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A GENERAL DRIFT ESTIMATION PROCEDURE FOR STOCHASTIC
DIFFERENTIAL EQUATIONS WITH ADDITIVE FRACTIONAL NOISE

FABIEN PANLOUP, SAMY TINDEL, AND MAYLIS VARVENNE

Abstract. In this paper we consider the drift estimation problem for a general differential
equation driven by an additive multidimensional fractional Brownian motion, under ergodic
assumptions on the drift coefficient. Our estimation procedure is based on the identification of
the invariant measure, and we provide consistency results as well as some information about
the convergence rate. We also give some examples of coefficients for which the identifiability
assumption for the invariant measure is satisfied.
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1. Introduction

Let B be a d-dimensional fractional Brownian motion with Hurst parameterH ∈ (0, 1) defined
on a complete probability space (Ω,F ,P). We recall that B is a centered Gaussian process. Its
law is thus characterized by its covariance function, which is defined by

E
[
Bi
t B

j
s

]
= 1

2
(
t2H + s2H − |t− s|2H

)
1{0}(i− j), s, t ∈ R.

The variance of the increments of B is then given by

E
[
|Bi

t −Bi
s|2
]

= |t− s|2H , s, t ∈ R, i = 1, . . . ,m, (1.1)

and this implies that almost surely the fBm paths are γ-Hölder continuous for any γ < H.

In this article, we will consider the following Rd-valued stochastic differential equation driven
by B:

Yt = y0 +
∫ t

0
bϑ0(Ys) ds+ σBt, t ∈ [0, T ]. (1.2)

Here y0 ∈ Rd is a given initial condition, B = (B1, . . . , Bd) is the aforementioned fractional
Brownian motion (fBm), the unknown parameter ϑ0 lies in a certain set Θ which will be specified
later on, {bϑ(·), ϑ ∈ Θ} is a known family of drift coefficients with bϑ(·) : Rd → Rd, and σ is a
d×d-matrix which is supposed to be known. More precisely, we do not discuss here the problem
of estimation of the diffusion parameter σ and of the Hurst index H (on this topic, see e.g. [8],
[29] or [46]). For the sake of simplicity, we also assume throughout the paper that σ is invertible
(on this topic, see Remark 2.4). Our aim is to get an accurate estimation of ϑ0 according to
some discrete observations of Y .

When H = 1
2 , i.e. when (Yt)t≥0 is a diffusion process, the drift estimation for solutions of

stochastic differential equations is a widely investigated topic. Among many references devoted
to parametric estimation procedures for discretely observed elliptic diffusions, let us quote the
early contribution [30]. For adaptive and non parametric methods, one may refer to [13, 15, 27,
33, 38, 44] and to the references therein. In the fractional setting, the estimation problem for
the drift term in equation (1.2) has also received a lot of attention in the recent past (see e.g
[3, 28, 32, 34, 39, 45]). However, the following restrictions hold in all those contributions:
• The coefficient bϑ0(Ys) is of the form ϑ0b(Ys) or even ϑ0 Ys when Ornstein-Uhlenbeck processes
are involved.
• The observation is either in continuous time or a discretized version of continuous observations.
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• Rates of convergence of the estimators are not computed, a noticeable exception being the
central limit theorems obtained in [28].
Let us also mention the nonparametric method put forward in the interesting recent paper [14].
The context in [14] is much more general than in the aforementioned references, but the esti-
mation procedure is based on the observation of several paths of (1.2). This makes its practical
implementation delicate.

With these considerations in mind, let us recall that the article [36] proposed an estimator
valid for a wide class of functions b in (1.2), directly based on discrete observations of the process.
This estimator is obtained through a least square procedure which is easily implemented. It is
fairly general, but still exhibits some gaps that we aim at filling in this paper. Indeed, on the one
hand [36] only focuses on the case H > 1/2. This obviously facilitates many of the stochastic
calculus manipulations invoked in order to analyze the convergence of estimators. On the other
hand [36] crucially assumes that the drift bϑ(·) has a gradient shape. This is essential in order
to identify the long-time behavior of certain stochastic integrals with respect to the underlying
fBm (see Lemma 3.2 of [36] for details). Eventually [36] also required the following identifiability
assumption:

E
[
|bϑ0(Ȳ0)|2

]
= E

[
|bϑ(Ȳ0)|2

]
iff ϑ = ϑ0. (1.3)

Even though (1.3) can be considered as a quite standard hypothesis in an ergodic framework (see
e.g [30] for a similar requirement), asking the class of models to be identifiable in this sense is
mostly adapted to the drifts of the form bϑ(·) = ϑh(·). It may be restrictive or at least, difficult
to check in practice.

In this paper, we thus aim at filling some of the aforementioned gaps. Our initial objective
is to alleviate the identifiability condition. More precisely, instead of assuming that the model
can be identified through the integral of one very specific function with respect to the invariant
distribution, we will now just suppose that the model is identifiable by its invariant distribution,
i.e. that two models are equal if and only if they have the same stationary distribution. We
also get rid of the restriction on H and on the gradient shape of bϑ by considering an approach
which essentially avoids to use stochastic calculus. In other words, our consistence and rate of
convergence results will be mainly based on the study of the long-time behavior of distances
between paths built with the same noise. In the additive noise case we are handling, those
distances have the advantage to be regular. Eventually, even if our ergodic type assumptions
are similar to those in [36] (and called (Cs) in the current paper), we also obtain a (weak)
consistence result under a weaker assumption (called (Cw) below), where contractivity of the
drift is only assumed out of a compact set.

2. Main results

In this section we will first give some general notation which will be used throughout the paper.
Then we will specify our assumptions on the coefficients of (1.2) and describe the estimator we
are considering. Eventually we give our almost sure convergence result as well as the convergence
rate we have been able to obtain.

2.1. Notation. We consider the set of parameters Θ as a subset of Rq for q ≥ 1. Let f :
Rd × Θ → R be a Cp1,p2 function, where p1, p2 are two integers greater than 1. Then for any
p ≤ p1 and any tuple (i1, . . . ip) ∈ {1, . . . , d}p, we set ∂i1...ipx f for ∂pf

∂xi1 ...∂xip
. Analogously, for
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p ≤ p2 we use the notation ∂i1...ipϑ f for ∂pf
∂ϑi1 ...∂ϑip

whenever (i1, . . . ip) ∈ {1, . . . , q}p. Moreover,
we will write ∂xf (resp. ∂ϑf) for the Jacobi-matrices (∂x1f, . . . , ∂xdf) (resp. (∂ϑ1f, . . . , ∂ϑqf)).

Let M1(Rd) denotes the set of probability measures on Rd. We say that d is a distance on
M1(Rd) if it metrizes its usual topology, namely the weak convergence topology. Among those
distances we will consider the p-Wasserstein distance, which is defined as follows: for every
ν, µ ∈M1(Rd), we introduce the set C(ν, µ) of couplings between ν and µ, that is

C(ν, µ) = {(X,Y ); L(X) = ν, L(Y ) = µ} . (2.1)

Then the p-Wasserstein distance is written as

Wp(ν, µ) = inf
{

E[|X − Y |p]
1
p ; (X,Y ) ∈ C(ν, µ)

}
. (2.2)

Remark 2.1. The distance W1 can also be represented as

W1(ν, µ) = sup{|ν(h)− µ(h)|; ‖h‖Lip ≤ 1}. (2.3)

We will denote by Dp the set of distances onM1(Rd) dominated by the p-Wasserstein distance
for a given p > 0. Namely, we set

Dp := {distances d onM1(Rd); ∃ c > 0 such that ∀ν, µ ∈M1(Rd), d(ν, µ) ≤ cWp(ν, µ)} (2.4)

In particular, a distance d that belongs to Dp induces a weaker topology than the p-Wasserstein
distance. When necessary in some of the next results (or in the numerical experimentations),
we will introduce specific distances which belong to Dp.

Remark 2.2. The family of p-Wasserstein distances obviously provides examples of distances in
Dp. The Fortet-Mourier distance (see e.g [50, Chapter 6]), defined by

dFM(ν, µ) = sup {|E[h(X)]−E[h(Y )]|; where X ∼ µ, Y ∼ ν, and ‖h‖Lip ≤ 1, ‖h‖∞ ≤ 1} ,

is also easily seen to be an element of D1 thanks to (2.3). In this article we shall work with the
distances dcf,p and ds introduced below in Section 2.5, which are trivially proved to sit in D1
(due to relation (2.3)).

2.2. Assumptions. Before we proceed to a specific statement of our estimator, let us describe
the assumptions under which we shall work. We start by a standard hypothesis on the parameter
set Θ, which is supposed to be a compact set.
(H0) : The set Θ is compactly embedded in Rq for a given q ≥ 1.

Next we recall that our drift estimators rely on the invariant measure for the solution of
equation (1.2). The existence and uniqueness of this invariant measure is usually obtained
under some coercivity assumptions on the drift b. In the current paper we will distinguish
between two notions of coercivity, respectively named weak and strong and denoted by (Cw)
and (Cs). The weak assumption can be summarized as follows.
(Cw) : We have b ∈ C1,1(Rd × Θ;Rd) and there exist constants α, β, C, L > 0 and r ∈ N such
that:
(i) For every x, y ∈ Rd and ϑ ∈ Θ we have

〈bϑ(x)− bϑ(y), x− y〉 ≤ β − α|x− y|2 and |bϑ(x)− bϑ(y)| ≤ L|x− y| (2.5)

(ii) For every x ∈ Rd and ϑ ∈ Θ the following growth bound is satisfied:

|∂ϑbϑ(x)| ≤ C (1 + |x|r) . (2.6)
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The main part (2.5) of assumption (Cw) states that the coefficient b is inward looking, except
maybe on a compact set which is a neighborhood of 0. We now state the strong assumption
(Cs), which specifies that b should be inward looking everywhere, and can be expressed as a
particular case of (Cw).
(Cs) : Assumption (Cw) holds with β = 0.

As mentioned above, Hypothesis (Cw) combined with the invertibility of σ (and therefore
(Cs)) classically involves (see e.g. [23]) the existence of a unique stationary solution for the
solution of the following equation for any ϑ ∈ Θ:

dY ϑ
t = bϑ(Y ϑ

t ) dt+ σdBt, t ∈ [0, T ]. (2.7)

Notice that the system (2.7) is identical to our original equation (1.2). However, let us notice that
the fBm is unobserved. Moreover, the uniqueness of the stationary measure must be understood
in a weak sense. Namely there exists a unique distribution Pϑ on C([0,∞),Rd) such that if
(Ȳ ϑ
t ) denotes a process with distribution Pϑ, then (Ȳ ϑ

t )t≥0 is a stationary solution to (2.7), i.e.
shift-invariant (when one considers its canonical version). We denote by νϑ the distribution of
Ȳ ϑ at any instant t ≥ 0, that is

νϑ = L(Ȳ ϑ
0 ). (2.8)

Remark 2.3. Note that in this non-Markovian setting, νϑ is not exactly the invariant distribu-
tion. More precisely, owing to [23], one can embed (2.7) into an infinite-dimensional Markovian
structure which allows the construction of an adapted ergodic theory. An invariant distribution
ν̄ϑ is then defined on this enlarged structure. Without going into the details, one can just say
that in this theory, the probability νϑ can be retrieved as a marginal of the “true” invariant
distribution. In the sequel, we will thus talk about marginal invariant distribution νϑ.

Remark 2.4. As mentioned before, the invertibility assumption on σ combined with (Cw) ensures
uniqueness of the invariant distribution. However, even though this hypothesis is of first impor-
tance under (Cw) (in order to use irreducibility-type arguments), it could be entirely removed
under (Cs). Actually, in this case, the contraction assumption implies that two solutions of
(2.7) driven by the same fBm but starting from different initial conditions come together at ∞,
a.s. and in L2, which classically involves uniqueness (see e.g. [9, Lemma 3(ii)] for details). This
remark also holds for the Euler scheme (2.13) introduced in the next section but for sufficiently
small step γ (see again [9, Lemma 3(ii)] for details).

As said previously, we shall obtain our drift estimators through the analysis of the marginal
invariant distribution νϑ defined by (2.8). If we want this strategy to be successful, it is natural
to assume that νϑ characterizes ϑ. We thus label this hypothesis as follows.

(Iw): For all ϑ ∈ Θ, we have νϑ = νϑ0 iff ϑ = ϑ0.
It is worth noticing that if d denotes a distance onM1(Rd), then one can recast (Iw) as:

d(νϑ, νϑ0) = 0 iff ϑ = ϑ0. (2.9)

We shall use this characterization in order to construct the estimator ϑ̂ (see (2.12) below). Also
notice that (Iw) refers to a “weak” identifiability condition, which will be resorted to in order
to derive the consistency of our estimator ϑ̂. In contrast, the following “strong” identifiability
assumption (Is) defined for a given distance d onM1(Rd) will be used to get rates of convergence.

(Is) There exists a constant C > 0 and a parameter ς ∈ (0, 1] such that ∀ϑ ∈ Θ,

d(νϑ, νϑ0) ≥ C|ϑ− ϑ0|ς . (2.10)
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Remark 2.5. We will construct a class of equations, basically obtained as perturbations of
Langevin type equations, for which our assumptions (Iw) and (Is) are satisfied. See Section 6
below.

2.3. Statistical setting and construction of the estimator. We wish to construct an esti-
mator based on discrete observations. In this context, the simplest situation (which will mostly
prevail in the paper) is to assume that the solution (Yt)t≥0 of (2.7) is discretely observed at
some instants {tk; 0 ≤ k ≤ n}, with tk+1 − tk = κ for a given time step κ > 0. Under (Cw), it
can be shown (see Proposition 3.3 below) that

1
n

n−1∑
k=0

δYtk
n→+∞=⇒ νϑ0 a.s, (2.11)

where =⇒ stands for the weak convergence of probability measures in Rd. With this conver-
gence in mind, the heart of our estimation method is then the following observation: under the
identifiability assumption (Iw), the most natural way to estimate ϑ0 is to consider

ϑ̂ = argmin
ϑ∈Θ

d

(
1
n

n−1∑
k=0

δYtk , νϑ

)
, (2.12)

where d is a given (arbitrary) distance on M1(Rd). However, in spite of the fact that our
formula (2.12) is simple enough, it is also easily understood that νϑ is far from being explic-
itly known (except in some very particular cases such as the Ornstein-Uhlenbeck process). In
this paper, we propose to circumvent this difficulty by considering some estimators based on
numerical approximations of νϑ.

Specifically, the numerical approximations we will resort to are built through an Euler-type
discretization of the stochastic process Y ϑ solution to (2.7). Namely, let (sk)k≥0 be an increasing
sequence of numbers such that s0 = 0, and limk→∞ sk = +∞. The Euler-Maruyama scheme Zϑ
is then recursively defined by Zϑ0 = z0 ∈ Rd and:

For all k ≥ 0, Zϑsk+1 = Zϑsk + (sk+1 − sk)bϑ(Zϑsk) + σ (B̃sk+1 − B̃sk), (2.13)

where B̃ is a (simulated) m-dimensional fractional Brownian motion which is a priori different
from the driving process B in equation (2.7) (since B is unobserved). When sk = kγ for a given
γ > 0, we say that the Euler scheme is a constant step sequence and we denote it by Zϑ,γ . When
γk = sk − sk−1 is a non-increasing sequence such that γk → 0 as k → +∞, the Euler scheme
will be called decreasing step Euler scheme. We will work with these two types of schemes in
the sequel.

Remark 2.6. In practice it is natural to set Zϑ0 = Y0 where Y0 is the first observation of the
process (Yt)t≥0. Let us also remark that in the sequel, for notational sake, one usually denotes
by B the fBm related to the Euler scheme Zϑ. However, the reader has to keep in mind that
the fact that the fBms in (2.7) and in (2.13) are different. This certainly prevents us from any
pathwise comparison between the observed process and the simulated one.

Remark 2.7. We refer to Section 7 for background on the simulation of the increments of the
fBm.

Let us now give an explicit expression for the estimator we are considering in this article. We
will focus on the constant step setting in (2.13) for sake of simplicity. Observe that under (Cw),
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it can be shown (see Proposition 3.4 below) that

1
N

N−1∑
k=0

δ
Zϑ,γ
kγ

n→+∞=⇒ νγϑ a.s. (2.14)

where νγϑ denotes the unique marginal invariant distribution of the Euler scheme Zϑ. By mar-
ginal, we mean again that Zϑ,γ can be endowed with a Feller infinite-dimensional Markov struc-
ture which admits a unique invariant distribution under (Cw) (see [49] for details). The first
marginal of this invariant distribution is νγϑ . Similarly to what we proposed in (2.12), such a
result suggests to define our estimator for ϑ as

ϑ̂N,n,γ = argmin
ϑ∈Θ

d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Zϑ,γ
kγ

)
, (2.15)

where d is again a distance onM1(Rd). Note that in the decreasing step case analogous construc-
tions may be carried out, and will be introduced later. Let us also remark that relation (2.15)
only involves one Euler scheme path, which is relevant for numerical implementations.

We are now in a position to state our main results. We divide the presentation in two parts.
In the next section, we focus on strong consistence results related to the family {ϑ̂N,n,γ ; N ≥
1, n ≥ 1, γ > 0} defined by (2.15), as well as its decreasing step counterpart. Then Section 2.5
is dedicated to the rate of convergence of the estimator ϑ̂N,n,γ . In particular, this second part
will involve concentration results related to the SDE and to its Euler discretization.

2.4. Main consistency results. We begin with a first result involving the weak assump-
tion (Cw), which requires to discretize the set Θ in the following sense. According to our
hypothesis (H0), the set Θ is compact in Rq. Therefore the Borel-Lebesgue property gives us
the existence, for every ε > 0, of Mε ∈ N and (ϑ(ε)

i )16i6Mε ∈ ΘMε such that Θ ⊂
⋃Mε
i=1B(ϑ(ε)

i , ε).
Thanks to this property, we define the following discretization for all ε > 0 and ϑ ∈ Θ:

ϑ(ε) := argmin
ϑ′∈{ϑ(ε)

i }
|ϑ′ − ϑ|. (2.16)

With this notation in hand, we can now state our first consistency theorem.

Theorem 2.8. Assume (H0), (Cw) and (Iw). Let p be a strictly positive real number and
consider a distance d on M1(Rd) which belongs to Dp (recall that Dp is defined by (2.4)). We
consider the family {ϑ̂(ε)

N,n,γ ; N ≥ 1, n ≥ 1, γ > 0, ε > 0} defined by

ϑ̂
(ε)
N,n,γ = argmin

ϑ∈Θ(ε)
d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Zϑ,γsk

)
, N, n ∈ N, γ > 0, ε > 0 (2.17)

where Θ(ε) := {ϑ(ε)
i ; 1 6 i 6 Mε}. Then ϑ̂

(ε)
N,n,γ is a strong consistent estimator of ϑ0.

