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Abstract

In this paper we numerically simulate the phenomenon of bone growth in bone defects as driven by external mechanical

excitation. Bone growth is accounted for through a continuum model that allows simulation of the filling of a defect.

The influence of the model boundary conditions is also discussed. Two and three dimensional simulations are presented,

explicitly showing the bone regeneration process inside the cavity on a weekly basis. Numerical results are qualitatively

compared with literature experimental data from a rat calvarial defect exposed to low-intensity pulsed ultrasound. The

obtained results show trend correlations with the targeted phenomenological observations and allow us to perform a

first evaluation of the proposed model parameters to be optimized for clinically relevant situations, even if a systematic

experimental campaign is still needed to precisely identify the bio-mechanical parameters involved.
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1. Introduction

Bone remodeling has been extensively studied since the publication of the well-known Wolff’s Law [1], which
enabled better understanding of bone architecture organization under applied mechanical load and was later
redefined by Frost [2, 3]. Following Wolff and Frost, Carter et al. [4, 5] studied the effects of mechanical load
history on the developed mechanical energy for bone architecture reorganization. For various types of loading
scenarios, they showed similar mathematical formulations of bone density evolutions as a function of effective
applied stress, fatigue damage accumulation and strain energy density, and these could be applied for functional
adaptation and bone growth. Then, Carter and Beaupré [6] highlighted the influence of the mechanical factors
in bone growth and showed the specific effects of mechanical loads on the biological reaction leading to better
understanding of bone mechanobiology. In this paper, following the methods presented in [7, 8], we propose to
use a continuum mixture model to describe the physical phenomenon of bone growth inside a cavity as driven
by mechanical excitation. In particular, we study the influence of low-intensity pulsed ultrasound (LIPUS) on
the ability to globally reproduce the gradual filling of a rat calvarial defect.

LIPUS is employed more and more today to promote the bone repair process in fractured bones. The usual
medical practice consists of a LIPUS treatment of the fractured bone which lasts some minutes per day. Typical
applications of LIPUS entail a 5–20 min/daily treatment with frequencies ranging from almost 1–10 MHz and
with intensities of the order of 10–100 mW/cm2. LIPUS is currently applied transcutaneously, although recent
experimental studies have proven the efficacy of a trans-osseous application. In fact, Malizos et al. [9] reported
on the first trans-osseous application of ultrasound on a sheep tibial osteotomy model and demonstrated that
the treated bones became significantly stiffer and stronger with higher bone mineral density compared to the
untreated tibiae.

Over the last few years different studies (see [10–13]) have been performed to unveil the efficacy of LIPUS
to promote bone growth, such as those devoted to establishing the actual positive effect of LIPUS treatment on
the enhanced filling of defects. Duarte [14] observed the evolution of small holes with diameters of 1.5 mm in
the cortex of the femur in rabbits subjected daily to a 15 min ultrasound treatment for 2 weeks. He found that the
LIPUS treatment stimulated the callus formation inside the holes compared with the contralateral non-treated
holes. Lavandier et al. [15] performed similar experiments on calvarial bone defects, but they focused their
attention on the study of the effect of the different LIPUS characteristics on bone regeneration. They came to
the conclusion that the main parameter influencing bone growth is the intensity of the applied load, rather than
its frequency. This seems reasonable if one thinks that the bone growth process has characteristic time-scales of
the order of weeks, while the characteristic time associated with the load application is of the order of seconds.
This follows work from Carter et al. [4], who studied the influence of daily loading histories onto the evolution
of trabecular bone density. Although cyclic stresses are influencing bone mass, as long as there is no observable
bone density variation, it can be assumed that as long as bone is experiencing neither a net loss or gain of bone
the apparent density will be exposed to a constant daily stimulus. Hence, in our model, assuming that frequency
is not relevant in our case study [4, 15] and that ultra-sound intensity leads to small strains, we will suppose in
our modeling phase that the LIPUS signal can be approximated with a static force representing the averaged
value of the applied dynamic load and deforming the considered bone specimen elastically. These hypotheses
remain sensible, as the time scale of the applied cyclic mechanical load is many orders of magnitude smaller
than the time scale of the biological processes. In fact, if the deformation response to particular applied loads
occurs on time scales of the order of seconds or minutes, the characteristic time to observe bone growth due to
cellular activities is of the order of weeks [2, 3, 16–18].

