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This work is devoted to the development of a penalization method for the simulation of bubbly flows. Spherical bubbles are considered as moving penalized obstacles interacting with the fluid and a numerical method for ensuring the shear free condition at the liquidbubble interface is proposed. Three test-cases (curved channel, inclined channel and 3D translating bubble) are used to validate the accuracy of the discretization ensuring the slip condition at the interface. Numerical simulations of a rising bubble in a quiescent liquid are performed for moderate Reynolds numbers. Considering bubble terminal velocities, initial accelerations and wake decay, the effect of the penalization viscosity used to ensure a uniform velocity in the penalized object is discussed. Finally, simulations of bubble swarms have been carried out in a fully periodic box with a large range of void fractions from 1% to 15%. The statistics provided by the simulations characterizing the bubble-induced agitation are found in remarkable agreement with the experiments.

Introduction

Building reliable simulation tools able to predict a wide range of multiphase flows regimes is a major challenge in industry. Today, such simulations of boiling flows (dispersed or separate phases) can be carried out using the local 3D CFD code NEPTUNE_CFD [START_REF] Guelfi | NEPTUNE: a new software platform for advanced nuclear thermal hydraulics[END_REF] developed in the frame of the project NEPTUNE (EDF, CEA, Areva, IRSN). Making accurate simulations of bubbly flows is of importance for providing closures laws on momentum transfer, bubble-liquid interaction and induced turbulence. Bunner and Tryggvason [START_REF] Bunner | Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations[END_REF][START_REF] Bunner | Effect of bubble deformation on the properties of bubbly flows[END_REF] and Esmaeeli and Tryggvason [START_REF] Esmaeeli | A direct numerical simulation study of the buoyant rise of bubbles at O(100) Reynolds number[END_REF] carried out simulations with non-deformable and deformable bubbles providing PDFs of the bubble velocity. Roghair et al. [START_REF] Roghair | On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers[END_REF] developed a new drag correlation for bubbles in bubble swarms at intermediate and high Reynolds numbers through their numerical simulations. Direct numerical simulations (DNS) were performed by Roghair et al. [START_REF] Roghair | Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments[END_REF] to study the behavior of a swarm of rising air bubbles for the comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs) with experimental data.

To get a local description of the flow, the DNS simulation approaches of liquid-bubble flows are widely used. The notable variation among all the DNS approaches concerns the representation and the numerical treatment of the bubbles interface: the body fitted approach proposed by McLaughlin [START_REF] Mclaughlin | Numerical simulation of bubble motion in water[END_REF] for a single bubble; the front tracking method by Tryggvason and Unverdi [START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF][START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF] requiring markers on the interface. Two major drawbacks arise from this kind of approach: a clear limitation on both the Reynolds number and the number of bubbles. DNS of bubbly flows are often limited to moderate bubble Reynolds numbers (Re = O (10-100)) for spherical bubbles [START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF][START_REF] Yin | Lattice-Boltzmann simulation of finite Reynolds number buoyancy-driven bubbly flows in periodic and wall-bounded domains[END_REF]. Recently, the simulation of 16 rising bubbles at Re = 

Table 1

Single bubble test case for the volume conservation. The relative errors at the end of the simulation and the CPU time t s of the simulation are reported for the four grids considered. 20 3 40 3 80 3 160 3 4.5 × 10 -16 2.4 × 10 -17 3.1 × 10 -18 3.9 × 10 -19 t s (ms) [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF] 52 84 103

The bubbles are transported in a Lagrangian way. When the velocity u n+1 b of a bubble at time t n+1 is calculated (see section 2.8), the bubble mass center x n b is then determined using the first order Euler explicit scheme:

x n+1 b = x n b + t u n+1 b (2) 
Once, the updated position of the bubble is known, the bubble surface F n+1 at time n + 1 is calculated through equation [START_REF] Alder | Studies in molecular dynamics. I. General method[END_REF]. We introduce the classical VoF function C as the volume fraction of the continuous fluid. The VoF function C n+1 at time n + 1 is computed from the interface position F n+1 using the VoF function initialization found in Bna et al. [START_REF] Bnà | Numerical integration of implicit functions for the initialization of the VOF function[END_REF] (Fig. 2). We stress that the VoF function C is not transported here but determined from the bubble surface equation F . We also define α f = C and α b = 1 -C the volume fraction of the liquid and the gas, respectively.