Specifically, we have
lim
ε→0

lim
γ→0

lim
N,n→+∞

ϑ̂
(ε)
N,n,γ = ϑ0 a.s.

Let us remark that the discretization of Θ given by (2.16) is needed to get strong consistency,
due to the fact that under (Cw) we loose uniformity with respect to ϑ in some of our convergence
results. For instance, (Cw) only warranties the simple convergence of d(νγϑ , νϑ) to 0 as γ → 0
(see Proposition 3.4). The proof of Theorem 2.8 is achieved in Section 4.3.

We now turn to our main estimator defined in (2.15). The proof of the theorem below is
detailed in Section 4.3.
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Theorem 2.9. Assume (H0), (Cs) and (Iw). As in Theorem 2.8, let p be a strictly positive real
number and consider a distance d onM1(Rd) which belongs to Dp. Then the family {ϑ̂N,n,γ ; N ≥
1, n ≥ 1, γ > 0} defined by (2.15) is a strong consistent estimator of ϑ0 in the following sense:

lim
γ→0

lim
N,n→+∞

ϑ̂N,n,γ = ϑ0 a.s.

We close this section with a result concerning the approximation of invariant measures by an
Euler scheme with decreasing time step. Namely we consider an approximation scheme denoted
also by Zϑ, which is defined similarly to Zϑ,γ in (2.13) except for the fact that the sequence
(sk)k≥0 satisfies:

sk+1 − sk = γk+1, k ≥ 0, (2.18)

where (γk)k≥1 is a non-increasing sequence of positive numbers such that∑
k≥1

γk = +∞ and lim
k→+∞

γk = 0. (2.19)

The convergence theorem we obtain in the decreasing step case is the following. As for Theo-
rem 2.9 , it is achieved under the strong coercivity assumption (Cs). Its proof is developped in
Section 4.3.

Theorem 2.10. Assume (H0), (Cs) and (Iw). Let p ≥ 2 and consider a distance d onM1(Rd)
which belongs to Dp. Let (γk)k≥1 be a non-increasing sequence of positive numbers satisfying
condition (2.19) and the technical condition (4.3). Denote by Zϑ the related Euler scheme given
by (2.13). We consider an estimator (ϑ̂N,n)N,n defined as

ϑ̂N,n = argmin
ϑ∈Θ

d

(
1
n

n−1∑
k=0

δYtk ,
1
sN

N−1∑
k=0

γk+1δZϑsk

)
, N ∈ N. (2.20)

Then, (ϑ̂N,n)N,n is a strong consistent estimator of ϑ0, namely:

lim
N,n→+∞

ϑ̂N,n = ϑ0 a.s.

Remark 2.11. The technical condition (4.3) (
∑
k≥1 γ

p′H+1
k s−1

k < +∞ for a given p′ ≥ p) is true
in a very large setting. For instance, it can be checked that this is satisfied for any polynomial
step sequence : γk = γk−ρ with ρ ∈ (0, 1] and γ ∈ R∗+, but also for less decreasing sequences
such as γk = γ(log k)−1. However, this is not true in full generality (the condition does not hold
when γk = (log(log k))−1 for instance).

2.5. Rate of convergence. Under our strong identifiability condition (Is), we will be able to
get a rate of convergence for some of our estimators. In order to carry out this task, we shall
assume that condition (Is) is verified for some specific distances on probability measures called
respectively dcf,p and ds. These distances are defined in the following way:

(i) Let X and Y be Rd-valued random variables and p > (d2 ∨1). We consider the integrable
kernel gp(ξ) := cp(1 + |ξ|2)−p where cp :=

(∫
Rd(1 + |ξ|2)−pdξ

)−1. Then the dcf,p distance
between L(X) and L(Y ) is defined by:

dcf,p(L(X),L(Y )) :=
(∫

Rd

(
E[ei〈ξ,X〉]−E[ei〈ξ,Y 〉]

)2
gp(ξ)dξ

)1/2
. (2.21)
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(ii) Let {fi ; i ≥ 1} be a family of C1
b , supposed to be dense in the space C0

b of continuous
and bounded functions and decreasing to 0 at ∞. Consider two probability measures ν
and µ inM1(Rd). Then the distance ds between ν and µ is defined as:

ds(ν, µ) :=
+∞∑
i=0

2−i(|ν(fi)− µ(fi)| ∧ 1). (2.22)

Remark 2.12. It is readily checked that both dcf,p and ds metrize the convergence in law (their
induced topology are in fact exactly the one induced by the convergence in law). The distance
dcf,p is technically convenient for our purpose and close in spirit to the smooth Wasserstein
distance invoked in the Stein method literature (see e.g [2]). The distance ds is called weak-?
distance in [50] and also used in [52] for filtering problems. Also notice that both dcf,p and ds
are elements of D1 where D1 is defined by (2.4).

With the distances dcf,p and ds in hand, our main result about rates of convergence is the
following:

Theorem 2.13. Assume (H0), (Cs) and (Is) hold true, where (2.10) in hypothesis (Is) is
considered for d = ds or d = dcf,p with p > (q + d)/2 and ς = 2/q for a given q ≥ 2. Let ϑ̂N,n,γ
be the estimator given by (2.15). Then, we get the following rate of convergence: there exists
Cq > 0 such that

E
[
|ϑ̂N,n,γ − ϑ0|2

]
≤ Cq

(
n−

q
2 (2−(2H∨1)) + γqH + T−η̃

)
(2.23)

with η̃ := q2

2(q+d)(2− (2H ∨ 1)) and T := Nγ.

Remark 2.14. This non-asymptotical bound theoretically enables to calibrate the “free parame-
ters” γ and N in terms of the number of observations n, which is fixed by the statistical setting.
For instance, when ς = 1 (i.e. when q = 2), the first term is of order n−(2−(2H∨1)) and hence,

in order to to preserve this rate order, we have to fix γ ≤ n−
1−(H∨ 1

2 )
H and N ≥ n

4+2d
4 γ−1. More

precisely, for these choices of parameters, the quadratic error induced by this estimator (when
ς = 1) is of order n−

1
2 if H < 1/2 and nH−

1
2 if H > 1/2. The constant ς, which appears in

Assumption (Is), comes from the fact that, the bounds are first established on the distances be-
tween the invariant distributions νϑ̂N,n,γ and νϑ0 . Nevertheless, except some particular settings
such as the Ornstein-Uhlenbeck process, this exponent ς is unfortunately difficult to compute
in some general settings. Finally, let us remark that Lp-bounds can be easily deduced from the
proof for any p ≥ 2. However, since they do not modify significantly the results, we chose here
to only state the quadratic one.

3. Preliminary Results

In this section we label some basic results about equation (2.7) and its invariant measure for
further use. We first recall some ergodic properties of stochastic differential equations driven by
a fBm, then we study the continuity of the invariant measure νϑ with respect to the parameter
ϑ. Under the strong coercivity assumption (Cs), we quantify the distance between the empirical
measures respectively related to the process Y ϑ and its Euler approximation Zϑ. Eventually we
give some convergence results for the quantities involved in the right hand side of (2.17).

3.1. Ergodic properties of the SDE and of the Euler scheme. In this section we review
several ergodic properties for equation (2.7). These properties are at the heart of our estimation
procedure.
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3.1.1. Convergence of L(Yt). We start by giving the basic convergence in law towards the in-
variant distribution for our processes Y ϑ.

Proposition 3.1. Assume (H0) and (Cw) and consider the family of processes {Y ϑ; ϑ ∈ Θ}
defined by (2.7). Then the following properties hold true:
(i) Existence and uniqueness hold for the invariant distribution related to the dynamical sys-
tem (2.7). Furthermore, having in mind the notations introduced in (2.8), for all ε > 0 there
exists a constant Cε > 0 independent of ϑ ∈ Θ such that

dtv
(
L
(
Y ϑ
t

)
, νϑ

)
6 Cεt

−(αH−ε), (3.1)

with an exponent αH given by

αH =
{

1
8 if H ∈ (1

4 , 1)\
{

1
2

}
H(1− 2H) if H ∈ (0, 1

4).

(ii) For any p > 0 and for any distance d ∈ Dp, the following upper bound holds uniformly in
ϑ ∈ Θ:

d
(
L(Y ϑ

t ), νϑ
)
≤ C t−

αH
4p , (3.2)

for a strictly positive constant C. In particular, for any p > 0, we have

sup
t≥0

E[|Yt|p] < +∞. (3.3)

Proof. We prove the two statements of our proposition separately.
Proof of item (i). The only difference between our claim and [23, Theorems 1.2 and 1.3] is the
uniformity with respect to ϑ ∈ Θ in the convergence in total variation result. However, following
carefully the proof of [23], it can be shown that the constants therein do not depend on ϑ if
Hypothesis (Cw) is satisfied. Therefore the constant Cε in (3.1) is uniform in ϑ.
Proof of item (ii). Relation (3.3) is proved in Proposition A.1 of the Appendix. In order to
prove (3.2), consider a couple (X1, X2) of random variables such that X1 ∼ Y ϑ

t and X2 has
distribution νϑ. By Cauchy-Schwarz inequality,

E[|X1 −X2|p]
1
p = E[|X1 −X2|p 1(X1 6=X2)]

1
p

≤
(
E[|X1|2p]

1
2p + E[|X2|2p]

1
2p
)

P(X1 6= X2)
1
2p . (3.4)

We now bound separately the two terms on the right hand side of (3.4). If we denote by
C(Y ϑ

t , νϑ) the set of couplings between L(Y ϑ
t ) and νϑ (defined as in (2.1)), then we have

dtv
(
L
(
Y ϑ
t

)
, νϑ

)
= inf

{
P(X̃1 6= X̃2); (X̃1, X̃2) ∈ C(Y ϑ

t , νϑ)
}
.

Therefore, owing to (3.1) we can choose a coupling (X1, X2) ∈ C(Y ϑ
t , νϑ) and a constant C > 0

such that
P(X1 6= X2) ≤ Ct−(αH−ε). (3.5)

In addition, according to (3.3) and a uniform integrability argument, we easily get the following
inequality for the coupling (X1, X2) we have chosen in (3.5):

E[|X1|2p]
1
2p + E[|X2|2p]

1
2p ≤ 2 sup

ϑ∈Θ
sup
t>0

E[|Y ϑ
t |2p]

1
2p < +∞. (3.6)
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We plug (3.5) and (3.6), applied to ε = αH/2, into (3.4). Going back to the definition (2.2) of
the distance Wp, we obtain that there exists a strictly positive constant C such that for any
t ≥ 0 and any ϑ ∈ Θ we have

Wp(L(Y ϑ
t ), νϑ) ≤ Ct−

αH
4p .

The result (3.2) follows. �

Next we observe that whenever (Cs) is fulfilled, the polynomial convergence in (3.2) can be
replaced by an exponential rate. This is summarized in the following proposition.

Proposition 3.2. Let {Y ϑ;ϑ ∈ Θ} be the family of processes defined by (2.7). Suppose that
Hypothesis (H0) and Hypothesis (Cs) are met. Let d be a distance in Dp. Then, we have

d(L(Y ϑ
t ), νϑ) ≤ c1e

−c2t,

with c2 = α/2 where α is the constant featured in equation (2.5), and where c1 = c1(H,α).

Proof. Let Ȳ ϑ be the stationary solution of equation (2.7). One can easily show, by means of
the same arguments as in [21], that

E
[
|Y ϑ
t − Ȳ ϑ

t |p
]1/p
≤ c1e

−c2t. (3.7)

The result follows trivially. �

3.1.2. Ergodic Theorems for the SDE. We now summarize the limit theorems obtained for equa-
tion (2.7) which will be relevant for our purposes, with a special emphasis on the occupation
measure δY ϑs .

Proposition 3.3. Let Y ϑ be the unique solution of (2.7) obtained for a parameter ϑ ∈ Θ.
Assume (H0) and (Cw) hold true and let νϑ be the measure defined by (2.8). Then for all
ϑ ∈ Θ, for any p > 0 and for any distance d ∈ Dp, we have
(i) The distance between νϑ and the normalized occupation measure of Y ϑ converges to 0 as
t→∞. That is

lim
t→∞

d

(1
t

∫ t

0
δY ϑs ds, νϑ

)
= 0. (3.8)

In particular, we have an almost sure uniform bound for the p-th powers of Y ϑ
s :

sup
ϑ∈Θ

sup
t≥1

1
t

∫ t

0
|Y ϑ
s |pds <∞ a.s. (3.9)

(ii) Some discrete versions of (3.8) and (3.9) are also available. Specifically, let η > 0 and set
tk = kη for k ≥ 0. Then for any ϑ ∈ Θ we have

lim
n→∞

d

(
1
n

n−1∑
k=0

δY ϑtk
, νϑ

)
= 0.

In particular, the following uniform bound holds true:

sup
ϑ∈Θ

sup
n≥1

1
n

n−1∑
k=0
|Y ϑ
tk
|p <∞ a.s. (3.10)

Proof. Relations (3.9) and (3.10) are proved in Proposition A.1. As far as the identification of
the limit is concerned, the proof follows the lines of [9] and is detailed in Section A.2. �
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3.1.3. Ergodic Theorems for the Euler scheme. Recall that we denote by (Zϑ,γkγ )k≥0 the Euler
scheme with step γ related to (Y ϑ

t )t≥0, as defined in (2.13). This section focuses on the asymp-
totic behavior of Zϑ,γkγ as k →∞ and γ → 0.

Proposition 3.4. Let Y ϑ be the unique solution of (2.7) and consider the Euler scheme (Zϑ,γkγ )k≥0
with step γ related to (Y ϑ

t )t≥0. Assume (H0) and (Cw) hold true. Then for all ϑ ∈ Θ, for any
p > 0 and for any distance d ∈ Dp, we have
(i) There exists γ0 > 0 and a unique family of measures (νγϑ)γ≤γ0 such that for all ϑ ∈ Θ and
γ ∈ (0, γ0], we have

lim
N→∞

d

(
1
N

N−1∑
k=0

δ
Zϑ,γ
kγ
, νγϑ

)
= 0.

In particular, we get the following uniform bound for the p-th powers of Zϑ,γkγ :

sup
ϑ∈Θ

sup
N≥1

1
N

N−1∑
k=0
|Zϑ,γkγ |

p <∞ a.s. (3.11)

(ii) The invariant measure νγϑ for the Euler scheme converges to the invariant measure νϑ of Y ϑ

as the mesh of the partition goes to 0:

lim
γ→0

d
(
νγϑ , νϑ

)
= 0.

Proof. The weak convergence of 1
N

∑N−1
k=0 δ

Zϑ,γ
kγ

to νγϑ as n→ +∞, as well as the convergence of
νγϑ to νϑ as γ → 0 are consequences of [10, Theorem 1]. The extension to distances d dominated
byWp follows from Proposition A.2. More precisely for (ii), we can deduce from Proposition A.2
and from Fatou’s lemma that for any M > 0, for any γ ∈ (0, γ0],

νγϑ(|x|p ∧M) ≤ lim inf
N→+∞

1
N

N−1∑
k=0

E[|Zϑ,γkγ |
p] ≤ C

where C is a positive constant independent of M and γ. Hence, taking limits as M goes to ∞,
this yields

sup
γ∈(0,γ0]

νγϑ(|x|p) < +∞,

for any p > 0. Then one can conclude as in the proof of Proposition 3.1 (see relation (3.4)),
where the distance dtv(νγϑ , νϑ) is upper bounded thanks to [10, Theorem 1]. �

3.2. Continuity of ϑ 7→ d(νϑ, νϑ0). The convergence of our estimator ϑ̂N,n,γ defined by (2.15)
depends crucially on continuity properties of the family {νϑ; ϑ ∈ Θ}. To this aim, we first prove
a basic result on the continuity of the map ϑ 7→ Y ϑ

t .

Proposition 3.5. Let ϑ1 and ϑ2 be elements of Θ, and consider the respective solutions (Y ϑ1
t )t>0

and (Y ϑ2
t )t>0 of equation (2.7). Assume hypothesis (H0) and (Cw) are satisfied. Then for any

p > 0 and T > 0, there exists CT,p > 0 independent of ϑ1 and ϑ2 such that

‖Y ϑ1
t − Y

ϑ2
t ‖Lp(Ω) 6 CT,p|ϑ1 − ϑ2|. (3.12)
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Proof. By monotonicity of the norms in Lp(Ω), it is enough to consider the case p ≥ 2. Further-
more, it is readily seen from (2.7) that we have

Y ϑ1
t − Y

ϑ2
t =

∫ t

0
(bϑ1(Y ϑ1

s )− bϑ2(Y ϑ2
s ))ds. (3.13)

Starting from (3.13), we easily get the following identity for the square of Y ϑ1
t − Y

ϑ2
t :

d

dt

∣∣Y ϑ1
t − Y

ϑ2
t

∣∣2 = 2
〈
Y ϑ1
t − Y

ϑ2
t , bϑ1(Y ϑ1

t )− bϑ2(Y ϑ2
t )

〉
. (3.14)

We now invoke the fact that b is Lipschitz continuous under (Cw) plus inequality (2.6) on ∂ϑbϑ
in order to get
d

dt

∣∣Y ϑ1
t − Y

ϑ2
t

∣∣2 = 2
〈
Y ϑ1
t − Y

ϑ2
t , bϑ1(Y ϑ1

t )− bϑ1(Y ϑ2
t )

〉
+ 2

〈
Y ϑ1
t − Y

ϑ2
t , bϑ1(Y ϑ2

t )− bϑ2(Y ϑ2
t )

〉
6 c1

∣∣∣Y ϑ1
t − Y

ϑ2
t

∣∣∣2 + 2c2|ϑ1 − ϑ2|
(
1 +

∣∣∣Y ϑ2
t

∣∣∣r) ∣∣∣Y ϑ1
t − Y

ϑ2
t

∣∣∣ ,
where c1 and c2 are two strictly positive constants. Now apply the elementary inequality |ab| 6
1
2(|a|2 + |b|2) with a = |ϑ1 − ϑ2|(1 + |Y ϑ2

t |r) and b = |Y ϑ1
t − Y

ϑ2
t |. We deduce the existence of a

constant c > 0 such that
d

dt

∣∣Y ϑ1
t − Y

ϑ2
t

∣∣2 6 c(∣∣∣Y ϑ1
t − Y

ϑ2
t

∣∣∣2 + |ϑ1 − ϑ2|2
(
1 + |Y ϑ2

t |2r
))

. (3.15)

With relation (3.15) in hand, a standard application of Gronwall’s Lemma yields∣∣Y ϑ1
t − Y

ϑ2
t

∣∣2 6 c|ϑ1 − ϑ2|2
∫ t

0
ec(t−s)

(
1 + |Y ϑ2

s |2r
)
ds. (3.16)

Let us now get some information about a generic p-th power of Y ϑ1
t − Y

ϑ2
t for p ≥ 2. To this

aim, we resort to Jensen’s inequality in relation (3.16). This gives the existence of a constant
c(T, p) such that for any t ∈ [0, T ] we have∣∣Y ϑ1

t − Y
ϑ2
t

∣∣p 6 c(T, p)|ϑ1 − ϑ2|p
∫ t

0

(
1 + |Y ϑ2

s |2r
) p

2 ds.