Hasuike et al. [19] demonstrated the bone regenerative effect of LIPUS treatment on rat 2.7 mm non-critical
calvarial defects, as confirmed with in vivo micro-CT. The rats were divided into a LIPUS rat group (exposed
for 20 min daily to a typical LIPUS application) and a control rat group (not exposed to mechanical excitation)
and the beneficial effect of LIPUS treatment on bone regeneration was clearly demonstrated.

In the remainder of this paper, we will use the experimental results of [19] in order to show that our model
allows us to properly simulate bone growth inside a cavity in accordance with available experimental evidence.

The development of the theoretical model used here to simulate bone growth inside a cavity is based on
some mixture models originally conceived to describe the phenomenon of bone remodeling in the presence of
an artificial bio-resorbable graft. In such models [7, 8, 20–26] the first constituent of the mixture represents
natural bone tissue, while the second represents the bio-resorbable material which is filling the void defect.

In this paper, we use a similar model to simulate the phenomenon of bone remodeling when the defect is
not filled with an artificial material after surgery. To reproduce this situation, we will assume in our numerical
simulations that the geometrical domain occupied by the defect is filled with a “fictive material” with almost
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vanishing density and Young’s modulus. In this way, the subregion of the considered geometrical domain, which
is supposed to be filled with such “fictive material”, can be fully interpreted as a void region. When performing
numerical simulations, we introduce a “fictive material” inside the cavity to avoid the problem related to the
modeling of a moving material interface. This reduces the difficulty of conceiving a model with an additive
surface growth to a problem of volume growth within the adjacent domain. The latter situation is evidently
more easily treatable in a finite element framework. Considering an extremely soft material in the defect region
is actually much more realistic than considering a hole in which no matter at all is present. Indeed, when
producing a defect, some soft tissues are always present in the cavity from the earliest phases after surgery.
Such soft tissues are then mineralized to be transformed in cartilage and finally in bone [27]. In the results
section, we present some two-dimensional (2D) numerical simulations showing that the proposed model is able
to catch the main features of bone regeneration in a calvarial bone defect as driven by mechanical excitation.
In addition, we test different types of loading conditions to try to establish some comparisons with the effect of
the application of a LIPUS treatment.

Finally, we will introduce some preliminary three-dimensional (3D) results in order to show that the pro-
posed model can be further optimized in order to simulate fully realistic growth patterns in three dimensional
structures.

2. Low-intensity pulsed ultrasounds (LIPUS) as a source of mechanical excitation for

bone remodeling

Ultrasound is a form of energy that is transmitted through biological tissues in the form of acoustic waves, and
is today widely used in medicine as a diagnostic and therapeutic tool. Indeed, low-intensity pulsed ultrasounds
can be seen as an effective source of mechanical excitation, which is able to promote the process of bone
remodeling. This is, in turn, known to be strongly dependent on the application of external loads [1, 28, 29].
Based on the evidence of mechanical stimulation affecting the evolution of healthy bones, different studies have
recently focused their attention on the possibility of improving the process of bone regeneration via the use
of LIPUS in the presence of cavities or defects. However, although there is a common agreement that LIPUS
pressure waves can cause biochemical events at the cellular levels that promote bone formation, the precise
bio-physical mechanisms at the root of such behavior have not yet been fully clarified. In particular, it is not
clear whether such LIPUS-induced remodeling improvement is caused by the energetic content of the traveling
waves [15] or by their frequency [30, 31].