We tested the method on a single bubble test case to evaluate its precision and in particular the mass loss during the simulation. For this test, we consider a spherical bubble with a radius r b = 0.2 m centered in a 1 m × 1 m × 1 m cubic computational domain. A uniform grid of N cells is used and the cell size is h 0 . The computational domain is periodic. The bubble is initially located at the center of the computational domain. At t 0 in a uniform velocity u b = (0.10, 0.15, 0.20) m/s is imposed to the bubble. The error and CPU measurements ( and t s ) are made at t f , when the bubble has traveled a distance corresponding to 1 m. The velocity of the bubble is chosen to avoid any case of favorable alignment with a raw of cells.

The volume of the bubble is measured as

V C = h 3 0 N i=1 C i ( 3 
)
and we introduce the relative L 1 error defined as:

= |V th -V C | V th ( 4 
)
where V th is the theoretical volume. Four different grids 20 3 , 40 3 , 80 3 and 160 3 are considered, leading to the ratio of cells per radius 4, 8, 16 and 32, respectively. The relative errors is almost constant during the simulation and does not depend on the position of the bubble on the grid. The value of at the end of the simulation and the time t s of the simulation are reported in Table 1. The results highlight three characteristics of the selected VoF method: the high precision of the color function computation, even for the smallest ratio of cells per radius, the decrease of the error with mesh refinement and the control of the CPU time. to a 2-Fluid eulerian multiphase frame, in which a momentum equation for each phase, liquid and bubble, is weighted by their respective volume fraction α f and α b . The formulation of the system of equation is the following:

α f ρ f ∂u ∂t + α f ρ f u.∇u = -α f ∇ P + α f μ f ∇ 2 u + α f ρ f g + α f α b ρ b u b -u τ α b ρ b ∂u b ∂t + α b ρ b u b .∇u b = -α b ∇ P + α b μ p ∇ 2 u b + α b ρ b g -α f α b ρ b u b -u τ ( 23 
)
The velocities appearing in the penalization term are considered at time n + 1 for a more stable coupling between the velocity of the bubble and the hydrodynamic action of the liquid. The aim is now to express the penalization term 7), given the fluid velocity u n and u n+1 at time n and n + 1, respectively. The contribution from the fluid on the bubbles is expressed from the liquid momentum and is injected in the bubble equation.

α b ρ b (u b n+1 -u n+1 )/τ in equation (
Given that the convective term α b ρ b u b .∇u b = 0 and the viscous term α b μ p ∇ 2 u b = 0 because u b is imposed to be uniform in the penalized bubble, we obtain the following formulation of the penalization term (see Appendix):

ρ b u b n+1 -u n+1 τ = ρ b t τ + t u b n -u n+1 t + ρ f t τ + t u n+1 -u n t + u n+1 .∇u n -μ f ∇ 2 u n + (ρ b -ρ f ) t τ + t g (24) 
which is injected in the liquid momentum equation to obtain the reverse coupling in the fluid:

ρ f 1 -α b t τ + t u n+1 -u n t + u n+1 .∇u n -μ f ∇ 2 u n = -∇ P n + ρ f + α b (ρ b -ρ f ) t τ + t g + α b ρ b u b n -u n+1 τ + t ( 25 
)
The coupling method is defined by the semi-implicit system of equations ( 24) and [START_REF] Riboux | A model of bubble-induced turbulence based on large-scale wake interactions[END_REF]. Solving this system gives the values of u b n+1 and u n+1 . A notable drawback of this coupling method concerns a non-uniform solution for the velocity field inside the bubble as shown in Fig. 12(left) after solving the system. The formulation of the penalized term (u b n+1u n+1 )/τ implies that a uniform velocity should be found inside the penalized region. To ensure that condition, we had to introduce a penalization viscosity μ p . μ f is imposed to μ p in equation [START_REF] Riboux | A model of bubble-induced turbulence based on large-scale wake interactions[END_REF] inside the penalized domain. μ p has not a physical meaning since a shear-free condition is imposed for the liquid at the bubble surface (see section 2.6). The role of μ p is to set the velocity field inside the bubble as uniform as possible as shown in Fig. 12(right). The artificial penalization viscosity μ p is used for the viscous stress calculation on the faces joining two penalized cells as shown in Fig. 13. We observed no influence of the penalization viscosity μ p on the stability of the simulations. However the penalization viscosity μ p was observed to impact the computational cost of the simulations. The CPU time of the simulations is increased when increasing μ p due to the poor conditioning of the matrix involved in the resolution of the coupling method of NEPTUNE_CFD. The impact of the penalization viscosity μ p on the results is further discussed in the following sections.