Taking the expectation, we finally get

E
[∣∣Y ϑ1

t − Y
ϑ2
t

∣∣p]1/p 6 c̃(T, p)|ϑ1 − ϑ2|
(∫ t

0
E
[
1 + |Y ϑ2

s |pr
]
ds

)1/p
,

where c̃(T, p) is another finite constant. Hence our result (3.12) follows from the bound (3.3). �

We now state the announced continuity property for the family {νϑ; ϑ ∈ Θ}.

Proposition 3.6. Let {Y ϑ; ϑ ∈ Θ} be the family of processes defined by (2.7). Assume (H0)
and (Cw) hold true and consider the family {νϑ; ϑ ∈ Θ} of invariant measures given by Propo-
sition 3.1. Let p > 0 and pick any distance d ∈ Dp, where we recall that Dp is defined by (2.4).
Then the map ϑ 7→ d(νϑ, νϑ0) is continuous on Θ.

Proof. Owing to the very definition (2.4) of Dp, it is enough to prove the result for d =Wp and
for an arbitrary p ≥ 1. Next we apply the triangle inequality and the fact that Wp is defined
in (2.2) by an infimum over all couplings. This yields the following inequality, valid for any
t ≥ 0:

Wp(νϑ1 , νϑ2) ≤ 2 sup
ϑ∈Θ
Wp(L(Y ϑ

t ), νϑ) + ‖Y ϑ1
t − Y

ϑ2
t ‖Lp(Ω). (3.17)
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We now bound the two terms in the right hand side of (3.17). In order to handle the term
Wp(L(Y ϑ

t ), νϑ), we consider a small parameter ε > 0. By Proposition 3.1(ii), there exists t0
large enough such that

2 sup
ϑ∈Θ
Wp(L(Y ϑ

t0), νϑ) ≤ ε

2 . (3.18)

We will fix this value of t0 in the right hand side of (3.17). Then the difference Y ϑ1
t0 − Y

ϑ2
t0 is

handled thanks to Proposition 3.5. Namely consider δ > 0 such that (with the notations of
Proposition 3.5) we have Ct0δ ≤ ε

2 . We get that for all (ϑ1, ϑ2) ∈ Θ2 such that |ϑ1 − ϑ2| ≤ δ,
we have

‖Y ϑ1
t − Y

ϑ2
t ‖Lp(Ω) ≤

ε

2 (3.19)

We conclude by plugging (3.18) and (3.19) into (3.17). This yields

Wp(νϑ1 , νϑ2) ≤ ε, (3.20)

for all (ϑ1, ϑ2) ∈ Θ2 such that |ϑ1−ϑ2| ≤ δ. The continuity of ϑ 7→ Wp(νϑ, νϑ0) on Θ follows. �

3.3. Further controls under (Cs). Up to now we have derived properties of the system (2.7)
under the weak coercive assumption (Cw). In this section, we focus on possible additional
bounds one can obtain under the stronger hypothesis (Cs). We will first see how (Cs) guarantees
a uniform control on the distance between the Euler scheme and the SDE, for a general decreasing
sequence of time steps. Then we will show that (Cs) ensures a some additional uniform continuity
in ϑ for the occupation measures of Y ϑ.

We consider here Euler type approximations in continuous time, with time steps γn satisfy-
ing (2.19). In order to define this Euler approximation (Zϑt )t≥0, we set s0 = 0 and sn =

∑n
i=1 γi

for all n ≥ 1. Then for any n ≥ 0, the process (Zϑt )t≥0 is given recursively by

Zϑsn+t = Zϑsn + tbϑ(Zϑsn) + σ(Bsn+t −Bsn), t ∈ [0, sn+1 − sn]. (3.21)

Notice that the fractional Brownian motion B in (3.21) is the same as the fBm driving equa-
tion (2.7). The control we get on Zϑ is summarized in the following proposition.

Proposition 3.7. Let Y ϑ be the solution of equation (2.7), and consider the continuous-time
Euler scheme (Zϑt )t≥0 with a time steps sequence (γn)n≥1 defined by (3.21). We assume that
(Cs) holds. Then the following assertions hold true.
(i) For any p ≥ 2, there exist some positive constants ρ and C such that for any n ≥ 1 we have

|Y ϑ
sn − Z

ϑ
sn |

p ≤ e−ρsn |Y ϑ
0 − Zϑ0 |p + C

n−1∑
k=0

φk,p(Zϑsk)e−ρ(sn−sk+1), (3.22)

where the function φk,p is defined, for any k ≥ 0, by

φk,p(z) = γp+1
k+1|bϑ(z)|p +

∫ γk+1

0
|Bsk+t −Bsk |

pdt. (3.23)

(ii) Assume in addition that γn → 0 as n→ +∞. Then for any p ≥ 2, there exists n0 ∈ N and
some positive constants ρ and C such that for any n ≥ n0 we have

|Y ϑ
sn − Z

ϑ
sn |

p ≤ e−ρ(sn−sn0 )|Y ϑ
sn0
− Zϑsn0

|p + C
n−1∑
k=n0

φk,p(Ysk)e−ρ(sn−sk+1). (3.24)
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Proof. Let n ≥ 0 and consider the dynamics of Y ϑ − Zϑ on [sn, sn+1). That is, set εt :=
Y ϑ
sn+t − Zϑsn+t for t ∈ [0, γn+1). Then εt verifies the relation

εt = Y ϑ
sn − Z

ϑ
sn +

∫ sn+t

sn

(
bϑ(Y ϑ

s )− bϑ(Zϑsn)
)
ds. (3.25)

Starting from this equation, we divide the proof in several steps.
Step 1: Contracting bound for εt. Consider a parameter η > 0. We wish to use the coercivity
assumption (Cs)(i) in order to get an upper-bound on the following derivative:(

eηt|εt|p
)′

= eηt
(
p|εt|p−2〈εt, ε′t〉+ η|εt|p

)
. (3.26)

To this aim, observe that thanks to (3.25) the quantity 〈εt, ε′t〉 can be expressed as:

〈εt, ε′t〉 = 〈Y ϑ
sn+t − Zϑsn+t, bϑ(Y ϑ

sn+t)− bϑ(Zϑsn)〉
= 〈Y ϑ

sn+t − Zϑsn+t, bϑ(Y ϑ
sn+t)− bϑ(Zϑsn+t)〉+ 〈Y ϑ

sn+t − Zϑsn+t, bϑ(Zϑsn+t)− bϑ(Zϑsn)〉.

Then we invoke (Cs)(i) and the elementary inequality ab ≤ a2 + b2, valid for all a, b ≥ 0. We
obtain

〈εt, ε′t〉 6 −α|Y ϑ
sn+t − Zϑsn+t|2 + α

2 |Y
ϑ
sn+t − Zϑsn+t|2 + 2

α
|bϑ(Zϑsn+t)− bϑ(Zϑsn)|2

6 −α2 |εt|
2 + 2L2

α
|Zϑsn+t − Zϑsn |

2, (3.27)

where the second inequality is due to relation (2.5) and the definition (3.25) of εt. We now plug
relation (3.21) into this inequality in order to get

〈εt, ε′t〉 6 −
α

2 |εt|
2 + 2L2

α

∣∣∣tb(Zϑsn) + σ(Bsn+t −Bsn)
∣∣∣2 ,

from which we easily end up with

p|εt|p−2〈εt, ε′t〉 6 −
pα

2 |εt|
p + 4pL2

α
|εt|p−2

(
t2|bϑ(Zϑsn)|2 + |σ|2|Bsn+t −Bsn |2

)
. (3.28)

Eventually we apply Young’s inequality with parameters p̄ = p/(p − 2) and q̄ = p/2 and some
appropriate weights to (3.28). This yields the existence of a constant C = Cp,L such that

p|εt|p−2〈εt, ε′t〉 6 −
pα

4 |εt|
p + C

(
tp|bϑ(Zϑsn)|p + |Bsn+t −Bsn |p

)
. (3.29)

We are now ready to give some information about expressions of the form eηt|εt|p. Namely we
set η = pα/4, then we apply identity (3.26) and inequality (3.29). This easily yields(

eηt|εt|p
)′
6 eηt C(tp|bϑ(Zϑsn)|p + |Bsn+t −Bsn |p). (3.30)

Step 2: Inductive procedure. Let us integrate (3.30) on the interval [0, γn+1], where we recall
that γn+1 = sn+1 − sn. With the definition (3.25) in mind, this gives

|Y ϑ
sn+1 − Z

ϑ
sn+1 |

p 6 e−ηγn+1 |Y ϑ
sn − Z

ϑ
sn |

p + C

∫ γn+1

0
e−η(γn+1−t)(tp|bϑ(Zϑsn)|p + |Bsn+t −Bsn |p)dt,

which yields

|Y ϑ
sn+1−Z

ϑ
sn+1 |

p 6 e−ηγn+1 |Y ϑ
sn−Z

ϑ
sn |

p+C

(
γp+1
n+1|bϑ(Zϑsn)|p +

∫ γn+1

0
|Bsn+t −Bsn |p)dt

)
. (3.31)
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Thus, setting φn,p(x) =
(
γp+1
n+1|bϑ(x)|p +

∫ γn+1
0 |Bsn+t −Bsn |p)dt

)
, an elementary induction pro-

cedure yields the following relation for every n ≥ 1:

|Y ϑ
sn − Z

ϑ
sn |

p ≤ |Y ϑ
0 − Zϑ0 |pe−ηsn +

n−1∑
k=0

φk,p(Zϑsk)e−η(sn−sk+1).

This proves our claim (3.22).
Step 3: Proof of (3.24). In order to obtain our second statement (3.24), one needs to go back
to inequality (3.31). Then observe that hypothesis (2.5) yields

|b(Zϑsn)|p ≤ 2p−1
(
|b(Y ϑ

sn)|p + Lp|Y ϑ
sn − Z

ϑ
sn |

p
)
,

which leads for any p to the existence of a constant C such that

|Y ϑ
sn+1 − Z

ϑ
sn+1 |

p 6
(
e−ηγn+1 + Cγp+1

n+1

)
|Y ϑ
sn − Z

ϑ
sn |

p + Cφn,p(Ysn). (3.32)

Since limn→∞ γn = 0, one checks easily that there exists a n0 such that for any n ≥ n0 we have
the following inequality:

e−ηγn+1 + Cγp+1
n+1 ≤ e

− η2 γn+1 .

Plugging this information into (3.32), we end up with

|Y ϑ
sn+1 − Z

ϑ
sn+1 |

p 6 e−
η
2 γn+1 |Y ϑ

sn − Z
ϑ
sn |

p + Cφk,p(Ysn).

Our assertion (3.24) then follows by an induction procedure exactly as for Step 2. �

We now give a continuity results (with respect to the parameter ϑ) for some occupation
measures related to our processes of interest. The proofs are postponed to Appendix B.

Proposition 3.8. As in Proposition 3.6, let Y ϑ be the solution of equation (2.7) and consider
the Euler scheme Zϑ,γ defined by (2.13). Also consider p > 0 and d ∈ Dp. We assume that (Cs)
holds true. Then,
(i) The occupation measures of the process Y ϑ are Lipschitz with respect to ϑ, that is there exists
a positive random variable Cp such that for all t ≥ 1:

d

(1
t

∫ t

0
δ
Y
ϑ1
s
ds,

1
t

∫ t

0
δ
Y
ϑ2
s
ds

)
≤ Cp|ϑ1 − ϑ2|. (3.33)

(ii) The occupation measures of the Euler approximation Zϑ,γ are also Lipschitz with respect to
ϑ. Namely there exists γ0 > 0 such that: for any γ ∈ (0, γ0], there exists a positive random
variable Cp(γ) such that for all N ≥ 1

d

(
1
N

N−1∑
k=0

δ
Z
ϑ1,γ
kγ

,
1
N

N−1∑
k=0

δ
Z
ϑ2,γ
kγ

)
≤ Cp(γ)|ϑ1 − ϑ2|. (3.34)

Remark 3.9. In the sequel we will analyze several quantities like (3.34), where we compare two
discrete random measures on Rd ν1 = 1

N

∑N
i=1 δXi and ν2 = 1

N

∑N
i=1 δYi with Xi = Xi(ω) and

Yi = Yi(ω). In this context we will always upper bound quantities of the form d(ν1, ν2) for a
distance d in Dp. To this aim, resorting a trivial coupling between ν1 and ν2, it is enough to
prove an almost sure upper bound on

1
N

N∑
i=1
|Xi − Yi|p.
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We will adopt this strategy throughout the paper, the typical outcome being an a.s. bound on
d(ν1, ν2). Straightforward extensions to a continuous time setting allow to handle quantities of
the form (3.33).

4. Proof of the consistency theorems

The aim of this section is to achieve the proof of Theorems 2.8, 2.9 and 2.10. We first
establish a general asymptotic result for a family of contrasts in Sections 4.1 and 4.2. Then we
will combine this general proposition with our preliminary results of Section 3 in order to prove
our main claims.

4.1. Uniform convergence of the contrast. In this section we state some uniform conver-
gence results for the contrast, i.e for the function involved in the definition of estimators such
as (2.15). We should notice at this point that our uniform convergence results hold only under
the assumption (Cs). In case of a constant time step Euler scheme, we get the following result.

Proposition 4.1. We consider the same setting as in Proposition 3.8. In particular, we assume
that (Cs) holds true for the coefficients of equation (2.7). Then the following assertions hold
true.
(i) The invariant measure νγ of the Euler scheme converges uniformly to the invariant measure
of Y ϑ. Namely

lim sup
γ→0

γ−H sup
ϑ∈Θ

d(νϑ, νγϑ) < +∞.

In particular, we have
lim
γ→0

sup
ϑ∈Θ

d(νϑ, νγϑ) = 0.

(ii) The occupation measure of the Euler scheme converges to the invariant measure νγϑ as the
number of steps goes to ∞, that is:

lim
N→+∞

sup
ϑ∈Θ

d

(
1
N

N−1∑
k=0

δ
Zϑ,γsk

, νγϑ

)
= 0.

(iii) We have

lim
γ→0

lim
N,n→+∞

sup
ϑ∈Θ

∣∣∣∣∣d
(

1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Zϑ,γsk

)
− d(νϑ0 , νϑ)

∣∣∣∣∣ = 0.

Proof. We prove the three items separately.
Proof of (i). For sake of simplicity, we only detail the proof for p = 2. The extension to a general
p does not generate particular difficulties and can be done as in Proposition 3.7. We start from
the following inequality:

d
(
νγϑ , νϑ

)
6 d

(
L
(
Zϑ,γNγ

)
,L
(
Y ϑ
Nγ

))
+ d

(
νγϑ ,L

(
Zϑ,γNγ

))
+ d

(
L
(
Y ϑ
Nγ

)
, νϑ
)
. (4.1)

Let us consider the three terms of the right-hand side of (4.1) successively. First, without loss of
generality, we can assume that Y ϑ

0 = Zϑ,γ0 . Furthermore, we have that Zϑ,γnγ = Zϑnγ for all n ≥ 1,
where Zϑ is defined by (3.21). Then, by Proposition 3.7 (i) applied with γn = γ, we have

E[|Y ϑ
nγ − Zϑ,γnγ |2] ≤ C

n−1∑
k=0

E[φk,2(Zϑ,γkγ )]e−ργ(n−1−k),
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where we recall that φk,p is defined by (3.23). Using that bϑ is sublinear (uniformly in ϑ) and
the fact that the increments of B satisfy relation (1.1), one obtains

E[|Y ϑ
nγ − Zϑ,γnγ |2] ≤ C

n−1∑
k=0

(
γ3
(
1 + E[|Zϑ,γkγ |

2]
)

+ γ2H+1
)
e−ργ(n−1−k).

It follows easily that

sup
ϑ∈Θ,γ∈(0,γ0]

lim sup
n→+∞

γ−2HE[|Y ϑ
nγ − Zϑ,γnγ |2] ≤ 1 + sup

ϑ∈Θ,γ∈(0,γ0]
lim sup
n→+∞

E[|Zϑ,γkγ |
2].

Moreover, owing to Proposition A.2, there exists γ0 such that

lim sup
n→+∞

E[|Zϑ,γkγ |
2] <∞.

Summarizing, we have obtained
sup

ϑ∈Θ,γ∈(0,γ0]
lim sup
n→+∞

γ−2HE[|Y ϑ
nγ − Zϑ,γnγ |2] <∞.

We now consider the term d(νγϑ ,L(Zϑ,γNγ )) in the right hand side of (4.1). Using that νγϑ is
invariant, we remark that

d
(
νγϑ ,L

(
Zϑ,γNγ

))
≤ E[|Zϑ,γNγ − Z̄

ϑ,γ
Nγ |

2]
1
2

where Z̄ϑ,γ denotes a stationary Euler scheme built with the same noise process as for for Zϑ,γ .
Thus, thanks to the fact that

Zϑ,γkγ − Z̄
ϑ,γ
kγ = Zϑ,γ(k−1)γ − Z̄

ϑ,γ
(k−1)γ + γ

(
b(Zϑ,γ(k−1)γ)− b(Z̄ϑ,γ(k−1)γ)

)
a straightforward induction under assumption (Cs), similar to (3.27), leads to∣∣∣Zϑ,γkγ − Z̄ϑ,γkγ ∣∣∣2 6 (1− 2γα+ γ2L2)k

∣∣∣Zϑ,γ0 − Z̄ϑ,γ0

∣∣∣2 . (4.2)

We choose γ0 = α/L2 in such a way that 2α − γL2 ≥ α for any γ ∈ (0, γ0]. In addition, recall
that Zϑ,γ0 = z0. Then, by possibly picking a smaller value of γ0, we deduce from Proposition A.2
that

lim sup
N→+∞

sup
ϑ∈Θ

d
(
νγϑ ,L

(
Zϑ,γNγ

))
= 0.

Eventually, the last term in the right hand side of (4.1) tends to 0 uniformly in ϑ as N → +∞
by Proposition 3.1. This concludes the proof of (i).
Proof of (ii). By Proposition 3.4, the convergence of d( 1

N

∑N−1
k=0 δ

Zϑ,γ
kγ
, νγϑ) to 0 is true for the

simple convergence. In order to extend this result to a uniform convergence in ϑ, we use Propo-
sition 3.8(ii) to obtain that the family {ϑ 7→ d( 1

N

∑N−1
k=0 δ

Zϑ,γ
kγ
, νγϑ); N ≥ 1, ϑ ∈ Θ} is equicontin-

uous for a fixed γ ∈ (0, γ0]. Actually, for some given ϑ1 and ϑ2,∣∣∣∣∣d
(

1
N

N−1∑
k=0

δ
Z
ϑ1,γ
kγ

, νγϑ1

)
− d

(
1
N

N−1∑
k=0

δ
Z
ϑ2,γ
kγ

, νγϑ2

)∣∣∣∣∣ ≤ d(νγϑ1
, νγϑ2

)+d
(

1
N

N−1∑
k=0

δ
Z
ϑ1,γ
kγ

,
1
N

N−1∑
k=0

δ
Z
ϑ2,γ
kγ

)
.