In this paper, following [15], we suppose that the main mechanical factor that may influence the remodeling
process is the intensity rather than the frequency of the traveling wave. We are in some sense assuming that the
activation of the cells is mainly due to the intensity of the load that is sensed by the osteocytes rather than to the
frequency of the applied signal. In other words, we are assuming that there exists a sort of load threshold which
needs to be exceeded in order to activate the cells which are deputed to the formation of new bone tissue. More
precisely, we are considering a situation in which when the intensity of the applied load is lower than a given
threshold value, the associated deformation of the bone is low; this means that the osteoblasts do not need to
create new bone tissue to correctly sustain the externally applied load. Osteoclasts, on the other hand, can resorb
what can be interpreted as an excess of bone tissue, which can be more conveniently used where the applied
loads are more intense. When the intensity of the applied load lies on the threshold, a sort of bio-mechanical
equilibrium takes place in which neither creation nor resorption of bone tissue is needed to effectively sustain
the applied external loads. When the intensity of the applied load is higher than the given threshold, then the
associated deformation of the bone is high and, as a result, osteoblasts start forming new bone tissue in order to
render the bone more compact. On the basis of such remarks it is reasonable to assume that the LIPUS treatment
can be thought to be optimized by suitably choosing, at fixed frequency, the intensity of the energy carried by
the traveling waves in order to maximize bone regeneration. Following our previous hypothesis of different time
scales for the mechanical and biological phenomena, (see Lavandier et al. [15]), we will study the effects of an
“average” static load and observe the evolution of the system on a weekly basis in order to follow the evolution
of the bone mass density.

3. Theoretical model

In this section we recall the main peculiarities of the continuum mixture model proposed in [7, 8] and we show
how this model can be suitably adapted to the particular case of bone growth inside a defect.
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On the basis of the experimental results obtained by [15], we suppose in this paper that the effect of the
frequency of the applied load on the process of remodeling can be, in a first instance, neglected, and that the
main parameter which intervenes in such remodeling processes is indeed the intensity of the traveling wave, i.e.
the energetic content of the wave itself. We will hence introduce a static model neglecting inertial effects.

3.1. Continuum mixture-model describing the mechanical behavior of a natural-bone/fictive-material mixture

We describe the deformation of a two-solids continuum mixture by introducing a Lagrangian (or reference)
configuration BL ⊂ R

3 and a suitably regular kinematical field χ (X, t) that associates to any material point
X ∈ BL its current position x at time t. The kinematics of the system is completed by introducing two Lagrangian
mass densities ρb(X, t) and ρm(X, t), which represent the Lagrangian mass density of the natural bone tissue and
of the artificial material respectively. Such Lagrangian mass densities are supposed to evolve in time to allow for
the possibility of describing the effect of the underlying cellular activity. The image of the function χ gives, at
any instant t, the current shape of the body, also called the Eulerian configuration of the mixture. Since we will
use it in the following, we also introduce the displacement field u(X, t) := χ(X, t) − X, the tensor F := ∇χ and
the Green–Lagrange deformation tensor ε := (FT · F − I)/2. We consider a quasi-static case, i.e. a mechanical
problem in which no kinetic energy is considered. In this case, we can write the power of internal forces as the
first variation of a suitable action functional A as follows:

P
int = δA = − δ

∫

BL

U (ε) dX, (1)

where U (ε) is the bulk strain energy density. We stress the fact that expression (1) for the power of internal
forces is valid only in the quasi-stationary case, when the kinetic energy does not intervene in the description
of the mechanical problem. When the inertia terms are relevant, then the kinetic energy density must be added
to the integrand in equation (1) and an integration in time must also be performed. The expression of the action
functional presented here is of the same type as the one considered in [8], in which a simple one dimensional
application was targeted.

In this paper, assuming material isotropy due to the small thickness of rat calvaria mainly composed of
cortical bone, we consider the following constitutive form for U as studied in linear elasticity (the Einstein
notation of the sum over repeated indices is used if not otherwise specified):

U (ε, ρb, ρm) =
1

2

E (ρb, ρm) ν

(1 + ν)(1 − 2ν)
ε2

ii +
1

2

E (ρb, ρm)

(1 + ν)
εij εij

where E and ν are the Young’s modulus and the Poisson coefficient of the bone/bio-material mixture, respec-
tively. The Young’s modulus is assumed to be dependent on the densities of both bone and bio-material according
to the following power law:

E (ρb, ρm) =

(

Eb

(

ρb

ρmax

)β

+ Em

(

ρm

ρmax

)β
)

, (2)

where Eb and Em are characteristic constant moduli, β is a suitable constant exponent and ρmax is the maximum
possible density that the bone-bio-material mixture can reach during the remodeling process. A reasonable value
for this maximum density can be fixed to be approximately ρmax = 2000 kg/m3, which is the density of compact
bone. As will be explained, since the “fictive material” must indeed represent a void cavity, its mass density ρm

and Young’s modulus Em will be considered to be almost vanishing.
We explicitly remark that by treating the void region as a “fictive material”, we are drastically improving

the simplicity of the proposed model. In fact, a model which accounts for the possibility of introducing a real
void region should also be able to describe a surface growth inside the cavity. This would result in the need to
set up a model which accounts for the description of the motion of a deformable body with evolving material
interface; this is a real theoretical challenge. Moreover, simulating the existence of a void region by setting its
density to be very small allows for a really easy and effective numerical implementation.

