of the fluid. The computational domains D1 = [0; 5db] × [0; 5db] ×
[0; 25db] = [0; Lx] × [0; L y] × [0; Lz], D2 = [0; Lx] × [0; L y] × [0; 2Lz] and D3 = [0; 2Lx] × [0; 2L y] × [0; Lz] are considered 
(see Fig. 31). Compared to D1, for D2 the length of the domain in the (O z) direction doubles, while for D3 the domain 
is double in both horizontal directions (O x) and (O y). Three void fractions have been studied: α = 5%, 10% and 15%, 
corresponding respectively to Nb = 60, 120 and 180 bubbles for � = D1, Nb = 120, 240 and 360 bubbles for � = D2 and 
Nb = 240, 480 and 720 bubbles for � = D3. Statistics on the flow have also been measured between t = 0.2 s, once the 
fluid is homogeneously agitated, and t f = 2 s. The simulations required approximately 4, 6 and 8 days of calculation for 
the domains D1, D2, D3 using 6 × 28 CPU units. The normalized PDFs plotted in Fig. 32 show very similar results for each 
component of the liquid and bubble velocity when using the domains D1, D2 and D3 for the void fractions considered 
(α = 5%, 10% and 15%).

We conclude that performing simulations on a computational domain larger than D1 in any direction will not provide 
any additional information on the PDFs. All the simulations presented in the following sections are carried out using the 
computational domain D1.

5.3. Influence of the penalization viscosity μp

In the previous section, we detailed the influence of the penalization viscosity μp on the dynamics of a single bubble 
rising in a quiescent liquid. For each bubble Reynolds number and mesh refinement considered, an optimum value of μp

has to be determined for a good description of the bubble velocity evolution. As we deal now with bubble swarms, we 
want to examine again the influence of μp on the results. For this purpose, three simulations have been carried out for 
α = 10%, corresponding to three different values, μp = 0.1, 1 and 10 Pa.s. The mesh refinement is R2 (6 cells in the bubble 
radius) and the domain is D1. The simulations are stopped at t f = 4 s. We extracted the PDFs of the horizontal and vertical 
components of the fluid and bubble velocities for μp = 0.1, 1 and 10 Pa.s (Fig. 33). For each component of the liquid 
and bubble velocities, the agreement is perfect between the PDFs for different values of μp . As a conclusion, the choice 
of μp has no influence on the simulations of bubble swarms. A clear different behavior was observed for the simulation 



Fig. 30. Bubble swarm. Effect of the mesh refinement on the normalized PDFs of the liquid velocity (left) and the bubbles velocity (right).

of a single bubble where results are sensitive to the choice of the penalization viscosity μp . We were not able to clearly 
determine the origin of the observed difference between the single bubble case and the bubble swarm case. We believe that 
the main candidate is the solver used in NEPTUNE_CFD for the inversion of the semi-implicit system (24)–(25). In single 
bubble configurations, we think that the presence of the penalization viscosity causes a singularity in the matrix to inverse 
while in the bubble swarm configuration, the bubble singularities are distributed in all the domain improving the matrix 
conditioning, explaining the independence of the results with the viscosity of penalization. A deeper analysis of the solver 
performances need to be conducted to clearly explain this numerical behavior.

We now discuss the influence of the numerical value of μp on the CPU time. We have observed that the CPU time 
strongly increases when μp increases. For each simulation performed (μp = 0.1, 1 and 10 Pa.s) we report the final CPU 
time at t f = 2 s in Table 5. Again, we note the increase of the CPU time as μp increases. However the CPU time increase is 
only around 7% for a change of one order of magnitude for μp (0.1 to 1 Pa.s and 1 to 10 Pa.s), which remains acceptable in 
term of management of computing resources.



Fig. 31. Bubble swarm. Computational domains used for the study of the domain size effect (a) D1, (b) D2, (c) D3.

Table 5
Bubble swarm. Evolution of the final CPU time for different values of μp .