Validation of the numerical method

Test cases are now proposed to validate the enhancement of the penalization method for the simulation of bubbly flows. For that purpose, we will consider in this section the flow in a 2D curved channel with fixed boundaries, the flow In order to determine the convergence order of the method, simulations have been run with six different grids made of 4, 8, 16, 32, 64, and 128 cells in the gap of the channel. The results are reported in Fig. 17. The error on the x-and y-components of the velocity both decrease with an order of 0.75 while the pressure decreases show a first order convergence. The convergence close to first order is attributed to the imposed slip condition based on a first order extrapolation of the fluid velocity at the surface of the penalized domain. The convergence may be improved since other penalization methods offer better convergence rates such as 2 for the velocity and 1 for the pressure [START_REF] Etcheverlepo | Développement de méthodes de domaines fictifs au second ordre[END_REF][START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF]. Additional numerical developments required to improve the convergence rate may be considered for future developments in NEPTUNE_CFD.

Flow inside a 2D inclined channel with moving walls

For this second test case, the configuration studied is a 2D inclined channel as shown in Fig. 18a. The sides of the channel ( 1 and 2 ) are two parallel lines defined by the vector (0.1, 0.8). The dimensions are Lx = 0.1 m, Ly = 2 × Lx. The gap of the channel is r = 0.25 m. Outside of the fluid domain, the penalized domain is set to a constant velocity

u b = -u 0 = -(u 0x , u 0 y ) = (-0.01, -0.08) m.s -1 parallel
to the wall as shown in Fig. 18b. The slip condition is imposed on both surfaces. The fluid properties are ρ f = 1000 kg.m -3 and μ f = 0.1 Pa.s so that the Reynolds number is Re = ρ f r |u 0 | /μ f = 20. The initial conditions are imposed to u(t = 0, (x, y)) = 0 and P (x, y) = 0 inside the fluid region f . At t = 0 the fluid velocity is imposed to u = u 0 at the inlet of the domain while the pressure is P = 0 at the outlet. The fluid velocity is thus parallel to the wall and in the opposite direction of the velocity imposed in the penalized domain.

Due to the slip condition, the moving walls are expected not to interact with the fluid so that solution u b (x, y) = u 0 and P (x, y) = 0 is expected in the channel. The simulations are run for t = 5 s until the steady state is reached. The velocity fields are presented in Fig. 19 for the original penalization method and the new one. The grid is made of 20 × 40 cells in each direction. The new method clearly show a uniform velocity field parallel to the wall while some oscillations attributed to the calculation of the divergence in the mass conservation are observed with the original method. Simulations have been 

Rise of a single bubble in a quiescent liquid

The aim of this section is to simulate the rise a single bubble in a liquid at rest in order to test the momentum coupling method proposed in section 2.8. The presented formulation makes possible a dynamic interaction between the fluid and the bubble. We consider two different moderate Reynolds numbers Re = 17 and Re = 71 based on the bubble diameter d b = 2r b and u bT the modulus of its terminal velocity u b T . For such Reynolds numbers, the bubble is spherical and its trajectory can be obtained with [START_REF] Magnaudet | The motion of high-Reynolds-number bubbles in inhomogeneous flows[END_REF]:

m f C M du b dt = - 1 2 C D ρ f πr 2 b u b 2 -m f g (27) 
where

m f = ρ f 4 3 πr 3 b , C M = 1/2
is the added mass coefficient of a single spherical bubble and the history force can be considered of second order for such Reynolds numbers. The drag coefficient is given through the correlation [START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF]:

C d = 16 Re 1 + (8/Re + 1/2(1 + 3.315/Re 0.5 ) -1 (28) 
Equation ( 27) can be easily solved, leading to the terminal velocity u b T and the transient evolution of the bubble rising velocity. As it will be discussed, the coupling formulation introduces a dependence to the penalization viscosity. In particular, we will focus on the bubble initial acceleration du b /dt = -2g (balance between bubble acceleration and gravity volume forcing), the terminal velocity u b T (balance between pressure-viscous drag with gravity volume forcing), and the bubble wake shape because of its importance for the development of bubble induced agitation [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[END_REF].