The second term goes to 0 as ϑ1 − ϑ2 → 0 by Proposition 3.8(ii). This is also the case for the
first one by letting N go to ∞ in Proposition 3.8(ii) (for instance).

Proof of (iii). This is a simple consequence of the two previous statements and of Proposition
3.3(ii). �
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We now generalize Proposition 4.1 to the case of a decreasing time step for the Euler scheme (2.13).

Proposition 4.2. We consider the same setting as in Proposition 3.8. In particular, we assume
that (Cs) holds true for the coefficients of equation (2.7). Let p ≥ 2 and consider d ∈ Dp. Let
{sk; k ≥ 0} be the sequence of time steps defined by (2.18), which is assumed to verify

∃ p′ ≥ p such that
+∞∑
k=1

γp
′H+1
k+1
sk

< +∞. (4.3)

Then we have

lim
N,n→+∞

sup
ϑ∈Θ

∣∣∣∣∣d
(

1
n

n−1∑
k=0

δYtk ,
1
sN

N−1∑
k=0

γk+1δZϑsk

)
− d(νϑ0 , νϑ)

∣∣∣∣∣ = 0. (4.4)

Proof. For notational convenience, the proof will be detailed for the continuous-time Euler ap-
proximation (Zϑt )t≥0 defined by (3.21), with step sequence (γn)n≥1. An application of the
triangular inequality allows us to bound the left hand side of (4.4) as follows:∣∣∣∣∣d

(
1
n

n−1∑
k=0

δYtk ,
1
sN

N−1∑
k=0

γk+1δZϑsk

)
− d(νϑ0 , νϑ)

∣∣∣∣∣ 6 A1,n +A2,N (ϑ). (4.5)

with

A1,n := d

(
1
n

n−1∑
k=0

δYtk , νϑ0

)
, A2,N (ϑ) := d

(
1
sN

N−1∑
k=0

γk+1δZϑsk
, νϑ

)
.

Our claim can thus be reduced to prove that

lim
n→+∞

A1,n = 0, and lim
N→+∞

sup
ϑ∈Θ

A2,N (ϑ) = 0.

Furthermore, the fact that limn→+∞A1,n = 0 is a direct consequence of Proposition 3.3-(ii). We
thus focus on the asymptotic behavior of A2,N in the remainder of the proof.

In order to bound A2,N , let us set s = max{sk, sk ≤ s}. Then we observe that

1
sN

N−1∑
k=0

γk+1δZϑsk
= 1
sN

∫ sN

0
δZϑs ds.

Therefore we can split A2,N into

A2,N (ϑ) 6 A21,N (ϑ) +A22,N (ϑ) +A23,N (ϑ) (4.6)

where the quantities A2j,N (ϑ) for j = 1, 2, 3 are defined as follows:

A21,N (ϑ) := d

( 1
sN

∫ sN

0
δZϑs ds,

1
sN

∫ sN

0
δY ϑs ds

)
,

A22,N (ϑ) := d

( 1
sN

∫ sN

0
δY ϑs ds,

1
sN

∫ sN

0
δY ϑs ds

)
, (4.7)

A23,N (ϑ) := d

( 1
sN

∫ sN

0
δY ϑs ds, νϑ

)
. (4.8)

We will now treat those three terms separately.
The term A23,N is easily handled by applying Proposition 3.3 (i) (simple convergence) and

Proposition 4.1 (i) (equicontinuity). We thus get

lim
N→+∞

sup
ϑ∈Θ

A23,N (ϑ) = 0.
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Now, let us prove that lim
N→+∞

sup
ϑ∈Θ

A22,N (ϑ) = 0. Since d ∈ Dp ⊂ Dp′ , we can assume without

loss of generality that d = Wp′ . We invoke the strategy outlined in Remark 3.9. This means
that we are reduced to prove the following limit :

sup
ϑ∈Θ

1
sN

∫ sN

0
|Y ϑ
t − Y ϑ

t |p
′
dt

N→+∞−−−−−→ 0 a.s. (4.9)

To this aim, we first note that

|Y ϑ
t − Y ϑ

t | ≤
∫ t

t
|bϑ(Y ϑ

s )|ds+ ‖σ‖|Bt −Bt| , (4.10)

and thus there exists a constant cp′,σ such that

1
sN

∫ sN

0
|Y ϑ
t − Y ϑ

t |p
′
dt ≤ cp,σ

 1
sN

∫ sN

0

∣∣∣∣∣
∫ t

t
|bϑ(Y ϑ

s )|ds
∣∣∣∣∣
p′

dt+ 1
sN

∫ sN

0
|Bt −Bt|p

′
dt

 . (4.11)

Next we upper bound the first term in the right hand side of (4.11) invoking successively Jensen’s
inequality and Fubini’s theorem. We obtain that∫ sN

0

∣∣∣∣∣
∫ t

t
|bϑ(Y ϑ

s )|ds
∣∣∣∣∣
p′

dt ≤
∫ sN

0
|t− t|p′−1

(∫ t

t
|bϑ(Y ϑ

s )|p′ds
)
dt

=
∫ sN

0
|bϑ(Y ϑ

s )|p′
(∫ s̄

s
|t− s|p′−1dt

)
ds ,

where we have introduced the additional notation s̄ = min{sk, sk > s}. Taking into account the
fact that |t− s| ≤ γk+1 for any s, t ∈ [sk, sk+1), we end up with∫ sN

0

∣∣∣∣∣
∫ t

t
|bϑ(Y ϑ

s )|ds
∣∣∣∣∣
p′

dt ≤
N−1∑
k=0

γp
′

k+1

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds. (4.12)

Furthermore, since bϑ is uniformly sublinear in ϑ and owing to (3.9) we know that

C1 := sup
ϑ∈Θ

sup
N≥1

1
sN

∫ sN

0
|bϑ(Y ϑ

s )|p′ds = sup
ϑ∈Θ

sup
N≥1

1
sN

N−1∑
k=0

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds < +∞ a.s.

Moreover, limk→+∞ γ
p′

k+1 = 0. Hence, for all ε > 0 there exists k0 ≥ 0 such that for all k ≥ k0,
we have γp

′

k+1 < ε. One can thus deduce that

sup
ϑ∈Θ

1
sN

N−1∑
k=0

γp
′

k+1

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds

6 sup
ϑ∈Θ

1
sN

k0−1∑
k=0

γp
′

k+1

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds+ sup

ϑ∈Θ

1
sN

N−1∑
k=k0

γp
′

k+1

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds

6 C1

(
γp
′

1 sk0

sN
+ ε

)
, (4.13)

from which it is easily seen that

sup
ϑ∈Θ

1
sN

N−1∑
k=0

γp
′

k+1

∫ sk+1

sk

|bϑ(Y ϑ
s )|p′ds N→+∞−−−−−→ 0 a.s. (4.14)

We can conclude that the first term in the right hand side of (4.11) vanishes as N → +∞ due
to our identity (4.12).
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In order to prove that the second term in the right hand side of (4.11) converges to 0, we
invoke Kronecker’s lemma (in its continuous version, see [17, Theorem 2.1]). We get that it is
sufficient to prove that: ∫ +∞

0

|Bt −Bt|p
′

1 + t
dt < +∞ a.s.

However, due to the fact that (t− t) 6 γk+1 if t ∈ [sk, sk+1), we have,

E
[∫ +∞

0

|Bt −Bt|p
′

1 + t
dt

]
≤
∫ +∞

0

1
1 + t

(t− t)p′Hdt ≤ c
+∞∑
k=1

γp
′H+1
k+1
sk

< +∞

where c is a positive constant and where the last inequality stems from hypothesis (4.3). Hence,
Kronecker’s lemma yields

1
sN

∫ sN

0
|Bt −Bt|p

′
ds

N→+∞−−−−−→ 0 a.s. (4.15)

Now inequality (4.11) combined with (4.14) and (4.15) easily yields (4.9). We conclude that
lim

N→+∞
sup
ϑ∈Θ

A22,N (ϑ) = 0 .

Going back to our decomposition (4.6), we still have to prove that limN→+∞ supϑ∈ΘA21,N (ϑ) =
0. To this end, let us write A21,N (ϑ) in its discrete form:

A21,N (ϑ) = d

(
1
sN

N−1∑
k=0

γk+1δZϑsk
,

1
sN

N−1∑
k=0

γk+1δY ϑsk

)
. (4.16)

Then invoking Remark 3.9 once more, we are reduced to prove

1
sN

N−1∑
k=0

γk+1|Y ϑ
sk
− Zϑsk |

p′ N→+∞−−−−−→ 0 a.s. (4.17)

In order to achieve (4.17) consider the integer n0 given by Proposition 3.7 (ii). For k 6 n0 we
trivially bound |Y ϑ

sk
−Zϑsk | using (3.22). Since (3.21) asserts that supϑ∈Θ,k∈{1,...,n0} |Z

ϑ
sk
| < +∞,

we get that
sup

ϑ∈Θ,k∈{1,...,n0}
|Y ϑ
sk
− Zϑsk | =: C(ω) < +∞ a.s. (4.18)

We now bound the right hand side of (4.17) by means of (4.18) whenever k 6 n0 and invok-
ing (3.24) when k > n0 + 1. This gives

1
sN

N−1∑
k=0

γk+1|Y ϑ
sk
− Zϑsk |

p′ ≤ C(ω)p′ 1
sN

 n0∑
k=0

γk+1 +
N−1∑

k=n0+1
γk+1e

−ρ(sk−sn0 )


+ 1
sN

N−1∑
k=n0+1

γk+1

k−1∑
`=n0

φ`,p′(Y ϑ
s`

)e−ρ(sk−s`+1). (4.19)

The first term in the right-hand side of (4.19) is clearly evanescent as N → +∞. Let us focus
on the second one. By a Fubini type transformation, we get

N−1∑
k=n0+1

γk+1

k−1∑
`=n0

φ`,p′(Y ϑ
s`

)e−ρ(sk−s`+1) =
N−2∑
`=n0

φ`,p′(Y ϑ
s`

)
N−1∑
k=`+1

γk+1e
−ρ(sk−s`+1)

≤
N−2∑
`=0

φ`,p′(Y ϑ
s`

)
N−1∑
k=`+1

γke
−ρ(sk−s`+1)
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where the last inequality is due to the fact that (γk) is non increasing. Since x 7→ e−ρx is a
non-increasing function, we remark that for ` ∈ {0, . . . , N − 2},

N−1∑
k=`+1

γke
−ρ(sk−s`+1) ≤ eρs`+1

∫ sN−1

s`

e−ρxdx = 1
ρ

(
eργ`+1 − e−ρ(sN−1−s`+1)

)
≤ Cρ.

Thus, in order to see that the right hand side of (4.19) vanishes as N → +∞, it remains to show
that

lim
N→+∞

sup
ϑ∈Θ

1
sN

N−1∑
`=0

φ`,p′(Y ϑ
s`

) = 0 (4.20)

where we recall that φ`,p′ is defined by (3.23) and thus

1
sN

N−1∑
`=0

φ`,p′(Y ϑ
s`

) = 1
sN

N−1∑
`=0

γp
′+1
`+1 |bϑ(Y ϑ

s`
)|p′ + 1

sN

N−1∑
`=0

∫ γ`+1

0
|Bs`+t −Bs` |

p′dt. (4.21)

Let us begin by the term involving bϑ in (4.21). First notice that

Wp′

( 1
sN

∫ sN

0
δY ϑs ds, νϑ

)
6 A22,N (ϑ) +A23,N (ϑ),

where A22,N and A23,N are respectively defined by (4.7) and (4.8) with d =Wp′ . Furthermore,
we have seen that limN→+∞ supϑ∈ΘA22,N (ϑ) = 0 and limN→+∞ supϑ∈ΘA23,N (ϑ) = 0 . We
immediately deduce that

lim
N→+∞

sup
ϑ∈Θ
Wp′

( 1
sN

∫ sN

0
δY ϑs ds, νϑ

)
= 0.

Moreover, by Proposition A.1 for instance, we have supϑ∈Θ νϑ(| · |p′) <∞. We thus deduce that

sup
ϑ∈Θ

sup
N>1

1
sN

N−1∑
`=0

γ`+1|Y ϑ
s`
|p′ < +∞ a.s.

Furthermore, since bϑ is uniformly sublinear in ϑ and lim`→+∞ γ
p′

`+1 = 0, it easily follows along
the same lines as for (4.14) that:

sup
ϑ∈Θ

1
sN

N−1∑
`=0

γp
′+1
`+1 |bϑ(Ys`)|

p′ N→+∞−−−−−→ 0. (4.22)

We now turn to the term in (4.21) involving the fBm, for which we use the classical discrete
Kronecker lemma. To this aim, we remark that

E
[+∞∑
k=1

1
sk

∫ γk+1

0
|Bsk+t −Bsk |

p′dt

]
= 1
p′H + 1

+∞∑
k=1

γp
′H+1
k+1
sk

< +∞, (4.23)

where the last inequality stems from assumption (4.3). From (4.23), it is easily seen that
+∞∑
`=0

1
s`

∫ γ`+1

0
|Bs`+t −Bs` |

p′dt < +∞ a.s.

We are thus in position to apply Kronecker’s lemma to the sequence (
∫ γ`+1

0 |Bs`+t−Bs` |p
′
dt)`>0.

This yields
1
sN

N−1∑
`=0

∫ γ`+1

0
|Bs`+t −Bs` |

p′dt
N→+∞−−−−−→ 0. (4.24)
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Let us summarize our computations so far. Gathering (4.22), (4.24) and (4.21), we have obtained
relation (4.20). This easily implies that (4.17) holds true and hence A21,N (ϑ) defined by (4.16)
satisfies

lim
N→+∞

sup
ϑ∈Θ

A21,N (ϑ) = 0.

Since similar results have also been shown for A22,N (ϑ) and A23,N (ϑ), relation (4.6) gives

lim
N→+∞

sup
ϑ∈Θ

A2,N (ϑ) = 0.

Eventually, plugging this information into (4.5) yields our claim (4.4). �

4.2. A general convergence result. The consistence of our estimators will rely on the fol-
lowing general proposition about convergence of minimizers for a sequence of random functions.
Observe that our sequences below are indexed by a generic r which sits in an unspecified set. This
simplifies the subsequent applications of the proposition to our indices N,n, γ in the remainder
of the section.

Proposition 4.3. Let Θ be a compact set and (ϑ 7→ Lr(ϑ))r denote a family of non-negative
random functions. Assume that:

(1) With probability one, limrLr(ϑ) = L(ϑ) uniformly in ϑ ∈ Θ.
(2) The function ϑ 7→ L(ϑ) is non-random and continuous on Θ.
(3) For any r, the set argmin{Lr(ϑ), ϑ ∈ Θ} is nonempty.

Then, for a fixed r, let ϑ̂r ∈ argmin{Lr(ϑ), ϑ ∈ Θ}. Let A denote the limit points of (ϑ̂r)r. Then
we have

A ⊂ argmin{L(ϑ), ϑ ∈ Θ}.
In particular, if L attains its minimum for a unique ϑ?, then limr ϑ̂r = ϑ?.

Proof. Let ϑ? be an element of argmin{L(ϑ), ϑ ∈ Θ}. We consider a generic element ϑ∞ ∈ A
and its related convergent subsequence (ϑ̂rn)n>0. Then we can upper bound L(ϑ∞) as follows:

L(ϑ∞) ≤ Lrn(ϑ̂rn) + |L(ϑ∞)− Lrn(ϑ̂rn)|. (4.25)

We now bound the two terms in the right hand side of (4.25). On the one hand, by definition
of ϑ̂r,

Lrn(ϑ̂rn) ≤ Lrn(ϑ?).
Hence, thanks to the fact that limr Lr(ϑ) = L(ϑ) for all ϑ ∈ Θ, we get

lim sup
n→+∞

Lrn(ϑ̂rn) ≤ L(ϑ?). (4.26)

On the other hand, we also have

|L(ϑ∞)− Lrn(ϑ̂rn)| ≤ |L(ϑ∞)− L(ϑ̂rn)|+ sup
ϑ∈Θ
|L(ϑ)− Lrn(ϑ)|. (4.27)

Therefore we can invoke the continuity of L to bound the first term in the right hand side of
(4.27), plus the uniform convergence of Lr to L in order to handle the second term. This yealds

lim sup
n→+∞

|L(ϑ∞)− Lrn(ϑ̂rn)| = 0 (4.28)

Plugging (4.28) and (4.26) into (4.25), we obtain that L(ϑ∞) ≤ L(ϑ?) and thus ϑ∞ belongs to
the set argmin{L(ϑ), ϑ ∈ Θ}. This finishes the proof. �
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4.3. Proofs of the convergence theorems. With all our preliminary considerations in hand,
we are now ready to prove the main convergence results for our estimators. This is briefly
outlined below.

Proof of Theorem 2.9. Recall that the family {ϑ̂N,n,γ , (N,n, γ) ∈ N2 × R∗+} is defined by
(2.15). We wish to apply Proposition 4.3 with r = (N,n, γ) ∈ N2 × R∗+. We set LN,n,γ(ϑ) =
d( 1

n

∑n−1
k=0 δYtk ,

1
N

∑N−1
k=0 δ

Zϑ,γsk
). By Proposition 4.1, we have uniformly in ϑ ∈ Θ,

lim
γ→0

lim
N,n→+∞

LN,n,γ(ϑ) = d(νϑ0 , νϑ) =: L(ϑ). (4.29)

In addition, owing to Proposition 3.6 and Assumption (Iw), L is continuous and ϑ0 is the unique
minimum of L. We have thus checked that the hypothesis of Proposition 4.3 are fulfilled, from
which Theorem 2.9 is easily deduced. �

Proof of Theorem 2.10 . The proof goes along the same lines as for Theorem 2.9. Namely we
apply Proposition 4.3 to the sequence {ϑ̂N,n, (N,n) ∈ N2} defined by (2.20). To this aim, we
set

LN,n(ϑ) = d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

γk+1δZϑsk

)
.