μp = 0.1 Pa.s μp = 1 Pa.s μp = 10 Pa.s

CPU time (hours) 72 77 83

5.4. Bubble and fluid agitation

Simulations have been carried out for different void fractions ranging from α = 2.5% to 20%, leading to an increasing 
number of bubbles in the flow as shown in Fig. 34.

The average bubble rising velocity < ubz > is reported in Fig. 35 as a function of the void fraction for 0.002 ≤ α ≤ 0.20. 
The evolution is compared to the experiments. The diameter db = 1 mm is considered in the present work while the 
diameters considered in the experiments are db = 1.6, 2.1 and 2.5 mm in Riboux et al. [26], db = 1.4 mm in Zenit et al. 
[42], and db = 3.5 mm in Garnier et al. [11]. The velocities are normalized by the velocity V 0 of a single rising bubble. The 
results are found in very good agreement with both the experiments and the decreasing law V 0(1 − α0.49).

Variances of the bubble rising velocity < u′ 2
bz > are compared in Fig. 35 with the corresponding data available in the

literature. The experimental results highlight the independence of the variance to the void fraction, tendency which is 
also remarkably observed for the present simulations. This behavior show that the contribution of the path oscillations 
dominates over bubble interactions, effect that is properly reproduced in our simulations. We also note that the variance in 
the present work (< u′ 2

bz >≈ 2 × 10−3 m2.s−2) significantly differ with the values obtained in the experiments (< u′ 2
bz >≈

1.2 × 10−2 m2.s−2) for the three diameters considered. Clearly we are not able to reproduce the same level of bubble 
agitation as reported by these experiments. The experiments were performed for higher bubble diameters, corresponding 
to higher bubble Reynolds numbers and significantly deformed bubbles. For such conditions, single bubble move following 
zig-zag or helicoidal path. This may be a possible explanation of the lower level of bubble agitation observed with our 
spherical bubbles. However, more recently Colombet et al. (2015) [8] also obtained in their experiments a lower level for 
the bubble agitation when the bubble motion is measured using particle tracking velocimetry based on images taken with a 
fixed focal lens. They report < u′ 2

bz >≈ 3 × 10−2 m2.s−2 up to α = 10%, a value comparable to our simulations. As discussed 
in [26] the measure by dual optical probe of the variance of the bubble agitation may be significantly perturbed when 
bubbles are oblate spheroid moving with oscillating velocity and orientation.

We now focus on the dynamics of the liquid. Fig. 36 shows the normalized PDF of two components of the fluid velocity 
for the present work (db = 1 mm), the considered void fractions ranging from α = 2.5% to α = 15%. The PDFs are scaled 
following (α/α0)/V 0 initially proposed by Risso [27]. We have also checked (not shown here) that the best superposition 
of our PDF is also obtained with α0.4. The PDFs of the horizontal velocity (right column) are symmetric, meaning that the 
simulations are able to restore the anisotropy property, the flow being statistically axisymmetric around the bubble, and 



Fig. 32. Bubble swarm. Effect of the domain size. Normalized PDFs of vertical and horizontal liquid (left) and bubble (right) velocity fluctuations.

the distribution of bubbles in the horizontal direction being uniform. A lower liquid agitation is observed in the horizontal 
direction. However the comparison for the vertical fluid agitation is very good for both the shape and the level of agitation. 
The shape of the vertical bubble velocity PDFs is clearly non-symmetric due to the entrainment of the fluid in the wake of 
the bubbles, implying that upward fluctuations are more probable.

6. Conclusions

A new penalization method for the simulation of bubbly flows has been proposed. The originality of the presented work
relies on the extension of the classic penalization methods developed for solid objects for the simulation of bubbles. The 
bubbles are seen as moving objects whose motion is determined by the action of the fluid on them, through the new 
coupling method presented. A second notable point is the numerical methodology implemented to ensure a shear-free 
condition at the surface of the penalized domain.





Fig. 35. Bubble swarm. (Left) Average bubble velocity < ubz > and (right) variance < u′ 2
bz > of the bubble velocity normalized by the velocity V 0 of a single 

rising bubble as a function of the gas volume fraction α. Red squares, present numerical work. Experiments: • � � Riboux et al. (2010), ◦ Zenit et al.
(2001), � Garnier et al. (2002).