We consider the configuration described in Fig. 24. A 1 mm spherical bubble is located at the bottom of a tank-like computational domain (x b , y b , z b ) = (0.25d b , 0.25d b , 0.2d b ). At t 0 , the bubble starts rising until reaching its terminal velocity.

The simulation is stopped after the steady state is reached, for a final simulation time t f depending on the considered Reynolds number. Simulations have been carried out for two different fluid viscosities leading to two different terminal velocities and the two Reynolds numbers Re = 17 and Re = 71. The list of the parameters used is given in Table 3. The penalization parameter τ is set to τ = 10 -14 s. We want to consider here the influence of the internal penalization viscosity μ p on the bubble motion. The time step t is imposed following the CFL criteria |u| t/ x = 0. 

Table 3

Set of numerical parameters for the simulation of a single bubble rise. 

d b (mm) ρ b (kg.m -3 ) ρ f (kg.m -3 ) μ f (Pa.s) t f (s) |u b T | (cm.s -

Initial acceleration and terminal velocity

The time evolution of the bubble is reported in Fig. 25 for Re = 17 and Re = 71 and different penalization viscosities μ p . The evolutions clearly reveal the effect of the penalization viscosity μ p on the evolution of the bubble velocity. An appropriate penalization viscosity μ p needs to be selected to reproduce correctly both the initial acceleration (added mass effect) and the terminal velocity of the bubble. For each Reynolds number, and for each ratio of cells per radius, we are always able to reproduce a satisfactory evolution of the bubble rise.

A summary of the tends observed in Fig. 25 is shown in Fig. 26. The optimum value of the penalization viscosity μ p for a good description of the initial acceleration is compared to the one given the best terminal velocity. They are reported as a function of the grid spacing. Depending on both the grid resolution and the Reynolds number an appropriate penalization viscosity μ p has to be selected. It is not here possible to propose a clear scaling of μ p and this aspect of the numerical method needs to be improved for providing predictive simulations of single bubble dynamics. However, the objective is here to provide a method able to describe bubbly flows. As it will be shown in the next section, the impact of the penalization viscosity μ p is significantly reduced when considering a bubble swarm.

Maximal vorticity

In addition to the velocity fields, we also computed the maximal vorticity max that develops at the bubble surface for each mesh refinement and each Reynolds number. This quantity is of interest since it controls the bubble drag force and the development of its wake. The maximal vorticity for a spherical bubble moving steadily in a viscous fluid is given by the following expression [START_REF] Legendre | On the relation between the drag and the vorticity produced on a clean bubble[END_REF]:

ω max = |u b T | r b 16 + 3.315Re 1/2 + 3Re 16 + 3.315Re 1/2 + Re (29)
This expression has been established through DNS simulations for Reynolds numbers ranging from 0.1 to 5000. The evolutions are shown in Fig. 27. The maximal vorticity measured in the simulations tends to get closer to the DNS results (Equation ( 29)) with the mesh refinement. The maximum velocity and vorticity at a bubble surface are directly linked by the relation u max = r b ω max /2 [START_REF] Legendre | On the relation between the drag and the vorticity produced on a clean bubble[END_REF]. The good convergence of the maximal vorticity to the expected value implies that our simulations reproduce a correct fluid velocity close to the bubble surface. The streamlines and the velocity magnitude for is known to follow the standard far-wake behavior that will be used here for the comparison. The corresponding velocity deficit profile parallel to the X-direction is given by (Batchelor, 1967 [3]):

u wake ∼ u bT Q 4π ν f Z exp -u bT X 2 4ν f Z ( 30 
)
where ν f = μ f /ρ f is the cinematic viscosity of the fluid and Q = F D /ρ f u bT is determined by integration over the wake and is directly related to the magnitude F D of the drag force of the body. Given u b T and F D , we obtain the far wake description. The numerical results are presented for the two cases in Figs. [START_REF] Roghair | Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments[END_REF] for X = 0 and X = 2r b /3 and for the 3 mesh refinements considered: 4, 8 and 16 cells in the bubble radius. The velocity decay in the bubble wake tends to get closer to relation [START_REF] Schwarz | An immersed boundary method for the simulation of bubbles with varying shape[END_REF] with the mesh refinement for both Reynolds numbers Re = 17 and Re = 71.