Then according to Proposition 4.2, the sequence (LN,n)N,n converges uniformly to L defined by
(4.29) when N,n → +∞. Furthermore, the continuity of L follows as in the proof of Theorem
2.9. Our claim is thus easily deduced. �

Proof of Theorem 2.8 . We still wish to apply Proposition 4.3 to the family {ϑ̂(ε)
N,n,γ , (N,n, γ) ∈

N2 × R∗+} defined by (2.17). However, since we only assume (Cw) instead of (Cs), one is only
able to obtain simple convergence properties on Θ. In order to circumvent this problem, we have
restricted our analysis to the discretized parameter set Θ(ε) introduced in (2.17). For a given
ε > 0, Θ(ε) is finite and hence, one deduces from Propositions 3.3(ii) and 3.4, that

lim
γ→0

lim
N,n→+∞

sup
ϑ∈Θ(ε)

|LN,n,γ(ϑ)− L(ϑ)| = 0,

where L is defined by (4.29). Now, denote by A(ε) the set of limit points of (ϑ̂(ε)
N,n,γ)N,n,γ . From

Proposition 4.3, one deduces that

A(ε) ⊂ argmin{L(ϑ), ϑ ∈ Θ(ε)}.

Furthermore, L is a continuous function such that L(ϑ0) = 0. Thus, since dist(ϑ0,Θ(ε))→ 0 as
ε → 0, one deduces that minϑ∈Θ(ε) L(ϑ) → 0 as ε → 0. Owing to (Iw), this implies that any
sequence (ϑ(ε))ε of A(ε) converges to ϑ0. This concludes the proof. �

5. Rate of convergence: proof of Theorem 2.13

All along this section, we assume (Cs) and (Is). Our aim is to bound the quantity E[|ϑ̂N,n,γ−
ϑ0|2] where ϑ̂N,n,γ is defined by (2.15). Owing to (Is), we are reduced to study

E
[
d
(
νϑ0 , νϑ̂N,n,γ

)q]
(5.1)

where q := 2/ς and ς ∈ (0, 1] is given in (Is). Our strategy of proof is based on the following
decomposition
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Lemma 5.1. Let ϑ̂N,n,γ be the estimator defined by (2.15) and recall that νϑ is defined by (2.8)
for all ϑ ∈ Θ. Then d

(
νϑ0 , νϑ̂N,n,γ

)
can be decomposed as

d
(
νϑ0 , νϑ̂N,n,γ

)
≤ 2D(1)

n + 2 sup
ϑ∈Θ

D
(2)
N,γ(ϑ) + 2 sup

ϑ∈Θ
D

(3)
N,γ(ϑ) (5.2)

where D(1)
n , D(2)

N,γ(ϑ), and D(3)
N,γ(ϑ) are respectively by

D(1)
n := d

(
νϑ0 ,

1
n

n−1∑
k=0

δYtk

)
, (5.3)

D
(2)
N,γ(ϑ) := d

(
1
N

N−1∑
k=0

δ
Zϑ,γ
kγ
,

1
N

N−1∑
k=0

δY ϑ
kγ

)
, (5.4)

D
(3)
N,γ(ϑ) := d

(
1
N

N−1∑
k=0

δY ϑ
kγ
, νϑ

)
. (5.5)

Proof. Let us write ϑ̂ for ϑ̂N,n,γ throughout the proof in order to ease notations. We first apply
the triangular inequality, which yields

d
(
νϑ0 , νϑ̂

)
≤ d

(
νϑ0 ,

1
n

n−1∑
k=0

δYtk

)
+ d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Zϑ̂,γ
kγ

)
+ d

(
1
N

N−1∑
k=0

δ
Zϑ̂,γ
kγ

, νϑ̂

)

where (Yt)t≥0 is the observation process given by (1.2). Next, we invoke the fact that ϑ̂minimizes
the quantity d

(
1
n

∑n−1
k=0 δYtk ,

1
N

∑N−1
k=0 δ

Zϑ,γ
kγ

)
in Θ, which gives

d
(
νϑ0 , νϑ̂

)
≤ d

(
νϑ0 ,

1
n

n−1∑
k=0

δYtk

)
+ d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Z
ϑ0,γ
kγ

)
+ sup
ϑ∈Θ

d

(
1
N

N−1∑
k=0

δ
Zϑ,γ
kγ
, νϑ

)
.

(5.6)
We further split the second term in the right hand side of (5.6) as follows:

d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Z
ϑ0,γ
kγ

)

≤ d
(

1
n

n−1∑
k=0

δYtk , νϑ0

)
+ d

(
νϑ0 ,

1
N

N−1∑
k=0

δ
Y
ϑ0
kγ

)
+ d

(
1
N

N−1∑
k=0

δ
Y
ϑ0
kγ

,
1
N

N−1∑
k=0

δ
Z
ϑ0,γ
kγ

)
, (5.7)

and resort to a similar decomposition for the third term in the right hand side of (5.6). It is
then readily checked that plugging (5.7) into (5.6) we end up with our claim (5.2). �

In the remainder of the section, we shall handle the Lq-moments of D(1)
n , supϑ∈Θ |D

(2)
N,γ(ϑ)|

and supϑ∈Θ |D
(3)
N,γ(ϑ)| separately, respectively in Sections 5.1, 5.2 and 5.3.

5.1. Lq bound on D
(1)
n . We start this section by giving a notation concerning expectations of

empirical measures.

Notation 5.2. Let Y be the solution of equation (2.7) and t ≥ 0. As previously, δYt denotes the
Dirac measure at Yt, considered as a random measure. Then E[δYt ] is the deterministic measure
such that for all continuous and bounded f : Rd → R we have

E[δYt ](f) = E[f(Yt)].
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With this notation in mind, we can now deliver our Lq estimate for D(1)
n .

Lemma 5.3. Let D(1)
n be the random variable defined by (5.3). Then, whenever d is given by

dcf,p or ds, defined respectively by (2.21) with p > (q + d)/2 and (2.22), we have:

E
[
|D(1)

n |q
]
6 Cq

(
n−q + n−

q
2 (2−(2H∨1))

)
. (5.8)

Proof. We decompose D(1)
n as follows:

D(1)
n ≤ d

(
νϑ0 ,

1
n

n−1∑
k=0

E[δYtk ]
)

+ d

(
1
n

n−1∑
k=0

E[δYtk ], 1
n

n−1∑
k=0

δYtk

)
=: D(11)

n +D(12)
n . (5.9)

For the termD
(11)
n , we can use the contractivity assumption (Cs) on the drift b which implies that

two solutions of the SDE (1.2) with different initial conditions converge exponentially pathwise
to each other as t→ +∞ (see e.g. [21]). More specifically, we have already seen in (3.7) that the
arguments of [21] entail ‖Yt− Ȳt‖Lp(Ω ≤ c1e

−c2t for two positive constants c1, c2, where we recall
that Ȳ designates the stationary solution of (2.7). Hence for a Lipschitz function f : Rd → R
we easily get the existence of a constant C > 0 such that∣∣∣∣∣ 1n

n−1∑
k=0

E[f(Ytk)]− νϑ0(f)
∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

E[|f(Ytk)− f(Ȳtk)|] ≤ C

n
‖f‖Lip. (5.10)

It remains to take into account the distance d. Recall that we only consider the two distances
dcf,p and ds defined in Subsection 2.5. We thus easily deduce from (5.10) and the definitions of
dcf,p and ds that there exists a positive constant C̃ such that

D(11)
n ≤ max

{
dcf,p

(
νϑ0 ,

1
n

n−1∑
k=0

E[δYtk ]
)
, ds

(
νϑ0 ,

1
n

n−1∑
k=0

E[δYtk ]
)}
≤ C̃

n
. (5.11)

The term D
(12)
n is handled in Proposition 5.4 below and specifically in relation (5.12). Therefore,

plugging (5.11) and (5.12) into (5.9), relation (5.8) is proved. �

Proposition 5.4. Let d be one of the two distances ds and dcf,p with p > (q + d)/2. Then,

E
[
d

(
1
n

n−1∑
k=0

δYtk ,
1
n

n−1∑
k=0

E[δYtk ]
)q ]

≤ Cqn−
q
2 (2−(2H∨1)). (5.12)

The proof of the proposition is based on the following lemma:

Lemma 5.5. Recall that (Yt)t≥0 is given by (1.2). Then for all q > 1 and for all Lipschitz
function f : Rd → R,

E
[∣∣∣∣∣ 1n

n−1∑
k=0

f(Ytk)−E[f(Ytk)]
∣∣∣∣∣
q ]
6 Cq‖f‖qLipn

− q2 (2−(2H∨1)). (5.13)

Proof. We invoke a concentration result for large time borrowed from [48, Theorem 2.3]. This
result asserts that: there exists C > 0 such that for all Lipschitz functions f : Rd → R and for
all r > 0,

P
(

1
n

n−1∑
k=0

f(Ytk)−E[f(Ytk)] ≥ r
)
≤ C exp(−C‖f‖−2

Lipr
2n2−(2H∨1)). (5.14)
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Therefore, one can check that (5.13) holds true by plugging inequality (5.14) into the classical
formula

E[Xq] =
∫ +∞

0
qxq−1P(X ≥ x)dx,

which is valid for any positive random variable X. �

Proof of Proposition 5.4. We will only give details about dcf,p since ds can be treated exactly
along the same lines. Furthermore, since our parameter q is greater than 2, by using Jensen
inequality and the linearity of E into the definition (2.21) of dcf,p, we get:

E
[
dcf,p

(
νϑ0 ,

1
n

n−1∑
k=0

E[δYtk ]
)q ]

6
∫
Rd

E
[∣∣∣∣∣ 1n

n−1∑
k=0

fξ(Ytk)−E[fξ(Ytk)]
∣∣∣∣∣
q]
gp(ξ)dξ,

where fξ(x) = ei〈ξ,x〉. Since ‖fξ‖Lip ≤ |ξ|, we thus deduce from Lemma 5.5 that

E
[
dcf,p

(
νϑ0 ,

1
n

n−1∑
k=0

E[δYtk ]
)q ]

6 Cqn
− q2 (2−(2H∨1))

∫
Rd
|ξ|qgp(ξ)dξ.

The integral in the last inequality is finite owing to the fact that we chose p > (q + d)/2. Our
claim thus follows. �

5.2. Lq bound on D
(2)
N,γ. Our aim in this section is to get an equivalent of relation (5.8) for the

term D
(2)
N,γ defined by (5.4), namely

E
[

sup
ϑ∈Θ
|D(2)

N,γ(ϑ)|q
]
≤ CγqH . (5.15)

where the distance d in the definition of D(2)
N,γ is either ds or dcf,p. To this end, resorting to

the fact that dcf,p and ds are both elements of D1, the quantity (5.4) can be upper-bounded as
follows:

sup
ϑ∈Θ

D
(2)
N,γ(ϑ) ≤ 1

N

N−1∑
k=0

sup
ϑ∈Θ
|Y ϑ
kγ − Z

ϑ,γ
kγ |.

We thus deduce that

E
[

sup
ϑ∈Θ
|D(2)

N,γ(ϑ)|q
]
≤ E

( 1
N

N−1∑
k=0

sup
ϑ∈Θ
|Y ϑ
kγ − Z

ϑ,γ
kγ |

)q .
Recall that q ≥ 2. Hence a direct application of Jensen’s inequality gives

E
[

sup
ϑ∈Θ
|D(2)

N,γ(ϑ)|q
]
≤ 1
N

N−1∑
k=0

E
[

sup
ϑ∈Θ
|Y ϑ
kγ − Z

ϑ,γ
kγ |

q

]
. (5.16)

Now according to Proposition 3.7 (i) and Proposition A.2 (ii) (see also the proof of Proposition
4.1 (i)), it is readily checked that

sup
k≥0

E
[

sup
ϑ∈Θ
|Y ϑ
kγ − Z

ϑ,γ
kγ |

q

]
6 CγqH .

Gathering this information with (5.16), inequality (5.15) is easily deduced.
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5.3. Lq bound on D
(3)
N,γ. The quantity (5.5) is the hardest to treat among the terms in our

decomposition (5.2), due to the fact that we wish to achieve a uniform bound in ϑ. We summarize
our analysis in the following lemma.

Lemma 5.6. Let D(3)
N,γ be the random variable defined by (5.5), and assume that d is either ds

or dcf,p with p > (q + d)/2. Then, we have

E
[

sup
ϑ∈Θ

D
(3)
N,γ(ϑ)q

]
≤ Cq

(
γqH + T−η̃

)
(5.17)

with η̃ := q2

2(q+d)(2− (2H ∨ 1)) and T = Nγ.

Proof. We will further decompose the term D
(3)
N,γ and then divide our analysis in several steps.

First, let us introduce some notations: denote by T the quantity Nγ and for all t ∈ [0, T ], set
t := inf{kγ | kγ 6 t < (k+1)γ} as we did in the proof of Proposition 4.2. With this notations in
hand, we have D(3)

N,γ(ϑ) = d(νϑ, 1
T

∫ T
0 δY ϑt

dt) from which we deduce the following decomposition:

sup
ϑ∈Θ

D
(3)
N,γ(ϑ) ≤ sup

ϑ∈Θ
D

(31)
N,γ (ϑ) + sup

ϑ∈Θ
D

(32)
N,γ (ϑ) (5.18)

where

D
(31)
N,γ (ϑ) = d

(
νϑ,

1
T

∫ T

0
δY ϑt

dt

)
and D

(32)
N,γ (ϑ) = d

(
1
T

∫ T

0
δY ϑt

dt,
1
T

∫ T

0
δY ϑt

dt

)
.

We will now handle those two terms separately:
Step 1: Bound on D(32)

N,γ . As in Section 5.2, since d ∈ D1 whenever d = ds or d = dcf,p, we have

sup
ϑ∈Θ

D
(32)
N,γ (ϑ) ≤ 1

T

∫ T

0
sup
ϑ∈Θ
|Y ϑ
t − Y ϑ

t |dt. (5.19)

We now proceed as in Section 5.2 in order to get the equivalent of (5.16) thanks to Jensen’s
inequality. We get

E
[

sup
ϑ∈Θ
|D(32)

N,γ (ϑ)|q
]
≤ 1
T

∫ T

0
E
[

sup
ϑ∈Θ
|Y ϑ
t − Y ϑ

t |q
]
dt. (5.20)

In order to bound the right hand side of (5.20), we start by recalling the bound (4.10) for
Y ϑ
t − Y ϑ

t :

|Y ϑ
t − Y ϑ

t | ≤
∫ t

t
|bϑ(Y ϑ

s )|ds+ ‖σ‖|Bt −Bt|.

The drift term above is now bounded thanks to the sublinear growth of bϑ given by (2.5) and
the uniform bound on the Lq moments of Y ϑ

t given by Proposition A.1. As far as the term
|Bt −Bt| is concerned , we obviously have thanks to (1.1) and the fact that |t− t| ≤ γ:

E
[
|Bt −Bt|q

]
≤ CHγqH .

From here, it is readily checked that

E
[

sup
ϑ∈Θ
|Y ϑ
t − Y ϑ

t |q
]
≤ CH γqH .

Plugging this information into (5.20) we end up with

E
[

sup
ϑ∈Θ
|D(32)

N,γ (ϑ)|q
]
≤ CqγqH . (5.21)
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Step 2: Bound on D(31)
N,γ (ϑ) for a fixed ϑ. For a fixed value of ϑ ∈ Θ, the term D

(31)
N,γ (ϑ) will be

handled similarly to Section 5.1. Namely, along the same lines as for relation (5.9) we write

D
(31)
N,γ (ϑ) ≤ d

(
νϑ,

1
T

∫ T

0
E[δY ϑt ]dt

)
+ d

(
1
T

∫ T

0
E[δY ϑt ]dt, 1

T

∫ T

0
δY ϑt

dt

)
. (5.22)

Then the first term in the right hand side of (5.22) is handled exactly as (5.10) in Section 5.1,
which yields ∣∣∣∣∣ 1T

∫ T

0
E[f(Y ϑ

t )]dt− νϑ(f)
∣∣∣∣∣ 6 C

T
‖f‖Lip. (5.23)

The second term in the right hand side of (5.22) can be upper bounded thanks to a continuous
time version of Lemma 5.5 (also based on [48, Theorem 2.3] and left to the reader for the sake
of conciseness). We get

E
[∣∣∣∣∣ 1T

∫ T

0

(
f(Y ϑ

t )−E[f(Y ϑ
t )]
)
dt

∣∣∣∣∣
q ]
6 Cq‖f‖qLipT

− q2 (2−(2H∨1)). (5.24)

Therefore putting together (5.23) and (5.24) and arguing as in Section 5.1, we get that for
d = dcf,p with p > (q + d)/2 or d = ds and for any ϑ ∈ Θ,

E
[
|D(31)

N,γ (ϑ)|q
]

= E
[
d

(
νϑ,

1
T

∫ T

0
δY ϑt

dt

)q ]
6 Cq

(
T−q + T−

q
2 (2−(2H∨1))

)
(5.25)

where Cq is a positive constant which does not depend on ϑ.
Step 3: Bound on supϑ∈ΘD

(31)
N,γ (ϑ). In order to gor from (5.25) to a bound for the supremum

over Θ, we proceed to a discretization of the parameter space Θ as in Section 2.4. Towards this
aim, we will use the following notation: for any ϑ ∈ Θ, we set

ϕ(ϑ) := d

(
νϑ,

1
T

∫ T

0
δY ϑt

dt

)
. (5.26)

Let ε > 0 and recall that Θ(ε) := {ϑ(ε)
i | 1 6 i 6 Mε} is defined at the beginning of Subsection

2.4 in such a way that Θ ⊂
⋃Mε
i=1B(ϑ(ε)

i , ε). Then, for any ϑ ∈ Θ,

ϕ(ϑ) 6 |ϕ(ϑ)− ϕ(ϑ(ε))|+ |ϕ(ϑ(ε))|

where ϑ(ε) is defined by (2.16). Therefore

ϕ(ϑ) ≤ |ϕ(ϑ)− ϕ(ϑ(ε))|+ max
1≤i≤Mε

|ϕ(ϑ(ε)
i )|

and finally

E
[

sup
ϑ∈Θ

ϕ(ϑ)q
]
≤ cqE

[
sup
ϑ∈Θ
|ϕ(ϑ)− ϕ(ϑ(ε))|q

]
+ cqE

[
max

1≤i≤Mε

|ϕ(ϑ(ε)
i )|q

]

≤ cqE
[

sup
ϑ∈Θ
|ϕ(ϑ)− ϕ(ϑ(ε))|q

]
+ cq

Mε∑
i=1

E
[
|ϕ(ϑ(ε)

i )|q
]
. (5.27)

Owing to inequality (5.25) for a fixed ϑ ∈ Θ, we can deduce from (5.27) that

E
[

sup
ϑ∈Θ

ϕ(ϑ)q
]
≤ cqE

[
sup
ϑ∈Θ
|ϕ(ϑ)− ϕ(ϑ(ε))|q

]
+ c′qMε

(
T−q + T−

q
2 (2−(2H∨1))

)
. (5.28)
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In the remainder of the step, we thus focus on the first right hand term in (5.28). Namely we
will show the existence of an integrable random variable ζT > 0 such that for all ϑ1, ϑ2 ∈ Θ we
have

|ϕ(ϑ1)− ϕ(ϑ2)| ≤ ζT |ϑ1 − ϑ2| a.s. (5.29)
For this purpose, let us split the quantity |ϕ(ϑ1)− ϕ(ϑ2)| in two terms

|ϕ(ϑ1)− ϕ(ϑ2)| ≤ d (νϑ1 , νϑ2) + d

(
1
T

∫ T

0
δ
Y
ϑ1
t
dt,

1
T

∫ T

0
δ
Y
ϑ2
t
dt

)
. (5.30)

Then, one can show the following inequalities for any d ∈ D1

d (νϑ1 , νϑ2) ≤ C|ϑ1 − ϑ2| supϑ∈Θ νϑ (| · |r) (5.31)

d

(
1
T

∫ T
0 δ

Y
ϑ1
t
dt, 1

T

∫ T
0 δ

Y
ϑ2
t
dt

)
≤ C|ϑ1 − ϑ2|

(
1
T

∫ T
0 supϑ∈Θ |Y ϑ

s |rds
)

(5.32)

where r is given in assumption (Cs) and where equation (5.31) is obtained by following the proof
of Proposition 3.8 (see appendix B) for the stationary solutions Ȳ ϑ1 and Ȳ ϑ2 . Plugging (5.31)
and (5.32) into (5.30), we obtain that (5.29) holds true with

ζT := C max
{

sup
ϑ∈Θ

νϑ (| · |r) , 1
T

∫ T

0
sup
ϑ∈Θ
|Y ϑ
s |rds

}
.