Fig. 36. Bubble swarm. Normalized PDFs of vertical (left) and horizontal (right) liquid velocity fluctuations.

bubble velocity with the void fraction, a bubble agitation independent of the void fraction, and a liquid agitation in both 
horizontal and vertical directions scaling as α0.4.

The results obtained through this paper demonstrate the viability of the numerical tool for the simulations of bubbly 
flows. Despite the assumptions made on the bubbles (spherical shape, non-deformability, elastic collisions) we were able to 
reproduce the main characteristic of bubble induced agitation and confirm the origin of the induced agitation resulting from 
wake interactions. One of the main interest of the method is its capacity to deal easily with a high number of bubbles at 
moderate and high void fraction. The simulations presented in this paper involve up to 720 bubbles for a bubble Reynolds 
number of Re � 300 and for a void fraction up to 20%. In this paper we show that our numerical approach is able to 
reproduce the main characteristics of bubbly flows.

This numerical method was originally built to do deal with two kinds of objectives. The short-term objective was to 
develop a numerical tool allowing us to perform liquid–bubbles simulations in a simplified frame (no break-up, no coa-
lescence, no mass transfer, elastic collisions). We proposed a successful validation strategy to qualify the abilities of our 
tool and it can now be used to investigate mono-dispersed bubbly flows and to work on closure relations for Euler/Euler 
simulations. The second objective is to consider bubbly flows relatively close to nuclear applications. First, the method will 
be extended to consider poly-dispersed bubbly flows. Then deformation and coalescence effects, as well as mass transfer 
will be introduced in the numerical method with relative ease, meanwhile considering deformation up to breakup events 
will be more challenging.
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Appendix

We detail in this appendix the derivation of the coupled relations (24) and (25). We start from the two-phase formalism 
described in equation (23). Due to the uniformity of the penalized velocity ub in the bubble, ∇ub = 0 and ∇2ub = 0. Each 
equation is first divided by α f and αb for the liquid and the bubble phase, respectively. The pressure gradient ∇ P is then 
expressed from each equation as:

∇ P = −ρ f
∂u

∂t
− ρ f u.∇u + μ f ∇2u + ρ f g + αbρb

ub − u

τ
(31)

∇ P = −ρb
∂ub

∂t
+ ρbg − α f ρb

ub − u

τ
(32)

These equations are linked through the same pressure gradient. Combining equations (31) and (32) leads to the following 
relation:

(αb + α f )ρb
ub − u

τ
= −ρb

∂ub

∂t
+ ρ f

∂u

∂t
+ ρ f u.∇u − μ f ∇2u + (ρb − ρ f )g (33)

with αb + α f = 1. An implicit scheme is used for the penalization term and the resulting semi-discrete formulation writes 
as:

ρb
ub

n+1 − un+1

τ
= −ρb

ub
n+1 − ub

n

�t
+ ρ f

[
un+1 − un

�t
+ un+1.∇un − μ f

ρ f
∇2un

]
+ (ρb − ρ f )g (34)

The un+1
b terms are regrouped on the left side of the equation. Equation (34) becomes:

ρb
ub

n+1 − un+1

τ
= ρb

�t

τ + �t

ub
n − un+1

�t
+ ρ f

�t

τ + �t

[
un+1 − un

�t
+ un+1.∇un

f − μ f

ρ f
∇2un

]

+ (ρb − ρ f )
�t

τ + �t
g

(35)

This equation corresponds to the implicit formulation of the penalization velocity. This expression is then injected into the 
discretized form of the fluid equation to obtain:

ρ f

(
1 − αb

�t

τ + �t

)[
un+1 − un

�t
+ un+1.∇un − μ f

ρ f
∇2un

]
= −∇ Pn +

(
ρ f + αb(ρb − ρ f )

�t

τ + �t

)
g

+αbρb
ub

n − un+1

τ + �t

(36)
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