Mono-dispersed bubble swarm

The final step of the validation process is the simulation of bubbles swarm for both a high Reynolds numbers and a high number of bubbles. The objective is to verify the whole numerical method, in order to demonstrate the effectiveness of the so-built numerical tool for bubbly flows simulations. The validation strategy is defined as follows. Experimental investigations of the flow generated by a homogeneous population of bubbles rising in water have been carried out by [START_REF] Zenit | Measurements of the average properties of a suspension of bubbles rising in a vertical channel[END_REF] [START_REF] Zenit | Measurements of the average properties of a suspension of bubbles rising in a vertical channel[END_REF], [START_REF] Garnier | Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction[END_REF] [START_REF] Garnier | Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction[END_REF], [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[END_REF] [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[END_REF] and [START_REF] Colombet | Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction[END_REF] [START_REF] Colombet | Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction[END_REF]. The experiments provide a rather complete description of both the bubbles motion and the induced agitation in the liquid. The idea here is to reproduce in relative similar conditions those experiments with our numerical tool, and make a direct comparison with the relevant information characterizing a bubble swarm such as the velocity PDFs of both the bubbles and the fluid. The flow is supposed to be fully periodic in each direction. The collisions between the bubbles are assumed fully elastic. The simulation parameters are shown in Table 4. For all the simulations reported in this section, the time step is the time step imposed by the CFL condition divided by 5. The statistical measurement (PDF) is started after reaching a stabilized agitated state of the mixture. The simulations are run until the PDFs are converged. We note here α the global void fraction. The analysis of the results requires for normalization purpose the computation of the rise velocity V 0 of a single bubble. We note Re 0 and α 0 the corresponding Reynolds number and reference void fraction, respectively. The values of V 0 , Re 0 and α 0 are reported in Table 4.

Before a detailed investigation of the bubble swarm, we present some preliminary simulations to test the mesh refinement, the domain size and the penalization viscosity.

Influence of the mesh refinement

We first consider the influence of the mesh refinement with a special attention to the liquid and bubble velocity fluctuations. We introduce three grids refinements R 0 , R 1 and R 2 corresponding respectively to 3, 6 and 12 cells in the bubble radius. The computational domain is chosen as 31). Three void fraction are considered here: α = 5%, 10% and 15%, corresponding to N b = 60, 120 and 180 bubbles, respectively. The PDFs of the fluid velocity and the bubble velocity for both the horizontal and vertical components are reported in Fig. 30. Statistics on the flow have been measured between t = 0.2 s, once the fluid is homogeneously agitated, and t f = 2 s. As shown, the grid has no significant influence on the bubble horizontal velocity for the considered refinements. The other velocity components are more sensitive to the grid but a clear convergence with the grid is observed and close results are found for the refinements R 1 and R 2 . The average bubble rising velocity increases as x decreases. This is due to an underestimation of the bubbles rising velocity on coarse grids, mostly due to the relative high Reynolds number considered here (Re 300) because of the boundary layer at the bubble surface that decreases as Re -1/2 . The average rising velocity is evolving in the same way for each void fraction. The variance of the horizontal and vertical fluid velocities increases slightly with the mesh refinement. The simulations performed with the mesh refinement R 0 , R 1 and R 2 required respectively 12, 81 and 350 CPU hours of calculation for 6 × 28 CPU units. In order to save computational resources, the refinement R 1 is used for all the simulations reported in the following sections.

= D 1 = [0; 005] × [0; 005] × [0; 025] (Fig.

Influence of the domain size

We want now to consider the influence of the domain size on the results and on the convergence of the statistics. For each simulation, the number of bubbles N b is deduced from the volume of the computational domain and the imposed void fraction α. If the number of bubbles in the domain reaches a relative low value, the statistical measurements will not be able to describe precisely the bubble-induced agitation of the fluid. The computational domains 31). Compared to D1, for D2 the length of the domain in the (O z) direction doubles, while for D3 the domain is double in both horizontal directions (O x) and (O y). Three void fractions have been studied: α = 5%, 10% and 15%, corresponding respectively to N b = 60, 120 and 180 bubbles for = D 1 , N b = 120, 240 and 360 bubbles for = D 2 and N b = 240, 480 and 720 bubbles for = D 3 . Statistics on the flow have also been measured between t = 0.2 s, once the fluid is homogeneously agitated, and t f = 2 s. The simulations required approximately 4, 6 and 8 days of calculation for the domains D 1 , D 2 , D 3 using 6 × 28 CPU units. The normalized PDFs plotted in Fig. 32 show very similar results for each component of the liquid and bubble velocity when using the domains D 1 , D 2 and D 3 for the void fractions considered (α = 5%, 10% and 15%).