By Proposition A.1 (i), we get supT>0 E[ζ q
T ] < +∞. Then plugging (5.29) into (5.28) we end

up with

E
[

sup
ϑ∈Θ

ϕ(ϑ)q
]
≤ cq sup

T>0
E[ζ q

T ]εq + c′qMε

(
T−q + T−

q
2 (2−(2H∨1))

)
. (5.33)

For all ε > 0, since Θ is a compact of Rd, we can chooseMε ≤ CΘ
εd

and then if we choose ε := T−η

for some η > 0, we finally get

E
[

sup
ϑ∈Θ

ϕ(ϑ)q
]
≤ cq sup

T>0
E[ζ q

T ]T−qη + c′qCΘ
(
T−q+dη + T−

q
2 (2−(2H∨1))+dη

)
≤ cq sup

T>0
E[ζ q

T ]T−qη + c′qCΘT
− q2 (2−(2H∨1))+dη.

It just remains to optimize in η to conclude that:

E
[

sup
ϑ∈Θ

ϕ(ϑ)q
]
≤ CqT−η̃ (5.34)

with η̃ := q2

2(q+d)(2 − (2H ∨ 1)). By putting together (5.18) with both (5.21) and (5.34), this
concludes the proof of (5.17). �

Let us now conclude the section. Through inequality (5.2) and the control of the three right
hand side terms, namely (5.8), (5.15) and (5.17), we are in position to conclude that Theorem
2.13 holds true.

6. Identifiability assumption

In this section we will provide some examples of equations of the form (1.2) for which the
crucial assumptions (2.9) and (2.10) are satisfied. We first review briefly the diffusion case in
Section 6.1, and then give a particular example in the fractional Brownian motion case in Section
6.2.
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6.1. Case of a diffusion process. In this section we consider equation (1.2) in the case H = 1
2 ,

that is when the equation is driven by a d-dimensional Wiener process. Our considerations are
summarized in the following proposition.

Proposition 6.1. Consider equation (1.2) in the case H = 1
2 . We assume Hypothesis (H0) and

(Cw) to be met and call νϑ the invariant measure corresponding to the coefficient bϑ. We pick
ϑ1, ϑ2 ∈ Θ and set

F = Span{∇f, for all f ∈ C2(Rd,R) with compact support}
where F is considered as a subspace of L2(νϑ1). We assume that bϑ1 − bϑ2 is not an element of
F⊥ in L2(νϑ1). Then

d(νϑ1 , νϑ2) > 0.
If this condition is satisfied for all couples (ϑ1, ϑ2) ∈ Θ2, then (Iw) holds true.

Proof. For ϑ ∈ Θ, let Lϑ denote the linear operator defined on C2(Rd,R) by:

Lϑf(x) = 〈∇f, bϑ〉(x) + 1
2(σ∗D2f(x)σ),

where D2f denote the Hessian matrix of f . By a classical criterion, νϑ is invariant for (1.2)
when H = 1

2 if and only if νϑ(Lϑf) = 0 for any f ∈ C2(Rd,R) with compact support. As
a consequence, νϑ1 = νϑ2 if and only if νϑ1((Lϑ1 − Lϑ2)f) = 0 for any compactly supported
C2-function f : Rd → R. Now observe that

νϑ1((Lϑ1 − Lϑ2)f) =
∫
〈∇f(x), bϑ1(x)− bϑ2(x)〉νϑ1(dx).

The result follows. �

In other words, this result says that in the diffusion setting, the identifiability assumption is
true if ProjF (bϑ− bϑ0) is not the null function for any ϑ 6= ϑ0. Notice that this is always true in
the one-dimensional case or if bϑ is a gradient. Unfortunately, the generalization of this simple
characterization to SDEs driven by fBm is far from being straightforward.

6.2. Fractional Brownian motion case. In this section we wish to check (Is) for some specific
examples of equation (2.7) and for the distance dcf,p. Specifically, we shall consider a family
Y ϑ,λ of real valued processes defined by

dY λ,ϑ
t =

[
−ϑY λ,ϑ

t + λbϑ(Y λ,ϑ
t )

]
dt+ σ dBt (6.1)

where B is a 1-dimensional fractional Brownian motion. In equation (6.1) the quantity λ is a
small enough parameter, which is assumed to be known. The estimation procedure is still for ϑ
only. The coefficient bϑ is bounded together with its derivatives with respect to y and ϑ. The
process Y ϑ,λ has to be seen as a small perturbation of a fractional Ornstein-Uhlenbeck process
with parameter ϑ. We also assume that ϑ is a 1-dimensional parameter and:

ϑ ∈ [m,M ], with 0 < m < M <∞. (6.2)

Let us start our analysis by the case Xϑ ≡ Y 0,ϑ, that is the fractional Ornstein-Uhlenbeck
process itself, solution of the following equation:

dXϑ
t = −ϑXϑ

t dt+ σ dBt. (6.3)
It is easily seen that Xϑ is a centered Gaussian process whose variance is given (see e.g. [23,
p.724]) by

E[(Xϑ
t )2] = 2σ2e−ϑt

∫ t

0
s2H−1 cosh(ϑ(t− s))ds. (6.4)
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In this case our assumption (Is) is easily satisfied, as shown in the following lemma.

Lemma 6.2. Let ϑ ∈ [m,M ] as in (6.2), and consider the fractional Ornstein-Uhlenbeck process
Xϑ defined by (6.3). We call µϑ its invariant measure. Then for all ϑ1, ϑ2 ∈ [m,M ], we have

dcf,p(µϑ1 , µϑ2) ≥ cm,M,H |ϑ1 − ϑ2|. (6.5)

Proof. It is well-known (see e.g [6]) that for the fractional Ornstein-Uhlenbeck process we have
µϑ = N (0, σ2

ϑ), with

σ2
ϑ = cH

ϑ2H . (6.6)

Taking expression (2.21) into account, this yields

d2
cf,p(µϑ1 , µϑ2) =

∫
R

[
exp

(
− cH

2ϑ2H
1
ξ2
)
− exp

(
− cH

2ϑ2H
2
ξ2
)]2

gp(ξ)dξ,

from which our claim (6.5) is easily proved. Notice that the fact that ϑ is bounded away from
0 is crucial here in order to ensure the continuity of ϑ 7→ σϑ in (6.6) on the interval [m,M ]. �

Let us also state an elementary bound on ordinary differential equations for further use.

Lemma 6.3. Let f, g : R+ → R be two functions such that there exist some constants κ,M > 0
satisfying

fr ≥ κ, and |gr| ≤M, for all r ∈ R+. (6.7)
Let y be the solution of the following differential equation:

ẏt + ft yt = gt. (6.8)

Then y is uniformly bounded in t and verifies

|yt| ≤
M

κ
.

Proof. Equation (6.8) admits an explicit solution under the form

yt =
∫ t

0
exp

(
−
∫ t

s
fr dr

)
gs ds.

Plugging the bounds (6.7) into the above expression, we easily get

|yt| ≤M
∫ t

0
e−κ(t−s) ds ≤ M

κ
,

which is our claim. �

We now wish to extend Lemma 6.2 to the model given by equation (6.1). Namely we wish to
prove the following proposition.

Proposition 6.4. Let Y λ,ϑ be the process defined by (6.1) and consider p > 3/2. We assume
ϑ ∈ [m,M ] and λ ∈ (0, λ0) with a small enough λ0 = λ0(m,M, p). Also assume (without loss
of generality) that bϑ, ∂ybϑ, ∂ϑbϑ, ∂2

ϑybϑ are all bounded by 1. Then the following lower bound
holds true for any ϑ1, ϑ2 ∈ [m,M ]:

dcf,p(νϑ1 , νϑ2) ≥ cm,M,H |ϑ1 − ϑ2|. (6.9)
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Proof. Owing to the definition (2.21) of the distance dcf,p, we have

dcf,p(νϑ1 , νϑ2) =
{∫

R

(
E[eiξȲ λ,ϑ1 ]−E[eiξȲ λ,ϑ2 ]

)2
gp(ξ) dξ

}1/2

We will decompose this quantity as follows:

dcf,p(νϑ1 , νϑ2) ≥ I1/2
3 −

(
I

1/2
2 + I

1/2
11 + I

1/2
12

)
, (6.10)

where the quantities I1j and I3 are defined by

I1j =
∫
R

(
E
[
exp

(
iξȲ λ,ϑj

)]
−E

[
exp

(
iξY

λ,ϑj
t

)])2
gp(ξ) dξ

I3 =
∫
R

(
E
[
exp

(
iξXϑ1

t

)]
−E

[
exp

(
iξXϑ2

t

)])2
gp(ξ) dξ,

and where we recall that the Ornstein-Uhlenbeck process Xϑ is given by (6.3). In equation
(6.10), we also have

I2 =
∫
R

(
E
[
exp

(
iξY λ,ϑ1

t

)]
−E

[
exp

(
iξXϑ1

t

)]
−E

[
exp

(
iξY λ,ϑ2

t

)]
+ E

[
exp

(
iξXϑ2

t

)] )2
gp(ξ) dξ.

In the definitions above, t is an arbitrarily large time, to be determined later on. Our goal is
now to lower bound I3 and upper bound I1,j and I2.
Lower bound for I3. In order to lower bound I3, we proceed as in Lemma 6.2. Indeed, Lemma
6.2 stems from a lower bound on

|E[eiξX
ϑ1
∞ ]−E[eiξX

ϑ2
∞ ]|,

while we are interested here in a lower bound on

|E[eiξX
ϑ1
t ]−E[eiξX

ϑ2
t ]|,

for a fixed t. However it is readily checked from (6.4) that there exists t0 > 0 such that for all
t ≥ t0 we have

I3 ≥ c1 |ϑ1 − ϑ2|2 (6.11)

with a given constant c1 > 0 depending on m,M .
Upper bound for I1j. Recall that both bϑ and ∂ybϑ are bounded by 1. We also assume that λ is
small enough so that λ ≤ m(1−ε) with ε > 0. Then it is readily checked that x 7→ −ϑx+λbϑ(x)
satisfies the condition (Cs). Hence one can see as in (3.7) that

I1j ≤ Ce−
mε
2 t.

If we wish to have I1j ≤ c3 |ϑ1−ϑ2|2, with c3 arbitrarily small, it is thus sufficient to pick t ≥ t1
with t1 = C log

(
1

|ϑ1−ϑ2|2
)
. In the sequel we choose this time t1 such that

I
1/2
11 + I

1/2
12 6

√
c1
4 |ϑ1 − ϑ2|. (6.12)
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Upper bound for I2. We start by recalling that Xϑ = Y 0,ϑ. Next we set R = [ϑ1, ϑ2]× [0, λ] and
for r, τ ∈ [0, 1] we define

a(r, τ) = Y 0,ϑ2
t + r

(
Y 0,ϑ1
t − Y 0,ϑ2

t

)
+ τ

(
Y λ,ϑ2
t − Y 0,ϑ2

t

)
+ rτ∆RYt, (6.13)

where the rectangular increment ∆RYt is given by

∆RYt = Y λ,ϑ1
t − Y 0,ϑ1

t − Y λ,ϑ2
t + Y 0,ϑ2

t . (6.14)
Notice that I2 can be expressed as

I2 =
∫
R

(
E [∆Rψξ(Yt)]

)2
gp(ξ) dξ, (6.15)

where ψξ is the oscillating function eiξx and ∆Rψξ(Yt) still denotes a rectangular increment as
in (6.14). Moreover, resorting to the path a introduced in (6.13) we get

∆Rψξ(Yt) =
∫

[0,1]2
∂2
rτ [ψξ(a(r, τ))] drdτ,

and computing the differential ∂2
rτ [ψξ(a(r, τ))] explicitly we get

∆Rψξ(Yt) =
∫

[0,1]2

(
ψ′ξ(a(r, τ))∂2

rτa(r, τ) + ψ′′ξ (a(r, τ))∂ra(r, τ)∂τa(r, τ)
)
drdτ. (6.16)

Taking into account (6.16) and (6.15), plus the fact that ψ and its derivatives ψ′, ψ′′ are bounded
by |ξ|2 and |ξ|2gp is integrable if p > 3/2, we get that

I2 ≤ Cp
{

E
[(
|Y 0,ϑ2
t − Y 0,ϑ1

t |+ |∆R(Yt)|
) (
|Y λ,ϑ2
t − Y 0,ϑ2

t |+ |∆R(Yt)|
)]

+ E [|∆R(Yt)|]
}2

≤ Cp,m,M,εE
[
‖∂λY ϑ‖2∞ + ‖∂ϑY ϑ‖2∞ + ‖∂2

λϑY
ϑ‖2∞

]2
λ2|ϑ1 − ϑ2|2. (6.17)

In order to bound the right hand side of (6.17), we are now reduced to the estimation of ∂λY λ,ϑ,
∂ϑY

λ,ϑ and ∂2
λϑY

λ,ϑ. Let us thus show how to establish a bound for ∂λY λ,ϑ. To this aim,
differentiating formally equation (6.1), the process ∂λY λ,ϑ solves a system of the form

d[∂λY λ,ϑ]t
dt

=
[
−ϑ+ λ∂ybϑ(Y λ,ϑ

t )
]
∂λY

λ,ϑ
t + bϑ(Y λ,ϑ

t ). (6.18)

Whenever ϑ satisfies (6.2) and λ ≤ m(1 − ε) with ε > 0, equation (6.18) above fulfills the
hypothesis of Lemma 6.3. Hence we get

|∂λY ϑ,λ
t | ≤ cm,M,ε,

uniformly in t ≥ 0. We let the reader check that the same kind of inequality holds true for
∂ϑY

λ,ϑ and ∂2
λϑY

λ,ϑ as well, and thus we get

‖∂λY ϑ‖∞ + ‖∂ϑY ϑ‖∞ + ‖∂2
λϑY

ϑ‖∞ ≤ cm,M,ε.

Plugging this inequality into (6.17), we end up with
|I2| ≤ Cp,m,M,ελ

2 |ϑ1 − ϑ2|2.

We now choose λ such that λ ≤ 1
4

(
c1

Cp,m,M,ε

)1/2
, where c1 is defined by (6.11) and ε = 1/2. This

yields

I
1/2
2 ≤

√
c1
4 |ϑ1 − ϑ2|. (6.19)

We now gather (6.19) and (6.12) into (6.10), which proves our claim with λ0 = 1
4

(
c1

Cp,m,M,ε

)1/2
.
�
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7. Numerical Discussions and Illustrations

In this section, we provide several numerical examples in order to illustrate our main results.
To this end, we first investigate several numerical questions which are related to our theoretical
results.
Simulated data and Euler scheme: In order to test our results, we have chosen to simulate
our observations. Nevertheless, the fractional SDE (1.2) cannot be simulated exactly, except
in some particular cases. Therefore we have opted for a discretization procedure thanks to a
simple first order Euler scheme with very small step γ (namely γ = 10−3) in order to get a sharp
approximation of the true process.

Let us recall that in the additive setting of equation (1.2) the simple Euler scheme converges
strongly to the true SDE, while this is not true in general in the multiplicative case (see e.g.
[37]). The convergence of the scheme can be checked for instance through Proposition 3.7(i),
applied with constant step γ. Furthermore, taking the expectation in Proposition 3.7(i) leads to
a marginal control of the L2-distance between the Euler scheme and the true SDE (with same
fBm) of order γH (independently of the horizon). This confirms that our approximation of the
observations is reasonable when H is not too small (getting a control for the uniform distance
is more involved).

Let us also recall that the increments of the fBm can be simulated through the Wood-Chan
method (see [53]), which is based on the embedding of the covariance matrix of the fractional
increments in a symmetric circulant matrix (whose eigenvalues can be computed using the Fast
Fourier Transform). Therefore up to the approximation of the true SDE detailed above, we now
assume that we are given a sequence (Ykγ)k≥0, where (Yt)t≥0 is a solution to (2.7) with a given
θ0. Then we select from this path a subsequence of observations (Ytk)nk=1 where tk = kγ, which
means in particular that we assume γ to be of the form k0γ with k0 ∈ N∗.
Computation of the distance between empirical measures: The theoretical construction
of an estimator like (2.15) involves in practice the computation of the distance d between the
empirical measures of the observed process and of the Euler scheme, for a distance d ∈ Dp as
defined in (2.4). We briefly describe how to compute this kind of distance.