4

http://mms.sagepub.com/


As for the expression of the power of external forces, we assume that forces per unit area can act on the
external boundary of the body (or on some portion of it), while we assume that no external volume forces are
present. More precisely, we consider the following expression for the power of external forces:

P
ext =

∫

∂BL

f ext
i δui dX. (3)

Also for the power of external forces, we recall that expression (3) is valid in the quasi-static case.
The mechanical governing equations in weak form can be directly expressed by imposing the validity of the

principle of virtual powers P int = Pext with suitable kinematical or natural boundary conditions.

3.2. Bio-mechanical coupling: Stimulus and growth-resorption laws

The bio-mechanical coupling is assured by the biological stimulus S defined on the Lagrangian configuration
BL as

S(X, t) =

( ∫

BL

U(X0, t) d(X0, t) exp(−‖χ (X) − χ (X0)‖2 /D2 ) dX0

)

− S0(X, t), (4)

where S0 is a threshold of the stimulus discriminating between resorption and synthesis, according to the hy-
pothesis of the existence of a load threshold made in Section 2, and d is a function which allows us to specify the
concentration of osteocytes at any point of the domain. The stimulus S can be thought of as a bio-mechanical
signal associated to the osteocyte activity, whose intensity is directly proportional to measured deformation and
to the density of osteocytes.

Since osteocytes can be present only if natural bone is present (they are formed from osteoblasts when
they are completely surrounded by natural bone tissues), we suppose that the concentration of osteocytes is
proportional to the mass density of natural bone tissue at any point of the considered domain. More particularly,
we consider the following expression for the concentration of osteocytes:

d = η
ρb

ρmax

, η ∈ [0, 1],

where η is a suitable constant which allows us to account for a higher or lower concentration of osteocytes at
a given point of the mixture. From now on we will also make the hypothesis of small deformations, so that we
will consider that in equation (4) ‖χ (X) − χ (X0)‖ ≈ ‖X − X0‖.

The Lagrangian mass densities ρb and ρm of bone and bio-material are assumed to vary in time according to
the following ordinary differential equations:

∂ (ρb/ρmax)

∂t
= Ab(S)H(ϕ),

∂ (ρm/ρmax)

∂t
= Am(S)H(ϕ), (5)

where

H(ϕ) = k ϕ(1 − ϕ), ϕ = 1 − θ
(ρb + ρm)

ρmax

, θ ∈ [0, 1],

Ab(S) =

{

sb S for S > 0
rb S for S < 0

, Am(S) =

{

0 for S > 0
rm S for S < 0

.

In these formulas, we introduce some suitable bio-mechanical parameter that is used in our model in order to
simulate the activity of the underlying cells. In particular, the value of the parameter k weights the influence
that porosity has on the overall remodeling process; such a parameter thus indirectly accounts for the porosity
patterns of the considered bone. On the other hand, the parameters rb, rm and sb account respectively for the
resorption rate for bone and bio-material and for the synthesis rate of natural bone tissue.
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Figure 1. Regenerating process in a rat model without LIPUS treatment measured every week over 1 month from initial configuration

(from Hasuike et al. 2011) [19].

Figure 2. Regenerating process in a rat model with LIPUS treatment measured every week over 1 month from initial configuration

(from Hasuike et al. 2011) [19].

4. A 2D case simulating growth of bone tissue in the presence of a bone cavity.

Different authors (see [32–35]) have been interested in the experimental study of bone growth in the presence
of bone defects. A common protocol is to produce a circular-shaped bone defect in the calvarium of a rat (or
of another control species), thus observing in vivo, by an imaging procedure, the regeneration of bone in the
weeks following surgery. In this section, we show how our model can be used to describe such a regenerative
phenomenon.