D 1 = [0; 5d b ] × [0; 5d b ] × [0; 25d b ] = [0; L x ] × [0; L y ] × [0; L z ], D 2 = [0; L x ] × [0; L y ] × [0; 2L z ] and D 3 = [0; 2L x ] × [0; 2L y ] × [0; L z ] are considered (see Fig.
We conclude that performing simulations on a computational domain larger than D 1 in any direction will not provide any additional information on the PDFs. All the simulations presented in the following sections are carried out using the computational domain D 1 .

Influence of the penalization viscosity μ p

In the previous section, we detailed the influence of the penalization viscosity μ p on the dynamics of a single bubble rising in a quiescent liquid. For each bubble Reynolds number and mesh refinement considered, an optimum value of μ p has to be determined for a good description of the bubble velocity evolution. As we deal now with bubble swarms, we want to examine again the influence of μ p on the results. For this purpose, three simulations have been carried out for α = 10%, corresponding to three different values, μ p = 0.1, 1 and 10 Pa.s. The mesh refinement is R2 (6 cells in the bubble radius) and the domain is D1. The simulations are stopped at t f = 4 s. We extracted the PDFs of the horizontal and vertical components of the fluid and bubble velocities for μ p = 0.1, 1 and 10 Pa.s (Fig. 33). For each component of the liquid and bubble velocities, the agreement is perfect between the PDFs for different values of μ p . As a conclusion, the choice of μ p has no influence on the simulations of bubble swarms. A clear different behavior was observed for the simulation of a single bubble where results are sensitive to the choice of the penalization viscosity μ p . We were not able to clearly determine the origin of the observed difference between the single bubble case and the bubble swarm case. We believe that the main candidate is the solver used in NEPTUNE_CFD for the inversion of the semi-implicit system (24)- [START_REF] Riboux | A model of bubble-induced turbulence based on large-scale wake interactions[END_REF]. In single bubble configurations, we think that the presence of the penalization viscosity causes a singularity in the matrix to inverse while in the bubble swarm configuration, the bubble singularities are distributed in all the domain improving the matrix conditioning, explaining the independence of the results with the viscosity of penalization. A deeper analysis of the solver performances need to be conducted to clearly explain this numerical behavior.

We now discuss the influence of the numerical value of μ p on the CPU time. We have observed that the CPU time strongly increases when μ p increases. For each simulation performed (μ p = 0.1, 1 and 10 Pa.s) we report the final CPU time at t f = 2 s in Table 5. Again, we note the increase of the CPU time as μ p increases. However the CPU time increase is only around 7% for a change of one order of magnitude for μ p (0.1 to 1 Pa.s and 1 to 10 Pa.s), which remains acceptable in term of management of computing resources. 

Bubble and fluid agitation

Simulations have been carried out for different void fractions ranging from α = 2.5% to 20%, leading to an increasing number of bubbles in the flow as shown in Fig. 34.

The average bubble rising velocity < u bz > is reported in Fig. 35 as a function of the void fraction for 0.002 ≤ α ≤ 0.20.

The evolution is compared to the experiments. The diameter d b = 1 mm is considered in the present work while the diameters considered in the experiments are d b = 1.6, 2.1 and 2.5 mm in Riboux et al. [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[END_REF], d b = 1.4 mm in Zenit et al. [START_REF] Zenit | Measurements of the average properties of a suspension of bubbles rising in a vertical channel[END_REF], and d b = 3.5 mm in Garnier et al. [START_REF] Garnier | Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction[END_REF]. The velocities are normalized by the velocity V 0 of a single rising bubble. The results are found in very good agreement with both the experiments and the decreasing law V 0 (1α 0.49 ).

Variances of the bubble rising velocity < u 2 bz > are compared in Fig. 35 with the corresponding data available in the literature. The experimental results highlight the independence of the variance to the void fraction, tendency which is also remarkably observed for the present simulations. This behavior show that the contribution of the path oscillations dominates over bubble interactions, effect that is properly reproduced in our simulations. We also note that the variance in the present work (< u 2 bz >≈ 2 × 10 -3 m 2 .s -2 ) significantly differ with the values obtained in the experiments (< u 2 bz >≈ 1.2 × 10 -2 m 2 .s -2 ) for the three diameters considered. Clearly we not able reproduce the same level of bubble as reported experiments. The experiments were performed for higher bubble diameters, corresponding to higher bubble Reynolds numbers and significantly deformed bubbles. For such conditions, single bubble move following zig-zag or helicoidal path. This may be a possible explanation of the lower level of bubble agitation observed with our spherical bubbles. However, more recently [START_REF] Colombet | Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction[END_REF] [8] also obtained in their experiments a lower level for the bubble agitation when the bubble motion is measured using particle tracking velocimetry based on images taken with a fixed focal lens. They report < u 2 bz >≈ 3 × 10 -2 m 2 .s -2 up to α = 10%, a value comparable to our simulations. As discussed in [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[END_REF] the measure by dual optical probe of the variance of the bubble agitation may be significantly perturbed when bubbles are oblate spheroid moving with oscillating velocity and orientation.