Whenever d is the p-Wasserstein distance, an explicit computation of the distance d in (2.15)
is possible if the observation Y is 1-dimensional. To this aim, one can use the following rep-
resentation (see [47]): if µ and ν are two one-dimensional probabilities with c.d.f F and G
respectively, then for all p > 0 we have

Wp
p (µ, ν) =

∫ 1

0
|F−(t)−G−(t)|pdt,

where F− and G− denote the (left or right) pseudo-inverse of F and G. Moreover, when
µ =

∑n1
i=1 piδxi and ν =

∑n2
j=1 qjδyj , the computation of the right hand side above can be made

explicit through a reordering (and using the fact that F−1 and G−1 are stepwise constant). In
particular, when n1 = n2 = n and pi = qj = 1/n, the Wasserstein distance between µ and ν
simply reads

Wp
p (µ, ν) = 1

n

n∑
i=1
|x(i) − y(i)|p. (7.1)

We will use this representation in our simulations.
In higher dimension, the computation of the Wasserstein distance generally requires approxi-

mation/optimization methods which are out of the scope of this paper. In this context it seems
to be numerically simpler to work with an approximation of the distance dcf,p (defined in (2.21)),
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which is also used for our analysis of the rate of convergence. Such an approximation can be
obtained by a standard discretization of the integral which appears in the definition (2.21).
Minimization of the distance with respect to ϑ: Eventually the implementation of our
estimation procedure relies on an optimization problem in order to compute the argmin in (2.15).
More specifically, in case the estimator is built with a constant step Euler scheme, this consists
in minimizing the function

Fd : ϑ 7→ d

(
1
n

n−1∑
k=0

δYtk ,
1
N

N−1∑
k=0

δ
Zϑ,γ
kγ

)
. (7.2)

In this paper, we first use the naive approach which consists in evaluating the function on a
(finite) grid and then computing the minimum on this finite set. This minimization algorithm
is clearly restricted to a low dimensional setting. Secondly, we use a stochastic optimization
algorithm to explore an example in dimension two (in space) for the distance dCF,p which is
easier to manage. More precisions are given after the one-dimensional case.
Numerical illustrations: Let us now turn to some numerical tests, for which we consider two
one-dimensional examples and one two-dimensional example. We begin with the classical
B Ornstein-Uhlenbeck (OU) process: We consider the process Xϑ defined by (6.3), where ϑ is
assumed to sit in a compact interval of (0,+∞) like in (6.2). Let us recall that this case is a
toy example since the Gaussian linear structure of the OU-process allows to develop specific
estimation methods (on this topic, see [32] or more recently [51] and [5]). The assumptions
(H0) and (Cs) are clearly satisfied, whereas (Is) follows from Lemma 6.2. Using the strategy
described in the first part of this section, we get a discretely observed path of Y with the
following parameters:

ϑ0 = 2, γ = 10−3, γ = 10−2, n = 3.104,

and different values of H. In Figure 1, we depict the function Fd defined in (7.2) with d = dCF,2
for H = 0.3 and H = 0.7 respectively. As in the next examples, the Euler scheme is computed
with N = n and γ = 10−2 as specified above. We remark that the function attains its minimum
very close to the true value of ϑ. We also observe that the function Fd is more flat when H is

Figure 1. ϑ 7→ FdCF,2(ϑ) for H = 0.3 (left) and H = 0.7 (right).

small, which is consistent with the fact that H 7→ σ2
ϑ in (6.6) is an increasing function.

Figure 2 below is devoted to a comparison between the different p-Wasserstein distances as p
varies. Namely we fix H = 0.3 and we compute the function Fd defined by (7.2) with d = Wp

for different values of p. Notice that in the 1-dimensional case we are considering we can resort
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to formula (7.1), since we have chosen N = n. The true parameter is still ϑ = 2. Our distances
all perform correctly, although p = 4 seems to yields a slightly sharper contrast.

Figure 2. ϑ 7→ FWp(ϑ), H = 0.3.

B We now consider a second example with a non linear dependence in ϑ, namely an equation
of the form:

dY ϑ
t = −Y ϑ

t (1 + cos(ϑY ϑ))dt+ dBt.

In this case, we only compute the Wasserstein distance for different values of p with the same
choices of parameters. Once again, the minimum of the function FWp is attained close to ϑ0 = 2.
One also observes that the local behavior in the neighborhood of ϑ0 is similar to the linear case.

Figure 3. ϑ 7→ FWp(ϑ) for H = 0.3 (left) and H = 0.7 (right).

B A two-dimensional example: we finally propose to focus on a family of two-dimensional
fractional processes (Zϑt )t≥0 indexed by a real parameter ϑ ∈ Θ = [m,M ] ⊂ (0,+∞), where
m,M are two finite constants. Specifically, Zϑ is the solution to the stochastic system

dZϑt = bϑ(Zϑt )dt+ dBH
t , (7.3)

where (BH
t )t≥0 is a two-dimensional standard fBm with Hurst parameter H. In equation (7.3),

we also have that for all ϑ ∈ Θ the function bϑ : R2 → R2 is defined by:

for all z = (z1, z2) ∈ R2, bϑ(z) = −ϑzψ
(
(1 + |z|2)1/2

)
+ εz⊥, (7.4)
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where z⊥ = (−z2, z1) and ψ(x) = ex

1+ex (namely ψ is the sigmoid function). Let us first remark
that the coefficient bϑ above satisfies the main standing assumptions of the current paper and
generalizes the framework of [36]. Indeed, the following holds true: (a) Due to the orthogonal
component z⊥ in equation (7.4), it is readily checked that ∂z2b1ϑ 6= ∂z1b

2
ϑ (where we recall the

notation of Section 2.1 for the partial derivatives of b). Therefore our family of drift functions
bϑ cannot be of gradient type. (b) The functions bϑ are obviously smooth. In addition, we have
〈x⊥1 −x⊥2 , x1−x2〉 = 0. Thus in order to see that bϑ satisfies our Hypothesis (Cs), it is enough to
check that the eigenvalues of the Jacobian matrix of z 7→ zϕ(|z|2) are uniformly lower bounded
by a positive constant, where we have set

ϕ(x) = ψ
(
(1 + x)1/2

)
, for x ≥ 0,

and where ψ is the sigmoid function featuring in our definition (7.4). We leave to the patient
reader the elementary task of computing those eigenvalues. Let us just mention that a lower
bound is given by ϕ(|z|2), which is uniformly lower bounded by 1

2 for all z ∈ R2. This implies
that Assumption (Cs) is fulfilled for the coefficient bϑ.

The multi-dimensional setting leads to new numerical difficulties. The first of those problems
is due to the fact that the exact computation of the Wasserstein distance in R2 is still possible
but costly (about n3 computations for an empirical measure based on n points by the Hungarian
algorithm), while approximations lead to numerical issues which are out of the scope of this paper
(see e.g. [42]). We have thus decided to work with the distance dcf,p introduced in Section 2.5,
which is simpler to compute. The second numerical problem we are facing comes from the
underlying spatial dimension. Indeed, when d = 2 one can still optimize over the parameter ϑ
by computing the contrast given by (2.15) over a discrete grid of parameters ϑ. However, it is
clear that in larger dimensions such contrast estimators require to implement associated convex
optimization algorithms.
With the above preliminary considerations in mind, we now briefly introduce a stochastic op-
timization algorithm for the approximation of ϑ̂N,n,γ related to dcf,p. We will then implement
this method on the coefficient bϑ given by (7.4). Here, the parameter ϑ is still one-dimensional
but the method which is proposed can be adapted to the higher dimension. In order to describe
our algorithm, let us first recast our expression (2.21) for the dcf,p distance. That is, observe
that if fξ(x) := ei〈ξ,x〉 and if Ξ is a random variable with density gp then for two probability
measures µ1 and µ2 we have

dcf,p(µ1, µ2) = E
[
|µ1(fΞ)− µ2(fΞ)|2

]
.

Now recall from relation (2.15) that we are dealing with the following empirical measures:

µ = 1
n

n−1∑
k=0

δYtk and µϑ = 1
N

N−1∑
k=0

δ
Zϑ,γ
kγ
.

Then our aim in (2.15) is to minimize a functional F defined on Θ = [m,M ] by

F (ϑ) = dcf,p(µ, µϑ) = E
[
|µ(fΞ)− µϑ(fΞ)|2

]
.

Our gradient descent algorithm will thus be applied to the functional F , and we now provide
some details about its computation. Indeed, the gradient ∇F is formally obtained, similarly to
what we did in the proof of Proposition 6.4, as

∇F (ϑ) = E[Λ(ϑ,Ξ)], where Λ(ϑ, ξ) = ∂ϑ
(
|µ(fξ)− µϑ(fξ)|2

)
. (7.5)
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Furthermore, it is easily seen that Λ(ϑ, ξ) can be expressed as
Λ(ϑ, ξ) = 2(µϑ − µ)(cos(〈ξ, ·〉))ρϑ(− sin(〈ξ, ·〉)) + 2(µϑ − µ)(sin(〈ξ, ·〉))ρϑ(cos(〈ξ, ·〉)), (7.6)

where we resort to the following notation for a given function g : R→ R,

ρϑ(g(〈ξ, .〉)) = 1
N

N−1∑
k=0

g(〈ξ, Zϑ,γkγ 〉) 〈ξ, ∂ϑZ
ϑ,γ
kγ 〉. (7.7)

Plugging (7.7) into (7.6) and then (7.5), one observes that the computation of ∇F (ϑ) mostly
relies on our ability to evaluate (∂ϑZϑ,γkγ )k≥0. Now it should be highlighted that this quantity
can be computed on the fly, since ∂ϑZϑ,γ0 = 0 and for all k ≥ 0 one can evaluate ∂ϑZϑ,γ(k+1)γ
recursively as

∂ϑZ
ϑ,γ
(k+1)γ = ∂ϑZ

ϑ,γ
kγ + γ

(
∂ϑbϑ(Zϑ,γkγ ) +∇zbϑ(Zϑ,γkγ )∂ϑZϑ,γkγ

)
.

The convergence of the gradient descent algorithm to a minimum of F lies outside the scope
of the current paper (see e.g. [16] for background on this topic). Let us just mention that the
algorithm is recursively defined by

θ`+1 = θ` − η` Λ(θ`,Ξ`+1), (7.8)
where (η`)` is a sequence of (positive) steps and (Ξ`)`≥1 is a sequence i.i.d random variables with
common distribution gp. Notice that in dimension 2 the random variables Ξ` can be simulated
through a change of variable. More precisely, if R and Θ are two independent variables such that
R has density qp(r) = 2(p−1)r

(1+r2)p and Θ has uniform distribution on [0, 2π], then (R cos(Θ), R sin(Θ))
has density gp. Furthermore, thanks to the inversion method we get that R can be simulated as
R = (U1/(1−p) − 1)1/2 where U has uniform distribution on [0, 1].

The illustration represented in Figure 4 is obtained with ε = 1/10 in equation (7.4) and
η` = γ0(1 + `)−1/2 in relation (7.8). We have also considered two values of γ0 and two different
starting points y0 for the process Zϑ in (7.3). Furthermore, in these simulations we used a
mini-batch approach. This means that in equation (7.8) we replace the random simulated term
Λ(θ`,Ξ`+1) by an average overm = 30 simulations. The mini-batch procedure is known to reduce
the randomness of the algorithm. The results displayed in Figure 4 show that our approach yields
a good convergence of the estimate to the true parameter ϑ. However, our simulations also reveal
that the gradient gets quite flat near the true parameter ϑ0 = 1. Therefore the algorithm moves
very slowly after a large number of iterations. This is the reason why in the illustration, the
algorithm is stopped after n = 100 simulations. Also notice that we have provided several
examples of initial values y0 and step sizes γ0, which exemplifies the sensibility of the current
version of the algorithm with respect to the parameters. Those first attempts to combine our
statistical procedure with gradient descent algorithms would certainly need to be enriched with
deeper considerations, although this task is deferred to a subsequent publication for sake of
conciseness.
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Figure 4. Example in dimension 2.

Appendix A. Tightness and convergence of the occupation measures

In this Appendix, we first show some uniform estimates for Y ϑ and Zϑ,γ and their respective
occupation measures, as well as some convergence result for the occupation measure of Y ϑ.
Those results are all used in the proof of Proposition 3.3 and 3.4.

A.1. Moment estimates. We start by bounding the moments of Y ϑ and its occupation mea-
sure.

Proposition A.1. Let Y ϑ be the unique solution of (2.7). Assume (H0) and (Cw). Then the
following inequalities hold true for p ≥ 1.

(i) sup
t>0

E[sup
ϑ∈Θ
|Y ϑ
t |p] < +∞.

(ii) sup
ϑ∈Θ

sup
n>1

1
n

∑n−1
k=0 |Y ϑ

kκ|p < +∞ a.s.

(iii) sup
ϑ∈Θ

sup
t>0

1
t

∫ t
0 |Y ϑ

t |pdt < +∞ a.s.

Proof. We treat our three items separately.
(i) The proof is done in [23]. It is based on a comparison with the moments of the fractional

Ornstein-Uhlenbeck process, similarly to what is done in step (ii) below. Since the constants in
(Cw) are independent from ϑ, we get the uniformity with respect to ϑ.

(ii) Let p > 0. By Cauchy-Schwarz inequality it is enough to prove the result with 2p instead
of p. Let us denote by (Xt)t>0 the fractional Ornstein Uhlenbeck process defined by (6.3) with
ϑ = 1 and starting from y0, i.e. {

dXt = −Xt dt+ σ dBt
X0 = y0.

(A.1)

In this proof, we set t := inf{kκ | kκ 6 t < (k+1)κ} and T := nκ. With this notations, similarly
to what is done in the proof of Proposition 4.2, we have

1
n

n−1∑
k=0
|Y ϑ
kκ|2p = 1

T

∫ T

0
|Y ϑ
t |2pdt.
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Let us also denote by X̃ the stationary Ornstein-Uhlenbeck process related to (A.1). Then the
proof of item (ii) is based on the following inequality:

1
T

∫ T

0
|Y ϑ
t |2pdt 6 32p−1

(
1
T

∫ T

0
|Y ϑ
t −Xt|2pdt+ 1

T

∫ T

0
|Xt − X̃t|2pdt+ 1

T

∫ T

0
|X̃t|2pdt

)
(A.2)

Let us start by bounding the two last term in the right hand side of (A.2). First, since (X̃kκ)k>0
is a stationary Gaussian sequence and since E[X̃κX̃(n+1)κ] −→

n→+∞
0 (according to [7, Theorem

2.3]), a criterion for Gaussian processes (see [35]) gives that (X̃kκ)k>0 is ergodic. Therefore, we
get

lim
T→+∞

1
T

∫ T

0
|X̃t|2pdt = lim

n→+∞

1
n

n−1∑
k=0
|X̃kκ|2p = E[|X̃κ|2p] < +∞, (A.3)

where the limit holds in the almost sure sense.
In order to treat the second term in the right hand side of (A.2), we resort to equation (A.1).
From there it is readily checked that d

dt |Xt − X̃t|2 = −2|Xt − X̃t|2, and thus |Xt − X̃t|2 =
e−2t|y0 − X̃0|2. In particular, we have lim

k→+∞
|Xkκ − X̃kκ|2p = lim

k→+∞
e−2pkκ|y0 − X̃0|2p = 0 and

the corresponding Cesaro summation tends also to 0, i.e.

lim
T→+∞

1
T

∫ T

0
|Xt − X̃t|2pdt = lim

n→+∞

1
n

n−1∑
k=0
|Xkκ − X̃kκ|2p = 0. (A.4)

Now it remains to treat the first term in the right hand side of (A.2). To this end, we will invoke
our hypothesis (Cw) and a classical argument based on Gronwall’s lemma. Namely, note that
for all ε > 0,

d

dt
|Y ϑ
t −Xt|2 = 2〈Y ϑ

t −Xt, bϑ(Y ϑ
t ) +Xt〉

= 2〈Y ϑ
t −Xt, bϑ(Y ϑ

t )− bϑ(Xt)〉+ 2〈Y ϑ
t −Xt, bϑ(Xt) +Xt〉

6 2β − 2α|Y ϑ
t −Xt|2 + 1

ε
|Y ϑ
t −Xt|2 + εC̃(1 + |Xt|2r),

where the last inequality stems from (Cw), Young’s inequality and the linear growth of bϑ
entailed by (2.5). We then set ε = 1/α, which gives

d

dt
|Y ϑ
t −Xt|2 6 2β − α|Y ϑ

t −Xt|2 + C̃

α
(1 + |Xt|2r).

Hence from Gronwall’s lemma, we deduce that

|Y ϑ
t −Xt|2 6

∫ t

0
e−α(t−s)

(
2β + C̃

α
(1 + |Xs|2r)

)
ds. (A.5)

Starting from (A.5), one can easily get a bound on |Y ϑ
t −Xt|2p. Namely, due to the fact that∫ t

0 e
−α(t−s)ds = α−1(1− e−αt), a direct application of Jensen’s inequality yields

|Y ϑ
t −Xt|2p 6

(
1− e−αt

α

)p−1 ∫ t

0
e−α(t−s)

(
2β + C̃

α
(1 + |Xs|2r)

)p
ds

6 Cp

∫ t

0
e−α(t−s)(1 + |Xs|2pr)ds.
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Then, by using Fubini theorem, it comes

1
T

∫ T

0
|Y ϑ
t −Xt|2pdt 6

Cp
T

∫ T

0

∫ t

0
e−α(t−s)(1 + |Xs|2pr)ds dt

6
Cp
T

∫ T

0
(1 + |Xs|2pr)

∫ T

s
1[0,t](s)e−α(t−s)dt ds. (A.6)

In addition, for t ∈ [0, T ] we have 1[0,t](s)e−α(t−s) 6 eακe−α(t−s). Hence integrating the right
hand side of (A.6) we get

1
T

∫ T

0
|Y ϑ
t −Xt|2pdt 6

Cpe
ακ

α

1
T

∫ T

0
(1 + |Xs|2pr)

(
1− e−α(T−s)

)
ds 6

Cpe
ακ

α

(
1 + 1

T

∫ T

0
|Xs|2prds

)
.

Finally, by the same type of arguments used in the first part of the proof (see (A.4)), we can
show that lim

T→+∞
1
T

∫ T
0 |Xs|2prds = E[|X̃0|2pr] < +∞. Thus we have obtained

sup
T>0

sup
ϑ∈Θ

1
T

∫ T

0
|Y ϑ
t −Xt|2pdt < +∞. (A.7)

Plugging (A.3), (A.4) and (A.7) into (A.2), our claim (ii) is now proved.
(iii) We let the patient reader check the details for item (iii). It follows the same lines as

item (ii), except for the fact that the discretization procedure is avoided. �

Our next result is an analog of Proposition A.1 for the Euler scheme Zϑ,γ .

Proposition A.2. Let Zϑ,γ be the Euler approximation scheme defined by (2.13). Assume (H0)
and (Cw). Then, there exists γ0 > 0 such that for all p > 0,

(i) sup
ϑ∈Θ

sup
γ∈(0,γ0]

lim sup
N→+∞

E[|Zϑ,γNγ |p] < +∞.

(ii) sup
γ∈(0,γ0]

sup
N>0

γp(1−H)E[sup
ϑ∈Θ
|Zϑ,γNγ |p] < +∞.

(iii) Fix γ ∈ (0, 1]. Then sup
ϑ∈Θ

sup
N>1

1
N

∑N−1
k=0 |Z

ϑ,γ
kγ |p < +∞ a.s.