In Figure 1, we show the evolution of bone growth in the defect for a rat which has not been treated by
LIPUS. A slow bone regeneration process is observed, which can be related to a basic cellular activity triggered
by mechanical excitations that are compatible with everyday activity such as chewing (or even with the simple
presence of weight forces). Figures 1 and 2 show the evolution of bone growth around the defect as observed
during a period of approximately 1 month for the control group (not treated with ultrasound) and for the group
treated with LIPUS. From the results observed by Hasuike (2011) [19, 33], it turns out that the LIPUS treat-
ment undoubtedly has a beneficial effect on the process of bone healing. In the following we will show how
our theoretical model can be applied to reproduce this behavior, after suitable calibration of the constitutive
parameters.

4.1. Numerical simulations of regeneration in the presence of bone defect

In order to describe the physical situation in which a hole is produced inside bone tissue, the continuum mixture
model proposed in Section 3 can be used. We consider the geometry reproduced in Figure 3: our specimen is
composed of a rectangular-shaped bone sample 1 cm × 1 cm, with a circular-shaped hole in the center with
a diameter of 2 mm. Since no bio-material is present inside the cavity, we will assume that no resorption of
considered “fictive material” occurs by setting rm = 0 (see Table 1). Furthermore, it was assumed that the
thickness d of the specimen was equal to 1 mm.

These hypotheses allow us to adopt the theoretical model introduced in the previous section to describe bone
growth inside a hole. The model was implemented within the COMSOL Multiphysics(R) software (see Figure

6
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Table 1. Values of the parameters used for the numerical simulation reproducing bone growth inside a hole.

Eb (GPa) Em (GPa) β k θ S0(Nm) D (mm) η

20 0 1.6 4 1 10−8 1 1

ρb / ρmax at t = 0 ρm / ρmax at t = 0 sb (s/m5) rb (s/m5) rm (s/m5)

0.8 10−5 105 2 × 104 0

Figure 3. Geometry of the considered bone defect and different types of applied boundary displacements.

Figure 4. (a) Initial distribution of bone mass density: 80% of maximum bone density ρmax outside the hole; (b) adopted mesh used

with triangular-shaped elements: curvature factor of 0.4, range of elements size 2 × 10−5/9 × 10−4, maximal growth rate of the

elements 1.4.

4). Considering that mesh density directly influences the results, we paid a great deal of attention to this choice.
The characteristic length of the biological parameters (particularly for the D parameter which is associated with
the range of action of osteocytes) covers several mesh elements for a better numerical interpolation. Table 1
summarizes the values of the parameters which have been used to perform the numerical simulations for this
case.

In Figures 5 to 10 we show the time evolution of bone density and of the associated bio-mechanical stimulus
that follows the application of three types of displacement boundary conditions to the considered specimen,
as shown in Figure 3. The order of magnitude of the applied displacements was chosen in order to be com-
patible with those displacements which are reasonably caused by a LIPUS treatment. In these simulations, the
comparable volume force with the studied situation was Fv = −108 N/m2.

It can be seen that, after the application of the external displacement, bone growth can be observed on a
weekly basis. If the observation period is increased, then complete replacement can be observed as shown in
Figure 5. Experimental studies (see e.g. [15, 19]) suggest that the effect of external mechanical excitation on
regeneration of bone defects can be crucial, above all for the case of “critical size defects” i.e. of defects that
would not heal without external mechanical excitation. The model proposed in the present paper allows us to
directly account for this effect of mechanical loading on bone growth and, for the boundary conditions shown
in Figure 3(a), an almost complete replacement is predicted after 10 weeks (see Figure 5). Similar observations
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Figure 5. Time evolution of tissue growth under the application of the boundary conditions shown in Figure 3(a).

Figure 6. Time evolution of biological stimulus under the boundary condition shown in Figure 3(a).

Figure 7. Time evolution of tissue growth under the application of the boundary condition shown in Figure 3(b).

can be given in the other cases of displacements. In particular, the model represented in Figure 3(b) leads to
the simulation shown in Figure 7, where an almost complete replacement is predicted after 9 weeks, with a
prescribed displacement even smaller than that of case (a) (i.e. 0.00005 mm). In addition, the application of
the asymmetric prescribed displacement (0.0001 · y mm) illustrated in Figure 3(c) implies, as shown in Figure
9, an almost complete replacement is predicted after 40 weeks. If we focus on the stimulus (see Figures 6, 8
and 10), we can appreciate the propagation of the osteocyte signal that moves toward the critical size defect,
its intensity increasing with the increasing of the observation period. In particular, a more intense red zone
corresponds to a higher value of the stimulus and vice versa for the blue region. It is worth remarking that the
imposed displacement is very small and corresponds to strains of the order of 10−5–10−6, which are definitely
compatible with characteristic displacements due to LIPUS application. When comparing the simulations shown
in Figure 5 to the experimental observations in Figure 1, it can be seen that the qualitative behavior of remodeling
is completely caught by the proposed model. Some slightly asymmetric growth patterns are present in the
experimental case, which could be due to different imperfections, such as the non-perfect circular shape of the
initial hole, asymmetry of the applied load, etc. For this reason the qualitative regenerative pattern associated
with an asymmetric load shown in Figure 9 appears to be closer to the real situation. The simulated regeneration
is nevertheless slower due to the intensity of the externally applied load. The process could be accelerated by
increasing the intensity of the applied asymmetric load.

With particular reference to the evolution of the biological stimulus, we can infer that bone growth is always
triggered in those regions where the stimulus is much higher. This is sensible if we think that a high stimulus is
associated with a high deformation, which induces osteoblasts to synthesize new bone tissue more easily.

Considering the last loading case depicted in Figure 3(c), we note that the corresponding bone growth rep-
resented in Figure 9 arrives on larger time-spans. The process would of course be accelerated by increasing the
intensity of the applied displacement.
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Figure 8. Time evolution of biological stimulus under the boundary condition shown in Figure 3(b).

Figure 9. Time evolution of tissue growth under the application of the boundary condition shown in Figure 3(c).

Figure 10. Time evolution of biological stimulus under the boundary condition shown in Figure 3(c).

5. Three-dimensional case

In order to show that the introduced continuum model is actually able to capture the main features of bone
growth in real living systems, we present in this section some preliminary results concerning bone growth in a
three dimensional structure. The geometry and adopted loading conditions are presented in Figure 11. Such a
situation mimics the creation of a circular hole in the rat calvaria. The boundary conditions are then set to be
completely fixed on the external radius R (corresponding to the radius up to which stresses are applied) and the
small hole of radius r (corresponding to the drilled hole). These boundary conditions define the circular plate
with fixed external radius and flexure on the top surface (applied pressure).

Figure 11. Geometry and load distribution for the 3D case: R = 0.5 cm, r = 1.5 mm, h = 1 mm, F = 45 kPa.

With the applied force F = 45 kPa, we explicitly remark that, with reference to the geometry of the consid-
ered specimen given in Figure 11, a measure of the energy per unit area that is furnished to the system can be
given by

|F| R = 22.5
mJ

cm2
.

Assuming that the mechanical phenomena occur instantaneously when compared to the biological ones, such a
quantity is directly comparable to an “averaged power” of the LIPUS (usually called LIPUS intensity) which,
as we mentioned before, is of the order of 10–100 mW/cm2.
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Figure 12. Three dimensional time evolution of tissue growth inside a cavity for D = 1 mm.

Figure 13. Three dimensional time evolution of the biological stimulus for D = 1 mm.

Figure 14. Three dimensional time evolution of tissue growth inside a cavity for D = 0.4 mm.

Figure 15. Three dimensional time evolution of the biological stimulus for D = 0.4 mm.

Figure 16. Three dimensional time evolution of tissue growth inside a cavity for D = 0.2 mm.

All the results presented in this section are relative to a 3D specimen whose geometry and loading conditions
are given in Figure 11. The values of the constitutive parameters are the same as those chosen for the 2D
simulations and given in Table 1, except for the parameter D for which different values were tested in order
to show the sensitivity of the model to such a crucial parameter. Indeed, D represents a characteristic length
corresponding to a measure of the range of action of osteocytes. For all of the the 2D simulations, as well as
for the first 3D simulation depicted in Figures 12 and 13, we chose D = 1 mm (equivalent to the thickness of
the model). The reconstruction occurs all around the hole with symmetrical distribution through the thickness.
This is due to the fact that the parameter D and the thickness of the specimen are comparable.

The bone growth and corresponding biological stimulus are shown on Figures 14 and 15 for a value of the
parameter D = 0.4mm and similarly on Figure 16 and 17 for a value of the parameter D = 0.2 mm. It can
be inferred that when the range of action of osteocytes is smaller, the process of bone growth becomes slower
and the observed growth patterns appear to be different to the first case. Since we imposed a general flexure
of the plate on the top surface, this is where the bone reconstruction occurs first, progressing further down the
thickness of the specimen towards the bottom surface. Changing the value of D from 0.4 mm to 0.2 mm creates
a thinner bone reconstruction area, which depends directly on the mechanical stimulus developed.
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Figure 17. Three dimensional time evolution of the biological stimulus for D = 0.2 mm.

Results obtained using the 3D model show a clear influence of the D parameter corresponding to the “os-
teocyte influence radius”. In the case of D = 1 mm (corresponding to the model/specimen thickness), we can
observe a homogeneous reconstruction with a slightly higher influence in the center of the plate. This is to be
expected since the osteocyte radius of influence will distribute the bone kinetic reconstruction homogeneously
through the thickness. For the two other cases, we have a different reconstruction through the thickness. In the
case of D = 0.4 mm (corresponding to about half of the plate thickness), the bone reconstruction occurs mainly
in the top surface initially, since our loading condition is a bending state with load applied on the top surface.
Reconstruction goes down through the thickness as the analysis progresses, and full reconstruction is observed
after about 120 weeks. In the final case for which D = 0.2 mm, we clearly have a smaller influence on the cell
radius and bone reconstruction, which initially develops on the top surface near the hole edge and progresses
towards the center. Even after 120 weeks (similar to D = 0.4 mm), full reconstruction is not complete. This is
mainly due to the correlation existing between cell radius activity, bone kinetics and time. Even if time plays an
important role in the different studied cases linked with other material parameters, we show that the geometry
of bone reconstruction kinetics is different for each case. Further experimental studies targeted at establishing a
reliable characteristic length for the range of action of osteocytes are needed in order to calibrate the parameter
D of our model.

6. Conclusions

Nowadays both regenerative medicine and tissue engineering are focused on the development of new therapeutic
approaches which may improve the regeneration of living organs and tissues, like bones, affected by trauma or
degenerative diseases. The development of theoretical and numerical tools which are able to simulate the process
of bone healing as driven by mechanical excitation would be of great help for the choice of the optimal LIPUS
treatment to be delivered to the patient, in order to reach optimal healing in the most efficient way.

In this paper, we use a continuum model that is able to reproduce the natural behavior of bone tissue re-
generation and growth inside a defect, as influenced by LIPUS treatment. We assume that the real dynamical
force exerted by a LIPUS treatment is replaced with an averaged static force. This is rather sensible if we think
that the time-scale of the intervening mechanical phenomena associated with the LIPUS application is much
smaller than the time-scale of bone growth. The introduced model is then used to simulate the phenomenon of
bone growth inside a 2D cavity for different types of externally applied loads. Finally some results concerning
a first 3D case are also reported in order to show the generality and potential of the introduced model.

Even if extended experimental campaigns accompanied by a systematic optimization of the parameters of
the introduced model are still needed in order to render the proposed tools useful for medical uses, the obtained
results are encouraging and in agreement with experimental observation. The obtained patterns of bone growth
are seen to be close to the experimental ones for applied load values, which are compatible with the intensities
of typical LIPUS treatments.

From the point of view of the mechanical modeling, a possible extension of this work could be to include the
effects due to the microstructure of the bone. In this context, strain gradient generalized continuum models are
proven to be a possible modeling choice [7, 36, 37] for introducing characteristic lengths and size and anisotropy
effects related to the microstructural characteristics of the material.

Moreover, higher grade continuum models also allow for the use of enhanced boundary conditions, useful
to represent connections between materials with microstructure [38–40].

It could also be interesting to investigate the effect of osteoporosis on the process of remodeling. To this end,
classical [41, 42] or strain gradient [43–45] poroelastic models could be a suitable modeling choice.
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