We now focus on the dynamics of the liquid. Fig. 36 shows the normalized PDF of two components of the fluid velocity for the present work (d b = 1 mm), the considered void fractions ranging from α = 2.5% to α = 15%. The PDFs are scaled following (α/α 0 )/V 0 initially proposed by Risso [START_REF] Risso | Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles[END_REF]. We have also checked (not shown here) that the best superposition of our PDF is also obtained with α 0.4 . The PDFs of the horizontal velocity (right column) are symmetric, meaning that the simulations are able to restore the anisotropy property, the flow being statistically axisymmetric around the bubble, and the distribution of bubbles in the horizontal direction being uniform. A lower liquid agitation is observed in the horizontal direction. However the comparison for the vertical fluid agitation is very good for both the shape and the level of agitation. The shape of the vertical bubble velocity PDFs is clearly non-symmetric due to the entrainment of the fluid in the wake of the bubbles, implying that upward fluctuations are more probable.

Conclusions

A new penalization method for the simulation of bubbly flows has been proposed. The originality of the presented work relies on the extension of the classic penalization methods developed for solid objects for the simulation of bubbles. The bubbles are seen as moving objects whose motion is determined by the action of the fluid on them, through the new coupling method presented. A second notable point is the numerical methodology implemented to ensure a shear-free condition at the surface of the penalized domain. bubble velocity with the void fraction, a bubble agitation independent of the void fraction, and a liquid agitation in both horizontal and vertical directions scaling as α 0.4 .

The results obtained through this paper demonstrate the viability of the numerical tool for the simulations of bubbly flows. Despite the assumptions made on the bubbles (spherical shape, non-deformability, elastic collisions) we were able to reproduce the main characteristic of bubble induced agitation and confirm the origin of the induced agitation resulting from wake interactions. One of the main interest of the method is its capacity to deal easily with a high number of bubbles at moderate and high void fraction. The simulations presented in this paper involve up to 720 bubbles for a bubble Reynolds number of Re 300 and for a void fraction up to 20%. In this paper we show that our numerical approach is able to reproduce the main characteristics of bubbly flows.

This numerical method was originally built to do deal with two kinds of objectives. The short-term objective was to develop a numerical tool allowing us to perform liquid-bubbles simulations in a simplified frame (no break-up, no coalescence, no mass transfer, elastic collisions). We proposed a successful validation strategy to qualify the abilities of our tool and it can now be used to investigate mono-dispersed bubbly flows and to work on closure relations for Euler/Euler simulations. The second objective is to consider bubbly flows relatively close to nuclear applications. First, the method will be extended to consider poly-dispersed bubbly flows. Then deformation and coalescence effects, as well as mass transfer will be introduced in the numerical method with relative ease, meanwhile considering deformation up to breakup events will be more challenging.

Fig. 2 .

 2 Fig. 2. Use of the Bna et al. [4] method for the interface volume tracking. (a) Contours of the volume fraction for a single bubble; (b) volume fraction in the corresponding cut plane.

Fig. 12 .

 12 Fig. 12. Effect of the penalization viscosity μ p on the velocity field inside the bubble; left figure: μ p = 1 Pa.s, right figure: μ p = 100 Pa.s. The contours of the velocity magnitude inside the bubble are plotted in white, the contour of the color fraction in purple.

Fig. 15 .

 15 Fig. 15. Curved channel test case. (a) Pressure field at the end of the simulation. In white: isocontours of the pressure field. (b) Velocity field at the end of the simulation, coloration by magnitude.

Fig. 16 .

 16 Fig. 16. Curved channel test case. Zoom of the velocity field near the interface; Left: Original method, Right: new penalization method.

5 .