The strategy for the proof of Proposition A.2 is based on a comparison between Zϑ,γ and the
Euler scheme Σ related to the Ornstein-Uhlenbeck process X given by (A.1). Namely define Σ
recursively by Σ0 = y0 and:

Σ(k+1)γ = (1− γ)Σkγ + σ((B(k+1)γ −Bkγ)), ∀k > 0. (A.8)

We first prove some bounds on Σ itself, which are labeled in the following lemma

Lemma A.3. Let Σ be the Euler scheme defined by (A.8). There exists γ0 > 0 such that for
all p > 0 we have

(i) sup
γ∈(0,γ0]

lim sup
N→+∞

E[|ΣNγ |p] < +∞.

(ii) sup
γ∈(0,γ0]

sup
N>0

γp(1−H)E[|ΣNγ |p] < +∞.

(iii) Fix γ ∈ (0, γ0]. Then sup
N>1

1
N

∑N−1
k=0 |Σkγ |p < +∞ a.s.
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Proof. By Cauchy-Schwarz inequality, it is enough to show the three results for 2p instead of p.
We treat again the three items separately.

(i) Let γ0 ∈ (0, 1). By Lemma 2 in [9], we know that

sup
γ∈(0,γ0]

lim sup
N→+∞

E[|ΣNγ |2] < +∞. (A.9)

Since Σ is a Gaussian process, the extension from a second order moment to a moment of order
2p is trivial. We thus omit details for sake of conciseness.

(ii) Let γ0 ∈ (0, 1) and γ ∈ (0, γ0). First note that by induction, we have for all k ≥ 1:

Σkγ = (1− γ)ky0 + σ
k−1∑
j=0

(1− γ)j∆k−j , (A.10)

where ∆k−j := (B(k−j)γ − B(k−1−j)γ). In equation (A.10), we apply the triangular inequality
for the norm in L2(Ω) and we invoke the fact that E[(∆i

k)2]1/2 = γH for all i ∈ {1, . . . , d}. This
yields

E[|Σkγ |2]1/2 6 (1− γ)k|y0|+ |σ|
k−1∑
j=0

(1− γ)jE[|∆k−j |2]1/2

6 (1− γ)k|y0|+ |σ|
k−1∑
j=0

(1− γ)j
d∑
i=1

E[(∆i
k−j)2]1/2

6 (1− γ)k|y0|+ d|σ|γH
k−1∑
j=0

(1− γ)j

6 |y0|+ d|σ|cγH−1.

Therefore, we easily get that

γ2−2HE[|Σkγ |2] 6 2γ2−2H
(
|y0|2 + d2|σ|2γ2H−2

)
6 2γ2−2H

0 |y0|2 + 2d2|σ|2

which gives the following bound

sup
γ∈(0,γ0]

sup
N>0

γ2−2HE[|ΣNγ |2] < +∞.

Exactly as in item (i), we now resort to the Gaussian nature of Σ in order to conclude that

sup
γ∈(0,γ0]

sup
N>0

γ2p(1−H)E[|ΣNγ |2p] < +∞, for all p ≥ 1. (A.11)

(iii) We start from identity (A.10). Applying Jensen’s inequality we deduce that

|Σkγ |2p 6 22p−1(1− γ)2kp|y0|2p +
(2
γ

)2p−1
|σ|2p

k−1∑
j=0

(1− γ)j |∆k−j |2p

6 22p−1|y0|2p +
(2
γ

)2p−1
|σ|2p

k−1∑
j=0

(1− γ)j |∆k−j |2p. (A.12)

We have thus obtained that

1
N

N−1∑
k=0
|Σkγ |2p 6 (22p−1 + 1)|y0|2p +

(2
γ

)2p−1
|σ|2p 1

N

N−1∑
k=1

k−1∑
j=0

(1− γ)j |∆k−j |2p.
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Therefore our claim (iii) is reduced to show that

sup
N>1

1
N

N−1∑
k=1

k−1∑
j=0

(1− γ)j |∆k−j |2p < +∞. (A.13)

In order to prove (A.13) we make a change of variable ` = k−1− j and apply Fubini’s theorem.
This gives

1
N

N−1∑
k=1

k−1∑
j=0

(1− γ)j |∆k−j |2p = 1
N

N−2∑
`=0
|∆`+1|2p

N−1∑
k=`+1

(1− γ)k−1−`

6
1
γ

1
N

N−2∑
`=0
|∆`+1|2p 6

dp
′−1

γ

d∑
i=1

1
N

N−2∑
`=0

(∆i
`+1)2p.

Since the sequence (∆i
n)n>1 is ergodic for every i ∈ {1, . . . , d}, we have

1
N

N−2∑
`=0

(∆i
`+1)2p −→

N→+∞
E[(∆i

1)2p] = cpγ
2pH

and our claim (A.13) follows. This finishes the proof. �

With those preliminary considerations on Σ in hand, we can now prove our Proposition A.2.

Proof of Proposition A.2. As previously, we will prove the result for 2p instead of p. Moreover,
for sake of simplicity, we write Zϑ instead of Zϑ,γ . According to the dynamics (A.8) for Σ and
(2.13) for Zϑ, we have for all k > 1,

|Zϑkγ − Σkγ |2 = |Zϑ(k−1)γ − Σ(k−1)γ |2

+ 2γ〈Zϑ(k−1)γ − Σ(k−1)γ ,Σ(k−1)γ + bϑ(Zϑ(k−1)γ)〉+ γ2|Σ(k−1)γ + bϑ(Zϑ(k−1)γ)|2. (A.14)

In order to treat the second term in (A.14), we recast it as

〈Zϑ(k−1)γ − Σ(k−1)γ ,Σ(k−1)γ + bϑ(Zϑ(k−1)γ)〉

= 〈Zϑ(k−1)γ − Σ(k−1)γ , bϑ(Zϑ(k−1)γ)− bϑ(Σ(k−1)γ)〉+ 〈Zϑ(k−1)γ − Σ(k−1)γ ,Σ(k−1)γ + bϑ(Σ(k−1)γ)〉

Then, we invoke our condition (Cw) to bound the first term in the right hand side above and
Young’s inequality for the second term. Similar manipulations can be performed for the third
term in (A.14). We let the patient reader check that for some arbitrary parameters ε, ε′ we get

|Zϑkγ − Σkγ |2

6 2βγ + (1− 2γα)|Zϑ(k−1)γ − Σ(k−1)γ |2 + γ

ε
|Zϑ(k−1)γ − Σ(k−1)γ |2

+ γε|Σ(k−1)γ + bϑ(Σ(k−1)γ)|2 + γ2

2ε′ |Σ(k−1)γ + bϑ(Σϑ
(k−1)γ)|2 + γ2L2ε′

2 |Zϑ(k−1)γ − Σ(k−1)γ |2.

We now choose ε = 1
α and ε′ = α

γL2 , which yields

|Zϑkγ − Σkγ |2 6 2βγ +
(

1− γα

2

)
|Zϑ(k−1)γ − Σ(k−1)γ |2 +

(
γ

α
+ γ3L2

2α

)
|Σ(k−1)γ + bϑ(Σ(k−1)γ)|2.

Observe that under (Cw), bϑ is sublinear. Hence there exists C > 0 depending only on α, β, L
such that

|Zϑkγ − Σkγ |2 6 (1− γα̃) |Zϑ(k−1)γ − Σ(k−1)γ |2 + Cγ
(
1 + γ2

) (
1 + |Σ(k−1)γ |2

)
(A.15)
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where we have set α̃ := α/2 in order to ease our next computations. We now choose 0 < γ0 <
1/α̃. By a direct induction, it comes

|Zϑkγ − Σkγ |2 6 Cγ
(
1 + γ2

) k−1∑
j=0

(1− γα̃)k−1−j
(
1 + |Σjγ |2

)
.

Finally, applying Jensen’s inequality similarly to what is done in (A.12), we end up with

|Zϑkγ − Σkγ |2p 6 Cp
γ

α̃p′−1

(
1 + γ2

)p k−1∑
j=0

(1− γα̃)k−1−j
(
1 + |Σjγ |2

)p

6 Cp
( 2
α̃

)p−1
γ
(
1 + γ2

)p k−1∑
j=0

(1− γα̃)k−1−j
(
1 + |Σjγ |2p

)
. (A.16)

With those preliminary considerations in hand, we now prove the three items in Proposition A.2
separately.

(i) We start from relation (A.15). Since γ ∈ (0, γ0], C(1 + γ2) ≤ C̃ for a constant C̃ > 0

|Zϑkγ − Σkγ |2 6 (1− γα̃) |Zϑ(k−1)γ − Σ(k−1)γ |2 + γα̃
C̃

α̃

(
1 + |Σ(k−1)γ |2

)
.

We now invoke the convexity of x 7→ |x|p in order to get

|Zϑkγ − Σkγ |2p 6 (1− γα̃) |Zϑ(k−1)γ − Σ(k−1)γ |2p + γα̃
C̃p

α̃p

(
1 + |Σ(k−1)γ |2

)p
6 (1− γα̃) |Zϑ(k−1)γ − Σ(k−1)γ |2p + C̃pγ

(
1 + |Σ(k−1)γ |2p

)
.

Then we take expectations and upper limits in k, which gives

lim sup
k→+∞

E[|Zϑkγ − Σkγ |2p] 6
C̃p
α̃

(
1 + lim sup

k→+∞
E[|Σkγ |2p]

)
.

With this inequality in hand and Proposition A.3 (i), inequality (i) is proved.
(ii) First, we take successively the supremum over Θ and the expectation in (A.16). We then

multiply by γ2p(1−H) and perform the same kind of manipulations as for (i). With the help of
Proposition A.3 (ii), we get that

sup
γ∈(0,γ0]

sup
k>0

γ2p(1−H)E[sup
ϑ∈Θ
|Zϑkγ − Σkγ |2p] < +∞. (A.17)

Having achieved the upper bound (A.17), our claim (ii) now stems from another direct appli-
cation of Proposition A.3 (ii).

(iii) Here, we just need to sum (A.16) for k from 0 to N − 1 and divide by N . Then, we
use Fubini theorem on the right hand side combined with Proposition A.3 (iii) to conclude that
sup
ϑ∈Θ

sup
N>1

1
N

∑N−1
k=0 |Zϑkγ − Σkγ |2p < +∞. Finally, by using again Proposition A.3 (iii), the result

follows.
�

A.2. Proof of Proposition 3.3. We will focus on the proof of (3.8) only, the discrete coun-
terpart of Proposition 3.3 being obtained by similar argument. We also note that (3.8) cannot
be obtained as a consequence of Birkhoff’s theorem. Indeed, Birkhoff’s theorem would yield a
ν̄ϑ-a.s. convergence in (3.8), where ν̄ϑ is the invariant measure alluded to in Remark 2.3. In
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order to avoid any reference to the support of the invariant measure ν̄ϑ, our relation (3.8) gives
a weak convergence result which does not include any condition on the initial value of Y ϑ

0 .
In order to prove (3.8), we first observe that according to (3.9), the family of measures

{1
t

∫ t
0 δY ϑs ds; t ≥ 0} is a.s. tight. Therefore it only remains to prove that any limit is νϑ. We

now focus on the convergence of 1
t

∫ t
0 δY ϑs ds. To this aim, we consider an additional family of

probability measures on C([0,∞),Rd) in the following way:

πϑt = 1
t

∫ t

0
δY ϑs+.

ds

where Y ϑ
s+. = (Y ϑ

s+u)u≥0. We will first prove that {πϑt ; t ≥ 0} is an a.s. tight family in the set
M1(C([0,∞),Rd)), where we recall that the notation M1 is introduced in Section 2.1. The
tightness of {πϑt ; t ≥ 0} can be handled in the following way: we have seen that {1

t

∫ t
0 δY ϑs ds; t ≥

0} is a.s. tight in M1(Rd). Therefore a classical criterion (see e.g. [4, Theorem 8.3]) ensures
that {πϑt ; t ≥ 0} is a.s. tight if for every positive T , η and ε, there exists δ > 0 such that for all
t0 ∈ [0, T ],

lim sup
t→+∞

1
t

∫ t

0

1
δ

1{supu∈[t0,t0+δ] |Y ϑs+u−Y
ϑ
s+t0
|≥ε}ds ≤ η a.s. (A.18)

Moreover, inequality (A.18) holds true as long as there exist some positive r and ρ such that

lim sup
t→+∞

1
t

∫ t

0
sup

u∈[t0,t0+δ]
|Y ϑ
s+u − Y ϑ

s+t0 |
rds ≤ Cr,T δ1+ρ a.s. (A.19)

Let us now prove (A.19). On the interval [t0, t0 + δ], we have

|Y ϑ
s+u − Y ϑ

s+t0 | ≤
∫ t0+δ

t0
|bϑ(Y ϑ

s+u)|du+ sup
u∈[t0,t0+δ]

|Bs+u −Bs+t0 |. (A.20)

Using Jensen’s inequality and Fubini’s Theorem, we get that for any r > 0,

1
t

∫ t

0

(∫ t0+δ

t0
|bϑ(Y ϑ

s+u)|du
)r

ds ≤ δr−1
(

1
t

∫ t+t0+δ

0
|b(Y ϑ

s )|rds
)
.

Furthermore, since bϑ is sublinear according to (Cw), it follows from (3.10) that

lim sup
t→+∞

1
t

∫ t

0

(∫ t0+δ

t0
|bϑ(Y ϑ

s+u)|du
)r

ds ≤ Cδr−1 (A.21)

for a constant C > 0. On the other hand, by the ergodicity of the increments of the fBm and
its self-similarity,

1
t

∫ t

0
sup

u∈[t0,t0+δ]
|Bs+u −Bs+t0 |rds

t→+∞−−−−→ E[ sup
u∈[0,δ]

|Bu|r] = Crδ
Hr, (A.22)

where the limit in (A.22) holds in the a.s. sense. Choosing r > sup{2, 1/H} in (A.21) and
(A.22), then plugging (A.21) and (A.22) into (A.20), we get that (A.19) is satisfied. We have
thus proved the a.s. tightness of {πϑt ; t ≥ 0}.
The second step is then to show that any limiting distribution of

(
1
t

∫ t
0 δY ϑs+.

ds
)
is necessarily the

law of a stationary solution Ȳ ϑ to SDE (2.7). This step in turn implies the result by uniqueness
of the stationary solutions.
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Let
(

1
tn

∫ tn
0 δY ϑs+.

ds
)
n
be a (pathwise) convergent sequence with limiting distribution µ where

{tn;n ≥ 1} is an increasing sequence converging to +∞. We first prove that µ is the law of a
stationary process. Namely, for any bounded functional F : C([0,∞),Rd)→ R, we have

µ(F ◦ θT )− µ(F ) = lim
n→+∞

1
tn

∫ tn

0
[F (Y ϑ

s+T+.)− F (Y ϑ
s+.)]ds.

However, a simple change of variables reveals that a.s. we have

lim
n→+∞

1
tn

∫ tn

0
[F (Y ϑ

s+T+.)− F (Y ϑ
s+.)]ds = lim

n→+∞

1
tn

(∫ tn+T

tn
F (Y ϑ

s+.)ds−
∫ T

0
F (Y ϑ

s+.)ds
)

= 0.

We thus easily get that µ is stationary. Now, let us prove that µ is the law of a solution to
(2.7). Without loss of generality, we can say that a process (xt)t≥0 is a solution to (2.7) if
x.−x0−

∫ .
0 bϑ(xu)du is a fBm. In other words, we have to prove that µ◦G−1 is the law of a fBm

where G(x) = x. − x0 −
∫ .

0 bϑ(xu)du. Since G is continuous for the u.s.c topology, it is readily
checked that

µ ◦G−1 = lim
n→+∞

1
tn

∫ tn

0
δG(Y ϑs+.)

ds.

In addition, by construction G(Y ϑ
s+.) = Bs+. − Bs. Hence the fact that µ ◦ G−1 is the law of a

fBM follows again from the ergodicity of the increments of the fBM.
Summarizing our considerations, we have proved that µ is a stationary measure related to the
system (2.7). Therefore we have µ = L((Ȳ ϑ

t )t≥0), which concludes the proof.

Appendix B. Proof of Proposition 3.8

For sake of conciseness, we will focus on the proof of Proposition 3.8 (i). The proof of item
(ii) relies on the same kind of tools, plus the discrete computations invoked in the proof of
Proposition A.2. In order to prove item (i), let us consider t ≥ 1 and a parameter ρ > 0 to be
chosen later on. An easy elaboration of (3.14) shows that

eρt|Y ϑ1
t − Y

ϑ2
t |2 =

∫ t

0
eρs
(
ρ|Y ϑ1

s − Y ϑ2
s |2 + 2〈bϑ1(Y ϑ1

s )− bϑ2(Y ϑ2
s ), Y ϑ1

s − Y ϑ2
s 〉

)
ds. (B.1)

In addition, one can write
bϑ1(Y ϑ1

s )− bϑ2(Y ϑ2
s ) = bϑ1(Y ϑ1

s )− bϑ1(Y ϑ2
s ) + bϑ1(Y ϑ2

s )− bϑ2(Y ϑ2
s ).

We now combine the assumption (Cs) (including the contraction property, the fact x 7→ bϑ(x)
is uniformly Lipschitz in ϑ and the fact that ∂ϑbϑ(x) has polynomial growth) and Young’s
inequality |ab| ≤ 1

2ε |a|
2 + ε

2 |b|
2 for an arbitrary ε > 0. This yields the existence of a constant

L > 0 such that

〈bϑ1(Y ϑ1
s )− bϑ2(Y ϑ2

s ), Y ϑ1
s − Y ϑ2

s 〉 ≤
(
−α+ L2ε

2

)
|Y ϑ1
s − Y ϑ2

s |2 + C|ϑ1 − ϑ2|2(1 + |Ys|r)2

2ε .

Plugging this inequality into (B.1) and setting ε = L2/α and ρ = α/2, we have thus obtained

eρt|Y ϑ1
t − Y

ϑ2
t |2 ≤ C|ϑ1 − ϑ2|2

∫ t

0
eρs(1 + |Y ϑ2

s |2rds. (B.2)

Thus, using Fubini’s theorem, one deduces that
1
t

∫ t

0
|Y ϑ1
s − Y ϑ2

s |2ds ≤
C|ϑ1 − ϑ2|2

t

∫ t

0
(1 + |Y ϑ2

s |2r
∫ t

u
eρ(s−u)dsdu

≤ Cρ|ϑ1 − ϑ2|2
(

1 + 1
t

∫ t

0
(1 + |Y ϑ2

s |2rdu
)
.
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Hence a direct application of inequality (3.9) yields the existence of a random variable C = C(ω)
such that for all (ϑ1, ϑ2) ∈ Θ2 we have

sup
t≥1

1
t

∫ t

0
|Y ϑ1
s − Y ϑ2

s |2ds ≤ C|ϑ1 − ϑ2|2.

This concludes the proof of Proposition 3.8 (i) for a distance d ∈ D2. To extend the result to
any p ≥ 2, one can apply Jensen’s inequality to (B.2) and follow the same lines as for d ∈ D2.
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