 5 Three grid refinements have been tested: 4, 8 and 16 cells in the radius of the bubble. Note that when considering 4 cells in the bubble radius, the boundary layer thickness estimated as δ ∼ r b /Re 1/2 and the grid size have the same order of magnitude for Re = 71.The dimensions of the computational domain shown in Fig.24are 5d b × 5d b × 25d b . 48 simulations in total have been carried out for a wide range of internal viscosities, eight for each Reynolds number and grid refinement. The computational resources have been adapted to the refinement of each grid: 6 × 24, 8 × 24, 12 × 24 CPU units were used respectively for 4, 8 and 16 cells in the radius of the bubble, leading to the corresponding CPU times 45 min, 2 hours and 12 hours for a single simulation.

Fig. 24 .

 24 Fig. 24. Single bubble rise. (a) Initial configuration for the simulation. The bubble is located at the bottom of the tank. The reported vertical plane is used for the wake description. (b) Locations of the reported wake profiles.

Fig. 29 .

 29 Fig. 29. Single bubble rise. Velocity profile in the wake of a rising bubble as indicated in Fig. 24. (a) Re = 17, (b) Re = 71. First line X = 0, second line X = 2R/3.

Fig. 30 .

 30 Fig. 30. Bubble swarm. Effect of the mesh refinement on the normalized PDFs of the liquid velocity (left) and the bubbles velocity (right).

Fig. 31 .

 31 Fig. 31. Bubble swarm. Computational domains used for the study of the domain size effect (a) D 1 , (b) D 2 , (c) D 3 .

Fig. 32 .

 32 Fig. 32. Bubble swarm. Effect of the domain size. Normalized PDFs of vertical and horizontal liquid (left) and bubble (right) velocity fluctuations.

Fig. 35 .

 35 Fig. 35. Bubble swarm. (Left) Average bubble velocity < u bz > and (right) variance < u 2 bz > of the bubble velocity normalized by the velocity V 0 of a single rising bubble as a function of the gas volume fraction α. Red squares, present numerical work. Experiments: •

Fig. 36 .

 36 Fig. 36. Bubble swarm. Normalized PDFs of vertical (left) and horizontal (right) liquid velocity fluctuations.

Table 2

 2 3D translating bubble test case. Evolution of the L 2 error on the velocity through 3 time iterations. The 200 3 grid is used.

		Method	t 1	t 2	t 3
	||u-u0||2 ||u0||2	CR NCR	4.19 × 10 -16 1.76 × 10 +1	4.14 × 10 -16 2.61 × 10 +1	4.24 × 10 -16 1.31 × 10 +1

Fig.

[START_REF] Peskin | Flow patterns around heart valves: a numerical method[END_REF]

. Convergence study for P , (V x , V y , V z ) in L 1 norm for the bubble moving at zero relative velocity in the flow test case.

Table 4

 4 Set of numerical parameters for the bubble swarm simulations.

	d b (mm)	ρ b (kg.m -3 )	ρ f (kg.m -3 )	μ f (Pa.s)	μ p /μ f	V 0 (cm.s -1 )	Re 0	α 0
	1.0	50	1000	0.0008	100	22.5	281	0.008

Table 5

 5 Bubble swarm. Evolution of the final CPU time for different values of μ p .

		μ p = 0.1 Pa.s	μ p = 1 Pa.s	μ p = 10 Pa.s
	CPU time (hours)	72	77	83
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Appendix

We detail in this appendix the derivation of the coupled relations [START_REF] Peskin | Numerical analysis of blood flow in the heart[END_REF] and [START_REF] Riboux | A model of bubble-induced turbulence based on large-scale wake interactions[END_REF]. We start from the two-phase formalism described in equation [START_REF] Peskin | Flow patterns around heart valves: a numerical method[END_REF]. Due to the uniformity of the penalized velocity u b in the bubble, ∇u b = 0 and ∇ 2 u b = 0. Each equation is first divided by α f and α b for the liquid and the bubble phase, respectively. The pressure gradient ∇ P is then expressed from each equation as:

These equations are linked through the same pressure gradient. Combining equations ( 31) and ( 32) leads to the following relation:

with α b + α f = 1. An implicit scheme is used for the penalization term and the resulting semi-discrete formulation writes as:

The u n+1 b terms are regrouped on the left side of the equation. Equation ( 34) becomes:

This equation corresponds to the implicit formulation of the penalization velocity. This expression is then injected into the discretized form of the fluid equation to obtain: